Your data matches 7 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
Matching statistic: St000297
Mp00095: Integer partitions to binary wordBinary words
Mp00280: Binary words path rowmotionBinary words
Mp00105: Binary words complementBinary words
St000297: Binary words ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[1]
=> 10 => 11 => 00 => 0
[2]
=> 100 => 011 => 100 => 1
[1,1]
=> 110 => 111 => 000 => 0
[3]
=> 1000 => 0011 => 1100 => 2
[2,1]
=> 1010 => 1101 => 0010 => 0
[1,1,1]
=> 1110 => 1111 => 0000 => 0
[4]
=> 10000 => 00011 => 11100 => 3
[3,1]
=> 10010 => 01101 => 10010 => 1
[2,2]
=> 1100 => 0111 => 1000 => 1
[2,1,1]
=> 10110 => 11011 => 00100 => 0
[1,1,1,1]
=> 11110 => 11111 => 00000 => 0
[5]
=> 100000 => 000011 => 111100 => 4
[4,1]
=> 100010 => 001101 => 110010 => 2
[3,2]
=> 10100 => 11001 => 00110 => 0
[3,1,1]
=> 100110 => 011011 => 100100 => 1
[2,2,1]
=> 11010 => 11101 => 00010 => 0
[2,1,1,1]
=> 101110 => 110111 => 001000 => 0
[1,1,1,1,1]
=> 111110 => 111111 => 000000 => 0
[6]
=> 1000000 => 0000011 => 1111100 => 5
[5,1]
=> 1000010 => 0001101 => 1110010 => 3
[4,2]
=> 100100 => 011001 => 100110 => 1
[4,1,1]
=> 1000110 => 0011011 => 1100100 => 2
[3,3]
=> 11000 => 00111 => 11000 => 2
[3,2,1]
=> 101010 => 110101 => 001010 => 0
[3,1,1,1]
=> 1001110 => 0110111 => 1001000 => 1
[2,2,2]
=> 11100 => 01111 => 10000 => 1
[2,2,1,1]
=> 110110 => 111011 => 000100 => 0
[2,1,1,1,1]
=> 1011110 => 1101111 => 0010000 => 0
[1,1,1,1,1,1]
=> 1111110 => 1111111 => 0000000 => 0
[7]
=> 10000000 => 00000011 => 11111100 => 6
[6,1]
=> 10000010 => 00001101 => 11110010 => 4
[5,2]
=> 1000100 => 0011001 => 1100110 => 2
[5,1,1]
=> 10000110 => 00011011 => 11100100 => 3
[4,3]
=> 101000 => 110001 => 001110 => 0
[4,2,1]
=> 1001010 => 0110101 => 1001010 => 1
[4,1,1,1]
=> 10001110 => 00110111 => 11001000 => 2
[3,3,1]
=> 110010 => 011101 => 100010 => 1
[3,2,2]
=> 101100 => 110011 => 001100 => 0
[3,2,1,1]
=> 1010110 => 1101011 => 0010100 => 0
[3,1,1,1,1]
=> 10011110 => 01101111 => 10010000 => 1
[2,2,2,1]
=> 111010 => 111101 => 000010 => 0
[2,2,1,1,1]
=> 1101110 => 1110111 => 0001000 => 0
[2,1,1,1,1,1]
=> 10111110 => 11011111 => 00100000 => 0
[1,1,1,1,1,1,1]
=> 11111110 => 11111111 => 00000000 => 0
[8]
=> 100000000 => 000000011 => 111111100 => 7
[7,1]
=> 100000010 => 000001101 => 111110010 => 5
[6,2]
=> 10000100 => 00011001 => 11100110 => 3
[6,1,1]
=> 100000110 => 000011011 => 111100100 => 4
[5,3]
=> 1001000 => 0110001 => 1001110 => 1
[5,2,1]
=> 10001010 => 00110101 => 11001010 => 2
Description
The number of leading ones in a binary word.
Mp00095: Integer partitions to binary wordBinary words
Mp00135: Binary words rotate front-to-backBinary words
Mp00278: Binary words rowmotionBinary words
St000326: Binary words ⟶ ℤResult quality: 99% values known / values provided: 99%distinct values known / distinct values provided: 100%
Values
[1]
=> 10 => 01 => 10 => 1 = 0 + 1
[2]
=> 100 => 001 => 010 => 2 = 1 + 1
[1,1]
=> 110 => 101 => 110 => 1 = 0 + 1
[3]
=> 1000 => 0001 => 0010 => 3 = 2 + 1
[2,1]
=> 1010 => 0101 => 1010 => 1 = 0 + 1
[1,1,1]
=> 1110 => 1101 => 1110 => 1 = 0 + 1
[4]
=> 10000 => 00001 => 00010 => 4 = 3 + 1
[3,1]
=> 10010 => 00101 => 01010 => 2 = 1 + 1
[2,2]
=> 1100 => 1001 => 0110 => 2 = 1 + 1
[2,1,1]
=> 10110 => 01101 => 10110 => 1 = 0 + 1
[1,1,1,1]
=> 11110 => 11101 => 11110 => 1 = 0 + 1
[5]
=> 100000 => 000001 => 000010 => 5 = 4 + 1
[4,1]
=> 100010 => 000101 => 001010 => 3 = 2 + 1
[3,2]
=> 10100 => 01001 => 10010 => 1 = 0 + 1
[3,1,1]
=> 100110 => 001101 => 010110 => 2 = 1 + 1
[2,2,1]
=> 11010 => 10101 => 11010 => 1 = 0 + 1
[2,1,1,1]
=> 101110 => 011101 => 101110 => 1 = 0 + 1
[1,1,1,1,1]
=> 111110 => 111101 => 111110 => 1 = 0 + 1
[6]
=> 1000000 => 0000001 => 0000010 => 6 = 5 + 1
[5,1]
=> 1000010 => 0000101 => 0001010 => 4 = 3 + 1
[4,2]
=> 100100 => 001001 => 010010 => 2 = 1 + 1
[4,1,1]
=> 1000110 => 0001101 => 0010110 => 3 = 2 + 1
[3,3]
=> 11000 => 10001 => 00110 => 3 = 2 + 1
[3,2,1]
=> 101010 => 010101 => 101010 => 1 = 0 + 1
[3,1,1,1]
=> 1001110 => 0011101 => 0101110 => 2 = 1 + 1
[2,2,2]
=> 11100 => 11001 => 01110 => 2 = 1 + 1
[2,2,1,1]
=> 110110 => 101101 => 110110 => 1 = 0 + 1
[2,1,1,1,1]
=> 1011110 => 0111101 => 1011110 => 1 = 0 + 1
[1,1,1,1,1,1]
=> 1111110 => 1111101 => 1111110 => 1 = 0 + 1
[7]
=> 10000000 => 00000001 => 00000010 => 7 = 6 + 1
[6,1]
=> 10000010 => 00000101 => 00001010 => 5 = 4 + 1
[5,2]
=> 1000100 => 0001001 => 0010010 => 3 = 2 + 1
[5,1,1]
=> 10000110 => 00001101 => 00010110 => 4 = 3 + 1
[4,3]
=> 101000 => 010001 => 100010 => 1 = 0 + 1
[4,2,1]
=> 1001010 => 0010101 => 0101010 => 2 = 1 + 1
[4,1,1,1]
=> 10001110 => 00011101 => 00101110 => 3 = 2 + 1
[3,3,1]
=> 110010 => 100101 => 011010 => 2 = 1 + 1
[3,2,2]
=> 101100 => 011001 => 100110 => 1 = 0 + 1
[3,2,1,1]
=> 1010110 => 0101101 => 1010110 => 1 = 0 + 1
[3,1,1,1,1]
=> 10011110 => 00111101 => 01011110 => 2 = 1 + 1
[2,2,2,1]
=> 111010 => 110101 => 111010 => 1 = 0 + 1
[2,2,1,1,1]
=> 1101110 => 1011101 => 1101110 => 1 = 0 + 1
[2,1,1,1,1,1]
=> 10111110 => 01111101 => 10111110 => 1 = 0 + 1
[1,1,1,1,1,1,1]
=> 11111110 => 11111101 => 11111110 => 1 = 0 + 1
[8]
=> 100000000 => 000000001 => 000000010 => 8 = 7 + 1
[7,1]
=> 100000010 => 000000101 => 000001010 => 6 = 5 + 1
[6,2]
=> 10000100 => 00001001 => 00010010 => 4 = 3 + 1
[6,1,1]
=> 100000110 => 000001101 => 000010110 => 5 = 4 + 1
[5,3]
=> 1001000 => 0010001 => 0100010 => 2 = 1 + 1
[5,2,1]
=> 10001010 => 00010101 => 00101010 => 3 = 2 + 1
[2,2,2,1,1,1,1,1]
=> 1110111110 => 1101111101 => ? => ? = 0 + 1
[4,4,3,1,1,1]
=> 1101001110 => 1010011101 => 1100101110 => ? = 0 + 1
Description
The position of the first one in a binary word after appending a 1 at the end. Regarding the binary word as a subset of $\{1,\dots,n,n+1\}$ that contains $n+1$, this is the minimal element of the set.
Mp00095: Integer partitions to binary wordBinary words
Mp00097: Binary words delta morphismInteger compositions
Mp00173: Integer compositions rotate front to backInteger compositions
St000382: Integer compositions ⟶ ℤResult quality: 97% values known / values provided: 97%distinct values known / distinct values provided: 100%
Values
[1]
=> 10 => [1,1] => [1,1] => 1 = 0 + 1
[2]
=> 100 => [1,2] => [2,1] => 2 = 1 + 1
[1,1]
=> 110 => [2,1] => [1,2] => 1 = 0 + 1
[3]
=> 1000 => [1,3] => [3,1] => 3 = 2 + 1
[2,1]
=> 1010 => [1,1,1,1] => [1,1,1,1] => 1 = 0 + 1
[1,1,1]
=> 1110 => [3,1] => [1,3] => 1 = 0 + 1
[4]
=> 10000 => [1,4] => [4,1] => 4 = 3 + 1
[3,1]
=> 10010 => [1,2,1,1] => [2,1,1,1] => 2 = 1 + 1
[2,2]
=> 1100 => [2,2] => [2,2] => 2 = 1 + 1
[2,1,1]
=> 10110 => [1,1,2,1] => [1,2,1,1] => 1 = 0 + 1
[1,1,1,1]
=> 11110 => [4,1] => [1,4] => 1 = 0 + 1
[5]
=> 100000 => [1,5] => [5,1] => 5 = 4 + 1
[4,1]
=> 100010 => [1,3,1,1] => [3,1,1,1] => 3 = 2 + 1
[3,2]
=> 10100 => [1,1,1,2] => [1,1,2,1] => 1 = 0 + 1
[3,1,1]
=> 100110 => [1,2,2,1] => [2,2,1,1] => 2 = 1 + 1
[2,2,1]
=> 11010 => [2,1,1,1] => [1,1,1,2] => 1 = 0 + 1
[2,1,1,1]
=> 101110 => [1,1,3,1] => [1,3,1,1] => 1 = 0 + 1
[1,1,1,1,1]
=> 111110 => [5,1] => [1,5] => 1 = 0 + 1
[6]
=> 1000000 => [1,6] => [6,1] => 6 = 5 + 1
[5,1]
=> 1000010 => [1,4,1,1] => [4,1,1,1] => 4 = 3 + 1
[4,2]
=> 100100 => [1,2,1,2] => [2,1,2,1] => 2 = 1 + 1
[4,1,1]
=> 1000110 => [1,3,2,1] => [3,2,1,1] => 3 = 2 + 1
[3,3]
=> 11000 => [2,3] => [3,2] => 3 = 2 + 1
[3,2,1]
=> 101010 => [1,1,1,1,1,1] => [1,1,1,1,1,1] => 1 = 0 + 1
[3,1,1,1]
=> 1001110 => [1,2,3,1] => [2,3,1,1] => 2 = 1 + 1
[2,2,2]
=> 11100 => [3,2] => [2,3] => 2 = 1 + 1
[2,2,1,1]
=> 110110 => [2,1,2,1] => [1,2,1,2] => 1 = 0 + 1
[2,1,1,1,1]
=> 1011110 => [1,1,4,1] => [1,4,1,1] => 1 = 0 + 1
[1,1,1,1,1,1]
=> 1111110 => [6,1] => [1,6] => 1 = 0 + 1
[7]
=> 10000000 => [1,7] => [7,1] => 7 = 6 + 1
[6,1]
=> 10000010 => [1,5,1,1] => [5,1,1,1] => 5 = 4 + 1
[5,2]
=> 1000100 => [1,3,1,2] => [3,1,2,1] => 3 = 2 + 1
[5,1,1]
=> 10000110 => [1,4,2,1] => [4,2,1,1] => 4 = 3 + 1
[4,3]
=> 101000 => [1,1,1,3] => [1,1,3,1] => 1 = 0 + 1
[4,2,1]
=> 1001010 => [1,2,1,1,1,1] => [2,1,1,1,1,1] => 2 = 1 + 1
[4,1,1,1]
=> 10001110 => [1,3,3,1] => [3,3,1,1] => 3 = 2 + 1
[3,3,1]
=> 110010 => [2,2,1,1] => [2,1,1,2] => 2 = 1 + 1
[3,2,2]
=> 101100 => [1,1,2,2] => [1,2,2,1] => 1 = 0 + 1
[3,2,1,1]
=> 1010110 => [1,1,1,1,2,1] => [1,1,1,2,1,1] => 1 = 0 + 1
[3,1,1,1,1]
=> 10011110 => [1,2,4,1] => [2,4,1,1] => 2 = 1 + 1
[2,2,2,1]
=> 111010 => [3,1,1,1] => [1,1,1,3] => 1 = 0 + 1
[2,2,1,1,1]
=> 1101110 => [2,1,3,1] => [1,3,1,2] => 1 = 0 + 1
[2,1,1,1,1,1]
=> 10111110 => [1,1,5,1] => [1,5,1,1] => 1 = 0 + 1
[1,1,1,1,1,1,1]
=> 11111110 => [7,1] => [1,7] => 1 = 0 + 1
[8]
=> 100000000 => [1,8] => [8,1] => 8 = 7 + 1
[7,1]
=> 100000010 => [1,6,1,1] => [6,1,1,1] => 6 = 5 + 1
[6,2]
=> 10000100 => [1,4,1,2] => [4,1,2,1] => 4 = 3 + 1
[6,1,1]
=> 100000110 => [1,5,2,1] => [5,2,1,1] => 5 = 4 + 1
[5,3]
=> 1001000 => [1,2,1,3] => [2,1,3,1] => 2 = 1 + 1
[5,2,1]
=> 10001010 => [1,3,1,1,1,1] => [3,1,1,1,1,1] => 3 = 2 + 1
[6,2,1,1]
=> 1000010110 => [1,4,1,1,2,1] => [4,1,1,2,1,1] => ? = 3 + 1
[3,2,1,1,1,1,1]
=> 1010111110 => [1,1,1,1,5,1] => [1,1,1,5,1,1] => ? = 0 + 1
[4,4,3,1,1,1]
=> 1101001110 => [2,1,1,2,3,1] => [1,1,2,3,1,2] => ? = 0 + 1
[6,4,3,2,1]
=> 10010101010 => [1,2,1,1,1,1,1,1,1,1] => ? => ? = 1 + 1
[5,4,3,2,2]
=> 1010101100 => [1,1,1,1,1,1,2,2] => [1,1,1,1,1,2,2,1] => ? = 0 + 1
[5,4,4,3,1]
=> 1011010010 => [1,1,2,1,1,2,1,1] => [1,2,1,1,2,1,1,1] => ? = 0 + 1
[5,4,3,3,2]
=> 1010110100 => [1,1,1,1,2,1,1,2] => [1,1,1,2,1,1,2,1] => ? = 0 + 1
[5,4,4,3,2]
=> 1011010100 => [1,1,2,1,1,1,1,2] => [1,2,1,1,1,1,2,1] => ? = 0 + 1
Description
The first part of an integer composition.
Matching statistic: St000160
Mp00044: Integer partitions conjugateInteger partitions
St000160: Integer partitions ⟶ ℤResult quality: 67% values known / values provided: 67%distinct values known / distinct values provided: 100%
Values
[1]
=> [1]
=> 1 = 0 + 1
[2]
=> [1,1]
=> 2 = 1 + 1
[1,1]
=> [2]
=> 1 = 0 + 1
[3]
=> [1,1,1]
=> 3 = 2 + 1
[2,1]
=> [2,1]
=> 1 = 0 + 1
[1,1,1]
=> [3]
=> 1 = 0 + 1
[4]
=> [1,1,1,1]
=> 4 = 3 + 1
[3,1]
=> [2,1,1]
=> 2 = 1 + 1
[2,2]
=> [2,2]
=> 2 = 1 + 1
[2,1,1]
=> [3,1]
=> 1 = 0 + 1
[1,1,1,1]
=> [4]
=> 1 = 0 + 1
[5]
=> [1,1,1,1,1]
=> 5 = 4 + 1
[4,1]
=> [2,1,1,1]
=> 3 = 2 + 1
[3,2]
=> [2,2,1]
=> 1 = 0 + 1
[3,1,1]
=> [3,1,1]
=> 2 = 1 + 1
[2,2,1]
=> [3,2]
=> 1 = 0 + 1
[2,1,1,1]
=> [4,1]
=> 1 = 0 + 1
[1,1,1,1,1]
=> [5]
=> 1 = 0 + 1
[6]
=> [1,1,1,1,1,1]
=> 6 = 5 + 1
[5,1]
=> [2,1,1,1,1]
=> 4 = 3 + 1
[4,2]
=> [2,2,1,1]
=> 2 = 1 + 1
[4,1,1]
=> [3,1,1,1]
=> 3 = 2 + 1
[3,3]
=> [2,2,2]
=> 3 = 2 + 1
[3,2,1]
=> [3,2,1]
=> 1 = 0 + 1
[3,1,1,1]
=> [4,1,1]
=> 2 = 1 + 1
[2,2,2]
=> [3,3]
=> 2 = 1 + 1
[2,2,1,1]
=> [4,2]
=> 1 = 0 + 1
[2,1,1,1,1]
=> [5,1]
=> 1 = 0 + 1
[1,1,1,1,1,1]
=> [6]
=> 1 = 0 + 1
[7]
=> [1,1,1,1,1,1,1]
=> 7 = 6 + 1
[6,1]
=> [2,1,1,1,1,1]
=> 5 = 4 + 1
[5,2]
=> [2,2,1,1,1]
=> 3 = 2 + 1
[5,1,1]
=> [3,1,1,1,1]
=> 4 = 3 + 1
[4,3]
=> [2,2,2,1]
=> 1 = 0 + 1
[4,2,1]
=> [3,2,1,1]
=> 2 = 1 + 1
[4,1,1,1]
=> [4,1,1,1]
=> 3 = 2 + 1
[3,3,1]
=> [3,2,2]
=> 2 = 1 + 1
[3,2,2]
=> [3,3,1]
=> 1 = 0 + 1
[3,2,1,1]
=> [4,2,1]
=> 1 = 0 + 1
[3,1,1,1,1]
=> [5,1,1]
=> 2 = 1 + 1
[2,2,2,1]
=> [4,3]
=> 1 = 0 + 1
[2,2,1,1,1]
=> [5,2]
=> 1 = 0 + 1
[2,1,1,1,1,1]
=> [6,1]
=> 1 = 0 + 1
[1,1,1,1,1,1,1]
=> [7]
=> 1 = 0 + 1
[8]
=> [1,1,1,1,1,1,1,1]
=> 8 = 7 + 1
[7,1]
=> [2,1,1,1,1,1,1]
=> 6 = 5 + 1
[6,2]
=> [2,2,1,1,1,1]
=> 4 = 3 + 1
[6,1,1]
=> [3,1,1,1,1,1]
=> 5 = 4 + 1
[5,3]
=> [2,2,2,1,1]
=> 2 = 1 + 1
[5,2,1]
=> [3,2,1,1,1]
=> 3 = 2 + 1
[7,6]
=> [2,2,2,2,2,2,1]
=> ? = 0 + 1
[6,6,1]
=> [3,2,2,2,2,2]
=> ? = 4 + 1
[6,5,2]
=> [3,3,2,2,2,1]
=> ? = 0 + 1
[6,4,3]
=> [3,3,3,2,1,1]
=> ? = 1 + 1
[5,5,3]
=> [3,3,3,2,2]
=> ? = 1 + 1
[5,5,2,1]
=> [4,3,2,2,2]
=> ? = 2 + 1
[5,4,4]
=> [3,3,3,3,1]
=> ? = 0 + 1
[4,4,4,1]
=> [4,3,3,3]
=> ? = 2 + 1
[4,3,3,3]
=> [4,4,4,1]
=> ? = 0 + 1
[4,3,2,2,2]
=> [5,5,2,1]
=> ? = 0 + 1
[3,3,3,3,1]
=> [5,4,4]
=> ? = 1 + 1
[3,3,3,2,2]
=> [5,5,3]
=> ? = 0 + 1
[3,3,3,2,1,1]
=> [6,4,3]
=> ? = 0 + 1
[3,3,2,2,2,1]
=> [6,5,2]
=> ? = 0 + 1
[3,2,2,2,2,2]
=> [6,6,1]
=> ? = 0 + 1
[2,2,2,2,2,2,1]
=> [7,6]
=> ? = 0 + 1
[7,7]
=> [2,2,2,2,2,2,2]
=> ? = 6 + 1
[6,6,2]
=> [3,3,2,2,2,2]
=> ? = 3 + 1
[6,5,3]
=> [3,3,3,2,2,1]
=> ? = 0 + 1
[6,4,4]
=> [3,3,3,3,1,1]
=> ? = 1 + 1
[5,5,4]
=> [3,3,3,3,2]
=> ? = 0 + 1
[5,5,3,1]
=> [4,3,3,2,2]
=> ? = 1 + 1
[5,5,2,2]
=> [4,4,2,2,2]
=> ? = 2 + 1
[5,4,4,1]
=> [4,3,3,3,1]
=> ? = 0 + 1
[5,3,3,3]
=> [4,4,4,1,1]
=> ? = 1 + 1
[4,4,4,2]
=> [4,4,3,3]
=> ? = 1 + 1
[4,4,4,1,1]
=> [5,3,3,3]
=> ? = 2 + 1
[4,4,3,3]
=> [4,4,4,2]
=> ? = 0 + 1
[4,4,3,1,1,1]
=> [6,3,3,2]
=> ? = 0 + 1
[4,4,2,2,2]
=> [5,5,2,2]
=> ? = 1 + 1
[4,3,3,3,1]
=> [5,4,4,1]
=> ? = 0 + 1
[4,3,3,2,2]
=> [5,5,3,1]
=> ? = 0 + 1
[3,3,3,3,2]
=> [5,5,4]
=> ? = 0 + 1
[3,3,3,3,1,1]
=> [6,4,4]
=> ? = 1 + 1
[3,3,3,2,2,1]
=> [6,5,3]
=> ? = 0 + 1
[3,3,2,2,2,2]
=> [6,6,2]
=> ? = 0 + 1
[2,2,2,2,2,2,2]
=> [7,7]
=> ? = 1 + 1
[6,6,3]
=> [3,3,3,2,2,2]
=> ? = 2 + 1
[6,5,4]
=> [3,3,3,3,2,1]
=> ? = 0 + 1
[5,5,5]
=> [3,3,3,3,3]
=> ? = 4 + 1
[5,5,4,1]
=> [4,3,3,3,2]
=> ? = 0 + 1
[5,5,3,2]
=> [4,4,3,2,2]
=> ? = 1 + 1
[5,4,4,2]
=> [4,4,3,3,1]
=> ? = 0 + 1
[5,4,3,3]
=> [4,4,4,2,1]
=> ? = 0 + 1
[4,4,4,3]
=> [4,4,4,3]
=> ? = 0 + 1
[4,4,4,2,1]
=> [5,4,3,3]
=> ? = 1 + 1
[4,4,3,3,1]
=> [5,4,4,2]
=> ? = 0 + 1
[4,4,3,2,2]
=> [5,5,3,2]
=> ? = 0 + 1
[4,3,3,3,2]
=> [5,5,4,1]
=> ? = 0 + 1
[3,3,3,3,3]
=> [5,5,5]
=> ? = 2 + 1
Description
The multiplicity of the smallest part of a partition. This counts the number of occurrences of the smallest part $spt(\lambda)$ of a partition $\lambda$. The sum $spt(n) = \sum_{\lambda \vdash n} spt(\lambda)$ satisfies the congruences \begin{align*} spt(5n+4) &\equiv 0\quad \pmod{5}\\\ spt(7n+5) &\equiv 0\quad \pmod{7}\\\ spt(13n+6) &\equiv 0\quad \pmod{13}, \end{align*} analogous to those of the counting function of partitions, see [1] and [2].
Matching statistic: St001184
Mp00230: Integer partitions parallelogram polyominoDyck paths
Mp00227: Dyck paths Delest-Viennot-inverseDyck paths
Mp00121: Dyck paths Cori-Le Borgne involutionDyck paths
St001184: Dyck paths ⟶ ℤResult quality: 23% values known / values provided: 23%distinct values known / distinct values provided: 75%
Values
[1]
=> [1,0]
=> [1,0]
=> [1,0]
=> 1 = 0 + 1
[2]
=> [1,0,1,0]
=> [1,1,0,0]
=> [1,1,0,0]
=> 2 = 1 + 1
[1,1]
=> [1,1,0,0]
=> [1,0,1,0]
=> [1,0,1,0]
=> 1 = 0 + 1
[3]
=> [1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> [1,1,1,0,0,0]
=> 3 = 2 + 1
[2,1]
=> [1,0,1,1,0,0]
=> [1,1,0,0,1,0]
=> [1,1,0,0,1,0]
=> 1 = 0 + 1
[1,1,1]
=> [1,1,0,1,0,0]
=> [1,0,1,0,1,0]
=> [1,0,1,0,1,0]
=> 1 = 0 + 1
[4]
=> [1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,0]
=> 4 = 3 + 1
[3,1]
=> [1,0,1,0,1,1,0,0]
=> [1,1,1,0,0,0,1,0]
=> [1,1,1,0,0,1,0,0]
=> 2 = 1 + 1
[2,2]
=> [1,1,1,0,0,0]
=> [1,1,0,1,0,0]
=> [1,0,1,1,0,0]
=> 2 = 1 + 1
[2,1,1]
=> [1,0,1,1,0,1,0,0]
=> [1,1,0,0,1,0,1,0]
=> [1,1,0,0,1,0,1,0]
=> 1 = 0 + 1
[1,1,1,1]
=> [1,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0]
=> 1 = 0 + 1
[5]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> 5 = 4 + 1
[4,1]
=> [1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,0,0,0,0,1,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> 3 = 2 + 1
[3,2]
=> [1,0,1,1,1,0,0,0]
=> [1,1,1,0,0,1,0,0]
=> [1,1,1,0,0,0,1,0]
=> 1 = 0 + 1
[3,1,1]
=> [1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,0,0,0,1,0,1,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> 2 = 1 + 1
[2,2,1]
=> [1,1,1,0,0,1,0,0]
=> [1,1,0,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0]
=> 1 = 0 + 1
[2,1,1,1]
=> [1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,0,1,0,1,0,1,0]
=> [1,1,0,0,1,0,1,0,1,0]
=> 1 = 0 + 1
[1,1,1,1,1]
=> [1,1,0,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> 1 = 0 + 1
[6]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0]
=> 6 = 5 + 1
[5,1]
=> [1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> [1,1,1,1,1,0,0,1,0,0,0,0]
=> 4 = 3 + 1
[4,2]
=> [1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> 2 = 1 + 1
[4,1,1]
=> [1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,1,0,0,0,0,1,0,1,0]
=> [1,1,1,1,0,0,1,0,1,0,0,0]
=> 3 = 2 + 1
[3,3]
=> [1,1,1,0,1,0,0,0]
=> [1,1,1,0,1,0,0,0]
=> [1,0,1,1,1,0,0,0]
=> 3 = 2 + 1
[3,2,1]
=> [1,0,1,1,1,0,0,1,0,0]
=> [1,1,1,0,0,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0,1,0]
=> 1 = 0 + 1
[3,1,1,1]
=> [1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,1,1,0,0,0,1,0,1,0,1,0]
=> [1,1,1,0,0,1,0,1,0,1,0,0]
=> 2 = 1 + 1
[2,2,2]
=> [1,1,1,1,0,0,0,0]
=> [1,1,0,1,0,1,0,0]
=> [1,0,1,0,1,1,0,0]
=> 2 = 1 + 1
[2,2,1,1]
=> [1,1,1,0,0,1,0,1,0,0]
=> [1,1,0,1,0,0,1,0,1,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> 1 = 0 + 1
[2,1,1,1,1]
=> [1,0,1,1,0,1,0,1,0,1,0,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0]
=> 1 = 0 + 1
[1,1,1,1,1,1]
=> [1,1,0,1,0,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> 1 = 0 + 1
[7]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> ? = 6 + 1
[6,1]
=> [1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> [1,1,1,1,1,1,0,0,1,0,0,0,0,0]
=> ? = 4 + 1
[5,2]
=> [1,0,1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,1,1,0,0,0,0,1,0,0]
=> [1,1,1,1,1,0,0,0,1,0,0,0]
=> 3 = 2 + 1
[5,1,1]
=> [1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,1,1,0,0,0,0,0,1,0,1,0]
=> [1,1,1,1,1,0,0,1,0,1,0,0,0,0]
=> ? = 3 + 1
[4,3]
=> [1,0,1,1,1,0,1,0,0,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> [1,1,1,1,0,0,0,0,1,0]
=> 1 = 0 + 1
[4,2,1]
=> [1,0,1,0,1,1,1,0,0,1,0,0]
=> [1,1,1,1,0,0,0,1,0,0,1,0]
=> [1,1,1,1,0,0,1,0,0,1,0,0]
=> 2 = 1 + 1
[4,1,1,1]
=> [1,0,1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,1,1,1,0,0,0,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,1,0,1,0,1,0,0,0]
=> ? = 2 + 1
[3,3,1]
=> [1,1,1,0,1,0,0,1,0,0]
=> [1,1,1,0,1,0,0,0,1,0]
=> [1,0,1,1,1,0,0,1,0,0]
=> 2 = 1 + 1
[3,2,2]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> [1,1,1,0,0,0,1,0,1,0]
=> 1 = 0 + 1
[3,2,1,1]
=> [1,0,1,1,1,0,0,1,0,1,0,0]
=> [1,1,1,0,0,1,0,0,1,0,1,0]
=> [1,1,1,0,0,1,0,1,0,0,1,0]
=> 1 = 0 + 1
[3,1,1,1,1]
=> [1,0,1,0,1,1,0,1,0,1,0,1,0,0]
=> [1,1,1,0,0,0,1,0,1,0,1,0,1,0]
=> [1,1,1,0,0,1,0,1,0,1,0,1,0,0]
=> ? = 1 + 1
[2,2,2,1]
=> [1,1,1,1,0,0,0,1,0,0]
=> [1,1,0,1,0,1,0,0,1,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> 1 = 0 + 1
[2,2,1,1,1]
=> [1,1,1,0,0,1,0,1,0,1,0,0]
=> [1,1,0,1,0,0,1,0,1,0,1,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0]
=> 1 = 0 + 1
[2,1,1,1,1,1]
=> [1,0,1,1,0,1,0,1,0,1,0,1,0,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 0 + 1
[1,1,1,1,1,1,1]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 0 + 1
[8]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0]
=> [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0]
=> ? = 7 + 1
[7,1]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> [1,1,1,1,1,1,1,0,0,1,0,0,0,0,0,0]
=> ? = 5 + 1
[6,2]
=> [1,0,1,0,1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,1,1,1,0,0,0,0,0,1,0,0]
=> [1,1,1,1,1,1,0,0,0,1,0,0,0,0]
=> ? = 3 + 1
[6,1,1]
=> [1,0,1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,0,1,0]
=> [1,1,1,1,1,1,0,0,1,0,1,0,0,0,0,0]
=> ? = 4 + 1
[5,3]
=> [1,0,1,0,1,1,1,0,1,0,0,0]
=> [1,1,1,1,1,0,0,0,1,0,0,0]
=> [1,1,1,1,1,0,0,0,0,1,0,0]
=> 2 = 1 + 1
[5,2,1]
=> [1,0,1,0,1,0,1,1,1,0,0,1,0,0]
=> [1,1,1,1,1,0,0,0,0,1,0,0,1,0]
=> [1,1,1,1,1,0,0,1,0,0,1,0,0,0]
=> ? = 2 + 1
[5,1,1,1]
=> [1,0,1,0,1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,1,1,1,1,0,0,0,0,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,1,0,1,0,1,0,0,0,0]
=> ? = 3 + 1
[4,4]
=> [1,1,1,0,1,0,1,0,0,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> 4 = 3 + 1
[4,3,1]
=> [1,0,1,1,1,0,1,0,0,1,0,0]
=> [1,1,1,1,0,0,1,0,0,0,1,0]
=> [1,1,1,1,0,0,1,0,0,0,1,0]
=> 1 = 0 + 1
[4,2,2]
=> [1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,1,0,1,0,0]
=> [1,1,1,1,0,0,0,1,0,1,0,0]
=> 2 = 1 + 1
[4,2,1,1]
=> [1,0,1,0,1,1,1,0,0,1,0,1,0,0]
=> [1,1,1,1,0,0,0,1,0,0,1,0,1,0]
=> [1,1,1,1,0,0,1,0,1,0,0,1,0,0]
=> ? = 1 + 1
[4,1,1,1,1]
=> [1,0,1,0,1,0,1,1,0,1,0,1,0,1,0,0]
=> [1,1,1,1,0,0,0,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,1,0,1,0,1,0,1,0,0,0]
=> ? = 2 + 1
[3,3,2]
=> [1,1,1,0,1,1,0,0,0,0]
=> [1,1,1,0,1,0,0,1,0,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> 1 = 0 + 1
[3,3,1,1]
=> [1,1,1,0,1,0,0,1,0,1,0,0]
=> [1,1,1,0,1,0,0,0,1,0,1,0]
=> [1,0,1,1,1,0,0,1,0,1,0,0]
=> 2 = 1 + 1
[3,2,2,1]
=> [1,0,1,1,1,1,0,0,0,1,0,0]
=> [1,1,1,0,0,1,0,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0,1,0,1,0]
=> 1 = 0 + 1
[3,2,1,1,1]
=> [1,0,1,1,1,0,0,1,0,1,0,1,0,0]
=> [1,1,1,0,0,1,0,0,1,0,1,0,1,0]
=> [1,1,1,0,0,1,0,1,0,1,0,0,1,0]
=> ? = 0 + 1
[3,1,1,1,1,1]
=> [1,0,1,0,1,1,0,1,0,1,0,1,0,1,0,0]
=> [1,1,1,0,0,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,0,0,1,0,1,0,1,0,1,0,1,0,0]
=> ? = 1 + 1
[2,2,2,2]
=> [1,1,1,1,0,1,0,0,0,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> 2 = 1 + 1
[2,2,2,1,1]
=> [1,1,1,1,0,0,0,1,0,1,0,0]
=> [1,1,0,1,0,1,0,0,1,0,1,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0]
=> 1 = 0 + 1
[2,2,1,1,1,1]
=> [1,1,1,0,0,1,0,1,0,1,0,1,0,0]
=> [1,1,0,1,0,0,1,0,1,0,1,0,1,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0,1,0]
=> ? = 0 + 1
[2,1,1,1,1,1,1]
=> [1,0,1,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 0 + 1
[1,1,1,1,1,1,1,1]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 0 + 1
[7,2]
=> [1,0,1,0,1,0,1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,1,0,0]
=> [1,1,1,1,1,1,1,0,0,0,1,0,0,0,0,0]
=> ? = 4 + 1
[6,3]
=> [1,0,1,0,1,0,1,1,1,0,1,0,0,0]
=> [1,1,1,1,1,1,0,0,0,0,1,0,0,0]
=> [1,1,1,1,1,1,0,0,0,0,1,0,0,0]
=> ? = 2 + 1
[6,2,1]
=> [1,0,1,0,1,0,1,0,1,1,1,0,0,1,0,0]
=> [1,1,1,1,1,1,0,0,0,0,0,1,0,0,1,0]
=> [1,1,1,1,1,1,0,0,1,0,0,1,0,0,0,0]
=> ? = 3 + 1
[6,1,1,1]
=> [1,0,1,0,1,0,1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,0,0,1,0,1,0,1,0,0,0,0,0]
=> ? = 4 + 1
[5,4]
=> [1,0,1,1,1,0,1,0,1,0,0,0]
=> [1,1,1,1,1,0,0,1,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> 1 = 0 + 1
[5,3,1]
=> [1,0,1,0,1,1,1,0,1,0,0,1,0,0]
=> [1,1,1,1,1,0,0,0,1,0,0,0,1,0]
=> [1,1,1,1,1,0,0,1,0,0,0,1,0,0]
=> ? = 1 + 1
[5,2,2]
=> [1,0,1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,1,0,1,0,0]
=> [1,1,1,1,1,0,0,0,1,0,1,0,0,0]
=> ? = 2 + 1
[5,2,1,1]
=> [1,0,1,0,1,0,1,1,1,0,0,1,0,1,0,0]
=> [1,1,1,1,1,0,0,0,0,1,0,0,1,0,1,0]
=> [1,1,1,1,1,0,0,1,0,1,0,0,1,0,0,0]
=> ? = 2 + 1
[4,4,1]
=> [1,1,1,0,1,0,1,0,0,1,0,0]
=> [1,1,1,1,0,1,0,0,0,0,1,0]
=> [1,0,1,1,1,1,0,0,1,0,0,0]
=> 3 = 2 + 1
[4,3,2]
=> [1,0,1,1,1,0,1,1,0,0,0,0]
=> [1,1,1,1,0,0,1,0,0,1,0,0]
=> [1,1,1,1,0,0,0,1,0,0,1,0]
=> 1 = 0 + 1
[4,3,1,1]
=> [1,0,1,1,1,0,1,0,0,1,0,1,0,0]
=> [1,1,1,1,0,0,1,0,0,0,1,0,1,0]
=> [1,1,1,1,0,0,1,0,1,0,0,0,1,0]
=> ? = 0 + 1
[4,2,2,1]
=> [1,0,1,0,1,1,1,1,0,0,0,1,0,0]
=> [1,1,1,1,0,0,0,1,0,1,0,0,1,0]
=> [1,1,1,1,0,0,1,0,0,1,0,1,0,0]
=> ? = 1 + 1
[4,2,1,1,1]
=> [1,0,1,0,1,1,1,0,0,1,0,1,0,1,0,0]
=> [1,1,1,1,0,0,0,1,0,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,1,0,1,0,1,0,0,1,0,0]
=> ? = 1 + 1
[3,3,3]
=> [1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,0,1,0,1,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> 3 = 2 + 1
[3,3,1,1,1]
=> [1,1,1,0,1,0,0,1,0,1,0,1,0,0]
=> [1,1,1,0,1,0,0,0,1,0,1,0,1,0]
=> [1,0,1,1,1,0,0,1,0,1,0,1,0,0]
=> ? = 1 + 1
[3,2,2,1,1]
=> [1,0,1,1,1,1,0,0,0,1,0,1,0,0]
=> [1,1,1,0,0,1,0,1,0,0,1,0,1,0]
=> [1,1,1,0,0,1,0,1,0,0,1,0,1,0]
=> ? = 0 + 1
[3,2,1,1,1,1]
=> [1,0,1,1,1,0,0,1,0,1,0,1,0,1,0,0]
=> [1,1,1,0,0,1,0,0,1,0,1,0,1,0,1,0]
=> [1,1,1,0,0,1,0,1,0,1,0,1,0,0,1,0]
=> ? = 0 + 1
[2,2,2,1,1,1]
=> [1,1,1,1,0,0,0,1,0,1,0,1,0,0]
=> [1,1,0,1,0,1,0,0,1,0,1,0,1,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0,1,0]
=> ? = 0 + 1
[2,2,1,1,1,1,1]
=> [1,1,1,0,0,1,0,1,0,1,0,1,0,1,0,0]
=> [1,1,0,1,0,0,1,0,1,0,1,0,1,0,1,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 0 + 1
[2,1,1,1,1,1,1,1]
=> [1,0,1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 0 + 1
[1,1,1,1,1,1,1,1,1]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 0 + 1
[7,3]
=> [1,0,1,0,1,0,1,0,1,1,1,0,1,0,0,0]
=> [1,1,1,1,1,1,1,0,0,0,0,0,1,0,0,0]
=> [1,1,1,1,1,1,1,0,0,0,0,1,0,0,0,0]
=> ? = 3 + 1
[6,4]
=> [1,0,1,0,1,1,1,0,1,0,1,0,0,0]
=> [1,1,1,1,1,1,0,0,0,1,0,0,0,0]
=> [1,1,1,1,1,1,0,0,0,0,0,1,0,0]
=> ? = 1 + 1
[6,3,1]
=> [1,0,1,0,1,0,1,1,1,0,1,0,0,1,0,0]
=> [1,1,1,1,1,1,0,0,0,0,1,0,0,0,1,0]
=> [1,1,1,1,1,1,0,0,1,0,0,0,1,0,0,0]
=> ? = 2 + 1
[6,2,2]
=> [1,0,1,0,1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1,1,1,0,0,0,0,0,1,0,1,0,0]
=> [1,1,1,1,1,1,0,0,0,1,0,1,0,0,0,0]
=> ? = 3 + 1
[6,2,1,1]
=> [1,0,1,0,1,0,1,0,1,1,1,0,0,1,0,1,0,0]
=> [1,1,1,1,1,1,0,0,0,0,0,1,0,0,1,0,1,0]
=> [1,1,1,1,1,1,0,0,1,0,1,0,0,1,0,0,0,0]
=> ? = 3 + 1
[5,4,1]
=> [1,0,1,1,1,0,1,0,1,0,0,1,0,0]
=> [1,1,1,1,1,0,0,1,0,0,0,0,1,0]
=> [1,1,1,1,1,0,0,1,0,0,0,0,1,0]
=> ? = 0 + 1
[5,3,2]
=> [1,0,1,0,1,1,1,0,1,1,0,0,0,0]
=> [1,1,1,1,1,0,0,0,1,0,0,1,0,0]
=> [1,1,1,1,1,0,0,0,1,0,0,1,0,0]
=> ? = 1 + 1
[5,3,1,1]
=> [1,0,1,0,1,1,1,0,1,0,0,1,0,1,0,0]
=> [1,1,1,1,1,0,0,0,1,0,0,0,1,0,1,0]
=> [1,1,1,1,1,0,0,1,0,1,0,0,0,1,0,0]
=> ? = 1 + 1
[5,2,2,1]
=> [1,0,1,0,1,0,1,1,1,1,0,0,0,1,0,0]
=> [1,1,1,1,1,0,0,0,0,1,0,1,0,0,1,0]
=> [1,1,1,1,1,0,0,1,0,0,1,0,1,0,0,0]
=> ? = 2 + 1
[4,4,1,1]
=> [1,1,1,0,1,0,1,0,0,1,0,1,0,0]
=> [1,1,1,1,0,1,0,0,0,0,1,0,1,0]
=> [1,0,1,1,1,1,0,0,1,0,1,0,0,0]
=> ? = 2 + 1
[4,3,2,1]
=> [1,0,1,1,1,0,1,1,0,0,0,1,0,0]
=> [1,1,1,1,0,0,1,0,0,1,0,0,1,0]
=> [1,1,1,1,0,0,1,0,0,1,0,0,1,0]
=> ? = 0 + 1
[4,3,1,1,1]
=> [1,0,1,1,1,0,1,0,0,1,0,1,0,1,0,0]
=> [1,1,1,1,0,0,1,0,0,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,1,0,1,0,1,0,0,0,1,0]
=> ? = 0 + 1
[4,2,2,2]
=> [1,0,1,0,1,1,1,1,0,1,0,0,0,0]
=> [1,1,1,1,0,0,0,1,0,1,0,1,0,0]
=> [1,1,1,1,0,0,0,1,0,1,0,1,0,0]
=> ? = 1 + 1
Description
Number of indecomposable injective modules with grade at least 1 in the corresponding Nakayama algebra.
Matching statistic: St001202
Mp00230: Integer partitions parallelogram polyominoDyck paths
Mp00227: Dyck paths Delest-Viennot-inverseDyck paths
Mp00030: Dyck paths zeta mapDyck paths
St001202: Dyck paths ⟶ ℤResult quality: 23% values known / values provided: 23%distinct values known / distinct values provided: 75%
Values
[1]
=> [1,0]
=> [1,0]
=> [1,0]
=> 1 = 0 + 1
[2]
=> [1,0,1,0]
=> [1,1,0,0]
=> [1,0,1,0]
=> 2 = 1 + 1
[1,1]
=> [1,1,0,0]
=> [1,0,1,0]
=> [1,1,0,0]
=> 1 = 0 + 1
[3]
=> [1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> [1,0,1,0,1,0]
=> 3 = 2 + 1
[2,1]
=> [1,0,1,1,0,0]
=> [1,1,0,0,1,0]
=> [1,1,0,1,0,0]
=> 1 = 0 + 1
[1,1,1]
=> [1,1,0,1,0,0]
=> [1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> 1 = 0 + 1
[4]
=> [1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> 4 = 3 + 1
[3,1]
=> [1,0,1,0,1,1,0,0]
=> [1,1,1,0,0,0,1,0]
=> [1,0,1,1,0,1,0,0]
=> 2 = 1 + 1
[2,2]
=> [1,1,1,0,0,0]
=> [1,1,0,1,0,0]
=> [1,1,0,0,1,0]
=> 2 = 1 + 1
[2,1,1]
=> [1,0,1,1,0,1,0,0]
=> [1,1,0,0,1,0,1,0]
=> [1,1,1,0,1,0,0,0]
=> 1 = 0 + 1
[1,1,1,1]
=> [1,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> 1 = 0 + 1
[5]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> 5 = 4 + 1
[4,1]
=> [1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,0,0,0,0,1,0]
=> [1,0,1,0,1,1,0,1,0,0]
=> 3 = 2 + 1
[3,2]
=> [1,0,1,1,1,0,0,0]
=> [1,1,1,0,0,1,0,0]
=> [1,1,0,1,0,0,1,0]
=> 1 = 0 + 1
[3,1,1]
=> [1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,0,0,0,1,0,1,0]
=> [1,0,1,1,1,0,1,0,0,0]
=> 2 = 1 + 1
[2,2,1]
=> [1,1,1,0,0,1,0,0]
=> [1,1,0,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0]
=> 1 = 0 + 1
[2,1,1,1]
=> [1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> 1 = 0 + 1
[1,1,1,1,1]
=> [1,1,0,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> 1 = 0 + 1
[6]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> 6 = 5 + 1
[5,1]
=> [1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> [1,0,1,0,1,0,1,1,0,1,0,0]
=> 4 = 3 + 1
[4,2]
=> [1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> [1,0,1,1,0,1,0,0,1,0]
=> 2 = 1 + 1
[4,1,1]
=> [1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,1,0,0,0,0,1,0,1,0]
=> [1,0,1,0,1,1,1,0,1,0,0,0]
=> 3 = 2 + 1
[3,3]
=> [1,1,1,0,1,0,0,0]
=> [1,1,1,0,1,0,0,0]
=> [1,1,0,0,1,0,1,0]
=> 3 = 2 + 1
[3,2,1]
=> [1,0,1,1,1,0,0,1,0,0]
=> [1,1,1,0,0,1,0,0,1,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> 1 = 0 + 1
[3,1,1,1]
=> [1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,1,1,0,0,0,1,0,1,0,1,0]
=> [1,0,1,1,1,1,0,1,0,0,0,0]
=> 2 = 1 + 1
[2,2,2]
=> [1,1,1,1,0,0,0,0]
=> [1,1,0,1,0,1,0,0]
=> [1,1,1,0,0,0,1,0]
=> 2 = 1 + 1
[2,2,1,1]
=> [1,1,1,0,0,1,0,1,0,0]
=> [1,1,0,1,0,0,1,0,1,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> 1 = 0 + 1
[2,1,1,1,1]
=> [1,0,1,1,0,1,0,1,0,1,0,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,1,0,0,0,0,0]
=> 1 = 0 + 1
[1,1,1,1,1,1]
=> [1,1,0,1,0,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0]
=> 1 = 0 + 1
[7]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 6 + 1
[6,1]
=> [1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> ? = 4 + 1
[5,2]
=> [1,0,1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,1,1,0,0,0,0,1,0,0]
=> [1,0,1,0,1,1,0,1,0,0,1,0]
=> 3 = 2 + 1
[5,1,1]
=> [1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,1,1,0,0,0,0,0,1,0,1,0]
=> [1,0,1,0,1,0,1,1,1,0,1,0,0,0]
=> ? = 3 + 1
[4,3]
=> [1,0,1,1,1,0,1,0,0,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> [1,1,0,1,0,0,1,0,1,0]
=> 1 = 0 + 1
[4,2,1]
=> [1,0,1,0,1,1,1,0,0,1,0,0]
=> [1,1,1,1,0,0,0,1,0,0,1,0]
=> [1,0,1,1,0,1,1,0,0,1,0,0]
=> 2 = 1 + 1
[4,1,1,1]
=> [1,0,1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,1,1,1,0,0,0,0,1,0,1,0,1,0]
=> [1,0,1,0,1,1,1,1,0,1,0,0,0,0]
=> ? = 2 + 1
[3,3,1]
=> [1,1,1,0,1,0,0,1,0,0]
=> [1,1,1,0,1,0,0,0,1,0]
=> [1,1,0,0,1,1,0,1,0,0]
=> 2 = 1 + 1
[3,2,2]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> [1,1,1,0,1,0,0,0,1,0]
=> 1 = 0 + 1
[3,2,1,1]
=> [1,0,1,1,1,0,0,1,0,1,0,0]
=> [1,1,1,0,0,1,0,0,1,0,1,0]
=> [1,1,0,1,1,1,0,0,1,0,0,0]
=> 1 = 0 + 1
[3,1,1,1,1]
=> [1,0,1,0,1,1,0,1,0,1,0,1,0,0]
=> [1,1,1,0,0,0,1,0,1,0,1,0,1,0]
=> [1,0,1,1,1,1,1,0,1,0,0,0,0,0]
=> ? = 1 + 1
[2,2,2,1]
=> [1,1,1,1,0,0,0,1,0,0]
=> [1,1,0,1,0,1,0,0,1,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> 1 = 0 + 1
[2,2,1,1,1]
=> [1,1,1,0,0,1,0,1,0,1,0,0]
=> [1,1,0,1,0,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,1,0,0,0,0]
=> 1 = 0 + 1
[2,1,1,1,1,1]
=> [1,0,1,1,0,1,0,1,0,1,0,1,0,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,0,1,0,0,0,0,0,0]
=> ? = 0 + 1
[1,1,1,1,1,1,1]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> ? = 0 + 1
[8]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 7 + 1
[7,1]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> ? = 5 + 1
[6,2]
=> [1,0,1,0,1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,1,1,1,0,0,0,0,0,1,0,0]
=> [1,0,1,0,1,0,1,1,0,1,0,0,1,0]
=> ? = 3 + 1
[6,1,1]
=> [1,0,1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0,1,1,1,0,1,0,0,0]
=> ? = 4 + 1
[5,3]
=> [1,0,1,0,1,1,1,0,1,0,0,0]
=> [1,1,1,1,1,0,0,0,1,0,0,0]
=> [1,0,1,1,0,1,0,0,1,0,1,0]
=> 2 = 1 + 1
[5,2,1]
=> [1,0,1,0,1,0,1,1,1,0,0,1,0,0]
=> [1,1,1,1,1,0,0,0,0,1,0,0,1,0]
=> [1,0,1,0,1,1,0,1,1,0,0,1,0,0]
=> ? = 2 + 1
[5,1,1,1]
=> [1,0,1,0,1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,1,1,1,1,0,0,0,0,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,1,1,1,0,1,0,0,0,0]
=> ? = 3 + 1
[4,4]
=> [1,1,1,0,1,0,1,0,0,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> [1,1,0,0,1,0,1,0,1,0]
=> 4 = 3 + 1
[4,3,1]
=> [1,0,1,1,1,0,1,0,0,1,0,0]
=> [1,1,1,1,0,0,1,0,0,0,1,0]
=> [1,1,0,1,0,0,1,1,0,1,0,0]
=> 1 = 0 + 1
[4,2,2]
=> [1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,1,0,1,0,0]
=> [1,0,1,1,1,0,1,0,0,0,1,0]
=> 2 = 1 + 1
[4,2,1,1]
=> [1,0,1,0,1,1,1,0,0,1,0,1,0,0]
=> [1,1,1,1,0,0,0,1,0,0,1,0,1,0]
=> [1,0,1,1,0,1,1,1,0,0,1,0,0,0]
=> ? = 1 + 1
[4,1,1,1,1]
=> [1,0,1,0,1,0,1,1,0,1,0,1,0,1,0,0]
=> [1,1,1,1,0,0,0,0,1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,1,1,1,1,0,1,0,0,0,0,0]
=> ? = 2 + 1
[3,3,2]
=> [1,1,1,0,1,1,0,0,0,0]
=> [1,1,1,0,1,0,0,1,0,0]
=> [1,1,1,0,0,1,0,0,1,0]
=> 1 = 0 + 1
[3,3,1,1]
=> [1,1,1,0,1,0,0,1,0,1,0,0]
=> [1,1,1,0,1,0,0,0,1,0,1,0]
=> [1,1,0,0,1,1,1,0,1,0,0,0]
=> 2 = 1 + 1
[3,2,2,1]
=> [1,0,1,1,1,1,0,0,0,1,0,0]
=> [1,1,1,0,0,1,0,1,0,0,1,0]
=> [1,1,1,0,1,1,0,0,0,1,0,0]
=> 1 = 0 + 1
[3,2,1,1,1]
=> [1,0,1,1,1,0,0,1,0,1,0,1,0,0]
=> [1,1,1,0,0,1,0,0,1,0,1,0,1,0]
=> [1,1,0,1,1,1,1,0,0,1,0,0,0,0]
=> ? = 0 + 1
[3,1,1,1,1,1]
=> [1,0,1,0,1,1,0,1,0,1,0,1,0,1,0,0]
=> [1,1,1,0,0,0,1,0,1,0,1,0,1,0,1,0]
=> [1,0,1,1,1,1,1,1,0,1,0,0,0,0,0,0]
=> ? = 1 + 1
[2,2,2,2]
=> [1,1,1,1,0,1,0,0,0,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> [1,1,1,1,0,0,0,0,1,0]
=> 2 = 1 + 1
[2,2,2,1,1]
=> [1,1,1,1,0,0,0,1,0,1,0,0]
=> [1,1,0,1,0,1,0,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,1,0,0,0]
=> 1 = 0 + 1
[2,2,1,1,1,1]
=> [1,1,1,0,0,1,0,1,0,1,0,1,0,0]
=> [1,1,0,1,0,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,0,0,1,0,0,0,0,0]
=> ? = 0 + 1
[2,1,1,1,1,1,1]
=> [1,0,1,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0]
=> ? = 0 + 1
[1,1,1,1,1,1,1,1]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0]
=> ? = 0 + 1
[7,2]
=> [1,0,1,0,1,0,1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,1,0,1,0,0,1,0]
=> ? = 4 + 1
[6,3]
=> [1,0,1,0,1,0,1,1,1,0,1,0,0,0]
=> [1,1,1,1,1,1,0,0,0,0,1,0,0,0]
=> [1,0,1,0,1,1,0,1,0,0,1,0,1,0]
=> ? = 2 + 1
[6,2,1]
=> [1,0,1,0,1,0,1,0,1,1,1,0,0,1,0,0]
=> [1,1,1,1,1,1,0,0,0,0,0,1,0,0,1,0]
=> [1,0,1,0,1,0,1,1,0,1,1,0,0,1,0,0]
=> ? = 3 + 1
[6,1,1,1]
=> [1,0,1,0,1,0,1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0,1,1,1,1,0,1,0,0,0,0]
=> ? = 4 + 1
[5,4]
=> [1,0,1,1,1,0,1,0,1,0,0,0]
=> [1,1,1,1,1,0,0,1,0,0,0,0]
=> [1,1,0,1,0,0,1,0,1,0,1,0]
=> 1 = 0 + 1
[5,3,1]
=> [1,0,1,0,1,1,1,0,1,0,0,1,0,0]
=> [1,1,1,1,1,0,0,0,1,0,0,0,1,0]
=> [1,0,1,1,0,1,0,0,1,1,0,1,0,0]
=> ? = 1 + 1
[5,2,2]
=> [1,0,1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,1,0,1,0,0]
=> [1,0,1,0,1,1,1,0,1,0,0,0,1,0]
=> ? = 2 + 1
[5,2,1,1]
=> [1,0,1,0,1,0,1,1,1,0,0,1,0,1,0,0]
=> [1,1,1,1,1,0,0,0,0,1,0,0,1,0,1,0]
=> [1,0,1,0,1,1,0,1,1,1,0,0,1,0,0,0]
=> ? = 2 + 1
[4,4,1]
=> [1,1,1,0,1,0,1,0,0,1,0,0]
=> [1,1,1,1,0,1,0,0,0,0,1,0]
=> [1,1,0,0,1,0,1,1,0,1,0,0]
=> 3 = 2 + 1
[4,3,2]
=> [1,0,1,1,1,0,1,1,0,0,0,0]
=> [1,1,1,1,0,0,1,0,0,1,0,0]
=> [1,1,0,1,1,0,0,1,0,0,1,0]
=> 1 = 0 + 1
[4,3,1,1]
=> [1,0,1,1,1,0,1,0,0,1,0,1,0,0]
=> [1,1,1,1,0,0,1,0,0,0,1,0,1,0]
=> [1,1,0,1,0,0,1,1,1,0,1,0,0,0]
=> ? = 0 + 1
[4,2,2,1]
=> [1,0,1,0,1,1,1,1,0,0,0,1,0,0]
=> [1,1,1,1,0,0,0,1,0,1,0,0,1,0]
=> [1,0,1,1,1,0,1,1,0,0,0,1,0,0]
=> ? = 1 + 1
[4,2,1,1,1]
=> [1,0,1,0,1,1,1,0,0,1,0,1,0,1,0,0]
=> [1,1,1,1,0,0,0,1,0,0,1,0,1,0,1,0]
=> [1,0,1,1,0,1,1,1,1,0,0,1,0,0,0,0]
=> ? = 1 + 1
[3,3,3]
=> [1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,0,1,0,1,0,0,0]
=> [1,1,1,0,0,0,1,0,1,0]
=> 3 = 2 + 1
[3,3,1,1,1]
=> [1,1,1,0,1,0,0,1,0,1,0,1,0,0]
=> [1,1,1,0,1,0,0,0,1,0,1,0,1,0]
=> [1,1,0,0,1,1,1,1,0,1,0,0,0,0]
=> ? = 1 + 1
[3,2,2,1,1]
=> [1,0,1,1,1,1,0,0,0,1,0,1,0,0]
=> [1,1,1,0,0,1,0,1,0,0,1,0,1,0]
=> [1,1,1,0,1,1,1,0,0,0,1,0,0,0]
=> ? = 0 + 1
[3,2,1,1,1,1]
=> [1,0,1,1,1,0,0,1,0,1,0,1,0,1,0,0]
=> [1,1,1,0,0,1,0,0,1,0,1,0,1,0,1,0]
=> [1,1,0,1,1,1,1,1,0,0,1,0,0,0,0,0]
=> ? = 0 + 1
[2,2,2,1,1,1]
=> [1,1,1,1,0,0,0,1,0,1,0,1,0,0]
=> [1,1,0,1,0,1,0,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,0,0,0,1,0,0,0,0]
=> ? = 0 + 1
[2,2,1,1,1,1,1]
=> [1,1,1,0,0,1,0,1,0,1,0,1,0,1,0,0]
=> [1,1,0,1,0,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,1,0,0,1,0,0,0,0,0,0]
=> ? = 0 + 1
[2,1,1,1,1,1,1,1]
=> [1,0,1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0,0]
=> ? = 0 + 1
[1,1,1,1,1,1,1,1,1]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0]
=> ? = 0 + 1
[7,3]
=> [1,0,1,0,1,0,1,0,1,1,1,0,1,0,0,0]
=> [1,1,1,1,1,1,1,0,0,0,0,0,1,0,0,0]
=> [1,0,1,0,1,0,1,1,0,1,0,0,1,0,1,0]
=> ? = 3 + 1
[6,4]
=> [1,0,1,0,1,1,1,0,1,0,1,0,0,0]
=> [1,1,1,1,1,1,0,0,0,1,0,0,0,0]
=> [1,0,1,1,0,1,0,0,1,0,1,0,1,0]
=> ? = 1 + 1
[6,3,1]
=> [1,0,1,0,1,0,1,1,1,0,1,0,0,1,0,0]
=> [1,1,1,1,1,1,0,0,0,0,1,0,0,0,1,0]
=> [1,0,1,0,1,1,0,1,0,0,1,1,0,1,0,0]
=> ? = 2 + 1
[6,2,2]
=> [1,0,1,0,1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1,1,1,0,0,0,0,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,1,1,0,1,0,0,0,1,0]
=> ? = 3 + 1
[6,2,1,1]
=> [1,0,1,0,1,0,1,0,1,1,1,0,0,1,0,1,0,0]
=> [1,1,1,1,1,1,0,0,0,0,0,1,0,0,1,0,1,0]
=> [1,0,1,0,1,0,1,1,0,1,1,1,0,0,1,0,0,0]
=> ? = 3 + 1
[5,4,1]
=> [1,0,1,1,1,0,1,0,1,0,0,1,0,0]
=> [1,1,1,1,1,0,0,1,0,0,0,0,1,0]
=> [1,1,0,1,0,0,1,0,1,1,0,1,0,0]
=> ? = 0 + 1
[5,3,2]
=> [1,0,1,0,1,1,1,0,1,1,0,0,0,0]
=> [1,1,1,1,1,0,0,0,1,0,0,1,0,0]
=> [1,0,1,1,0,1,1,0,0,1,0,0,1,0]
=> ? = 1 + 1
[5,3,1,1]
=> [1,0,1,0,1,1,1,0,1,0,0,1,0,1,0,0]
=> [1,1,1,1,1,0,0,0,1,0,0,0,1,0,1,0]
=> [1,0,1,1,0,1,0,0,1,1,1,0,1,0,0,0]
=> ? = 1 + 1
[5,2,2,1]
=> [1,0,1,0,1,0,1,1,1,1,0,0,0,1,0,0]
=> [1,1,1,1,1,0,0,0,0,1,0,1,0,0,1,0]
=> [1,0,1,0,1,1,1,0,1,1,0,0,0,1,0,0]
=> ? = 2 + 1
[4,4,1,1]
=> [1,1,1,0,1,0,1,0,0,1,0,1,0,0]
=> [1,1,1,1,0,1,0,0,0,0,1,0,1,0]
=> [1,1,0,0,1,0,1,1,1,0,1,0,0,0]
=> ? = 2 + 1
[4,3,2,1]
=> [1,0,1,1,1,0,1,1,0,0,0,1,0,0]
=> [1,1,1,1,0,0,1,0,0,1,0,0,1,0]
=> [1,1,0,1,1,0,0,1,1,0,0,1,0,0]
=> ? = 0 + 1
[4,3,1,1,1]
=> [1,0,1,1,1,0,1,0,0,1,0,1,0,1,0,0]
=> [1,1,1,1,0,0,1,0,0,0,1,0,1,0,1,0]
=> [1,1,0,1,0,0,1,1,1,1,0,1,0,0,0,0]
=> ? = 0 + 1
[4,2,2,2]
=> [1,0,1,0,1,1,1,1,0,1,0,0,0,0]
=> [1,1,1,1,0,0,0,1,0,1,0,1,0,0]
=> [1,0,1,1,1,1,0,1,0,0,0,0,1,0]
=> ? = 1 + 1
Description
Call a CNakayama algebra (a Nakayama algebra with a cyclic quiver) with Kupisch series $L=[c_0,c_1,...,c_{n−1}]$ such that $n=c_0 < c_i$ for all $i > 0$ a special CNakayama algebra. Associate to this special CNakayama algebra a Dyck path as follows: In the list L delete the first entry $c_0$ and substract from all other entries $n$−1 and then append the last element 1. The result is a Kupisch series of an LNakayama algebra to which we can associate a Dyck path as the top boundary of the Auslander-Reiten quiver of the LNakayama algebra. The statistic gives half the dominant dimension of hte first indecomposable projective module in the special CNakayama algebra.
Matching statistic: St001232
Mp00043: Integer partitions to Dyck pathDyck paths
Mp00032: Dyck paths inverse zeta mapDyck paths
Mp00120: Dyck paths Lalanne-Kreweras involutionDyck paths
St001232: Dyck paths ⟶ ℤResult quality: 8% values known / values provided: 8%distinct values known / distinct values provided: 75%
Values
[1]
=> [1,0,1,0]
=> [1,1,0,0]
=> [1,0,1,0]
=> 1 = 0 + 1
[2]
=> [1,1,0,0,1,0]
=> [1,1,0,1,0,0]
=> [1,1,0,1,0,0]
=> 2 = 1 + 1
[1,1]
=> [1,0,1,1,0,0]
=> [1,0,1,1,0,0]
=> [1,1,0,0,1,0]
=> 1 = 0 + 1
[3]
=> [1,1,1,0,0,0,1,0]
=> [1,1,0,1,0,1,0,0]
=> [1,1,1,0,1,0,0,0]
=> 3 = 2 + 1
[2,1]
=> [1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> [1,0,1,0,1,0]
=> ? = 0 + 1
[1,1,1]
=> [1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,0,0]
=> [1,1,1,0,0,0,1,0]
=> 1 = 0 + 1
[4]
=> [1,1,1,1,0,0,0,0,1,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> 4 = 3 + 1
[3,1]
=> [1,1,0,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0]
=> [1,0,1,1,0,1,0,0]
=> ? = 1 + 1
[2,2]
=> [1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,1,0,0]
=> [1,1,1,0,0,1,0,0]
=> 2 = 1 + 1
[2,1,1]
=> [1,0,1,1,0,1,0,0]
=> [1,1,1,0,0,0,1,0]
=> [1,0,1,0,1,1,0,0]
=> ? = 0 + 1
[1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,0,0,0,0,1,0]
=> 1 = 0 + 1
[5]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> [1,1,0,1,0,1,0,1,0,1,0,0]
=> [1,1,1,1,1,0,1,0,0,0,0,0]
=> 5 = 4 + 1
[4,1]
=> [1,1,1,0,1,0,0,0,1,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> [1,0,1,1,1,0,1,0,0,0]
=> ? = 2 + 1
[3,2]
=> [1,1,0,0,1,0,1,0]
=> [1,1,1,0,1,0,0,0]
=> [1,1,0,1,0,1,0,0]
=> ? = 0 + 1
[3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,0,0]
=> [1,1,0,1,0,0,1,0]
=> ? = 1 + 1
[2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [1,0,1,1,1,0,0,0]
=> [1,1,0,0,1,0,1,0]
=> ? = 0 + 1
[2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [1,1,1,0,0,0,1,0,1,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> ? = 0 + 1
[1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> 1 = 0 + 1
[6]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> [1,1,1,1,1,1,0,1,0,0,0,0,0,0]
=> 6 = 5 + 1
[5,1]
=> [1,1,1,1,0,1,0,0,0,0,1,0]
=> [1,1,1,0,0,1,0,1,0,1,0,0]
=> [1,0,1,1,1,1,0,1,0,0,0,0]
=> ? = 3 + 1
[4,2]
=> [1,1,1,0,0,1,0,0,1,0]
=> [1,1,1,0,1,0,0,1,0,0]
=> [1,1,0,1,1,0,1,0,0,0]
=> ? = 1 + 1
[4,1,1]
=> [1,1,0,1,1,0,0,0,1,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> ? = 2 + 1
[3,3]
=> [1,1,1,0,0,0,1,1,0,0]
=> [1,0,1,1,0,1,0,1,0,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> 3 = 2 + 1
[3,2,1]
=> [1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> ? = 0 + 1
[3,1,1,1]
=> [1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,1,1,0,0,0,1,0]
=> [1,1,0,1,0,0,1,1,0,0]
=> ? = 1 + 1
[2,2,2]
=> [1,1,0,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> 2 = 1 + 1
[2,2,1,1]
=> [1,0,1,1,0,1,1,0,0,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> ? = 0 + 1
[2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,0,0,0,0]
=> [1,1,1,0,0,0,1,0,1,0,1,0]
=> [1,0,1,0,1,1,1,1,0,0,0,0]
=> ? = 0 + 1
[1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> 1 = 0 + 1
[7]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> [1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0]
=> ? = 6 + 1
[6,1]
=> [1,1,1,1,1,0,1,0,0,0,0,0,1,0]
=> [1,1,1,0,0,1,0,1,0,1,0,1,0,0]
=> [1,0,1,1,1,1,1,0,1,0,0,0,0,0]
=> ? = 4 + 1
[5,2]
=> [1,1,1,1,0,0,1,0,0,0,1,0]
=> [1,1,1,0,1,0,0,1,0,1,0,0]
=> [1,1,0,1,1,1,0,1,0,0,0,0]
=> ? = 2 + 1
[5,1,1]
=> [1,1,1,0,1,1,0,0,0,0,1,0]
=> [1,1,0,1,1,0,0,1,0,1,0,0]
=> [1,1,0,1,1,1,0,0,1,0,0,0]
=> ? = 3 + 1
[4,3]
=> [1,1,1,0,0,0,1,0,1,0]
=> [1,1,1,0,1,0,1,0,0,0]
=> [1,1,1,0,1,0,1,0,0,0]
=> ? = 0 + 1
[4,2,1]
=> [1,1,0,1,0,1,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> [1,0,1,1,0,1,0,0,1,0]
=> ? = 1 + 1
[4,1,1,1]
=> [1,0,1,1,1,0,0,0,1,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> [1,1,1,0,1,0,0,0,1,0]
=> ? = 2 + 1
[3,3,1]
=> [1,1,0,1,0,0,1,1,0,0]
=> [1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,0,1,1,0,1,0,0]
=> ? = 1 + 1
[3,2,2]
=> [1,1,0,0,1,1,0,1,0,0]
=> [1,1,1,0,1,0,0,0,1,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> ? = 0 + 1
[3,2,1,1]
=> [1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> ? = 0 + 1
[3,1,1,1,1]
=> [1,0,1,1,1,1,0,0,1,0,0,0]
=> [1,1,0,1,1,0,0,0,1,0,1,0]
=> [1,1,0,1,0,0,1,1,1,0,0,0]
=> ? = 1 + 1
[2,2,2,1]
=> [1,0,1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,0,0,0,1,0,1,0]
=> ? = 0 + 1
[2,2,1,1,1]
=> [1,0,1,1,1,0,1,1,0,0,0,0]
=> [1,0,1,1,1,0,0,0,1,0,1,0]
=> [1,1,0,0,1,0,1,1,1,0,0,0]
=> ? = 0 + 1
[2,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,1,0,0,0,0,0]
=> [1,1,1,0,0,0,1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,1,1,1,1,0,0,0,0,0]
=> ? = 0 + 1
[1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> ? = 0 + 1
[8]
=> [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,1,0]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> [1,1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0,0]
=> ? = 7 + 1
[7,1]
=> [1,1,1,1,1,1,0,1,0,0,0,0,0,0,1,0]
=> [1,1,1,0,0,1,0,1,0,1,0,1,0,1,0,0]
=> [1,0,1,1,1,1,1,1,0,1,0,0,0,0,0,0]
=> ? = 5 + 1
[6,2]
=> [1,1,1,1,1,0,0,1,0,0,0,0,1,0]
=> [1,1,1,0,1,0,0,1,0,1,0,1,0,0]
=> [1,1,0,1,1,1,1,0,1,0,0,0,0,0]
=> ? = 3 + 1
[6,1,1]
=> [1,1,1,1,0,1,1,0,0,0,0,0,1,0]
=> [1,1,0,1,1,0,0,1,0,1,0,1,0,0]
=> [1,1,0,1,1,1,1,0,0,1,0,0,0,0]
=> ? = 4 + 1
[5,3]
=> [1,1,1,1,0,0,0,1,0,0,1,0]
=> [1,1,1,0,1,0,1,0,0,1,0,0]
=> [1,1,1,0,1,1,0,1,0,0,0,0]
=> ? = 1 + 1
[5,2,1]
=> [1,1,1,0,1,0,1,0,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,1,0,0]
=> [1,0,1,1,0,1,1,0,0,1,0,0]
=> ? = 2 + 1
[5,1,1,1]
=> [1,1,0,1,1,1,0,0,0,0,1,0]
=> [1,1,0,1,0,1,1,0,0,1,0,0]
=> [1,1,1,0,1,1,0,0,0,1,0,0]
=> ? = 3 + 1
[4,4]
=> [1,1,1,1,0,0,0,0,1,1,0,0]
=> [1,0,1,1,0,1,0,1,0,1,0,0]
=> [1,1,1,1,1,0,0,1,0,0,0,0]
=> 4 = 3 + 1
[4,3,1]
=> [1,1,0,1,0,0,1,0,1,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> [1,0,1,1,0,1,0,1,0,0]
=> ? = 0 + 1
[4,2,2]
=> [1,1,0,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,1,0,0,0]
=> [1,1,1,0,1,0,0,1,0,0]
=> ? = 1 + 1
[4,2,1,1]
=> [1,0,1,1,0,1,0,0,1,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> [1,0,1,0,1,1,0,1,0,0]
=> ? = 1 + 1
[4,1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,1,0,0]
=> [1,1,0,1,0,1,1,0,0,0,1,0]
=> [1,1,1,0,1,0,0,0,1,1,0,0]
=> ? = 2 + 1
[3,3,2]
=> [1,1,0,0,1,0,1,1,0,0]
=> [1,0,1,1,1,0,1,0,0,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> ? = 0 + 1
[3,3,1,1]
=> [1,0,1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,1,1,0,0,0]
=> [1,1,1,0,0,1,0,0,1,0]
=> ? = 1 + 1
[3,2,2,1]
=> [1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,1,0,0,0,0,1,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> ? = 0 + 1
[3,2,1,1,1]
=> [1,0,1,1,1,0,1,0,1,0,0,0]
=> [1,1,0,0,1,1,1,0,0,0,1,0]
=> [1,0,1,1,0,0,1,0,1,1,0,0]
=> ? = 0 + 1
[3,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,0,1,0,0,0,0]
=> [1,1,0,1,1,0,0,0,1,0,1,0,1,0]
=> [1,1,0,1,0,0,1,1,1,1,0,0,0,0]
=> ? = 1 + 1
[2,2,2,2]
=> [1,1,0,0,1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,1,1,0,0,0,0,1,0,0]
=> 2 = 1 + 1
[2,2,2,1,1]
=> [1,0,1,1,0,1,1,1,0,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0,1,0]
=> [1,1,1,0,0,0,1,0,1,1,0,0]
=> ? = 0 + 1
[2,2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,1,0,0,0,0,0]
=> [1,0,1,1,1,0,0,0,1,0,1,0,1,0]
=> [1,1,0,0,1,0,1,1,1,1,0,0,0,0]
=> ? = 0 + 1
[2,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,0,1,0,0,0,0,0,0]
=> [1,1,1,0,0,0,1,0,1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> ? = 0 + 1
[1,1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,1,0]
=> ? = 0 + 1
[3,3,3]
=> [1,1,1,0,0,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,1,1,1,1,0,0,0,1,0,0,0]
=> 3 = 2 + 1
[5,5]
=> [1,1,1,1,1,0,0,0,0,0,1,1,0,0]
=> [1,0,1,1,0,1,0,1,0,1,0,1,0,0]
=> [1,1,1,1,1,1,0,0,1,0,0,0,0,0]
=> 5 = 4 + 1
[2,2,2,2,2]
=> [1,1,0,0,1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,1,1,1,0,0,0,0,0,1,0,0]
=> 2 = 1 + 1
[4,4,4]
=> [1,1,1,1,0,0,0,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,0,1,0,1,0,1,0,0]
=> [1,1,1,1,1,1,0,0,0,1,0,0,0,0]
=> 4 = 3 + 1
[3,3,3,3]
=> [1,1,1,0,0,0,1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,1,1,1,1,1,0,0,0,0,1,0,0,0]
=> 3 = 2 + 1
Description
The number of indecomposable modules with projective dimension 2 for Nakayama algebras with global dimension at most 2.