Processing math: 100%

Your data matches 3 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
St000342: Permutations ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[1] => 1
[1,2] => 5
[2,1] => 4
[1,2,3] => 14
[1,3,2] => 13
[2,1,3] => 13
[2,3,1] => 11
[3,1,2] => 11
[3,2,1] => 10
[1,2,3,4] => 30
[1,2,4,3] => 29
[1,3,2,4] => 29
[1,3,4,2] => 27
[1,4,2,3] => 27
[1,4,3,2] => 26
[2,1,3,4] => 29
[2,1,4,3] => 28
[2,3,1,4] => 27
[2,3,4,1] => 24
[2,4,1,3] => 25
[2,4,3,1] => 23
[3,1,2,4] => 27
[3,1,4,2] => 25
[3,2,1,4] => 26
[3,2,4,1] => 23
[3,4,1,2] => 22
[3,4,2,1] => 21
[4,1,2,3] => 24
[4,1,3,2] => 23
[4,2,1,3] => 23
[4,2,3,1] => 21
[4,3,1,2] => 21
[4,3,2,1] => 20
[1,2,3,4,5] => 55
[1,2,3,5,4] => 54
[1,2,4,3,5] => 54
[1,2,4,5,3] => 52
[1,2,5,3,4] => 52
[1,2,5,4,3] => 51
[1,3,2,4,5] => 54
[1,3,2,5,4] => 53
[1,3,4,2,5] => 52
[1,3,4,5,2] => 49
[1,3,5,2,4] => 50
[1,3,5,4,2] => 48
[1,4,2,3,5] => 52
[1,4,2,5,3] => 50
[1,4,3,2,5] => 51
[1,4,3,5,2] => 48
[1,4,5,2,3] => 47
Description
The cosine of a permutation. For a permutation π=[π1,,πn], this is given by ni=1(iπi). The name comes from the observation that this equals n(n+1)(2n+1)6cos(θ) where θ is the angle between the vector (π1,,πn) and the vector (1,,n), see [1].
Matching statistic: St000114
Mp00063: Permutations to alternating sign matrixAlternating sign matrices
Mp00001: Alternating sign matrices to semistandard tableau via monotone trianglesSemistandard tableaux
Mp00076: Semistandard tableaux to Gelfand-Tsetlin patternGelfand-Tsetlin patterns
St000114: Gelfand-Tsetlin patterns ⟶ ℤResult quality: 3% values known / values provided: 3%distinct values known / distinct values provided: 18%
Values
[1] => [[1]]
=> [[1]]
=> [[1]]
=> 1
[1,2] => [[1,0],[0,1]]
=> [[1,1],[2]]
=> [[2,1],[2]]
=> 5
[2,1] => [[0,1],[1,0]]
=> [[1,2],[2]]
=> [[2,1],[1]]
=> 4
[1,2,3] => [[1,0,0],[0,1,0],[0,0,1]]
=> [[1,1,1],[2,2],[3]]
=> [[3,2,1],[3,2],[3]]
=> 14
[1,3,2] => [[1,0,0],[0,0,1],[0,1,0]]
=> [[1,1,1],[2,3],[3]]
=> [[3,2,1],[3,1],[3]]
=> 13
[2,1,3] => [[0,1,0],[1,0,0],[0,0,1]]
=> [[1,1,2],[2,2],[3]]
=> [[3,2,1],[3,2],[2]]
=> 13
[2,3,1] => [[0,0,1],[1,0,0],[0,1,0]]
=> [[1,1,3],[2,3],[3]]
=> [[3,2,1],[2,1],[2]]
=> 11
[3,1,2] => [[0,1,0],[0,0,1],[1,0,0]]
=> [[1,2,2],[2,3],[3]]
=> [[3,2,1],[3,1],[1]]
=> 11
[3,2,1] => [[0,0,1],[0,1,0],[1,0,0]]
=> [[1,2,3],[2,3],[3]]
=> [[3,2,1],[2,1],[1]]
=> 10
[1,2,3,4] => [[1,0,0,0],[0,1,0,0],[0,0,1,0],[0,0,0,1]]
=> [[1,1,1,1],[2,2,2],[3,3],[4]]
=> [[4,3,2,1],[4,3,2],[4,3],[4]]
=> 30
[1,2,4,3] => [[1,0,0,0],[0,1,0,0],[0,0,0,1],[0,0,1,0]]
=> [[1,1,1,1],[2,2,2],[3,4],[4]]
=> [[4,3,2,1],[4,3,1],[4,3],[4]]
=> 29
[1,3,2,4] => [[1,0,0,0],[0,0,1,0],[0,1,0,0],[0,0,0,1]]
=> [[1,1,1,1],[2,2,3],[3,3],[4]]
=> [[4,3,2,1],[4,3,2],[4,2],[4]]
=> 29
[1,3,4,2] => [[1,0,0,0],[0,0,0,1],[0,1,0,0],[0,0,1,0]]
=> [[1,1,1,1],[2,2,4],[3,4],[4]]
=> [[4,3,2,1],[4,2,1],[4,2],[4]]
=> 27
[1,4,2,3] => [[1,0,0,0],[0,0,1,0],[0,0,0,1],[0,1,0,0]]
=> [[1,1,1,1],[2,3,3],[3,4],[4]]
=> [[4,3,2,1],[4,3,1],[4,1],[4]]
=> 27
[1,4,3,2] => [[1,0,0,0],[0,0,0,1],[0,0,1,0],[0,1,0,0]]
=> [[1,1,1,1],[2,3,4],[3,4],[4]]
=> [[4,3,2,1],[4,2,1],[4,1],[4]]
=> 26
[2,1,3,4] => [[0,1,0,0],[1,0,0,0],[0,0,1,0],[0,0,0,1]]
=> [[1,1,1,2],[2,2,2],[3,3],[4]]
=> [[4,3,2,1],[4,3,2],[4,3],[3]]
=> 29
[2,1,4,3] => [[0,1,0,0],[1,0,0,0],[0,0,0,1],[0,0,1,0]]
=> [[1,1,1,2],[2,2,2],[3,4],[4]]
=> [[4,3,2,1],[4,3,1],[4,3],[3]]
=> 28
[2,3,1,4] => [[0,0,1,0],[1,0,0,0],[0,1,0,0],[0,0,0,1]]
=> [[1,1,1,3],[2,2,3],[3,3],[4]]
=> [[4,3,2,1],[4,3,2],[3,2],[3]]
=> 27
[2,3,4,1] => [[0,0,0,1],[1,0,0,0],[0,1,0,0],[0,0,1,0]]
=> [[1,1,1,4],[2,2,4],[3,4],[4]]
=> [[4,3,2,1],[3,2,1],[3,2],[3]]
=> 24
[2,4,1,3] => [[0,0,1,0],[1,0,0,0],[0,0,0,1],[0,1,0,0]]
=> [[1,1,1,3],[2,3,3],[3,4],[4]]
=> [[4,3,2,1],[4,3,1],[3,1],[3]]
=> 25
[2,4,3,1] => [[0,0,0,1],[1,0,0,0],[0,0,1,0],[0,1,0,0]]
=> [[1,1,1,4],[2,3,4],[3,4],[4]]
=> [[4,3,2,1],[3,2,1],[3,1],[3]]
=> 23
[3,1,2,4] => [[0,1,0,0],[0,0,1,0],[1,0,0,0],[0,0,0,1]]
=> [[1,1,2,2],[2,2,3],[3,3],[4]]
=> [[4,3,2,1],[4,3,2],[4,2],[2]]
=> 27
[3,1,4,2] => [[0,1,0,0],[0,0,0,1],[1,0,0,0],[0,0,1,0]]
=> [[1,1,2,2],[2,2,4],[3,4],[4]]
=> [[4,3,2,1],[4,2,1],[4,2],[2]]
=> 25
[3,2,1,4] => [[0,0,1,0],[0,1,0,0],[1,0,0,0],[0,0,0,1]]
=> [[1,1,2,3],[2,2,3],[3,3],[4]]
=> [[4,3,2,1],[4,3,2],[3,2],[2]]
=> 26
[3,2,4,1] => [[0,0,0,1],[0,1,0,0],[1,0,0,0],[0,0,1,0]]
=> [[1,1,2,4],[2,2,4],[3,4],[4]]
=> [[4,3,2,1],[3,2,1],[3,2],[2]]
=> 23
[3,4,1,2] => [[0,0,1,0],[0,0,0,1],[1,0,0,0],[0,1,0,0]]
=> [[1,1,3,3],[2,3,4],[3,4],[4]]
=> [[4,3,2,1],[4,2,1],[2,1],[2]]
=> 22
[3,4,2,1] => [[0,0,0,1],[0,0,1,0],[1,0,0,0],[0,1,0,0]]
=> [[1,1,3,4],[2,3,4],[3,4],[4]]
=> [[4,3,2,1],[3,2,1],[2,1],[2]]
=> 21
[4,1,2,3] => [[0,1,0,0],[0,0,1,0],[0,0,0,1],[1,0,0,0]]
=> [[1,2,2,2],[2,3,3],[3,4],[4]]
=> [[4,3,2,1],[4,3,1],[4,1],[1]]
=> 24
[4,1,3,2] => [[0,1,0,0],[0,0,0,1],[0,0,1,0],[1,0,0,0]]
=> [[1,2,2,2],[2,3,4],[3,4],[4]]
=> [[4,3,2,1],[4,2,1],[4,1],[1]]
=> 23
[4,2,1,3] => [[0,0,1,0],[0,1,0,0],[0,0,0,1],[1,0,0,0]]
=> [[1,2,2,3],[2,3,3],[3,4],[4]]
=> [[4,3,2,1],[4,3,1],[3,1],[1]]
=> 23
[4,2,3,1] => [[0,0,0,1],[0,1,0,0],[0,0,1,0],[1,0,0,0]]
=> [[1,2,2,4],[2,3,4],[3,4],[4]]
=> [[4,3,2,1],[3,2,1],[3,1],[1]]
=> 21
[4,3,1,2] => [[0,0,1,0],[0,0,0,1],[0,1,0,0],[1,0,0,0]]
=> [[1,2,3,3],[2,3,4],[3,4],[4]]
=> [[4,3,2,1],[4,2,1],[2,1],[1]]
=> 21
[4,3,2,1] => [[0,0,0,1],[0,0,1,0],[0,1,0,0],[1,0,0,0]]
=> [[1,2,3,4],[2,3,4],[3,4],[4]]
=> [[4,3,2,1],[3,2,1],[2,1],[1]]
=> 20
[1,2,3,4,5] => [[1,0,0,0,0],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,1,0],[0,0,0,0,1]]
=> [[1,1,1,1,1],[2,2,2,2],[3,3,3],[4,4],[5]]
=> [[5,4,3,2,1],[5,4,3,2],[5,4,3],[5,4],[5]]
=> ? = 55
[1,2,3,5,4] => [[1,0,0,0,0],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,0,1],[0,0,0,1,0]]
=> [[1,1,1,1,1],[2,2,2,2],[3,3,3],[4,5],[5]]
=> [[5,4,3,2,1],[5,4,3,1],[5,4,3],[5,4],[5]]
=> ? = 54
[1,2,4,3,5] => [[1,0,0,0,0],[0,1,0,0,0],[0,0,0,1,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [[1,1,1,1,1],[2,2,2,2],[3,3,4],[4,4],[5]]
=> [[5,4,3,2,1],[5,4,3,2],[5,4,2],[5,4],[5]]
=> ? = 54
[1,2,4,5,3] => [[1,0,0,0,0],[0,1,0,0,0],[0,0,0,0,1],[0,0,1,0,0],[0,0,0,1,0]]
=> [[1,1,1,1,1],[2,2,2,2],[3,3,5],[4,5],[5]]
=> [[5,4,3,2,1],[5,4,2,1],[5,4,2],[5,4],[5]]
=> ? = 52
[1,2,5,3,4] => [[1,0,0,0,0],[0,1,0,0,0],[0,0,0,1,0],[0,0,0,0,1],[0,0,1,0,0]]
=> [[1,1,1,1,1],[2,2,2,2],[3,4,4],[4,5],[5]]
=> [[5,4,3,2,1],[5,4,3,1],[5,4,1],[5,4],[5]]
=> ? = 52
[1,2,5,4,3] => [[1,0,0,0,0],[0,1,0,0,0],[0,0,0,0,1],[0,0,0,1,0],[0,0,1,0,0]]
=> [[1,1,1,1,1],[2,2,2,2],[3,4,5],[4,5],[5]]
=> [[5,4,3,2,1],[5,4,2,1],[5,4,1],[5,4],[5]]
=> ? = 51
[1,3,2,4,5] => [[1,0,0,0,0],[0,0,1,0,0],[0,1,0,0,0],[0,0,0,1,0],[0,0,0,0,1]]
=> [[1,1,1,1,1],[2,2,2,3],[3,3,3],[4,4],[5]]
=> [[5,4,3,2,1],[5,4,3,2],[5,4,3],[5,3],[5]]
=> ? = 54
[1,3,2,5,4] => [[1,0,0,0,0],[0,0,1,0,0],[0,1,0,0,0],[0,0,0,0,1],[0,0,0,1,0]]
=> [[1,1,1,1,1],[2,2,2,3],[3,3,3],[4,5],[5]]
=> [[5,4,3,2,1],[5,4,3,1],[5,4,3],[5,3],[5]]
=> ? = 53
[1,3,4,2,5] => [[1,0,0,0,0],[0,0,0,1,0],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [[1,1,1,1,1],[2,2,2,4],[3,3,4],[4,4],[5]]
=> [[5,4,3,2,1],[5,4,3,2],[5,3,2],[5,3],[5]]
=> ? = 52
[1,3,4,5,2] => [[1,0,0,0,0],[0,0,0,0,1],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,1,0]]
=> [[1,1,1,1,1],[2,2,2,5],[3,3,5],[4,5],[5]]
=> [[5,4,3,2,1],[5,3,2,1],[5,3,2],[5,3],[5]]
=> ? = 49
[1,3,5,2,4] => [[1,0,0,0,0],[0,0,0,1,0],[0,1,0,0,0],[0,0,0,0,1],[0,0,1,0,0]]
=> [[1,1,1,1,1],[2,2,2,4],[3,4,4],[4,5],[5]]
=> [[5,4,3,2,1],[5,4,3,1],[5,3,1],[5,3],[5]]
=> ? = 50
[1,3,5,4,2] => [[1,0,0,0,0],[0,0,0,0,1],[0,1,0,0,0],[0,0,0,1,0],[0,0,1,0,0]]
=> [[1,1,1,1,1],[2,2,2,5],[3,4,5],[4,5],[5]]
=> [[5,4,3,2,1],[5,3,2,1],[5,3,1],[5,3],[5]]
=> ? = 48
[1,4,2,3,5] => [[1,0,0,0,0],[0,0,1,0,0],[0,0,0,1,0],[0,1,0,0,0],[0,0,0,0,1]]
=> [[1,1,1,1,1],[2,2,3,3],[3,3,4],[4,4],[5]]
=> [[5,4,3,2,1],[5,4,3,2],[5,4,2],[5,2],[5]]
=> ? = 52
[1,4,2,5,3] => [[1,0,0,0,0],[0,0,1,0,0],[0,0,0,0,1],[0,1,0,0,0],[0,0,0,1,0]]
=> [[1,1,1,1,1],[2,2,3,3],[3,3,5],[4,5],[5]]
=> [[5,4,3,2,1],[5,4,2,1],[5,4,2],[5,2],[5]]
=> ? = 50
[1,4,3,2,5] => [[1,0,0,0,0],[0,0,0,1,0],[0,0,1,0,0],[0,1,0,0,0],[0,0,0,0,1]]
=> [[1,1,1,1,1],[2,2,3,4],[3,3,4],[4,4],[5]]
=> [[5,4,3,2,1],[5,4,3,2],[5,3,2],[5,2],[5]]
=> ? = 51
[1,4,3,5,2] => [[1,0,0,0,0],[0,0,0,0,1],[0,0,1,0,0],[0,1,0,0,0],[0,0,0,1,0]]
=> [[1,1,1,1,1],[2,2,3,5],[3,3,5],[4,5],[5]]
=> [[5,4,3,2,1],[5,3,2,1],[5,3,2],[5,2],[5]]
=> ? = 48
[1,4,5,2,3] => [[1,0,0,0,0],[0,0,0,1,0],[0,0,0,0,1],[0,1,0,0,0],[0,0,1,0,0]]
=> [[1,1,1,1,1],[2,2,4,4],[3,4,5],[4,5],[5]]
=> [[5,4,3,2,1],[5,4,2,1],[5,2,1],[5,2],[5]]
=> ? = 47
[1,4,5,3,2] => [[1,0,0,0,0],[0,0,0,0,1],[0,0,0,1,0],[0,1,0,0,0],[0,0,1,0,0]]
=> [[1,1,1,1,1],[2,2,4,5],[3,4,5],[4,5],[5]]
=> [[5,4,3,2,1],[5,3,2,1],[5,2,1],[5,2],[5]]
=> ? = 46
[1,5,2,3,4] => [[1,0,0,0,0],[0,0,1,0,0],[0,0,0,1,0],[0,0,0,0,1],[0,1,0,0,0]]
=> [[1,1,1,1,1],[2,3,3,3],[3,4,4],[4,5],[5]]
=> [[5,4,3,2,1],[5,4,3,1],[5,4,1],[5,1],[5]]
=> ? = 49
[1,5,2,4,3] => [[1,0,0,0,0],[0,0,1,0,0],[0,0,0,0,1],[0,0,0,1,0],[0,1,0,0,0]]
=> [[1,1,1,1,1],[2,3,3,3],[3,4,5],[4,5],[5]]
=> [[5,4,3,2,1],[5,4,2,1],[5,4,1],[5,1],[5]]
=> ? = 48
[1,5,3,2,4] => [[1,0,0,0,0],[0,0,0,1,0],[0,0,1,0,0],[0,0,0,0,1],[0,1,0,0,0]]
=> [[1,1,1,1,1],[2,3,3,4],[3,4,4],[4,5],[5]]
=> [[5,4,3,2,1],[5,4,3,1],[5,3,1],[5,1],[5]]
=> ? = 48
[1,5,3,4,2] => [[1,0,0,0,0],[0,0,0,0,1],[0,0,1,0,0],[0,0,0,1,0],[0,1,0,0,0]]
=> [[1,1,1,1,1],[2,3,3,5],[3,4,5],[4,5],[5]]
=> [[5,4,3,2,1],[5,3,2,1],[5,3,1],[5,1],[5]]
=> ? = 46
[1,5,4,2,3] => [[1,0,0,0,0],[0,0,0,1,0],[0,0,0,0,1],[0,0,1,0,0],[0,1,0,0,0]]
=> [[1,1,1,1,1],[2,3,4,4],[3,4,5],[4,5],[5]]
=> [[5,4,3,2,1],[5,4,2,1],[5,2,1],[5,1],[5]]
=> ? = 46
[1,5,4,3,2] => [[1,0,0,0,0],[0,0,0,0,1],[0,0,0,1,0],[0,0,1,0,0],[0,1,0,0,0]]
=> [[1,1,1,1,1],[2,3,4,5],[3,4,5],[4,5],[5]]
=> [[5,4,3,2,1],[5,3,2,1],[5,2,1],[5,1],[5]]
=> ? = 45
[2,1,3,4,5] => [[0,1,0,0,0],[1,0,0,0,0],[0,0,1,0,0],[0,0,0,1,0],[0,0,0,0,1]]
=> [[1,1,1,1,2],[2,2,2,2],[3,3,3],[4,4],[5]]
=> [[5,4,3,2,1],[5,4,3,2],[5,4,3],[5,4],[4]]
=> ? = 54
[2,1,3,5,4] => [[0,1,0,0,0],[1,0,0,0,0],[0,0,1,0,0],[0,0,0,0,1],[0,0,0,1,0]]
=> [[1,1,1,1,2],[2,2,2,2],[3,3,3],[4,5],[5]]
=> [[5,4,3,2,1],[5,4,3,1],[5,4,3],[5,4],[4]]
=> ? = 53
[2,1,4,3,5] => [[0,1,0,0,0],[1,0,0,0,0],[0,0,0,1,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [[1,1,1,1,2],[2,2,2,2],[3,3,4],[4,4],[5]]
=> [[5,4,3,2,1],[5,4,3,2],[5,4,2],[5,4],[4]]
=> ? = 53
[2,1,4,5,3] => [[0,1,0,0,0],[1,0,0,0,0],[0,0,0,0,1],[0,0,1,0,0],[0,0,0,1,0]]
=> [[1,1,1,1,2],[2,2,2,2],[3,3,5],[4,5],[5]]
=> [[5,4,3,2,1],[5,4,2,1],[5,4,2],[5,4],[4]]
=> ? = 51
[2,1,5,3,4] => [[0,1,0,0,0],[1,0,0,0,0],[0,0,0,1,0],[0,0,0,0,1],[0,0,1,0,0]]
=> [[1,1,1,1,2],[2,2,2,2],[3,4,4],[4,5],[5]]
=> [[5,4,3,2,1],[5,4,3,1],[5,4,1],[5,4],[4]]
=> ? = 51
[2,1,5,4,3] => [[0,1,0,0,0],[1,0,0,0,0],[0,0,0,0,1],[0,0,0,1,0],[0,0,1,0,0]]
=> [[1,1,1,1,2],[2,2,2,2],[3,4,5],[4,5],[5]]
=> [[5,4,3,2,1],[5,4,2,1],[5,4,1],[5,4],[4]]
=> ? = 50
[2,3,1,4,5] => [[0,0,1,0,0],[1,0,0,0,0],[0,1,0,0,0],[0,0,0,1,0],[0,0,0,0,1]]
=> [[1,1,1,1,3],[2,2,2,3],[3,3,3],[4,4],[5]]
=> [[5,4,3,2,1],[5,4,3,2],[5,4,3],[4,3],[4]]
=> ? = 52
[2,3,1,5,4] => [[0,0,1,0,0],[1,0,0,0,0],[0,1,0,0,0],[0,0,0,0,1],[0,0,0,1,0]]
=> [[1,1,1,1,3],[2,2,2,3],[3,3,3],[4,5],[5]]
=> [[5,4,3,2,1],[5,4,3,1],[5,4,3],[4,3],[4]]
=> ? = 51
[2,3,4,1,5] => [[0,0,0,1,0],[1,0,0,0,0],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [[1,1,1,1,4],[2,2,2,4],[3,3,4],[4,4],[5]]
=> [[5,4,3,2,1],[5,4,3,2],[4,3,2],[4,3],[4]]
=> ? = 49
[2,3,4,5,1] => [[0,0,0,0,1],[1,0,0,0,0],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,1,0]]
=> [[1,1,1,1,5],[2,2,2,5],[3,3,5],[4,5],[5]]
=> [[5,4,3,2,1],[4,3,2,1],[4,3,2],[4,3],[4]]
=> ? = 45
[2,3,5,1,4] => [[0,0,0,1,0],[1,0,0,0,0],[0,1,0,0,0],[0,0,0,0,1],[0,0,1,0,0]]
=> [[1,1,1,1,4],[2,2,2,4],[3,4,4],[4,5],[5]]
=> [[5,4,3,2,1],[5,4,3,1],[4,3,1],[4,3],[4]]
=> ? = 47
[2,3,5,4,1] => [[0,0,0,0,1],[1,0,0,0,0],[0,1,0,0,0],[0,0,0,1,0],[0,0,1,0,0]]
=> [[1,1,1,1,5],[2,2,2,5],[3,4,5],[4,5],[5]]
=> [[5,4,3,2,1],[4,3,2,1],[4,3,1],[4,3],[4]]
=> ? = 44
[2,4,1,3,5] => [[0,0,1,0,0],[1,0,0,0,0],[0,0,0,1,0],[0,1,0,0,0],[0,0,0,0,1]]
=> [[1,1,1,1,3],[2,2,3,3],[3,3,4],[4,4],[5]]
=> [[5,4,3,2,1],[5,4,3,2],[5,4,2],[4,2],[4]]
=> ? = 50
[2,4,1,5,3] => [[0,0,1,0,0],[1,0,0,0,0],[0,0,0,0,1],[0,1,0,0,0],[0,0,0,1,0]]
=> [[1,1,1,1,3],[2,2,3,3],[3,3,5],[4,5],[5]]
=> [[5,4,3,2,1],[5,4,2,1],[5,4,2],[4,2],[4]]
=> ? = 48
[2,4,3,1,5] => [[0,0,0,1,0],[1,0,0,0,0],[0,0,1,0,0],[0,1,0,0,0],[0,0,0,0,1]]
=> [[1,1,1,1,4],[2,2,3,4],[3,3,4],[4,4],[5]]
=> [[5,4,3,2,1],[5,4,3,2],[4,3,2],[4,2],[4]]
=> ? = 48
[2,4,3,5,1] => [[0,0,0,0,1],[1,0,0,0,0],[0,0,1,0,0],[0,1,0,0,0],[0,0,0,1,0]]
=> [[1,1,1,1,5],[2,2,3,5],[3,3,5],[4,5],[5]]
=> [[5,4,3,2,1],[4,3,2,1],[4,3,2],[4,2],[4]]
=> ? = 44
[2,4,5,1,3] => [[0,0,0,1,0],[1,0,0,0,0],[0,0,0,0,1],[0,1,0,0,0],[0,0,1,0,0]]
=> [[1,1,1,1,4],[2,2,4,4],[3,4,5],[4,5],[5]]
=> [[5,4,3,2,1],[5,4,2,1],[4,2,1],[4,2],[4]]
=> ? = 44
[2,4,5,3,1] => [[0,0,0,0,1],[1,0,0,0,0],[0,0,0,1,0],[0,1,0,0,0],[0,0,1,0,0]]
=> [[1,1,1,1,5],[2,2,4,5],[3,4,5],[4,5],[5]]
=> [[5,4,3,2,1],[4,3,2,1],[4,2,1],[4,2],[4]]
=> ? = 42
[2,5,1,3,4] => [[0,0,1,0,0],[1,0,0,0,0],[0,0,0,1,0],[0,0,0,0,1],[0,1,0,0,0]]
=> [[1,1,1,1,3],[2,3,3,3],[3,4,4],[4,5],[5]]
=> [[5,4,3,2,1],[5,4,3,1],[5,4,1],[4,1],[4]]
=> ? = 47
[2,5,1,4,3] => [[0,0,1,0,0],[1,0,0,0,0],[0,0,0,0,1],[0,0,0,1,0],[0,1,0,0,0]]
=> [[1,1,1,1,3],[2,3,3,3],[3,4,5],[4,5],[5]]
=> [[5,4,3,2,1],[5,4,2,1],[5,4,1],[4,1],[4]]
=> ? = 46
[2,5,3,1,4] => [[0,0,0,1,0],[1,0,0,0,0],[0,0,1,0,0],[0,0,0,0,1],[0,1,0,0,0]]
=> [[1,1,1,1,4],[2,3,3,4],[3,4,4],[4,5],[5]]
=> [[5,4,3,2,1],[5,4,3,1],[4,3,1],[4,1],[4]]
=> ? = 45
[2,5,3,4,1] => [[0,0,0,0,1],[1,0,0,0,0],[0,0,1,0,0],[0,0,0,1,0],[0,1,0,0,0]]
=> [[1,1,1,1,5],[2,3,3,5],[3,4,5],[4,5],[5]]
=> [[5,4,3,2,1],[4,3,2,1],[4,3,1],[4,1],[4]]
=> ? = 42
[2,5,4,1,3] => [[0,0,0,1,0],[1,0,0,0,0],[0,0,0,0,1],[0,0,1,0,0],[0,1,0,0,0]]
=> [[1,1,1,1,4],[2,3,4,4],[3,4,5],[4,5],[5]]
=> [[5,4,3,2,1],[5,4,2,1],[4,2,1],[4,1],[4]]
=> ? = 43
[2,5,4,3,1] => [[0,0,0,0,1],[1,0,0,0,0],[0,0,0,1,0],[0,0,1,0,0],[0,1,0,0,0]]
=> [[1,1,1,1,5],[2,3,4,5],[3,4,5],[4,5],[5]]
=> [[5,4,3,2,1],[4,3,2,1],[4,2,1],[4,1],[4]]
=> ? = 41
[3,1,2,4,5] => [[0,1,0,0,0],[0,0,1,0,0],[1,0,0,0,0],[0,0,0,1,0],[0,0,0,0,1]]
=> [[1,1,1,2,2],[2,2,2,3],[3,3,3],[4,4],[5]]
=> [[5,4,3,2,1],[5,4,3,2],[5,4,3],[5,3],[3]]
=> ? = 52
[3,1,2,5,4] => [[0,1,0,0,0],[0,0,1,0,0],[1,0,0,0,0],[0,0,0,0,1],[0,0,0,1,0]]
=> [[1,1,1,2,2],[2,2,2,3],[3,3,3],[4,5],[5]]
=> [[5,4,3,2,1],[5,4,3,1],[5,4,3],[5,3],[3]]
=> ? = 51
Description
The sum of the entries of the Gelfand-Tsetlin pattern.
St001168: Permutations ⟶ ℤResult quality: 3% values known / values provided: 3%distinct values known / distinct values provided: 16%
Values
[1] => ? = 1
[1,2] => 5
[2,1] => 4
[1,2,3] => 14
[1,3,2] => 13
[2,1,3] => 13
[2,3,1] => 11
[3,1,2] => 11
[3,2,1] => 10
[1,2,3,4] => ? = 30
[1,2,4,3] => 29
[1,3,2,4] => 29
[1,3,4,2] => 27
[1,4,2,3] => 27
[1,4,3,2] => 26
[2,1,3,4] => 29
[2,1,4,3] => 28
[2,3,1,4] => 27
[2,3,4,1] => 24
[2,4,1,3] => 25
[2,4,3,1] => 23
[3,1,2,4] => 27
[3,1,4,2] => 25
[3,2,1,4] => 26
[3,2,4,1] => 23
[3,4,1,2] => 22
[3,4,2,1] => 21
[4,1,2,3] => 24
[4,1,3,2] => 23
[4,2,1,3] => 23
[4,2,3,1] => 21
[4,3,1,2] => 21
[4,3,2,1] => 20
[1,2,3,4,5] => ? = 55
[1,2,3,5,4] => ? = 54
[1,2,4,3,5] => ? = 54
[1,2,4,5,3] => ? = 52
[1,2,5,3,4] => ? = 52
[1,2,5,4,3] => ? = 51
[1,3,2,4,5] => ? = 54
[1,3,2,5,4] => ? = 53
[1,3,4,2,5] => ? = 52
[1,3,4,5,2] => ? = 49
[1,3,5,2,4] => ? = 50
[1,3,5,4,2] => ? = 48
[1,4,2,3,5] => ? = 52
[1,4,2,5,3] => ? = 50
[1,4,3,2,5] => ? = 51
[1,4,3,5,2] => ? = 48
[1,4,5,2,3] => ? = 47
[1,4,5,3,2] => ? = 46
[1,5,2,3,4] => ? = 49
[1,5,2,4,3] => ? = 48
[1,5,3,2,4] => ? = 48
[1,5,3,4,2] => ? = 46
[1,5,4,2,3] => ? = 46
[1,5,4,3,2] => ? = 45
[2,1,3,4,5] => ? = 54
[2,1,3,5,4] => ? = 53
[2,1,4,3,5] => ? = 53
[2,1,4,5,3] => ? = 51
[2,1,5,3,4] => ? = 51
[2,1,5,4,3] => ? = 50
[2,3,1,4,5] => ? = 52
[2,3,1,5,4] => ? = 51
[2,3,4,1,5] => ? = 49
[2,3,4,5,1] => ? = 45
[2,3,5,1,4] => ? = 47
[2,3,5,4,1] => ? = 44
[2,4,1,3,5] => ? = 50
[2,4,1,5,3] => ? = 48
[2,4,3,1,5] => ? = 48
[2,4,3,5,1] => ? = 44
[2,4,5,1,3] => ? = 44
[2,4,5,3,1] => ? = 42
[2,5,1,3,4] => ? = 47
[2,5,1,4,3] => ? = 46
[2,5,3,1,4] => ? = 45
[2,5,3,4,1] => ? = 42
[2,5,4,1,3] => ? = 43
[2,5,4,3,1] => ? = 41
Description
The vector space dimension of the tilting module corresponding to the permutation in the Auslander algebra of K[x]/(xn).