searching the database
Your data matches 12 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
(click to perform a complete search on your data)
Matching statistic: St000260
Mp00007: Alternating sign matrices —to Dyck path⟶ Dyck paths
Mp00129: Dyck paths —to 321-avoiding permutation (Billey-Jockusch-Stanley)⟶ Permutations
Mp00160: Permutations —graph of inversions⟶ Graphs
St000260: Graphs ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00129: Dyck paths —to 321-avoiding permutation (Billey-Jockusch-Stanley)⟶ Permutations
Mp00160: Permutations —graph of inversions⟶ Graphs
St000260: Graphs ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[[1]]
=> [1,0]
=> [1] => ([],1)
=> 0
[[1,0],[0,1]]
=> [1,0,1,0]
=> [2,1] => ([(0,1)],2)
=> 1
[[1,0,0],[0,1,0],[0,0,1]]
=> [1,0,1,0,1,0]
=> [2,3,1] => ([(0,2),(1,2)],3)
=> 1
[[0,1,0],[1,-1,1],[0,1,0]]
=> [1,1,0,1,0,0]
=> [3,1,2] => ([(0,2),(1,2)],3)
=> 1
[[0,1,0],[0,0,1],[1,0,0]]
=> [1,1,0,1,0,0]
=> [3,1,2] => ([(0,2),(1,2)],3)
=> 1
[[1,0,0,0],[0,1,0,0],[0,0,1,0],[0,0,0,1]]
=> [1,0,1,0,1,0,1,0]
=> [2,3,4,1] => ([(0,3),(1,3),(2,3)],4)
=> 1
[[0,1,0,0],[1,-1,1,0],[0,1,0,0],[0,0,0,1]]
=> [1,1,0,1,0,0,1,0]
=> [3,1,4,2] => ([(0,3),(1,2),(2,3)],4)
=> 2
[[0,1,0,0],[0,0,1,0],[1,0,0,0],[0,0,0,1]]
=> [1,1,0,1,0,0,1,0]
=> [3,1,4,2] => ([(0,3),(1,2),(2,3)],4)
=> 2
[[1,0,0,0],[0,0,1,0],[0,1,-1,1],[0,0,1,0]]
=> [1,0,1,1,0,1,0,0]
=> [2,4,1,3] => ([(0,3),(1,2),(2,3)],4)
=> 2
[[0,1,0,0],[1,-1,1,0],[0,1,-1,1],[0,0,1,0]]
=> [1,1,0,1,0,1,0,0]
=> [3,4,1,2] => ([(0,2),(0,3),(1,2),(1,3)],4)
=> 2
[[0,1,0,0],[0,0,1,0],[1,0,-1,1],[0,0,1,0]]
=> [1,1,0,1,0,1,0,0]
=> [3,4,1,2] => ([(0,2),(0,3),(1,2),(1,3)],4)
=> 2
[[0,0,1,0],[1,0,-1,1],[0,1,0,0],[0,0,1,0]]
=> [1,1,1,0,1,0,0,0]
=> [4,1,2,3] => ([(0,3),(1,3),(2,3)],4)
=> 1
[[0,0,1,0],[0,1,-1,1],[1,0,0,0],[0,0,1,0]]
=> [1,1,1,0,1,0,0,0]
=> [4,1,2,3] => ([(0,3),(1,3),(2,3)],4)
=> 1
[[1,0,0,0],[0,0,1,0],[0,0,0,1],[0,1,0,0]]
=> [1,0,1,1,0,1,0,0]
=> [2,4,1,3] => ([(0,3),(1,2),(2,3)],4)
=> 2
[[0,1,0,0],[1,-1,1,0],[0,0,0,1],[0,1,0,0]]
=> [1,1,0,1,0,1,0,0]
=> [3,4,1,2] => ([(0,2),(0,3),(1,2),(1,3)],4)
=> 2
[[0,1,0,0],[0,0,1,0],[1,-1,0,1],[0,1,0,0]]
=> [1,1,0,1,0,1,0,0]
=> [3,4,1,2] => ([(0,2),(0,3),(1,2),(1,3)],4)
=> 2
[[0,0,1,0],[1,0,-1,1],[0,0,1,0],[0,1,0,0]]
=> [1,1,1,0,1,0,0,0]
=> [4,1,2,3] => ([(0,3),(1,3),(2,3)],4)
=> 1
[[0,0,1,0],[0,1,-1,1],[1,-1,1,0],[0,1,0,0]]
=> [1,1,1,0,1,0,0,0]
=> [4,1,2,3] => ([(0,3),(1,3),(2,3)],4)
=> 1
[[0,0,1,0],[0,0,0,1],[1,0,0,0],[0,1,0,0]]
=> [1,1,1,0,1,0,0,0]
=> [4,1,2,3] => ([(0,3),(1,3),(2,3)],4)
=> 1
[[0,1,0,0],[0,0,1,0],[0,0,0,1],[1,0,0,0]]
=> [1,1,0,1,0,1,0,0]
=> [3,4,1,2] => ([(0,2),(0,3),(1,2),(1,3)],4)
=> 2
[[0,0,1,0],[0,1,-1,1],[0,0,1,0],[1,0,0,0]]
=> [1,1,1,0,1,0,0,0]
=> [4,1,2,3] => ([(0,3),(1,3),(2,3)],4)
=> 1
[[0,0,1,0],[0,0,0,1],[0,1,0,0],[1,0,0,0]]
=> [1,1,1,0,1,0,0,0]
=> [4,1,2,3] => ([(0,3),(1,3),(2,3)],4)
=> 1
[[1,0,0,0,0],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,1,0],[0,0,0,0,1]]
=> [1,0,1,0,1,0,1,0,1,0]
=> [2,3,4,5,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 1
[[0,1,0,0,0],[1,-1,1,0,0],[0,1,0,0,0],[0,0,0,1,0],[0,0,0,0,1]]
=> [1,1,0,1,0,0,1,0,1,0]
=> [3,1,4,5,2] => ([(0,4),(1,4),(2,3),(3,4)],5)
=> 2
[[0,1,0,0,0],[0,0,1,0,0],[1,0,0,0,0],[0,0,0,1,0],[0,0,0,0,1]]
=> [1,1,0,1,0,0,1,0,1,0]
=> [3,1,4,5,2] => ([(0,4),(1,4),(2,3),(3,4)],5)
=> 2
[[1,0,0,0,0],[0,0,1,0,0],[0,1,-1,1,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [1,0,1,1,0,1,0,0,1,0]
=> [2,4,1,5,3] => ([(0,4),(1,3),(2,3),(2,4)],5)
=> 2
[[0,1,0,0,0],[1,-1,1,0,0],[0,1,-1,1,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [1,1,0,1,0,1,0,0,1,0]
=> [3,4,1,5,2] => ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> 2
[[0,1,0,0,0],[0,0,1,0,0],[1,0,-1,1,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [1,1,0,1,0,1,0,0,1,0]
=> [3,4,1,5,2] => ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> 2
[[0,0,1,0,0],[1,0,-1,1,0],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [1,1,1,0,1,0,0,0,1,0]
=> [4,1,2,5,3] => ([(0,4),(1,4),(2,3),(3,4)],5)
=> 2
[[0,0,1,0,0],[0,1,-1,1,0],[1,0,0,0,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [1,1,1,0,1,0,0,0,1,0]
=> [4,1,2,5,3] => ([(0,4),(1,4),(2,3),(3,4)],5)
=> 2
[[1,0,0,0,0],[0,0,1,0,0],[0,0,0,1,0],[0,1,0,0,0],[0,0,0,0,1]]
=> [1,0,1,1,0,1,0,0,1,0]
=> [2,4,1,5,3] => ([(0,4),(1,3),(2,3),(2,4)],5)
=> 2
[[0,1,0,0,0],[1,-1,1,0,0],[0,0,0,1,0],[0,1,0,0,0],[0,0,0,0,1]]
=> [1,1,0,1,0,1,0,0,1,0]
=> [3,4,1,5,2] => ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> 2
[[0,1,0,0,0],[0,0,1,0,0],[1,-1,0,1,0],[0,1,0,0,0],[0,0,0,0,1]]
=> [1,1,0,1,0,1,0,0,1,0]
=> [3,4,1,5,2] => ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> 2
[[0,0,1,0,0],[1,0,-1,1,0],[0,0,1,0,0],[0,1,0,0,0],[0,0,0,0,1]]
=> [1,1,1,0,1,0,0,0,1,0]
=> [4,1,2,5,3] => ([(0,4),(1,4),(2,3),(3,4)],5)
=> 2
[[0,0,1,0,0],[0,1,-1,1,0],[1,-1,1,0,0],[0,1,0,0,0],[0,0,0,0,1]]
=> [1,1,1,0,1,0,0,0,1,0]
=> [4,1,2,5,3] => ([(0,4),(1,4),(2,3),(3,4)],5)
=> 2
[[0,0,1,0,0],[0,0,0,1,0],[1,0,0,0,0],[0,1,0,0,0],[0,0,0,0,1]]
=> [1,1,1,0,1,0,0,0,1,0]
=> [4,1,2,5,3] => ([(0,4),(1,4),(2,3),(3,4)],5)
=> 2
[[0,1,0,0,0],[0,0,1,0,0],[0,0,0,1,0],[1,0,0,0,0],[0,0,0,0,1]]
=> [1,1,0,1,0,1,0,0,1,0]
=> [3,4,1,5,2] => ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> 2
[[0,0,1,0,0],[0,1,-1,1,0],[0,0,1,0,0],[1,0,0,0,0],[0,0,0,0,1]]
=> [1,1,1,0,1,0,0,0,1,0]
=> [4,1,2,5,3] => ([(0,4),(1,4),(2,3),(3,4)],5)
=> 2
[[0,0,1,0,0],[0,0,0,1,0],[0,1,0,0,0],[1,0,0,0,0],[0,0,0,0,1]]
=> [1,1,1,0,1,0,0,0,1,0]
=> [4,1,2,5,3] => ([(0,4),(1,4),(2,3),(3,4)],5)
=> 2
[[1,0,0,0,0],[0,1,0,0,0],[0,0,0,1,0],[0,0,1,-1,1],[0,0,0,1,0]]
=> [1,0,1,0,1,1,0,1,0,0]
=> [2,3,5,1,4] => ([(0,4),(1,4),(2,3),(3,4)],5)
=> 2
[[1,0,0,0,0],[0,0,1,0,0],[0,1,-1,1,0],[0,0,1,-1,1],[0,0,0,1,0]]
=> [1,0,1,1,0,1,0,1,0,0]
=> [2,4,5,1,3] => ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> 2
[[0,1,0,0,0],[1,-1,1,0,0],[0,1,-1,1,0],[0,0,1,-1,1],[0,0,0,1,0]]
=> [1,1,0,1,0,1,0,1,0,0]
=> [3,4,5,1,2] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> 2
[[0,1,0,0,0],[0,0,1,0,0],[1,0,-1,1,0],[0,0,1,-1,1],[0,0,0,1,0]]
=> [1,1,0,1,0,1,0,1,0,0]
=> [3,4,5,1,2] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> 2
[[0,1,0,0,0],[1,-1,0,1,0],[0,1,0,0,0],[0,0,1,-1,1],[0,0,0,1,0]]
=> [1,1,0,1,1,0,0,1,0,0]
=> [3,1,5,2,4] => ([(0,4),(1,3),(2,3),(2,4)],5)
=> 2
[[0,0,1,0,0],[1,0,-1,1,0],[0,1,0,0,0],[0,0,1,-1,1],[0,0,0,1,0]]
=> [1,1,1,0,1,0,0,1,0,0]
=> [4,1,5,2,3] => ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> 2
[[0,1,0,0,0],[0,0,0,1,0],[1,0,0,0,0],[0,0,1,-1,1],[0,0,0,1,0]]
=> [1,1,0,1,1,0,0,1,0,0]
=> [3,1,5,2,4] => ([(0,4),(1,3),(2,3),(2,4)],5)
=> 2
[[0,0,1,0,0],[0,1,-1,1,0],[1,0,0,0,0],[0,0,1,-1,1],[0,0,0,1,0]]
=> [1,1,1,0,1,0,0,1,0,0]
=> [4,1,5,2,3] => ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> 2
[[1,0,0,0,0],[0,0,1,0,0],[0,0,0,1,0],[0,1,0,-1,1],[0,0,0,1,0]]
=> [1,0,1,1,0,1,0,1,0,0]
=> [2,4,5,1,3] => ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> 2
[[0,1,0,0,0],[1,-1,1,0,0],[0,0,0,1,0],[0,1,0,-1,1],[0,0,0,1,0]]
=> [1,1,0,1,0,1,0,1,0,0]
=> [3,4,5,1,2] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> 2
[[0,1,0,0,0],[0,0,1,0,0],[1,-1,0,1,0],[0,1,0,-1,1],[0,0,0,1,0]]
=> [1,1,0,1,0,1,0,1,0,0]
=> [3,4,5,1,2] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> 2
Description
The radius of a connected graph.
This is the minimum eccentricity of any vertex.
Matching statistic: St000264
Mp00007: Alternating sign matrices —to Dyck path⟶ Dyck paths
Mp00129: Dyck paths —to 321-avoiding permutation (Billey-Jockusch-Stanley)⟶ Permutations
Mp00160: Permutations —graph of inversions⟶ Graphs
St000264: Graphs ⟶ ℤResult quality: 25% ●values known / values provided: 73%●distinct values known / distinct values provided: 25%
Mp00129: Dyck paths —to 321-avoiding permutation (Billey-Jockusch-Stanley)⟶ Permutations
Mp00160: Permutations —graph of inversions⟶ Graphs
St000264: Graphs ⟶ ℤResult quality: 25% ●values known / values provided: 73%●distinct values known / distinct values provided: 25%
Values
[[1]]
=> [1,0]
=> [1] => ([],1)
=> ? = 0 + 2
[[1,0],[0,1]]
=> [1,0,1,0]
=> [2,1] => ([(0,1)],2)
=> ? = 1 + 2
[[1,0,0],[0,1,0],[0,0,1]]
=> [1,0,1,0,1,0]
=> [2,3,1] => ([(0,2),(1,2)],3)
=> ? = 1 + 2
[[0,1,0],[1,-1,1],[0,1,0]]
=> [1,1,0,1,0,0]
=> [3,1,2] => ([(0,2),(1,2)],3)
=> ? = 1 + 2
[[0,1,0],[0,0,1],[1,0,0]]
=> [1,1,0,1,0,0]
=> [3,1,2] => ([(0,2),(1,2)],3)
=> ? = 1 + 2
[[1,0,0,0],[0,1,0,0],[0,0,1,0],[0,0,0,1]]
=> [1,0,1,0,1,0,1,0]
=> [2,3,4,1] => ([(0,3),(1,3),(2,3)],4)
=> ? = 1 + 2
[[0,1,0,0],[1,-1,1,0],[0,1,0,0],[0,0,0,1]]
=> [1,1,0,1,0,0,1,0]
=> [3,1,4,2] => ([(0,3),(1,2),(2,3)],4)
=> ? = 2 + 2
[[0,1,0,0],[0,0,1,0],[1,0,0,0],[0,0,0,1]]
=> [1,1,0,1,0,0,1,0]
=> [3,1,4,2] => ([(0,3),(1,2),(2,3)],4)
=> ? = 2 + 2
[[1,0,0,0],[0,0,1,0],[0,1,-1,1],[0,0,1,0]]
=> [1,0,1,1,0,1,0,0]
=> [2,4,1,3] => ([(0,3),(1,2),(2,3)],4)
=> ? = 2 + 2
[[0,1,0,0],[1,-1,1,0],[0,1,-1,1],[0,0,1,0]]
=> [1,1,0,1,0,1,0,0]
=> [3,4,1,2] => ([(0,2),(0,3),(1,2),(1,3)],4)
=> 4 = 2 + 2
[[0,1,0,0],[0,0,1,0],[1,0,-1,1],[0,0,1,0]]
=> [1,1,0,1,0,1,0,0]
=> [3,4,1,2] => ([(0,2),(0,3),(1,2),(1,3)],4)
=> 4 = 2 + 2
[[0,0,1,0],[1,0,-1,1],[0,1,0,0],[0,0,1,0]]
=> [1,1,1,0,1,0,0,0]
=> [4,1,2,3] => ([(0,3),(1,3),(2,3)],4)
=> ? = 1 + 2
[[0,0,1,0],[0,1,-1,1],[1,0,0,0],[0,0,1,0]]
=> [1,1,1,0,1,0,0,0]
=> [4,1,2,3] => ([(0,3),(1,3),(2,3)],4)
=> ? = 1 + 2
[[1,0,0,0],[0,0,1,0],[0,0,0,1],[0,1,0,0]]
=> [1,0,1,1,0,1,0,0]
=> [2,4,1,3] => ([(0,3),(1,2),(2,3)],4)
=> ? = 2 + 2
[[0,1,0,0],[1,-1,1,0],[0,0,0,1],[0,1,0,0]]
=> [1,1,0,1,0,1,0,0]
=> [3,4,1,2] => ([(0,2),(0,3),(1,2),(1,3)],4)
=> 4 = 2 + 2
[[0,1,0,0],[0,0,1,0],[1,-1,0,1],[0,1,0,0]]
=> [1,1,0,1,0,1,0,0]
=> [3,4,1,2] => ([(0,2),(0,3),(1,2),(1,3)],4)
=> 4 = 2 + 2
[[0,0,1,0],[1,0,-1,1],[0,0,1,0],[0,1,0,0]]
=> [1,1,1,0,1,0,0,0]
=> [4,1,2,3] => ([(0,3),(1,3),(2,3)],4)
=> ? = 1 + 2
[[0,0,1,0],[0,1,-1,1],[1,-1,1,0],[0,1,0,0]]
=> [1,1,1,0,1,0,0,0]
=> [4,1,2,3] => ([(0,3),(1,3),(2,3)],4)
=> ? = 1 + 2
[[0,0,1,0],[0,0,0,1],[1,0,0,0],[0,1,0,0]]
=> [1,1,1,0,1,0,0,0]
=> [4,1,2,3] => ([(0,3),(1,3),(2,3)],4)
=> ? = 1 + 2
[[0,1,0,0],[0,0,1,0],[0,0,0,1],[1,0,0,0]]
=> [1,1,0,1,0,1,0,0]
=> [3,4,1,2] => ([(0,2),(0,3),(1,2),(1,3)],4)
=> 4 = 2 + 2
[[0,0,1,0],[0,1,-1,1],[0,0,1,0],[1,0,0,0]]
=> [1,1,1,0,1,0,0,0]
=> [4,1,2,3] => ([(0,3),(1,3),(2,3)],4)
=> ? = 1 + 2
[[0,0,1,0],[0,0,0,1],[0,1,0,0],[1,0,0,0]]
=> [1,1,1,0,1,0,0,0]
=> [4,1,2,3] => ([(0,3),(1,3),(2,3)],4)
=> ? = 1 + 2
[[1,0,0,0,0],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,1,0],[0,0,0,0,1]]
=> [1,0,1,0,1,0,1,0,1,0]
=> [2,3,4,5,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> ? = 1 + 2
[[0,1,0,0,0],[1,-1,1,0,0],[0,1,0,0,0],[0,0,0,1,0],[0,0,0,0,1]]
=> [1,1,0,1,0,0,1,0,1,0]
=> [3,1,4,5,2] => ([(0,4),(1,4),(2,3),(3,4)],5)
=> ? = 2 + 2
[[0,1,0,0,0],[0,0,1,0,0],[1,0,0,0,0],[0,0,0,1,0],[0,0,0,0,1]]
=> [1,1,0,1,0,0,1,0,1,0]
=> [3,1,4,5,2] => ([(0,4),(1,4),(2,3),(3,4)],5)
=> ? = 2 + 2
[[1,0,0,0,0],[0,0,1,0,0],[0,1,-1,1,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [1,0,1,1,0,1,0,0,1,0]
=> [2,4,1,5,3] => ([(0,4),(1,3),(2,3),(2,4)],5)
=> ? = 2 + 2
[[0,1,0,0,0],[1,-1,1,0,0],[0,1,-1,1,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [1,1,0,1,0,1,0,0,1,0]
=> [3,4,1,5,2] => ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> 4 = 2 + 2
[[0,1,0,0,0],[0,0,1,0,0],[1,0,-1,1,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [1,1,0,1,0,1,0,0,1,0]
=> [3,4,1,5,2] => ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> 4 = 2 + 2
[[0,0,1,0,0],[1,0,-1,1,0],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [1,1,1,0,1,0,0,0,1,0]
=> [4,1,2,5,3] => ([(0,4),(1,4),(2,3),(3,4)],5)
=> ? = 2 + 2
[[0,0,1,0,0],[0,1,-1,1,0],[1,0,0,0,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [1,1,1,0,1,0,0,0,1,0]
=> [4,1,2,5,3] => ([(0,4),(1,4),(2,3),(3,4)],5)
=> ? = 2 + 2
[[1,0,0,0,0],[0,0,1,0,0],[0,0,0,1,0],[0,1,0,0,0],[0,0,0,0,1]]
=> [1,0,1,1,0,1,0,0,1,0]
=> [2,4,1,5,3] => ([(0,4),(1,3),(2,3),(2,4)],5)
=> ? = 2 + 2
[[0,1,0,0,0],[1,-1,1,0,0],[0,0,0,1,0],[0,1,0,0,0],[0,0,0,0,1]]
=> [1,1,0,1,0,1,0,0,1,0]
=> [3,4,1,5,2] => ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> 4 = 2 + 2
[[0,1,0,0,0],[0,0,1,0,0],[1,-1,0,1,0],[0,1,0,0,0],[0,0,0,0,1]]
=> [1,1,0,1,0,1,0,0,1,0]
=> [3,4,1,5,2] => ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> 4 = 2 + 2
[[0,0,1,0,0],[1,0,-1,1,0],[0,0,1,0,0],[0,1,0,0,0],[0,0,0,0,1]]
=> [1,1,1,0,1,0,0,0,1,0]
=> [4,1,2,5,3] => ([(0,4),(1,4),(2,3),(3,4)],5)
=> ? = 2 + 2
[[0,0,1,0,0],[0,1,-1,1,0],[1,-1,1,0,0],[0,1,0,0,0],[0,0,0,0,1]]
=> [1,1,1,0,1,0,0,0,1,0]
=> [4,1,2,5,3] => ([(0,4),(1,4),(2,3),(3,4)],5)
=> ? = 2 + 2
[[0,0,1,0,0],[0,0,0,1,0],[1,0,0,0,0],[0,1,0,0,0],[0,0,0,0,1]]
=> [1,1,1,0,1,0,0,0,1,0]
=> [4,1,2,5,3] => ([(0,4),(1,4),(2,3),(3,4)],5)
=> ? = 2 + 2
[[0,1,0,0,0],[0,0,1,0,0],[0,0,0,1,0],[1,0,0,0,0],[0,0,0,0,1]]
=> [1,1,0,1,0,1,0,0,1,0]
=> [3,4,1,5,2] => ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> 4 = 2 + 2
[[0,0,1,0,0],[0,1,-1,1,0],[0,0,1,0,0],[1,0,0,0,0],[0,0,0,0,1]]
=> [1,1,1,0,1,0,0,0,1,0]
=> [4,1,2,5,3] => ([(0,4),(1,4),(2,3),(3,4)],5)
=> ? = 2 + 2
[[0,0,1,0,0],[0,0,0,1,0],[0,1,0,0,0],[1,0,0,0,0],[0,0,0,0,1]]
=> [1,1,1,0,1,0,0,0,1,0]
=> [4,1,2,5,3] => ([(0,4),(1,4),(2,3),(3,4)],5)
=> ? = 2 + 2
[[1,0,0,0,0],[0,1,0,0,0],[0,0,0,1,0],[0,0,1,-1,1],[0,0,0,1,0]]
=> [1,0,1,0,1,1,0,1,0,0]
=> [2,3,5,1,4] => ([(0,4),(1,4),(2,3),(3,4)],5)
=> ? = 2 + 2
[[1,0,0,0,0],[0,0,1,0,0],[0,1,-1,1,0],[0,0,1,-1,1],[0,0,0,1,0]]
=> [1,0,1,1,0,1,0,1,0,0]
=> [2,4,5,1,3] => ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> 4 = 2 + 2
[[0,1,0,0,0],[1,-1,1,0,0],[0,1,-1,1,0],[0,0,1,-1,1],[0,0,0,1,0]]
=> [1,1,0,1,0,1,0,1,0,0]
=> [3,4,5,1,2] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> 4 = 2 + 2
[[0,1,0,0,0],[0,0,1,0,0],[1,0,-1,1,0],[0,0,1,-1,1],[0,0,0,1,0]]
=> [1,1,0,1,0,1,0,1,0,0]
=> [3,4,5,1,2] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> 4 = 2 + 2
[[0,1,0,0,0],[1,-1,0,1,0],[0,1,0,0,0],[0,0,1,-1,1],[0,0,0,1,0]]
=> [1,1,0,1,1,0,0,1,0,0]
=> [3,1,5,2,4] => ([(0,4),(1,3),(2,3),(2,4)],5)
=> ? = 2 + 2
[[0,0,1,0,0],[1,0,-1,1,0],[0,1,0,0,0],[0,0,1,-1,1],[0,0,0,1,0]]
=> [1,1,1,0,1,0,0,1,0,0]
=> [4,1,5,2,3] => ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> 4 = 2 + 2
[[0,1,0,0,0],[0,0,0,1,0],[1,0,0,0,0],[0,0,1,-1,1],[0,0,0,1,0]]
=> [1,1,0,1,1,0,0,1,0,0]
=> [3,1,5,2,4] => ([(0,4),(1,3),(2,3),(2,4)],5)
=> ? = 2 + 2
[[0,0,1,0,0],[0,1,-1,1,0],[1,0,0,0,0],[0,0,1,-1,1],[0,0,0,1,0]]
=> [1,1,1,0,1,0,0,1,0,0]
=> [4,1,5,2,3] => ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> 4 = 2 + 2
[[1,0,0,0,0],[0,0,1,0,0],[0,0,0,1,0],[0,1,0,-1,1],[0,0,0,1,0]]
=> [1,0,1,1,0,1,0,1,0,0]
=> [2,4,5,1,3] => ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> 4 = 2 + 2
[[0,1,0,0,0],[1,-1,1,0,0],[0,0,0,1,0],[0,1,0,-1,1],[0,0,0,1,0]]
=> [1,1,0,1,0,1,0,1,0,0]
=> [3,4,5,1,2] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> 4 = 2 + 2
[[0,1,0,0,0],[0,0,1,0,0],[1,-1,0,1,0],[0,1,0,-1,1],[0,0,0,1,0]]
=> [1,1,0,1,0,1,0,1,0,0]
=> [3,4,5,1,2] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> 4 = 2 + 2
[[0,1,0,0,0],[1,-1,0,1,0],[0,0,1,0,0],[0,1,0,-1,1],[0,0,0,1,0]]
=> [1,1,0,1,1,0,0,1,0,0]
=> [3,1,5,2,4] => ([(0,4),(1,3),(2,3),(2,4)],5)
=> ? = 2 + 2
[[0,0,1,0,0],[1,0,-1,1,0],[0,0,1,0,0],[0,1,0,-1,1],[0,0,0,1,0]]
=> [1,1,1,0,1,0,0,1,0,0]
=> [4,1,5,2,3] => ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> 4 = 2 + 2
[[0,1,0,0,0],[0,0,0,1,0],[1,-1,1,0,0],[0,1,0,-1,1],[0,0,0,1,0]]
=> [1,1,0,1,1,0,0,1,0,0]
=> [3,1,5,2,4] => ([(0,4),(1,3),(2,3),(2,4)],5)
=> ? = 2 + 2
[[0,0,1,0,0],[0,1,-1,1,0],[1,-1,1,0,0],[0,1,0,-1,1],[0,0,0,1,0]]
=> [1,1,1,0,1,0,0,1,0,0]
=> [4,1,5,2,3] => ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> 4 = 2 + 2
[[0,0,1,0,0],[0,0,0,1,0],[1,0,0,0,0],[0,1,0,-1,1],[0,0,0,1,0]]
=> [1,1,1,0,1,0,0,1,0,0]
=> [4,1,5,2,3] => ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> 4 = 2 + 2
[[0,1,0,0,0],[0,0,1,0,0],[0,0,0,1,0],[1,0,0,-1,1],[0,0,0,1,0]]
=> [1,1,0,1,0,1,0,1,0,0]
=> [3,4,5,1,2] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> 4 = 2 + 2
[[0,1,0,0,0],[0,0,0,1,0],[0,0,1,0,0],[1,0,0,-1,1],[0,0,0,1,0]]
=> [1,1,0,1,1,0,0,1,0,0]
=> [3,1,5,2,4] => ([(0,4),(1,3),(2,3),(2,4)],5)
=> ? = 2 + 2
[[0,0,1,0,0],[0,1,-1,1,0],[0,0,1,0,0],[1,0,0,-1,1],[0,0,0,1,0]]
=> [1,1,1,0,1,0,0,1,0,0]
=> [4,1,5,2,3] => ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> 4 = 2 + 2
[[0,0,1,0,0],[0,0,0,1,0],[0,1,0,0,0],[1,0,0,-1,1],[0,0,0,1,0]]
=> [1,1,1,0,1,0,0,1,0,0]
=> [4,1,5,2,3] => ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> 4 = 2 + 2
[[1,0,0,0,0],[0,0,0,1,0],[0,1,0,-1,1],[0,0,1,0,0],[0,0,0,1,0]]
=> [1,0,1,1,1,0,1,0,0,0]
=> [2,5,1,3,4] => ([(0,4),(1,4),(2,3),(3,4)],5)
=> ? = 2 + 2
[[0,1,0,0,0],[1,-1,0,1,0],[0,1,0,-1,1],[0,0,1,0,0],[0,0,0,1,0]]
=> [1,1,0,1,1,0,1,0,0,0]
=> [3,5,1,2,4] => ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> 4 = 2 + 2
[[0,0,1,0,0],[1,0,-1,1,0],[0,1,0,-1,1],[0,0,1,0,0],[0,0,0,1,0]]
=> [1,1,1,0,1,0,1,0,0,0]
=> [4,5,1,2,3] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> 4 = 2 + 2
[[0,1,0,0,0],[0,0,0,1,0],[1,0,0,-1,1],[0,0,1,0,0],[0,0,0,1,0]]
=> [1,1,0,1,1,0,1,0,0,0]
=> [3,5,1,2,4] => ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> 4 = 2 + 2
[[0,0,1,0,0],[0,1,-1,1,0],[1,0,0,-1,1],[0,0,1,0,0],[0,0,0,1,0]]
=> [1,1,1,0,1,0,1,0,0,0]
=> [4,5,1,2,3] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> 4 = 2 + 2
[[0,0,0,1,0],[1,0,0,-1,1],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,1,0]]
=> [1,1,1,1,0,1,0,0,0,0]
=> [5,1,2,3,4] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> ? = 1 + 2
[[0,0,0,1,0],[0,1,0,-1,1],[1,0,0,0,0],[0,0,1,0,0],[0,0,0,1,0]]
=> [1,1,1,1,0,1,0,0,0,0]
=> [5,1,2,3,4] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> ? = 1 + 2
[[1,0,0,0,0],[0,0,0,1,0],[0,0,1,-1,1],[0,1,0,0,0],[0,0,0,1,0]]
=> [1,0,1,1,1,0,1,0,0,0]
=> [2,5,1,3,4] => ([(0,4),(1,4),(2,3),(3,4)],5)
=> ? = 2 + 2
[[0,1,0,0,0],[1,-1,0,1,0],[0,0,1,-1,1],[0,1,0,0,0],[0,0,0,1,0]]
=> [1,1,0,1,1,0,1,0,0,0]
=> [3,5,1,2,4] => ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> 4 = 2 + 2
[[0,0,1,0,0],[1,0,-1,1,0],[0,0,1,-1,1],[0,1,0,0,0],[0,0,0,1,0]]
=> [1,1,1,0,1,0,1,0,0,0]
=> [4,5,1,2,3] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> 4 = 2 + 2
[[0,1,0,0,0],[0,0,0,1,0],[1,-1,1,-1,1],[0,1,0,0,0],[0,0,0,1,0]]
=> [1,1,0,1,1,0,1,0,0,0]
=> [3,5,1,2,4] => ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> 4 = 2 + 2
[[0,0,1,0,0],[0,1,-1,1,0],[1,-1,1,-1,1],[0,1,0,0,0],[0,0,0,1,0]]
=> [1,1,1,0,1,0,1,0,0,0]
=> [4,5,1,2,3] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> 4 = 2 + 2
[[0,0,1,0,0],[0,0,0,1,0],[1,0,0,-1,1],[0,1,0,0,0],[0,0,0,1,0]]
=> [1,1,1,0,1,0,1,0,0,0]
=> [4,5,1,2,3] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> 4 = 2 + 2
[[0,0,0,1,0],[1,0,0,-1,1],[0,0,1,0,0],[0,1,0,0,0],[0,0,0,1,0]]
=> [1,1,1,1,0,1,0,0,0,0]
=> [5,1,2,3,4] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> ? = 1 + 2
[[0,0,0,1,0],[0,1,0,-1,1],[1,-1,1,0,0],[0,1,0,0,0],[0,0,0,1,0]]
=> [1,1,1,1,0,1,0,0,0,0]
=> [5,1,2,3,4] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> ? = 1 + 2
[[0,0,0,1,0],[0,0,1,-1,1],[1,0,0,0,0],[0,1,0,0,0],[0,0,0,1,0]]
=> [1,1,1,1,0,1,0,0,0,0]
=> [5,1,2,3,4] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> ? = 1 + 2
[[0,1,0,0,0],[0,0,0,1,0],[0,0,1,-1,1],[1,0,0,0,0],[0,0,0,1,0]]
=> [1,1,0,1,1,0,1,0,0,0]
=> [3,5,1,2,4] => ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> 4 = 2 + 2
[[0,0,1,0,0],[0,1,-1,1,0],[0,0,1,-1,1],[1,0,0,0,0],[0,0,0,1,0]]
=> [1,1,1,0,1,0,1,0,0,0]
=> [4,5,1,2,3] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> 4 = 2 + 2
[[0,0,1,0,0],[0,0,0,1,0],[0,1,0,-1,1],[1,0,0,0,0],[0,0,0,1,0]]
=> [1,1,1,0,1,0,1,0,0,0]
=> [4,5,1,2,3] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> 4 = 2 + 2
[[0,0,0,1,0],[0,1,0,-1,1],[0,0,1,0,0],[1,0,0,0,0],[0,0,0,1,0]]
=> [1,1,1,1,0,1,0,0,0,0]
=> [5,1,2,3,4] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> ? = 1 + 2
[[0,0,0,1,0],[0,0,1,-1,1],[0,1,0,0,0],[1,0,0,0,0],[0,0,0,1,0]]
=> [1,1,1,1,0,1,0,0,0,0]
=> [5,1,2,3,4] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> ? = 1 + 2
[[1,0,0,0,0],[0,1,0,0,0],[0,0,0,1,0],[0,0,0,0,1],[0,0,1,0,0]]
=> [1,0,1,0,1,1,0,1,0,0]
=> [2,3,5,1,4] => ([(0,4),(1,4),(2,3),(3,4)],5)
=> ? = 2 + 2
[[1,0,0,0,0],[0,0,1,0,0],[0,1,-1,1,0],[0,0,0,0,1],[0,0,1,0,0]]
=> [1,0,1,1,0,1,0,1,0,0]
=> [2,4,5,1,3] => ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> 4 = 2 + 2
[[0,1,0,0,0],[1,-1,1,0,0],[0,1,-1,1,0],[0,0,0,0,1],[0,0,1,0,0]]
=> [1,1,0,1,0,1,0,1,0,0]
=> [3,4,5,1,2] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> 4 = 2 + 2
[[0,1,0,0,0],[0,0,1,0,0],[1,0,-1,1,0],[0,0,0,0,1],[0,0,1,0,0]]
=> [1,1,0,1,0,1,0,1,0,0]
=> [3,4,5,1,2] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> 4 = 2 + 2
[[0,1,0,0,0],[1,-1,0,1,0],[0,1,0,0,0],[0,0,0,0,1],[0,0,1,0,0]]
=> [1,1,0,1,1,0,0,1,0,0]
=> [3,1,5,2,4] => ([(0,4),(1,3),(2,3),(2,4)],5)
=> ? = 2 + 2
[[0,0,1,0,0],[1,0,-1,1,0],[0,1,0,0,0],[0,0,0,0,1],[0,0,1,0,0]]
=> [1,1,1,0,1,0,0,1,0,0]
=> [4,1,5,2,3] => ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> 4 = 2 + 2
[[0,1,0,0,0],[0,0,0,1,0],[1,0,0,0,0],[0,0,0,0,1],[0,0,1,0,0]]
=> [1,1,0,1,1,0,0,1,0,0]
=> [3,1,5,2,4] => ([(0,4),(1,3),(2,3),(2,4)],5)
=> ? = 2 + 2
[[0,0,1,0,0],[0,1,-1,1,0],[1,0,0,0,0],[0,0,0,0,1],[0,0,1,0,0]]
=> [1,1,1,0,1,0,0,1,0,0]
=> [4,1,5,2,3] => ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> 4 = 2 + 2
[[1,0,0,0,0],[0,0,1,0,0],[0,0,0,1,0],[0,1,-1,0,1],[0,0,1,0,0]]
=> [1,0,1,1,0,1,0,1,0,0]
=> [2,4,5,1,3] => ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> 4 = 2 + 2
[[0,1,0,0,0],[1,-1,1,0,0],[0,0,0,1,0],[0,1,-1,0,1],[0,0,1,0,0]]
=> [1,1,0,1,0,1,0,1,0,0]
=> [3,4,5,1,2] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> 4 = 2 + 2
[[0,1,0,0,0],[0,0,1,0,0],[1,-1,0,1,0],[0,1,-1,0,1],[0,0,1,0,0]]
=> [1,1,0,1,0,1,0,1,0,0]
=> [3,4,5,1,2] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> 4 = 2 + 2
[[0,1,0,0,0],[1,-1,0,1,0],[0,0,1,0,0],[0,1,-1,0,1],[0,0,1,0,0]]
=> [1,1,0,1,1,0,0,1,0,0]
=> [3,1,5,2,4] => ([(0,4),(1,3),(2,3),(2,4)],5)
=> ? = 2 + 2
[[0,0,1,0,0],[1,0,-1,1,0],[0,0,1,0,0],[0,1,-1,0,1],[0,0,1,0,0]]
=> [1,1,1,0,1,0,0,1,0,0]
=> [4,1,5,2,3] => ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> 4 = 2 + 2
[[0,1,0,0,0],[0,0,0,1,0],[1,-1,1,0,0],[0,1,-1,0,1],[0,0,1,0,0]]
=> [1,1,0,1,1,0,0,1,0,0]
=> [3,1,5,2,4] => ([(0,4),(1,3),(2,3),(2,4)],5)
=> ? = 2 + 2
[[0,0,1,0,0],[0,1,-1,1,0],[1,-1,1,0,0],[0,1,-1,0,1],[0,0,1,0,0]]
=> [1,1,1,0,1,0,0,1,0,0]
=> [4,1,5,2,3] => ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> 4 = 2 + 2
[[0,0,1,0,0],[0,0,0,1,0],[1,0,0,0,0],[0,1,-1,0,1],[0,0,1,0,0]]
=> [1,1,1,0,1,0,0,1,0,0]
=> [4,1,5,2,3] => ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> 4 = 2 + 2
[[0,1,0,0,0],[0,0,1,0,0],[0,0,0,1,0],[1,0,-1,0,1],[0,0,1,0,0]]
=> [1,1,0,1,0,1,0,1,0,0]
=> [3,4,5,1,2] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> 4 = 2 + 2
[[0,1,0,0,0],[0,0,0,1,0],[0,0,1,0,0],[1,0,-1,0,1],[0,0,1,0,0]]
=> [1,1,0,1,1,0,0,1,0,0]
=> [3,1,5,2,4] => ([(0,4),(1,3),(2,3),(2,4)],5)
=> ? = 2 + 2
[[0,0,1,0,0],[0,1,-1,1,0],[0,0,1,0,0],[1,0,-1,0,1],[0,0,1,0,0]]
=> [1,1,1,0,1,0,0,1,0,0]
=> [4,1,5,2,3] => ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> 4 = 2 + 2
[[0,0,1,0,0],[0,0,0,1,0],[0,1,0,0,0],[1,0,-1,0,1],[0,0,1,0,0]]
=> [1,1,1,0,1,0,0,1,0,0]
=> [4,1,5,2,3] => ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> 4 = 2 + 2
Description
The girth of a graph, which is not a tree.
This is the length of the shortest cycle in the graph.
Matching statistic: St001199
Mp00007: Alternating sign matrices —to Dyck path⟶ Dyck paths
Mp00201: Dyck paths —Ringel⟶ Permutations
Mp00127: Permutations —left-to-right-maxima to Dyck path⟶ Dyck paths
St001199: Dyck paths ⟶ ℤResult quality: 16% ●values known / values provided: 16%●distinct values known / distinct values provided: 25%
Mp00201: Dyck paths —Ringel⟶ Permutations
Mp00127: Permutations —left-to-right-maxima to Dyck path⟶ Dyck paths
St001199: Dyck paths ⟶ ℤResult quality: 16% ●values known / values provided: 16%●distinct values known / distinct values provided: 25%
Values
[[1]]
=> [1,0]
=> [2,1] => [1,1,0,0]
=> ? = 0 - 1
[[1,0],[0,1]]
=> [1,0,1,0]
=> [3,1,2] => [1,1,1,0,0,0]
=> ? = 1 - 1
[[1,0,0],[0,1,0],[0,0,1]]
=> [1,0,1,0,1,0]
=> [4,1,2,3] => [1,1,1,1,0,0,0,0]
=> ? = 1 - 1
[[0,1,0],[1,-1,1],[0,1,0]]
=> [1,1,0,1,0,0]
=> [4,3,1,2] => [1,1,1,1,0,0,0,0]
=> ? = 1 - 1
[[0,1,0],[0,0,1],[1,0,0]]
=> [1,1,0,1,0,0]
=> [4,3,1,2] => [1,1,1,1,0,0,0,0]
=> ? = 1 - 1
[[1,0,0,0],[0,1,0,0],[0,0,1,0],[0,0,0,1]]
=> [1,0,1,0,1,0,1,0]
=> [5,1,2,3,4] => [1,1,1,1,1,0,0,0,0,0]
=> ? = 1 - 1
[[0,1,0,0],[1,-1,1,0],[0,1,0,0],[0,0,0,1]]
=> [1,1,0,1,0,0,1,0]
=> [5,3,1,2,4] => [1,1,1,1,1,0,0,0,0,0]
=> ? = 2 - 1
[[0,1,0,0],[0,0,1,0],[1,0,0,0],[0,0,0,1]]
=> [1,1,0,1,0,0,1,0]
=> [5,3,1,2,4] => [1,1,1,1,1,0,0,0,0,0]
=> ? = 2 - 1
[[1,0,0,0],[0,0,1,0],[0,1,-1,1],[0,0,1,0]]
=> [1,0,1,1,0,1,0,0]
=> [5,1,4,2,3] => [1,1,1,1,1,0,0,0,0,0]
=> ? = 2 - 1
[[0,1,0,0],[1,-1,1,0],[0,1,-1,1],[0,0,1,0]]
=> [1,1,0,1,0,1,0,0]
=> [5,4,1,2,3] => [1,1,1,1,1,0,0,0,0,0]
=> ? = 2 - 1
[[0,1,0,0],[0,0,1,0],[1,0,-1,1],[0,0,1,0]]
=> [1,1,0,1,0,1,0,0]
=> [5,4,1,2,3] => [1,1,1,1,1,0,0,0,0,0]
=> ? = 2 - 1
[[0,0,1,0],[1,0,-1,1],[0,1,0,0],[0,0,1,0]]
=> [1,1,1,0,1,0,0,0]
=> [5,3,4,1,2] => [1,1,1,1,1,0,0,0,0,0]
=> ? = 1 - 1
[[0,0,1,0],[0,1,-1,1],[1,0,0,0],[0,0,1,0]]
=> [1,1,1,0,1,0,0,0]
=> [5,3,4,1,2] => [1,1,1,1,1,0,0,0,0,0]
=> ? = 1 - 1
[[1,0,0,0],[0,0,1,0],[0,0,0,1],[0,1,0,0]]
=> [1,0,1,1,0,1,0,0]
=> [5,1,4,2,3] => [1,1,1,1,1,0,0,0,0,0]
=> ? = 2 - 1
[[0,1,0,0],[1,-1,1,0],[0,0,0,1],[0,1,0,0]]
=> [1,1,0,1,0,1,0,0]
=> [5,4,1,2,3] => [1,1,1,1,1,0,0,0,0,0]
=> ? = 2 - 1
[[0,1,0,0],[0,0,1,0],[1,-1,0,1],[0,1,0,0]]
=> [1,1,0,1,0,1,0,0]
=> [5,4,1,2,3] => [1,1,1,1,1,0,0,0,0,0]
=> ? = 2 - 1
[[0,0,1,0],[1,0,-1,1],[0,0,1,0],[0,1,0,0]]
=> [1,1,1,0,1,0,0,0]
=> [5,3,4,1,2] => [1,1,1,1,1,0,0,0,0,0]
=> ? = 1 - 1
[[0,0,1,0],[0,1,-1,1],[1,-1,1,0],[0,1,0,0]]
=> [1,1,1,0,1,0,0,0]
=> [5,3,4,1,2] => [1,1,1,1,1,0,0,0,0,0]
=> ? = 1 - 1
[[0,0,1,0],[0,0,0,1],[1,0,0,0],[0,1,0,0]]
=> [1,1,1,0,1,0,0,0]
=> [5,3,4,1,2] => [1,1,1,1,1,0,0,0,0,0]
=> ? = 1 - 1
[[0,1,0,0],[0,0,1,0],[0,0,0,1],[1,0,0,0]]
=> [1,1,0,1,0,1,0,0]
=> [5,4,1,2,3] => [1,1,1,1,1,0,0,0,0,0]
=> ? = 2 - 1
[[0,0,1,0],[0,1,-1,1],[0,0,1,0],[1,0,0,0]]
=> [1,1,1,0,1,0,0,0]
=> [5,3,4,1,2] => [1,1,1,1,1,0,0,0,0,0]
=> ? = 1 - 1
[[0,0,1,0],[0,0,0,1],[0,1,0,0],[1,0,0,0]]
=> [1,1,1,0,1,0,0,0]
=> [5,3,4,1,2] => [1,1,1,1,1,0,0,0,0,0]
=> ? = 1 - 1
[[1,0,0,0,0],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,1,0],[0,0,0,0,1]]
=> [1,0,1,0,1,0,1,0,1,0]
=> [6,1,2,3,4,5] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> ? = 1 - 1
[[0,1,0,0,0],[1,-1,1,0,0],[0,1,0,0,0],[0,0,0,1,0],[0,0,0,0,1]]
=> [1,1,0,1,0,0,1,0,1,0]
=> [6,3,1,2,4,5] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> ? = 2 - 1
[[0,1,0,0,0],[0,0,1,0,0],[1,0,0,0,0],[0,0,0,1,0],[0,0,0,0,1]]
=> [1,1,0,1,0,0,1,0,1,0]
=> [6,3,1,2,4,5] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> ? = 2 - 1
[[1,0,0,0,0],[0,0,1,0,0],[0,1,-1,1,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [1,0,1,1,0,1,0,0,1,0]
=> [6,1,4,2,3,5] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> ? = 2 - 1
[[0,1,0,0,0],[1,-1,1,0,0],[0,1,-1,1,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [1,1,0,1,0,1,0,0,1,0]
=> [6,4,1,2,3,5] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> ? = 2 - 1
[[0,1,0,0,0],[0,0,1,0,0],[1,0,-1,1,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [1,1,0,1,0,1,0,0,1,0]
=> [6,4,1,2,3,5] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> ? = 2 - 1
[[0,0,1,0,0],[1,0,-1,1,0],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [1,1,1,0,1,0,0,0,1,0]
=> [6,3,4,1,2,5] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> ? = 2 - 1
[[0,0,1,0,0],[0,1,-1,1,0],[1,0,0,0,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [1,1,1,0,1,0,0,0,1,0]
=> [6,3,4,1,2,5] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> ? = 2 - 1
[[1,0,0,0,0],[0,0,1,0,0],[0,0,0,1,0],[0,1,0,0,0],[0,0,0,0,1]]
=> [1,0,1,1,0,1,0,0,1,0]
=> [6,1,4,2,3,5] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> ? = 2 - 1
[[0,1,0,0,0],[1,-1,1,0,0],[0,0,0,1,0],[0,1,0,0,0],[0,0,0,0,1]]
=> [1,1,0,1,0,1,0,0,1,0]
=> [6,4,1,2,3,5] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> ? = 2 - 1
[[0,1,0,0,0],[0,0,1,0,0],[1,-1,0,1,0],[0,1,0,0,0],[0,0,0,0,1]]
=> [1,1,0,1,0,1,0,0,1,0]
=> [6,4,1,2,3,5] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> ? = 2 - 1
[[0,0,1,0,0],[1,0,-1,1,0],[0,0,1,0,0],[0,1,0,0,0],[0,0,0,0,1]]
=> [1,1,1,0,1,0,0,0,1,0]
=> [6,3,4,1,2,5] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> ? = 2 - 1
[[0,0,1,0,0],[0,1,-1,1,0],[1,-1,1,0,0],[0,1,0,0,0],[0,0,0,0,1]]
=> [1,1,1,0,1,0,0,0,1,0]
=> [6,3,4,1,2,5] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> ? = 2 - 1
[[0,0,1,0,0],[0,0,0,1,0],[1,0,0,0,0],[0,1,0,0,0],[0,0,0,0,1]]
=> [1,1,1,0,1,0,0,0,1,0]
=> [6,3,4,1,2,5] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> ? = 2 - 1
[[0,1,0,0,0],[0,0,1,0,0],[0,0,0,1,0],[1,0,0,0,0],[0,0,0,0,1]]
=> [1,1,0,1,0,1,0,0,1,0]
=> [6,4,1,2,3,5] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> ? = 2 - 1
[[0,0,1,0,0],[0,1,-1,1,0],[0,0,1,0,0],[1,0,0,0,0],[0,0,0,0,1]]
=> [1,1,1,0,1,0,0,0,1,0]
=> [6,3,4,1,2,5] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> ? = 2 - 1
[[0,0,1,0,0],[0,0,0,1,0],[0,1,0,0,0],[1,0,0,0,0],[0,0,0,0,1]]
=> [1,1,1,0,1,0,0,0,1,0]
=> [6,3,4,1,2,5] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> ? = 2 - 1
[[1,0,0,0,0],[0,1,0,0,0],[0,0,0,1,0],[0,0,1,-1,1],[0,0,0,1,0]]
=> [1,0,1,0,1,1,0,1,0,0]
=> [6,1,2,5,3,4] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> ? = 2 - 1
[[1,0,0,0,0],[0,0,1,0,0],[0,1,-1,1,0],[0,0,1,-1,1],[0,0,0,1,0]]
=> [1,0,1,1,0,1,0,1,0,0]
=> [6,1,5,2,3,4] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> ? = 2 - 1
[[0,1,0,0,0],[1,-1,1,0,0],[0,1,-1,1,0],[0,0,1,-1,1],[0,0,0,1,0]]
=> [1,1,0,1,0,1,0,1,0,0]
=> [5,6,1,2,3,4] => [1,1,1,1,1,0,1,0,0,0,0,0]
=> 1 = 2 - 1
[[0,1,0,0,0],[0,0,1,0,0],[1,0,-1,1,0],[0,0,1,-1,1],[0,0,0,1,0]]
=> [1,1,0,1,0,1,0,1,0,0]
=> [5,6,1,2,3,4] => [1,1,1,1,1,0,1,0,0,0,0,0]
=> 1 = 2 - 1
[[0,1,0,0,0],[1,-1,0,1,0],[0,1,0,0,0],[0,0,1,-1,1],[0,0,0,1,0]]
=> [1,1,0,1,1,0,0,1,0,0]
=> [6,3,1,5,2,4] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> ? = 2 - 1
[[0,0,1,0,0],[1,0,-1,1,0],[0,1,0,0,0],[0,0,1,-1,1],[0,0,0,1,0]]
=> [1,1,1,0,1,0,0,1,0,0]
=> [6,3,5,1,2,4] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> ? = 2 - 1
[[0,1,0,0,0],[0,0,0,1,0],[1,0,0,0,0],[0,0,1,-1,1],[0,0,0,1,0]]
=> [1,1,0,1,1,0,0,1,0,0]
=> [6,3,1,5,2,4] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> ? = 2 - 1
[[0,0,1,0,0],[0,1,-1,1,0],[1,0,0,0,0],[0,0,1,-1,1],[0,0,0,1,0]]
=> [1,1,1,0,1,0,0,1,0,0]
=> [6,3,5,1,2,4] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> ? = 2 - 1
[[1,0,0,0,0],[0,0,1,0,0],[0,0,0,1,0],[0,1,0,-1,1],[0,0,0,1,0]]
=> [1,0,1,1,0,1,0,1,0,0]
=> [6,1,5,2,3,4] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> ? = 2 - 1
[[0,1,0,0,0],[1,-1,1,0,0],[0,0,0,1,0],[0,1,0,-1,1],[0,0,0,1,0]]
=> [1,1,0,1,0,1,0,1,0,0]
=> [5,6,1,2,3,4] => [1,1,1,1,1,0,1,0,0,0,0,0]
=> 1 = 2 - 1
[[0,1,0,0,0],[0,0,1,0,0],[1,-1,0,1,0],[0,1,0,-1,1],[0,0,0,1,0]]
=> [1,1,0,1,0,1,0,1,0,0]
=> [5,6,1,2,3,4] => [1,1,1,1,1,0,1,0,0,0,0,0]
=> 1 = 2 - 1
[[0,1,0,0,0],[1,-1,0,1,0],[0,0,1,0,0],[0,1,0,-1,1],[0,0,0,1,0]]
=> [1,1,0,1,1,0,0,1,0,0]
=> [6,3,1,5,2,4] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> ? = 2 - 1
[[0,0,1,0,0],[1,0,-1,1,0],[0,0,1,0,0],[0,1,0,-1,1],[0,0,0,1,0]]
=> [1,1,1,0,1,0,0,1,0,0]
=> [6,3,5,1,2,4] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> ? = 2 - 1
[[0,1,0,0,0],[0,0,0,1,0],[1,-1,1,0,0],[0,1,0,-1,1],[0,0,0,1,0]]
=> [1,1,0,1,1,0,0,1,0,0]
=> [6,3,1,5,2,4] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> ? = 2 - 1
[[0,0,1,0,0],[0,1,-1,1,0],[1,-1,1,0,0],[0,1,0,-1,1],[0,0,0,1,0]]
=> [1,1,1,0,1,0,0,1,0,0]
=> [6,3,5,1,2,4] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> ? = 2 - 1
[[0,1,0,0,0],[0,0,1,0,0],[0,0,0,1,0],[1,0,0,-1,1],[0,0,0,1,0]]
=> [1,1,0,1,0,1,0,1,0,0]
=> [5,6,1,2,3,4] => [1,1,1,1,1,0,1,0,0,0,0,0]
=> 1 = 2 - 1
[[0,1,0,0,0],[1,-1,1,0,0],[0,1,-1,1,0],[0,0,0,0,1],[0,0,1,0,0]]
=> [1,1,0,1,0,1,0,1,0,0]
=> [5,6,1,2,3,4] => [1,1,1,1,1,0,1,0,0,0,0,0]
=> 1 = 2 - 1
[[0,1,0,0,0],[0,0,1,0,0],[1,0,-1,1,0],[0,0,0,0,1],[0,0,1,0,0]]
=> [1,1,0,1,0,1,0,1,0,0]
=> [5,6,1,2,3,4] => [1,1,1,1,1,0,1,0,0,0,0,0]
=> 1 = 2 - 1
[[0,1,0,0,0],[1,-1,1,0,0],[0,0,0,1,0],[0,1,-1,0,1],[0,0,1,0,0]]
=> [1,1,0,1,0,1,0,1,0,0]
=> [5,6,1,2,3,4] => [1,1,1,1,1,0,1,0,0,0,0,0]
=> 1 = 2 - 1
[[0,1,0,0,0],[0,0,1,0,0],[1,-1,0,1,0],[0,1,-1,0,1],[0,0,1,0,0]]
=> [1,1,0,1,0,1,0,1,0,0]
=> [5,6,1,2,3,4] => [1,1,1,1,1,0,1,0,0,0,0,0]
=> 1 = 2 - 1
[[0,1,0,0,0],[0,0,1,0,0],[0,0,0,1,0],[1,0,-1,0,1],[0,0,1,0,0]]
=> [1,1,0,1,0,1,0,1,0,0]
=> [5,6,1,2,3,4] => [1,1,1,1,1,0,1,0,0,0,0,0]
=> 1 = 2 - 1
[[0,1,0,0,0],[1,-1,1,0,0],[0,0,0,1,0],[0,0,0,0,1],[0,1,0,0,0]]
=> [1,1,0,1,0,1,0,1,0,0]
=> [5,6,1,2,3,4] => [1,1,1,1,1,0,1,0,0,0,0,0]
=> 1 = 2 - 1
[[0,1,0,0,0],[0,0,1,0,0],[1,-1,0,1,0],[0,0,0,0,1],[0,1,0,0,0]]
=> [1,1,0,1,0,1,0,1,0,0]
=> [5,6,1,2,3,4] => [1,1,1,1,1,0,1,0,0,0,0,0]
=> 1 = 2 - 1
[[0,1,0,0,0],[0,0,1,0,0],[0,0,0,1,0],[1,-1,0,0,1],[0,1,0,0,0]]
=> [1,1,0,1,0,1,0,1,0,0]
=> [5,6,1,2,3,4] => [1,1,1,1,1,0,1,0,0,0,0,0]
=> 1 = 2 - 1
[[0,1,0,0,0],[0,0,1,0,0],[0,0,0,1,0],[0,0,0,0,1],[1,0,0,0,0]]
=> [1,1,0,1,0,1,0,1,0,0]
=> [5,6,1,2,3,4] => [1,1,1,1,1,0,1,0,0,0,0,0]
=> 1 = 2 - 1
[[0,1,0,0,0,0],[1,-1,1,0,0,0],[0,1,-1,1,0,0],[0,0,1,-1,1,0],[0,0,0,1,0,0],[0,0,0,0,0,1]]
=> [1,1,0,1,0,1,0,1,0,0,1,0]
=> [5,7,1,2,3,4,6] => [1,1,1,1,1,0,1,1,0,0,0,0,0,0]
=> 1 = 2 - 1
[[0,1,0,0,0,0],[0,0,1,0,0,0],[1,0,-1,1,0,0],[0,0,1,-1,1,0],[0,0,0,1,0,0],[0,0,0,0,0,1]]
=> [1,1,0,1,0,1,0,1,0,0,1,0]
=> [5,7,1,2,3,4,6] => [1,1,1,1,1,0,1,1,0,0,0,0,0,0]
=> 1 = 2 - 1
[[0,1,0,0,0,0],[1,-1,1,0,0,0],[0,0,0,1,0,0],[0,1,0,-1,1,0],[0,0,0,1,0,0],[0,0,0,0,0,1]]
=> [1,1,0,1,0,1,0,1,0,0,1,0]
=> [5,7,1,2,3,4,6] => [1,1,1,1,1,0,1,1,0,0,0,0,0,0]
=> 1 = 2 - 1
[[0,1,0,0,0,0],[0,0,1,0,0,0],[1,-1,0,1,0,0],[0,1,0,-1,1,0],[0,0,0,1,0,0],[0,0,0,0,0,1]]
=> [1,1,0,1,0,1,0,1,0,0,1,0]
=> [5,7,1,2,3,4,6] => [1,1,1,1,1,0,1,1,0,0,0,0,0,0]
=> 1 = 2 - 1
[[0,1,0,0,0,0],[0,0,1,0,0,0],[0,0,0,1,0,0],[1,0,0,-1,1,0],[0,0,0,1,0,0],[0,0,0,0,0,1]]
=> [1,1,0,1,0,1,0,1,0,0,1,0]
=> [5,7,1,2,3,4,6] => [1,1,1,1,1,0,1,1,0,0,0,0,0,0]
=> 1 = 2 - 1
[[0,1,0,0,0,0],[1,-1,1,0,0,0],[0,1,-1,1,0,0],[0,0,0,0,1,0],[0,0,1,0,0,0],[0,0,0,0,0,1]]
=> [1,1,0,1,0,1,0,1,0,0,1,0]
=> [5,7,1,2,3,4,6] => [1,1,1,1,1,0,1,1,0,0,0,0,0,0]
=> 1 = 2 - 1
[[0,1,0,0,0,0],[0,0,1,0,0,0],[1,0,-1,1,0,0],[0,0,0,0,1,0],[0,0,1,0,0,0],[0,0,0,0,0,1]]
=> [1,1,0,1,0,1,0,1,0,0,1,0]
=> [5,7,1,2,3,4,6] => [1,1,1,1,1,0,1,1,0,0,0,0,0,0]
=> 1 = 2 - 1
[[0,1,0,0,0,0],[1,-1,1,0,0,0],[0,0,0,1,0,0],[0,1,-1,0,1,0],[0,0,1,0,0,0],[0,0,0,0,0,1]]
=> [1,1,0,1,0,1,0,1,0,0,1,0]
=> [5,7,1,2,3,4,6] => [1,1,1,1,1,0,1,1,0,0,0,0,0,0]
=> 1 = 2 - 1
[[0,1,0,0,0,0],[0,0,1,0,0,0],[1,-1,0,1,0,0],[0,1,-1,0,1,0],[0,0,1,0,0,0],[0,0,0,0,0,1]]
=> [1,1,0,1,0,1,0,1,0,0,1,0]
=> [5,7,1,2,3,4,6] => [1,1,1,1,1,0,1,1,0,0,0,0,0,0]
=> 1 = 2 - 1
[[0,1,0,0,0,0],[0,0,1,0,0,0],[0,0,0,1,0,0],[1,0,-1,0,1,0],[0,0,1,0,0,0],[0,0,0,0,0,1]]
=> [1,1,0,1,0,1,0,1,0,0,1,0]
=> [5,7,1,2,3,4,6] => [1,1,1,1,1,0,1,1,0,0,0,0,0,0]
=> 1 = 2 - 1
[[0,1,0,0,0,0],[1,-1,1,0,0,0],[0,0,0,1,0,0],[0,0,0,0,1,0],[0,1,0,0,0,0],[0,0,0,0,0,1]]
=> [1,1,0,1,0,1,0,1,0,0,1,0]
=> [5,7,1,2,3,4,6] => [1,1,1,1,1,0,1,1,0,0,0,0,0,0]
=> 1 = 2 - 1
[[0,1,0,0,0,0],[0,0,1,0,0,0],[1,-1,0,1,0,0],[0,0,0,0,1,0],[0,1,0,0,0,0],[0,0,0,0,0,1]]
=> [1,1,0,1,0,1,0,1,0,0,1,0]
=> [5,7,1,2,3,4,6] => [1,1,1,1,1,0,1,1,0,0,0,0,0,0]
=> 1 = 2 - 1
[[0,1,0,0,0,0],[0,0,1,0,0,0],[0,0,0,1,0,0],[1,-1,0,0,1,0],[0,1,0,0,0,0],[0,0,0,0,0,1]]
=> [1,1,0,1,0,1,0,1,0,0,1,0]
=> [5,7,1,2,3,4,6] => [1,1,1,1,1,0,1,1,0,0,0,0,0,0]
=> 1 = 2 - 1
[[0,1,0,0,0,0],[0,0,1,0,0,0],[0,0,0,1,0,0],[0,0,0,0,1,0],[1,0,0,0,0,0],[0,0,0,0,0,1]]
=> [1,1,0,1,0,1,0,1,0,0,1,0]
=> [5,7,1,2,3,4,6] => [1,1,1,1,1,0,1,1,0,0,0,0,0,0]
=> 1 = 2 - 1
[[1,0,0,0,0,0],[0,0,1,0,0,0],[0,1,-1,1,0,0],[0,0,1,-1,1,0],[0,0,0,1,-1,1],[0,0,0,0,1,0]]
=> [1,0,1,1,0,1,0,1,0,1,0,0]
=> [6,1,7,2,3,4,5] => [1,1,1,1,1,1,0,0,1,0,0,0,0,0]
=> 1 = 2 - 1
[[0,0,1,0,0,0],[1,0,-1,1,0,0],[0,1,0,0,0,0],[0,0,1,-1,1,0],[0,0,0,1,-1,1],[0,0,0,0,1,0]]
=> [1,1,1,0,1,0,0,1,0,1,0,0]
=> [6,3,7,1,2,4,5] => [1,1,1,1,1,1,0,0,1,0,0,0,0,0]
=> 1 = 2 - 1
[[0,0,1,0,0,0],[0,1,-1,1,0,0],[1,0,0,0,0,0],[0,0,1,-1,1,0],[0,0,0,1,-1,1],[0,0,0,0,1,0]]
=> [1,1,1,0,1,0,0,1,0,1,0,0]
=> [6,3,7,1,2,4,5] => [1,1,1,1,1,1,0,0,1,0,0,0,0,0]
=> 1 = 2 - 1
[[1,0,0,0,0,0],[0,0,1,0,0,0],[0,0,0,1,0,0],[0,1,0,-1,1,0],[0,0,0,1,-1,1],[0,0,0,0,1,0]]
=> [1,0,1,1,0,1,0,1,0,1,0,0]
=> [6,1,7,2,3,4,5] => [1,1,1,1,1,1,0,0,1,0,0,0,0,0]
=> 1 = 2 - 1
[[0,0,1,0,0,0],[1,0,-1,1,0,0],[0,0,1,0,0,0],[0,1,0,-1,1,0],[0,0,0,1,-1,1],[0,0,0,0,1,0]]
=> [1,1,1,0,1,0,0,1,0,1,0,0]
=> [6,3,7,1,2,4,5] => [1,1,1,1,1,1,0,0,1,0,0,0,0,0]
=> 1 = 2 - 1
[[0,0,1,0,0,0],[0,1,-1,1,0,0],[1,-1,1,0,0,0],[0,1,0,-1,1,0],[0,0,0,1,-1,1],[0,0,0,0,1,0]]
=> [1,1,1,0,1,0,0,1,0,1,0,0]
=> [6,3,7,1,2,4,5] => [1,1,1,1,1,1,0,0,1,0,0,0,0,0]
=> 1 = 2 - 1
[[0,0,1,0,0,0],[0,0,0,1,0,0],[1,0,0,0,0,0],[0,1,0,-1,1,0],[0,0,0,1,-1,1],[0,0,0,0,1,0]]
=> [1,1,1,0,1,0,0,1,0,1,0,0]
=> [6,3,7,1,2,4,5] => [1,1,1,1,1,1,0,0,1,0,0,0,0,0]
=> 1 = 2 - 1
[[0,0,1,0,0,0],[0,1,-1,1,0,0],[0,0,1,0,0,0],[1,0,0,-1,1,0],[0,0,0,1,-1,1],[0,0,0,0,1,0]]
=> [1,1,1,0,1,0,0,1,0,1,0,0]
=> [6,3,7,1,2,4,5] => [1,1,1,1,1,1,0,0,1,0,0,0,0,0]
=> 1 = 2 - 1
[[0,0,1,0,0,0],[0,0,0,1,0,0],[0,1,0,0,0,0],[1,0,0,-1,1,0],[0,0,0,1,-1,1],[0,0,0,0,1,0]]
=> [1,1,1,0,1,0,0,1,0,1,0,0]
=> [6,3,7,1,2,4,5] => [1,1,1,1,1,1,0,0,1,0,0,0,0,0]
=> 1 = 2 - 1
[[0,0,1,0,0,0],[1,0,-1,1,0,0],[0,1,0,-1,1,0],[0,0,1,0,0,0],[0,0,0,1,-1,1],[0,0,0,0,1,0]]
=> [1,1,1,0,1,0,1,0,0,1,0,0]
=> [6,7,4,1,2,3,5] => [1,1,1,1,1,1,0,1,0,0,0,0,0,0]
=> 1 = 2 - 1
[[0,0,1,0,0,0],[0,1,-1,1,0,0],[1,0,0,-1,1,0],[0,0,1,0,0,0],[0,0,0,1,-1,1],[0,0,0,0,1,0]]
=> [1,1,1,0,1,0,1,0,0,1,0,0]
=> [6,7,4,1,2,3,5] => [1,1,1,1,1,1,0,1,0,0,0,0,0,0]
=> 1 = 2 - 1
[[0,0,1,0,0,0],[1,0,-1,1,0,0],[0,0,1,-1,1,0],[0,1,0,0,0,0],[0,0,0,1,-1,1],[0,0,0,0,1,0]]
=> [1,1,1,0,1,0,1,0,0,1,0,0]
=> [6,7,4,1,2,3,5] => [1,1,1,1,1,1,0,1,0,0,0,0,0,0]
=> 1 = 2 - 1
[[0,0,1,0,0,0],[0,1,-1,1,0,0],[1,-1,1,-1,1,0],[0,1,0,0,0,0],[0,0,0,1,-1,1],[0,0,0,0,1,0]]
=> [1,1,1,0,1,0,1,0,0,1,0,0]
=> [6,7,4,1,2,3,5] => [1,1,1,1,1,1,0,1,0,0,0,0,0,0]
=> 1 = 2 - 1
[[0,0,1,0,0,0],[0,0,0,1,0,0],[1,0,0,-1,1,0],[0,1,0,0,0,0],[0,0,0,1,-1,1],[0,0,0,0,1,0]]
=> [1,1,1,0,1,0,1,0,0,1,0,0]
=> [6,7,4,1,2,3,5] => [1,1,1,1,1,1,0,1,0,0,0,0,0,0]
=> 1 = 2 - 1
[[0,0,1,0,0,0],[0,1,-1,1,0,0],[0,0,1,-1,1,0],[1,0,0,0,0,0],[0,0,0,1,-1,1],[0,0,0,0,1,0]]
=> [1,1,1,0,1,0,1,0,0,1,0,0]
=> [6,7,4,1,2,3,5] => [1,1,1,1,1,1,0,1,0,0,0,0,0,0]
=> 1 = 2 - 1
[[0,0,1,0,0,0],[0,0,0,1,0,0],[0,1,0,-1,1,0],[1,0,0,0,0,0],[0,0,0,1,-1,1],[0,0,0,0,1,0]]
=> [1,1,1,0,1,0,1,0,0,1,0,0]
=> [6,7,4,1,2,3,5] => [1,1,1,1,1,1,0,1,0,0,0,0,0,0]
=> 1 = 2 - 1
[[1,0,0,0,0,0],[0,0,1,0,0,0],[0,1,-1,1,0,0],[0,0,0,0,1,0],[0,0,1,0,-1,1],[0,0,0,0,1,0]]
=> [1,0,1,1,0,1,0,1,0,1,0,0]
=> [6,1,7,2,3,4,5] => [1,1,1,1,1,1,0,0,1,0,0,0,0,0]
=> 1 = 2 - 1
[[0,0,1,0,0,0],[1,0,-1,1,0,0],[0,1,0,0,0,0],[0,0,0,0,1,0],[0,0,1,0,-1,1],[0,0,0,0,1,0]]
=> [1,1,1,0,1,0,0,1,0,1,0,0]
=> [6,3,7,1,2,4,5] => [1,1,1,1,1,1,0,0,1,0,0,0,0,0]
=> 1 = 2 - 1
[[0,0,1,0,0,0],[0,1,-1,1,0,0],[1,0,0,0,0,0],[0,0,0,0,1,0],[0,0,1,0,-1,1],[0,0,0,0,1,0]]
=> [1,1,1,0,1,0,0,1,0,1,0,0]
=> [6,3,7,1,2,4,5] => [1,1,1,1,1,1,0,0,1,0,0,0,0,0]
=> 1 = 2 - 1
[[1,0,0,0,0,0],[0,0,1,0,0,0],[0,0,0,1,0,0],[0,1,-1,0,1,0],[0,0,1,0,-1,1],[0,0,0,0,1,0]]
=> [1,0,1,1,0,1,0,1,0,1,0,0]
=> [6,1,7,2,3,4,5] => [1,1,1,1,1,1,0,0,1,0,0,0,0,0]
=> 1 = 2 - 1
[[0,0,1,0,0,0],[1,0,-1,1,0,0],[0,0,1,0,0,0],[0,1,-1,0,1,0],[0,0,1,0,-1,1],[0,0,0,0,1,0]]
=> [1,1,1,0,1,0,0,1,0,1,0,0]
=> [6,3,7,1,2,4,5] => [1,1,1,1,1,1,0,0,1,0,0,0,0,0]
=> 1 = 2 - 1
[[0,0,1,0,0,0],[0,1,-1,1,0,0],[1,-1,1,0,0,0],[0,1,-1,0,1,0],[0,0,1,0,-1,1],[0,0,0,0,1,0]]
=> [1,1,1,0,1,0,0,1,0,1,0,0]
=> [6,3,7,1,2,4,5] => [1,1,1,1,1,1,0,0,1,0,0,0,0,0]
=> 1 = 2 - 1
Description
The dominant dimension of $eAe$ for the corresponding Nakayama algebra $A$ with minimal faithful projective-injective module $eA$.
Matching statistic: St001498
Mp00007: Alternating sign matrices —to Dyck path⟶ Dyck paths
Mp00201: Dyck paths —Ringel⟶ Permutations
Mp00127: Permutations —left-to-right-maxima to Dyck path⟶ Dyck paths
St001498: Dyck paths ⟶ ℤResult quality: 16% ●values known / values provided: 16%●distinct values known / distinct values provided: 25%
Mp00201: Dyck paths —Ringel⟶ Permutations
Mp00127: Permutations —left-to-right-maxima to Dyck path⟶ Dyck paths
St001498: Dyck paths ⟶ ℤResult quality: 16% ●values known / values provided: 16%●distinct values known / distinct values provided: 25%
Values
[[1]]
=> [1,0]
=> [2,1] => [1,1,0,0]
=> ? = 0 - 2
[[1,0],[0,1]]
=> [1,0,1,0]
=> [3,1,2] => [1,1,1,0,0,0]
=> ? = 1 - 2
[[1,0,0],[0,1,0],[0,0,1]]
=> [1,0,1,0,1,0]
=> [4,1,2,3] => [1,1,1,1,0,0,0,0]
=> ? = 1 - 2
[[0,1,0],[1,-1,1],[0,1,0]]
=> [1,1,0,1,0,0]
=> [4,3,1,2] => [1,1,1,1,0,0,0,0]
=> ? = 1 - 2
[[0,1,0],[0,0,1],[1,0,0]]
=> [1,1,0,1,0,0]
=> [4,3,1,2] => [1,1,1,1,0,0,0,0]
=> ? = 1 - 2
[[1,0,0,0],[0,1,0,0],[0,0,1,0],[0,0,0,1]]
=> [1,0,1,0,1,0,1,0]
=> [5,1,2,3,4] => [1,1,1,1,1,0,0,0,0,0]
=> ? = 1 - 2
[[0,1,0,0],[1,-1,1,0],[0,1,0,0],[0,0,0,1]]
=> [1,1,0,1,0,0,1,0]
=> [5,3,1,2,4] => [1,1,1,1,1,0,0,0,0,0]
=> ? = 2 - 2
[[0,1,0,0],[0,0,1,0],[1,0,0,0],[0,0,0,1]]
=> [1,1,0,1,0,0,1,0]
=> [5,3,1,2,4] => [1,1,1,1,1,0,0,0,0,0]
=> ? = 2 - 2
[[1,0,0,0],[0,0,1,0],[0,1,-1,1],[0,0,1,0]]
=> [1,0,1,1,0,1,0,0]
=> [5,1,4,2,3] => [1,1,1,1,1,0,0,0,0,0]
=> ? = 2 - 2
[[0,1,0,0],[1,-1,1,0],[0,1,-1,1],[0,0,1,0]]
=> [1,1,0,1,0,1,0,0]
=> [5,4,1,2,3] => [1,1,1,1,1,0,0,0,0,0]
=> ? = 2 - 2
[[0,1,0,0],[0,0,1,0],[1,0,-1,1],[0,0,1,0]]
=> [1,1,0,1,0,1,0,0]
=> [5,4,1,2,3] => [1,1,1,1,1,0,0,0,0,0]
=> ? = 2 - 2
[[0,0,1,0],[1,0,-1,1],[0,1,0,0],[0,0,1,0]]
=> [1,1,1,0,1,0,0,0]
=> [5,3,4,1,2] => [1,1,1,1,1,0,0,0,0,0]
=> ? = 1 - 2
[[0,0,1,0],[0,1,-1,1],[1,0,0,0],[0,0,1,0]]
=> [1,1,1,0,1,0,0,0]
=> [5,3,4,1,2] => [1,1,1,1,1,0,0,0,0,0]
=> ? = 1 - 2
[[1,0,0,0],[0,0,1,0],[0,0,0,1],[0,1,0,0]]
=> [1,0,1,1,0,1,0,0]
=> [5,1,4,2,3] => [1,1,1,1,1,0,0,0,0,0]
=> ? = 2 - 2
[[0,1,0,0],[1,-1,1,0],[0,0,0,1],[0,1,0,0]]
=> [1,1,0,1,0,1,0,0]
=> [5,4,1,2,3] => [1,1,1,1,1,0,0,0,0,0]
=> ? = 2 - 2
[[0,1,0,0],[0,0,1,0],[1,-1,0,1],[0,1,0,0]]
=> [1,1,0,1,0,1,0,0]
=> [5,4,1,2,3] => [1,1,1,1,1,0,0,0,0,0]
=> ? = 2 - 2
[[0,0,1,0],[1,0,-1,1],[0,0,1,0],[0,1,0,0]]
=> [1,1,1,0,1,0,0,0]
=> [5,3,4,1,2] => [1,1,1,1,1,0,0,0,0,0]
=> ? = 1 - 2
[[0,0,1,0],[0,1,-1,1],[1,-1,1,0],[0,1,0,0]]
=> [1,1,1,0,1,0,0,0]
=> [5,3,4,1,2] => [1,1,1,1,1,0,0,0,0,0]
=> ? = 1 - 2
[[0,0,1,0],[0,0,0,1],[1,0,0,0],[0,1,0,0]]
=> [1,1,1,0,1,0,0,0]
=> [5,3,4,1,2] => [1,1,1,1,1,0,0,0,0,0]
=> ? = 1 - 2
[[0,1,0,0],[0,0,1,0],[0,0,0,1],[1,0,0,0]]
=> [1,1,0,1,0,1,0,0]
=> [5,4,1,2,3] => [1,1,1,1,1,0,0,0,0,0]
=> ? = 2 - 2
[[0,0,1,0],[0,1,-1,1],[0,0,1,0],[1,0,0,0]]
=> [1,1,1,0,1,0,0,0]
=> [5,3,4,1,2] => [1,1,1,1,1,0,0,0,0,0]
=> ? = 1 - 2
[[0,0,1,0],[0,0,0,1],[0,1,0,0],[1,0,0,0]]
=> [1,1,1,0,1,0,0,0]
=> [5,3,4,1,2] => [1,1,1,1,1,0,0,0,0,0]
=> ? = 1 - 2
[[1,0,0,0,0],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,1,0],[0,0,0,0,1]]
=> [1,0,1,0,1,0,1,0,1,0]
=> [6,1,2,3,4,5] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> ? = 1 - 2
[[0,1,0,0,0],[1,-1,1,0,0],[0,1,0,0,0],[0,0,0,1,0],[0,0,0,0,1]]
=> [1,1,0,1,0,0,1,0,1,0]
=> [6,3,1,2,4,5] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> ? = 2 - 2
[[0,1,0,0,0],[0,0,1,0,0],[1,0,0,0,0],[0,0,0,1,0],[0,0,0,0,1]]
=> [1,1,0,1,0,0,1,0,1,0]
=> [6,3,1,2,4,5] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> ? = 2 - 2
[[1,0,0,0,0],[0,0,1,0,0],[0,1,-1,1,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [1,0,1,1,0,1,0,0,1,0]
=> [6,1,4,2,3,5] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> ? = 2 - 2
[[0,1,0,0,0],[1,-1,1,0,0],[0,1,-1,1,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [1,1,0,1,0,1,0,0,1,0]
=> [6,4,1,2,3,5] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> ? = 2 - 2
[[0,1,0,0,0],[0,0,1,0,0],[1,0,-1,1,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [1,1,0,1,0,1,0,0,1,0]
=> [6,4,1,2,3,5] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> ? = 2 - 2
[[0,0,1,0,0],[1,0,-1,1,0],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [1,1,1,0,1,0,0,0,1,0]
=> [6,3,4,1,2,5] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> ? = 2 - 2
[[0,0,1,0,0],[0,1,-1,1,0],[1,0,0,0,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [1,1,1,0,1,0,0,0,1,0]
=> [6,3,4,1,2,5] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> ? = 2 - 2
[[1,0,0,0,0],[0,0,1,0,0],[0,0,0,1,0],[0,1,0,0,0],[0,0,0,0,1]]
=> [1,0,1,1,0,1,0,0,1,0]
=> [6,1,4,2,3,5] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> ? = 2 - 2
[[0,1,0,0,0],[1,-1,1,0,0],[0,0,0,1,0],[0,1,0,0,0],[0,0,0,0,1]]
=> [1,1,0,1,0,1,0,0,1,0]
=> [6,4,1,2,3,5] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> ? = 2 - 2
[[0,1,0,0,0],[0,0,1,0,0],[1,-1,0,1,0],[0,1,0,0,0],[0,0,0,0,1]]
=> [1,1,0,1,0,1,0,0,1,0]
=> [6,4,1,2,3,5] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> ? = 2 - 2
[[0,0,1,0,0],[1,0,-1,1,0],[0,0,1,0,0],[0,1,0,0,0],[0,0,0,0,1]]
=> [1,1,1,0,1,0,0,0,1,0]
=> [6,3,4,1,2,5] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> ? = 2 - 2
[[0,0,1,0,0],[0,1,-1,1,0],[1,-1,1,0,0],[0,1,0,0,0],[0,0,0,0,1]]
=> [1,1,1,0,1,0,0,0,1,0]
=> [6,3,4,1,2,5] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> ? = 2 - 2
[[0,0,1,0,0],[0,0,0,1,0],[1,0,0,0,0],[0,1,0,0,0],[0,0,0,0,1]]
=> [1,1,1,0,1,0,0,0,1,0]
=> [6,3,4,1,2,5] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> ? = 2 - 2
[[0,1,0,0,0],[0,0,1,0,0],[0,0,0,1,0],[1,0,0,0,0],[0,0,0,0,1]]
=> [1,1,0,1,0,1,0,0,1,0]
=> [6,4,1,2,3,5] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> ? = 2 - 2
[[0,0,1,0,0],[0,1,-1,1,0],[0,0,1,0,0],[1,0,0,0,0],[0,0,0,0,1]]
=> [1,1,1,0,1,0,0,0,1,0]
=> [6,3,4,1,2,5] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> ? = 2 - 2
[[0,0,1,0,0],[0,0,0,1,0],[0,1,0,0,0],[1,0,0,0,0],[0,0,0,0,1]]
=> [1,1,1,0,1,0,0,0,1,0]
=> [6,3,4,1,2,5] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> ? = 2 - 2
[[1,0,0,0,0],[0,1,0,0,0],[0,0,0,1,0],[0,0,1,-1,1],[0,0,0,1,0]]
=> [1,0,1,0,1,1,0,1,0,0]
=> [6,1,2,5,3,4] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> ? = 2 - 2
[[1,0,0,0,0],[0,0,1,0,0],[0,1,-1,1,0],[0,0,1,-1,1],[0,0,0,1,0]]
=> [1,0,1,1,0,1,0,1,0,0]
=> [6,1,5,2,3,4] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> ? = 2 - 2
[[0,1,0,0,0],[1,-1,1,0,0],[0,1,-1,1,0],[0,0,1,-1,1],[0,0,0,1,0]]
=> [1,1,0,1,0,1,0,1,0,0]
=> [5,6,1,2,3,4] => [1,1,1,1,1,0,1,0,0,0,0,0]
=> 0 = 2 - 2
[[0,1,0,0,0],[0,0,1,0,0],[1,0,-1,1,0],[0,0,1,-1,1],[0,0,0,1,0]]
=> [1,1,0,1,0,1,0,1,0,0]
=> [5,6,1,2,3,4] => [1,1,1,1,1,0,1,0,0,0,0,0]
=> 0 = 2 - 2
[[0,1,0,0,0],[1,-1,0,1,0],[0,1,0,0,0],[0,0,1,-1,1],[0,0,0,1,0]]
=> [1,1,0,1,1,0,0,1,0,0]
=> [6,3,1,5,2,4] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> ? = 2 - 2
[[0,0,1,0,0],[1,0,-1,1,0],[0,1,0,0,0],[0,0,1,-1,1],[0,0,0,1,0]]
=> [1,1,1,0,1,0,0,1,0,0]
=> [6,3,5,1,2,4] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> ? = 2 - 2
[[0,1,0,0,0],[0,0,0,1,0],[1,0,0,0,0],[0,0,1,-1,1],[0,0,0,1,0]]
=> [1,1,0,1,1,0,0,1,0,0]
=> [6,3,1,5,2,4] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> ? = 2 - 2
[[0,0,1,0,0],[0,1,-1,1,0],[1,0,0,0,0],[0,0,1,-1,1],[0,0,0,1,0]]
=> [1,1,1,0,1,0,0,1,0,0]
=> [6,3,5,1,2,4] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> ? = 2 - 2
[[1,0,0,0,0],[0,0,1,0,0],[0,0,0,1,0],[0,1,0,-1,1],[0,0,0,1,0]]
=> [1,0,1,1,0,1,0,1,0,0]
=> [6,1,5,2,3,4] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> ? = 2 - 2
[[0,1,0,0,0],[1,-1,1,0,0],[0,0,0,1,0],[0,1,0,-1,1],[0,0,0,1,0]]
=> [1,1,0,1,0,1,0,1,0,0]
=> [5,6,1,2,3,4] => [1,1,1,1,1,0,1,0,0,0,0,0]
=> 0 = 2 - 2
[[0,1,0,0,0],[0,0,1,0,0],[1,-1,0,1,0],[0,1,0,-1,1],[0,0,0,1,0]]
=> [1,1,0,1,0,1,0,1,0,0]
=> [5,6,1,2,3,4] => [1,1,1,1,1,0,1,0,0,0,0,0]
=> 0 = 2 - 2
[[0,1,0,0,0],[1,-1,0,1,0],[0,0,1,0,0],[0,1,0,-1,1],[0,0,0,1,0]]
=> [1,1,0,1,1,0,0,1,0,0]
=> [6,3,1,5,2,4] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> ? = 2 - 2
[[0,0,1,0,0],[1,0,-1,1,0],[0,0,1,0,0],[0,1,0,-1,1],[0,0,0,1,0]]
=> [1,1,1,0,1,0,0,1,0,0]
=> [6,3,5,1,2,4] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> ? = 2 - 2
[[0,1,0,0,0],[0,0,0,1,0],[1,-1,1,0,0],[0,1,0,-1,1],[0,0,0,1,0]]
=> [1,1,0,1,1,0,0,1,0,0]
=> [6,3,1,5,2,4] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> ? = 2 - 2
[[0,0,1,0,0],[0,1,-1,1,0],[1,-1,1,0,0],[0,1,0,-1,1],[0,0,0,1,0]]
=> [1,1,1,0,1,0,0,1,0,0]
=> [6,3,5,1,2,4] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> ? = 2 - 2
[[0,1,0,0,0],[0,0,1,0,0],[0,0,0,1,0],[1,0,0,-1,1],[0,0,0,1,0]]
=> [1,1,0,1,0,1,0,1,0,0]
=> [5,6,1,2,3,4] => [1,1,1,1,1,0,1,0,0,0,0,0]
=> 0 = 2 - 2
[[0,1,0,0,0],[1,-1,1,0,0],[0,1,-1,1,0],[0,0,0,0,1],[0,0,1,0,0]]
=> [1,1,0,1,0,1,0,1,0,0]
=> [5,6,1,2,3,4] => [1,1,1,1,1,0,1,0,0,0,0,0]
=> 0 = 2 - 2
[[0,1,0,0,0],[0,0,1,0,0],[1,0,-1,1,0],[0,0,0,0,1],[0,0,1,0,0]]
=> [1,1,0,1,0,1,0,1,0,0]
=> [5,6,1,2,3,4] => [1,1,1,1,1,0,1,0,0,0,0,0]
=> 0 = 2 - 2
[[0,1,0,0,0],[1,-1,1,0,0],[0,0,0,1,0],[0,1,-1,0,1],[0,0,1,0,0]]
=> [1,1,0,1,0,1,0,1,0,0]
=> [5,6,1,2,3,4] => [1,1,1,1,1,0,1,0,0,0,0,0]
=> 0 = 2 - 2
[[0,1,0,0,0],[0,0,1,0,0],[1,-1,0,1,0],[0,1,-1,0,1],[0,0,1,0,0]]
=> [1,1,0,1,0,1,0,1,0,0]
=> [5,6,1,2,3,4] => [1,1,1,1,1,0,1,0,0,0,0,0]
=> 0 = 2 - 2
[[0,1,0,0,0],[0,0,1,0,0],[0,0,0,1,0],[1,0,-1,0,1],[0,0,1,0,0]]
=> [1,1,0,1,0,1,0,1,0,0]
=> [5,6,1,2,3,4] => [1,1,1,1,1,0,1,0,0,0,0,0]
=> 0 = 2 - 2
[[0,1,0,0,0],[1,-1,1,0,0],[0,0,0,1,0],[0,0,0,0,1],[0,1,0,0,0]]
=> [1,1,0,1,0,1,0,1,0,0]
=> [5,6,1,2,3,4] => [1,1,1,1,1,0,1,0,0,0,0,0]
=> 0 = 2 - 2
[[0,1,0,0,0],[0,0,1,0,0],[1,-1,0,1,0],[0,0,0,0,1],[0,1,0,0,0]]
=> [1,1,0,1,0,1,0,1,0,0]
=> [5,6,1,2,3,4] => [1,1,1,1,1,0,1,0,0,0,0,0]
=> 0 = 2 - 2
[[0,1,0,0,0],[0,0,1,0,0],[0,0,0,1,0],[1,-1,0,0,1],[0,1,0,0,0]]
=> [1,1,0,1,0,1,0,1,0,0]
=> [5,6,1,2,3,4] => [1,1,1,1,1,0,1,0,0,0,0,0]
=> 0 = 2 - 2
[[0,1,0,0,0],[0,0,1,0,0],[0,0,0,1,0],[0,0,0,0,1],[1,0,0,0,0]]
=> [1,1,0,1,0,1,0,1,0,0]
=> [5,6,1,2,3,4] => [1,1,1,1,1,0,1,0,0,0,0,0]
=> 0 = 2 - 2
[[0,1,0,0,0,0],[1,-1,1,0,0,0],[0,1,-1,1,0,0],[0,0,1,-1,1,0],[0,0,0,1,0,0],[0,0,0,0,0,1]]
=> [1,1,0,1,0,1,0,1,0,0,1,0]
=> [5,7,1,2,3,4,6] => [1,1,1,1,1,0,1,1,0,0,0,0,0,0]
=> 0 = 2 - 2
[[0,1,0,0,0,0],[0,0,1,0,0,0],[1,0,-1,1,0,0],[0,0,1,-1,1,0],[0,0,0,1,0,0],[0,0,0,0,0,1]]
=> [1,1,0,1,0,1,0,1,0,0,1,0]
=> [5,7,1,2,3,4,6] => [1,1,1,1,1,0,1,1,0,0,0,0,0,0]
=> 0 = 2 - 2
[[0,1,0,0,0,0],[1,-1,1,0,0,0],[0,0,0,1,0,0],[0,1,0,-1,1,0],[0,0,0,1,0,0],[0,0,0,0,0,1]]
=> [1,1,0,1,0,1,0,1,0,0,1,0]
=> [5,7,1,2,3,4,6] => [1,1,1,1,1,0,1,1,0,0,0,0,0,0]
=> 0 = 2 - 2
[[0,1,0,0,0,0],[0,0,1,0,0,0],[1,-1,0,1,0,0],[0,1,0,-1,1,0],[0,0,0,1,0,0],[0,0,0,0,0,1]]
=> [1,1,0,1,0,1,0,1,0,0,1,0]
=> [5,7,1,2,3,4,6] => [1,1,1,1,1,0,1,1,0,0,0,0,0,0]
=> 0 = 2 - 2
[[0,1,0,0,0,0],[0,0,1,0,0,0],[0,0,0,1,0,0],[1,0,0,-1,1,0],[0,0,0,1,0,0],[0,0,0,0,0,1]]
=> [1,1,0,1,0,1,0,1,0,0,1,0]
=> [5,7,1,2,3,4,6] => [1,1,1,1,1,0,1,1,0,0,0,0,0,0]
=> 0 = 2 - 2
[[0,1,0,0,0,0],[1,-1,1,0,0,0],[0,1,-1,1,0,0],[0,0,0,0,1,0],[0,0,1,0,0,0],[0,0,0,0,0,1]]
=> [1,1,0,1,0,1,0,1,0,0,1,0]
=> [5,7,1,2,3,4,6] => [1,1,1,1,1,0,1,1,0,0,0,0,0,0]
=> 0 = 2 - 2
[[0,1,0,0,0,0],[0,0,1,0,0,0],[1,0,-1,1,0,0],[0,0,0,0,1,0],[0,0,1,0,0,0],[0,0,0,0,0,1]]
=> [1,1,0,1,0,1,0,1,0,0,1,0]
=> [5,7,1,2,3,4,6] => [1,1,1,1,1,0,1,1,0,0,0,0,0,0]
=> 0 = 2 - 2
[[0,1,0,0,0,0],[1,-1,1,0,0,0],[0,0,0,1,0,0],[0,1,-1,0,1,0],[0,0,1,0,0,0],[0,0,0,0,0,1]]
=> [1,1,0,1,0,1,0,1,0,0,1,0]
=> [5,7,1,2,3,4,6] => [1,1,1,1,1,0,1,1,0,0,0,0,0,0]
=> 0 = 2 - 2
[[0,1,0,0,0,0],[0,0,1,0,0,0],[1,-1,0,1,0,0],[0,1,-1,0,1,0],[0,0,1,0,0,0],[0,0,0,0,0,1]]
=> [1,1,0,1,0,1,0,1,0,0,1,0]
=> [5,7,1,2,3,4,6] => [1,1,1,1,1,0,1,1,0,0,0,0,0,0]
=> 0 = 2 - 2
[[0,1,0,0,0,0],[0,0,1,0,0,0],[0,0,0,1,0,0],[1,0,-1,0,1,0],[0,0,1,0,0,0],[0,0,0,0,0,1]]
=> [1,1,0,1,0,1,0,1,0,0,1,0]
=> [5,7,1,2,3,4,6] => [1,1,1,1,1,0,1,1,0,0,0,0,0,0]
=> 0 = 2 - 2
[[0,1,0,0,0,0],[1,-1,1,0,0,0],[0,0,0,1,0,0],[0,0,0,0,1,0],[0,1,0,0,0,0],[0,0,0,0,0,1]]
=> [1,1,0,1,0,1,0,1,0,0,1,0]
=> [5,7,1,2,3,4,6] => [1,1,1,1,1,0,1,1,0,0,0,0,0,0]
=> 0 = 2 - 2
[[0,1,0,0,0,0],[0,0,1,0,0,0],[1,-1,0,1,0,0],[0,0,0,0,1,0],[0,1,0,0,0,0],[0,0,0,0,0,1]]
=> [1,1,0,1,0,1,0,1,0,0,1,0]
=> [5,7,1,2,3,4,6] => [1,1,1,1,1,0,1,1,0,0,0,0,0,0]
=> 0 = 2 - 2
[[0,1,0,0,0,0],[0,0,1,0,0,0],[0,0,0,1,0,0],[1,-1,0,0,1,0],[0,1,0,0,0,0],[0,0,0,0,0,1]]
=> [1,1,0,1,0,1,0,1,0,0,1,0]
=> [5,7,1,2,3,4,6] => [1,1,1,1,1,0,1,1,0,0,0,0,0,0]
=> 0 = 2 - 2
[[0,1,0,0,0,0],[0,0,1,0,0,0],[0,0,0,1,0,0],[0,0,0,0,1,0],[1,0,0,0,0,0],[0,0,0,0,0,1]]
=> [1,1,0,1,0,1,0,1,0,0,1,0]
=> [5,7,1,2,3,4,6] => [1,1,1,1,1,0,1,1,0,0,0,0,0,0]
=> 0 = 2 - 2
[[1,0,0,0,0,0],[0,0,1,0,0,0],[0,1,-1,1,0,0],[0,0,1,-1,1,0],[0,0,0,1,-1,1],[0,0,0,0,1,0]]
=> [1,0,1,1,0,1,0,1,0,1,0,0]
=> [6,1,7,2,3,4,5] => [1,1,1,1,1,1,0,0,1,0,0,0,0,0]
=> 0 = 2 - 2
[[0,0,1,0,0,0],[1,0,-1,1,0,0],[0,1,0,0,0,0],[0,0,1,-1,1,0],[0,0,0,1,-1,1],[0,0,0,0,1,0]]
=> [1,1,1,0,1,0,0,1,0,1,0,0]
=> [6,3,7,1,2,4,5] => [1,1,1,1,1,1,0,0,1,0,0,0,0,0]
=> 0 = 2 - 2
[[0,0,1,0,0,0],[0,1,-1,1,0,0],[1,0,0,0,0,0],[0,0,1,-1,1,0],[0,0,0,1,-1,1],[0,0,0,0,1,0]]
=> [1,1,1,0,1,0,0,1,0,1,0,0]
=> [6,3,7,1,2,4,5] => [1,1,1,1,1,1,0,0,1,0,0,0,0,0]
=> 0 = 2 - 2
[[1,0,0,0,0,0],[0,0,1,0,0,0],[0,0,0,1,0,0],[0,1,0,-1,1,0],[0,0,0,1,-1,1],[0,0,0,0,1,0]]
=> [1,0,1,1,0,1,0,1,0,1,0,0]
=> [6,1,7,2,3,4,5] => [1,1,1,1,1,1,0,0,1,0,0,0,0,0]
=> 0 = 2 - 2
[[0,0,1,0,0,0],[1,0,-1,1,0,0],[0,0,1,0,0,0],[0,1,0,-1,1,0],[0,0,0,1,-1,1],[0,0,0,0,1,0]]
=> [1,1,1,0,1,0,0,1,0,1,0,0]
=> [6,3,7,1,2,4,5] => [1,1,1,1,1,1,0,0,1,0,0,0,0,0]
=> 0 = 2 - 2
[[0,0,1,0,0,0],[0,1,-1,1,0,0],[1,-1,1,0,0,0],[0,1,0,-1,1,0],[0,0,0,1,-1,1],[0,0,0,0,1,0]]
=> [1,1,1,0,1,0,0,1,0,1,0,0]
=> [6,3,7,1,2,4,5] => [1,1,1,1,1,1,0,0,1,0,0,0,0,0]
=> 0 = 2 - 2
[[0,0,1,0,0,0],[0,0,0,1,0,0],[1,0,0,0,0,0],[0,1,0,-1,1,0],[0,0,0,1,-1,1],[0,0,0,0,1,0]]
=> [1,1,1,0,1,0,0,1,0,1,0,0]
=> [6,3,7,1,2,4,5] => [1,1,1,1,1,1,0,0,1,0,0,0,0,0]
=> 0 = 2 - 2
[[0,0,1,0,0,0],[0,1,-1,1,0,0],[0,0,1,0,0,0],[1,0,0,-1,1,0],[0,0,0,1,-1,1],[0,0,0,0,1,0]]
=> [1,1,1,0,1,0,0,1,0,1,0,0]
=> [6,3,7,1,2,4,5] => [1,1,1,1,1,1,0,0,1,0,0,0,0,0]
=> 0 = 2 - 2
[[0,0,1,0,0,0],[0,0,0,1,0,0],[0,1,0,0,0,0],[1,0,0,-1,1,0],[0,0,0,1,-1,1],[0,0,0,0,1,0]]
=> [1,1,1,0,1,0,0,1,0,1,0,0]
=> [6,3,7,1,2,4,5] => [1,1,1,1,1,1,0,0,1,0,0,0,0,0]
=> 0 = 2 - 2
[[0,0,1,0,0,0],[1,0,-1,1,0,0],[0,1,0,-1,1,0],[0,0,1,0,0,0],[0,0,0,1,-1,1],[0,0,0,0,1,0]]
=> [1,1,1,0,1,0,1,0,0,1,0,0]
=> [6,7,4,1,2,3,5] => [1,1,1,1,1,1,0,1,0,0,0,0,0,0]
=> 0 = 2 - 2
[[0,0,1,0,0,0],[0,1,-1,1,0,0],[1,0,0,-1,1,0],[0,0,1,0,0,0],[0,0,0,1,-1,1],[0,0,0,0,1,0]]
=> [1,1,1,0,1,0,1,0,0,1,0,0]
=> [6,7,4,1,2,3,5] => [1,1,1,1,1,1,0,1,0,0,0,0,0,0]
=> 0 = 2 - 2
[[0,0,1,0,0,0],[1,0,-1,1,0,0],[0,0,1,-1,1,0],[0,1,0,0,0,0],[0,0,0,1,-1,1],[0,0,0,0,1,0]]
=> [1,1,1,0,1,0,1,0,0,1,0,0]
=> [6,7,4,1,2,3,5] => [1,1,1,1,1,1,0,1,0,0,0,0,0,0]
=> 0 = 2 - 2
[[0,0,1,0,0,0],[0,1,-1,1,0,0],[1,-1,1,-1,1,0],[0,1,0,0,0,0],[0,0,0,1,-1,1],[0,0,0,0,1,0]]
=> [1,1,1,0,1,0,1,0,0,1,0,0]
=> [6,7,4,1,2,3,5] => [1,1,1,1,1,1,0,1,0,0,0,0,0,0]
=> 0 = 2 - 2
[[0,0,1,0,0,0],[0,0,0,1,0,0],[1,0,0,-1,1,0],[0,1,0,0,0,0],[0,0,0,1,-1,1],[0,0,0,0,1,0]]
=> [1,1,1,0,1,0,1,0,0,1,0,0]
=> [6,7,4,1,2,3,5] => [1,1,1,1,1,1,0,1,0,0,0,0,0,0]
=> 0 = 2 - 2
[[0,0,1,0,0,0],[0,1,-1,1,0,0],[0,0,1,-1,1,0],[1,0,0,0,0,0],[0,0,0,1,-1,1],[0,0,0,0,1,0]]
=> [1,1,1,0,1,0,1,0,0,1,0,0]
=> [6,7,4,1,2,3,5] => [1,1,1,1,1,1,0,1,0,0,0,0,0,0]
=> 0 = 2 - 2
[[0,0,1,0,0,0],[0,0,0,1,0,0],[0,1,0,-1,1,0],[1,0,0,0,0,0],[0,0,0,1,-1,1],[0,0,0,0,1,0]]
=> [1,1,1,0,1,0,1,0,0,1,0,0]
=> [6,7,4,1,2,3,5] => [1,1,1,1,1,1,0,1,0,0,0,0,0,0]
=> 0 = 2 - 2
[[1,0,0,0,0,0],[0,0,1,0,0,0],[0,1,-1,1,0,0],[0,0,0,0,1,0],[0,0,1,0,-1,1],[0,0,0,0,1,0]]
=> [1,0,1,1,0,1,0,1,0,1,0,0]
=> [6,1,7,2,3,4,5] => [1,1,1,1,1,1,0,0,1,0,0,0,0,0]
=> 0 = 2 - 2
[[0,0,1,0,0,0],[1,0,-1,1,0,0],[0,1,0,0,0,0],[0,0,0,0,1,0],[0,0,1,0,-1,1],[0,0,0,0,1,0]]
=> [1,1,1,0,1,0,0,1,0,1,0,0]
=> [6,3,7,1,2,4,5] => [1,1,1,1,1,1,0,0,1,0,0,0,0,0]
=> 0 = 2 - 2
[[0,0,1,0,0,0],[0,1,-1,1,0,0],[1,0,0,0,0,0],[0,0,0,0,1,0],[0,0,1,0,-1,1],[0,0,0,0,1,0]]
=> [1,1,1,0,1,0,0,1,0,1,0,0]
=> [6,3,7,1,2,4,5] => [1,1,1,1,1,1,0,0,1,0,0,0,0,0]
=> 0 = 2 - 2
[[1,0,0,0,0,0],[0,0,1,0,0,0],[0,0,0,1,0,0],[0,1,-1,0,1,0],[0,0,1,0,-1,1],[0,0,0,0,1,0]]
=> [1,0,1,1,0,1,0,1,0,1,0,0]
=> [6,1,7,2,3,4,5] => [1,1,1,1,1,1,0,0,1,0,0,0,0,0]
=> 0 = 2 - 2
[[0,0,1,0,0,0],[1,0,-1,1,0,0],[0,0,1,0,0,0],[0,1,-1,0,1,0],[0,0,1,0,-1,1],[0,0,0,0,1,0]]
=> [1,1,1,0,1,0,0,1,0,1,0,0]
=> [6,3,7,1,2,4,5] => [1,1,1,1,1,1,0,0,1,0,0,0,0,0]
=> 0 = 2 - 2
[[0,0,1,0,0,0],[0,1,-1,1,0,0],[1,-1,1,0,0,0],[0,1,-1,0,1,0],[0,0,1,0,-1,1],[0,0,0,0,1,0]]
=> [1,1,1,0,1,0,0,1,0,1,0,0]
=> [6,3,7,1,2,4,5] => [1,1,1,1,1,1,0,0,1,0,0,0,0,0]
=> 0 = 2 - 2
Description
The normalised height of a Nakayama algebra with magnitude 1.
We use the bijection (see code) suggested by Christian Stump, to have a bijection between such Nakayama algebras with magnitude 1 and Dyck paths. The normalised height is the height of the (periodic) Dyck path given by the top of the Auslander-Reiten quiver. Thus when having a CNakayama algebra it is the Loewy length minus the number of simple modules and for the LNakayama algebras it is the usual height.
Matching statistic: St001569
(load all 9 compositions to match this statistic)
(load all 9 compositions to match this statistic)
Mp00007: Alternating sign matrices —to Dyck path⟶ Dyck paths
Mp00129: Dyck paths —to 321-avoiding permutation (Billey-Jockusch-Stanley)⟶ Permutations
St001569: Permutations ⟶ ℤResult quality: 5% ●values known / values provided: 5%●distinct values known / distinct values provided: 50%
Mp00129: Dyck paths —to 321-avoiding permutation (Billey-Jockusch-Stanley)⟶ Permutations
St001569: Permutations ⟶ ℤResult quality: 5% ●values known / values provided: 5%●distinct values known / distinct values provided: 50%
Values
[[1]]
=> [1,0]
=> [1] => ? = 0
[[1,0],[0,1]]
=> [1,0,1,0]
=> [2,1] => 1
[[1,0,0],[0,1,0],[0,0,1]]
=> [1,0,1,0,1,0]
=> [2,3,1] => 1
[[0,1,0],[1,-1,1],[0,1,0]]
=> [1,1,0,1,0,0]
=> [3,1,2] => 1
[[0,1,0],[0,0,1],[1,0,0]]
=> [1,1,0,1,0,0]
=> [3,1,2] => 1
[[1,0,0,0],[0,1,0,0],[0,0,1,0],[0,0,0,1]]
=> [1,0,1,0,1,0,1,0]
=> [2,3,4,1] => 1
[[0,1,0,0],[1,-1,1,0],[0,1,0,0],[0,0,0,1]]
=> [1,1,0,1,0,0,1,0]
=> [3,1,4,2] => 2
[[0,1,0,0],[0,0,1,0],[1,0,0,0],[0,0,0,1]]
=> [1,1,0,1,0,0,1,0]
=> [3,1,4,2] => 2
[[1,0,0,0],[0,0,1,0],[0,1,-1,1],[0,0,1,0]]
=> [1,0,1,1,0,1,0,0]
=> [2,4,1,3] => 2
[[0,1,0,0],[1,-1,1,0],[0,1,-1,1],[0,0,1,0]]
=> [1,1,0,1,0,1,0,0]
=> [3,4,1,2] => 2
[[0,1,0,0],[0,0,1,0],[1,0,-1,1],[0,0,1,0]]
=> [1,1,0,1,0,1,0,0]
=> [3,4,1,2] => 2
[[0,0,1,0],[1,0,-1,1],[0,1,0,0],[0,0,1,0]]
=> [1,1,1,0,1,0,0,0]
=> [4,1,2,3] => 1
[[0,0,1,0],[0,1,-1,1],[1,0,0,0],[0,0,1,0]]
=> [1,1,1,0,1,0,0,0]
=> [4,1,2,3] => 1
[[1,0,0,0],[0,0,1,0],[0,0,0,1],[0,1,0,0]]
=> [1,0,1,1,0,1,0,0]
=> [2,4,1,3] => 2
[[0,1,0,0],[1,-1,1,0],[0,0,0,1],[0,1,0,0]]
=> [1,1,0,1,0,1,0,0]
=> [3,4,1,2] => 2
[[0,1,0,0],[0,0,1,0],[1,-1,0,1],[0,1,0,0]]
=> [1,1,0,1,0,1,0,0]
=> [3,4,1,2] => 2
[[0,0,1,0],[1,0,-1,1],[0,0,1,0],[0,1,0,0]]
=> [1,1,1,0,1,0,0,0]
=> [4,1,2,3] => 1
[[0,0,1,0],[0,1,-1,1],[1,-1,1,0],[0,1,0,0]]
=> [1,1,1,0,1,0,0,0]
=> [4,1,2,3] => 1
[[0,0,1,0],[0,0,0,1],[1,0,0,0],[0,1,0,0]]
=> [1,1,1,0,1,0,0,0]
=> [4,1,2,3] => 1
[[0,1,0,0],[0,0,1,0],[0,0,0,1],[1,0,0,0]]
=> [1,1,0,1,0,1,0,0]
=> [3,4,1,2] => 2
[[0,0,1,0],[0,1,-1,1],[0,0,1,0],[1,0,0,0]]
=> [1,1,1,0,1,0,0,0]
=> [4,1,2,3] => 1
[[0,0,1,0],[0,0,0,1],[0,1,0,0],[1,0,0,0]]
=> [1,1,1,0,1,0,0,0]
=> [4,1,2,3] => 1
[[1,0,0,0,0],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,1,0],[0,0,0,0,1]]
=> [1,0,1,0,1,0,1,0,1,0]
=> [2,3,4,5,1] => 1
[[0,1,0,0,0],[1,-1,1,0,0],[0,1,0,0,0],[0,0,0,1,0],[0,0,0,0,1]]
=> [1,1,0,1,0,0,1,0,1,0]
=> [3,1,4,5,2] => 2
[[0,1,0,0,0],[0,0,1,0,0],[1,0,0,0,0],[0,0,0,1,0],[0,0,0,0,1]]
=> [1,1,0,1,0,0,1,0,1,0]
=> [3,1,4,5,2] => 2
[[1,0,0,0,0],[0,0,1,0,0],[0,1,-1,1,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [1,0,1,1,0,1,0,0,1,0]
=> [2,4,1,5,3] => 2
[[0,1,0,0,0],[1,-1,1,0,0],[0,1,-1,1,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [1,1,0,1,0,1,0,0,1,0]
=> [3,4,1,5,2] => 2
[[0,1,0,0,0],[0,0,1,0,0],[1,0,-1,1,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [1,1,0,1,0,1,0,0,1,0]
=> [3,4,1,5,2] => 2
[[0,0,1,0,0],[1,0,-1,1,0],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [1,1,1,0,1,0,0,0,1,0]
=> [4,1,2,5,3] => 2
[[0,0,1,0,0],[0,1,-1,1,0],[1,0,0,0,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [1,1,1,0,1,0,0,0,1,0]
=> [4,1,2,5,3] => 2
[[1,0,0,0,0],[0,0,1,0,0],[0,0,0,1,0],[0,1,0,0,0],[0,0,0,0,1]]
=> [1,0,1,1,0,1,0,0,1,0]
=> [2,4,1,5,3] => 2
[[0,1,0,0,0],[1,-1,1,0,0],[0,0,0,1,0],[0,1,0,0,0],[0,0,0,0,1]]
=> [1,1,0,1,0,1,0,0,1,0]
=> [3,4,1,5,2] => 2
[[0,1,0,0,0],[0,0,1,0,0],[1,-1,0,1,0],[0,1,0,0,0],[0,0,0,0,1]]
=> [1,1,0,1,0,1,0,0,1,0]
=> [3,4,1,5,2] => 2
[[0,0,1,0,0],[1,0,-1,1,0],[0,0,1,0,0],[0,1,0,0,0],[0,0,0,0,1]]
=> [1,1,1,0,1,0,0,0,1,0]
=> [4,1,2,5,3] => 2
[[0,0,1,0,0],[0,1,-1,1,0],[1,-1,1,0,0],[0,1,0,0,0],[0,0,0,0,1]]
=> [1,1,1,0,1,0,0,0,1,0]
=> [4,1,2,5,3] => 2
[[0,0,1,0,0],[0,0,0,1,0],[1,0,0,0,0],[0,1,0,0,0],[0,0,0,0,1]]
=> [1,1,1,0,1,0,0,0,1,0]
=> [4,1,2,5,3] => 2
[[0,1,0,0,0],[0,0,1,0,0],[0,0,0,1,0],[1,0,0,0,0],[0,0,0,0,1]]
=> [1,1,0,1,0,1,0,0,1,0]
=> [3,4,1,5,2] => 2
[[0,0,1,0,0],[0,1,-1,1,0],[0,0,1,0,0],[1,0,0,0,0],[0,0,0,0,1]]
=> [1,1,1,0,1,0,0,0,1,0]
=> [4,1,2,5,3] => 2
[[0,0,1,0,0],[0,0,0,1,0],[0,1,0,0,0],[1,0,0,0,0],[0,0,0,0,1]]
=> [1,1,1,0,1,0,0,0,1,0]
=> [4,1,2,5,3] => 2
[[1,0,0,0,0],[0,1,0,0,0],[0,0,0,1,0],[0,0,1,-1,1],[0,0,0,1,0]]
=> [1,0,1,0,1,1,0,1,0,0]
=> [2,3,5,1,4] => 2
[[1,0,0,0,0],[0,0,1,0,0],[0,1,-1,1,0],[0,0,1,-1,1],[0,0,0,1,0]]
=> [1,0,1,1,0,1,0,1,0,0]
=> [2,4,5,1,3] => 2
[[0,1,0,0,0],[1,-1,1,0,0],[0,1,-1,1,0],[0,0,1,-1,1],[0,0,0,1,0]]
=> [1,1,0,1,0,1,0,1,0,0]
=> [3,4,5,1,2] => 2
[[0,1,0,0,0],[0,0,1,0,0],[1,0,-1,1,0],[0,0,1,-1,1],[0,0,0,1,0]]
=> [1,1,0,1,0,1,0,1,0,0]
=> [3,4,5,1,2] => 2
[[0,1,0,0,0],[1,-1,0,1,0],[0,1,0,0,0],[0,0,1,-1,1],[0,0,0,1,0]]
=> [1,1,0,1,1,0,0,1,0,0]
=> [3,1,5,2,4] => 2
[[0,0,1,0,0],[1,0,-1,1,0],[0,1,0,0,0],[0,0,1,-1,1],[0,0,0,1,0]]
=> [1,1,1,0,1,0,0,1,0,0]
=> [4,1,5,2,3] => 2
[[0,1,0,0,0],[0,0,0,1,0],[1,0,0,0,0],[0,0,1,-1,1],[0,0,0,1,0]]
=> [1,1,0,1,1,0,0,1,0,0]
=> [3,1,5,2,4] => 2
[[0,0,1,0,0],[0,1,-1,1,0],[1,0,0,0,0],[0,0,1,-1,1],[0,0,0,1,0]]
=> [1,1,1,0,1,0,0,1,0,0]
=> [4,1,5,2,3] => 2
[[1,0,0,0,0],[0,0,1,0,0],[0,0,0,1,0],[0,1,0,-1,1],[0,0,0,1,0]]
=> [1,0,1,1,0,1,0,1,0,0]
=> [2,4,5,1,3] => 2
[[0,1,0,0,0],[1,-1,1,0,0],[0,0,0,1,0],[0,1,0,-1,1],[0,0,0,1,0]]
=> [1,1,0,1,0,1,0,1,0,0]
=> [3,4,5,1,2] => 2
[[0,1,0,0,0],[0,0,1,0,0],[1,-1,0,1,0],[0,1,0,-1,1],[0,0,0,1,0]]
=> [1,1,0,1,0,1,0,1,0,0]
=> [3,4,5,1,2] => 2
[[0,1,0,0,0],[1,-1,0,1,0],[0,0,1,0,0],[0,1,0,-1,1],[0,0,0,1,0]]
=> [1,1,0,1,1,0,0,1,0,0]
=> [3,1,5,2,4] => 2
[[1,0,0,0,0,0],[0,1,0,0,0,0],[0,0,1,0,0,0],[0,0,0,1,0,0],[0,0,0,0,1,0],[0,0,0,0,0,1]]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> [2,3,4,5,6,1] => ? = 1
[[0,1,0,0,0,0],[1,-1,1,0,0,0],[0,1,0,0,0,0],[0,0,0,1,0,0],[0,0,0,0,1,0],[0,0,0,0,0,1]]
=> [1,1,0,1,0,0,1,0,1,0,1,0]
=> [3,1,4,5,6,2] => ? = 2
[[0,1,0,0,0,0],[0,0,1,0,0,0],[1,0,0,0,0,0],[0,0,0,1,0,0],[0,0,0,0,1,0],[0,0,0,0,0,1]]
=> [1,1,0,1,0,0,1,0,1,0,1,0]
=> [3,1,4,5,6,2] => ? = 2
[[1,0,0,0,0,0],[0,0,1,0,0,0],[0,1,-1,1,0,0],[0,0,1,0,0,0],[0,0,0,0,1,0],[0,0,0,0,0,1]]
=> [1,0,1,1,0,1,0,0,1,0,1,0]
=> [2,4,1,5,6,3] => ? = 2
[[0,1,0,0,0,0],[1,-1,1,0,0,0],[0,1,-1,1,0,0],[0,0,1,0,0,0],[0,0,0,0,1,0],[0,0,0,0,0,1]]
=> [1,1,0,1,0,1,0,0,1,0,1,0]
=> [3,4,1,5,6,2] => ? = 2
[[0,1,0,0,0,0],[0,0,1,0,0,0],[1,0,-1,1,0,0],[0,0,1,0,0,0],[0,0,0,0,1,0],[0,0,0,0,0,1]]
=> [1,1,0,1,0,1,0,0,1,0,1,0]
=> [3,4,1,5,6,2] => ? = 2
[[0,0,1,0,0,0],[1,0,-1,1,0,0],[0,1,0,0,0,0],[0,0,1,0,0,0],[0,0,0,0,1,0],[0,0,0,0,0,1]]
=> [1,1,1,0,1,0,0,0,1,0,1,0]
=> [4,1,2,5,6,3] => ? = 2
[[0,0,1,0,0,0],[0,1,-1,1,0,0],[1,0,0,0,0,0],[0,0,1,0,0,0],[0,0,0,0,1,0],[0,0,0,0,0,1]]
=> [1,1,1,0,1,0,0,0,1,0,1,0]
=> [4,1,2,5,6,3] => ? = 2
[[1,0,0,0,0,0],[0,0,1,0,0,0],[0,0,0,1,0,0],[0,1,0,0,0,0],[0,0,0,0,1,0],[0,0,0,0,0,1]]
=> [1,0,1,1,0,1,0,0,1,0,1,0]
=> [2,4,1,5,6,3] => ? = 2
[[0,1,0,0,0,0],[1,-1,1,0,0,0],[0,0,0,1,0,0],[0,1,0,0,0,0],[0,0,0,0,1,0],[0,0,0,0,0,1]]
=> [1,1,0,1,0,1,0,0,1,0,1,0]
=> [3,4,1,5,6,2] => ? = 2
[[0,1,0,0,0,0],[0,0,1,0,0,0],[1,-1,0,1,0,0],[0,1,0,0,0,0],[0,0,0,0,1,0],[0,0,0,0,0,1]]
=> [1,1,0,1,0,1,0,0,1,0,1,0]
=> [3,4,1,5,6,2] => ? = 2
[[0,0,1,0,0,0],[1,0,-1,1,0,0],[0,0,1,0,0,0],[0,1,0,0,0,0],[0,0,0,0,1,0],[0,0,0,0,0,1]]
=> [1,1,1,0,1,0,0,0,1,0,1,0]
=> [4,1,2,5,6,3] => ? = 2
[[0,0,1,0,0,0],[0,1,-1,1,0,0],[1,-1,1,0,0,0],[0,1,0,0,0,0],[0,0,0,0,1,0],[0,0,0,0,0,1]]
=> [1,1,1,0,1,0,0,0,1,0,1,0]
=> [4,1,2,5,6,3] => ? = 2
[[0,0,1,0,0,0],[0,0,0,1,0,0],[1,0,0,0,0,0],[0,1,0,0,0,0],[0,0,0,0,1,0],[0,0,0,0,0,1]]
=> [1,1,1,0,1,0,0,0,1,0,1,0]
=> [4,1,2,5,6,3] => ? = 2
[[0,1,0,0,0,0],[0,0,1,0,0,0],[0,0,0,1,0,0],[1,0,0,0,0,0],[0,0,0,0,1,0],[0,0,0,0,0,1]]
=> [1,1,0,1,0,1,0,0,1,0,1,0]
=> [3,4,1,5,6,2] => ? = 2
[[0,0,1,0,0,0],[0,1,-1,1,0,0],[0,0,1,0,0,0],[1,0,0,0,0,0],[0,0,0,0,1,0],[0,0,0,0,0,1]]
=> [1,1,1,0,1,0,0,0,1,0,1,0]
=> [4,1,2,5,6,3] => ? = 2
[[0,0,1,0,0,0],[0,0,0,1,0,0],[0,1,0,0,0,0],[1,0,0,0,0,0],[0,0,0,0,1,0],[0,0,0,0,0,1]]
=> [1,1,1,0,1,0,0,0,1,0,1,0]
=> [4,1,2,5,6,3] => ? = 2
[[1,0,0,0,0,0],[0,1,0,0,0,0],[0,0,0,1,0,0],[0,0,1,-1,1,0],[0,0,0,1,0,0],[0,0,0,0,0,1]]
=> [1,0,1,0,1,1,0,1,0,0,1,0]
=> [2,3,5,1,6,4] => ? = 2
[[1,0,0,0,0,0],[0,0,1,0,0,0],[0,1,-1,1,0,0],[0,0,1,-1,1,0],[0,0,0,1,0,0],[0,0,0,0,0,1]]
=> [1,0,1,1,0,1,0,1,0,0,1,0]
=> [2,4,5,1,6,3] => ? = 2
[[0,1,0,0,0,0],[1,-1,1,0,0,0],[0,1,-1,1,0,0],[0,0,1,-1,1,0],[0,0,0,1,0,0],[0,0,0,0,0,1]]
=> [1,1,0,1,0,1,0,1,0,0,1,0]
=> [3,4,5,1,6,2] => ? = 2
[[0,1,0,0,0,0],[0,0,1,0,0,0],[1,0,-1,1,0,0],[0,0,1,-1,1,0],[0,0,0,1,0,0],[0,0,0,0,0,1]]
=> [1,1,0,1,0,1,0,1,0,0,1,0]
=> [3,4,5,1,6,2] => ? = 2
[[0,1,0,0,0,0],[1,-1,0,1,0,0],[0,1,0,0,0,0],[0,0,1,-1,1,0],[0,0,0,1,0,0],[0,0,0,0,0,1]]
=> [1,1,0,1,1,0,0,1,0,0,1,0]
=> [3,1,5,2,6,4] => ? = 3
[[0,0,1,0,0,0],[1,0,-1,1,0,0],[0,1,0,0,0,0],[0,0,1,-1,1,0],[0,0,0,1,0,0],[0,0,0,0,0,1]]
=> [1,1,1,0,1,0,0,1,0,0,1,0]
=> [4,1,5,2,6,3] => ? = 2
[[0,1,0,0,0,0],[0,0,0,1,0,0],[1,0,0,0,0,0],[0,0,1,-1,1,0],[0,0,0,1,0,0],[0,0,0,0,0,1]]
=> [1,1,0,1,1,0,0,1,0,0,1,0]
=> [3,1,5,2,6,4] => ? = 3
[[0,0,1,0,0,0],[0,1,-1,1,0,0],[1,0,0,0,0,0],[0,0,1,-1,1,0],[0,0,0,1,0,0],[0,0,0,0,0,1]]
=> [1,1,1,0,1,0,0,1,0,0,1,0]
=> [4,1,5,2,6,3] => ? = 2
[[1,0,0,0,0,0],[0,0,1,0,0,0],[0,0,0,1,0,0],[0,1,0,-1,1,0],[0,0,0,1,0,0],[0,0,0,0,0,1]]
=> [1,0,1,1,0,1,0,1,0,0,1,0]
=> [2,4,5,1,6,3] => ? = 2
[[0,1,0,0,0,0],[1,-1,1,0,0,0],[0,0,0,1,0,0],[0,1,0,-1,1,0],[0,0,0,1,0,0],[0,0,0,0,0,1]]
=> [1,1,0,1,0,1,0,1,0,0,1,0]
=> [3,4,5,1,6,2] => ? = 2
[[0,1,0,0,0,0],[0,0,1,0,0,0],[1,-1,0,1,0,0],[0,1,0,-1,1,0],[0,0,0,1,0,0],[0,0,0,0,0,1]]
=> [1,1,0,1,0,1,0,1,0,0,1,0]
=> [3,4,5,1,6,2] => ? = 2
[[0,1,0,0,0,0],[1,-1,0,1,0,0],[0,0,1,0,0,0],[0,1,0,-1,1,0],[0,0,0,1,0,0],[0,0,0,0,0,1]]
=> [1,1,0,1,1,0,0,1,0,0,1,0]
=> [3,1,5,2,6,4] => ? = 3
[[0,0,1,0,0,0],[1,0,-1,1,0,0],[0,0,1,0,0,0],[0,1,0,-1,1,0],[0,0,0,1,0,0],[0,0,0,0,0,1]]
=> [1,1,1,0,1,0,0,1,0,0,1,0]
=> [4,1,5,2,6,3] => ? = 2
[[0,1,0,0,0,0],[0,0,0,1,0,0],[1,-1,1,0,0,0],[0,1,0,-1,1,0],[0,0,0,1,0,0],[0,0,0,0,0,1]]
=> [1,1,0,1,1,0,0,1,0,0,1,0]
=> [3,1,5,2,6,4] => ? = 3
[[0,0,1,0,0,0],[0,1,-1,1,0,0],[1,-1,1,0,0,0],[0,1,0,-1,1,0],[0,0,0,1,0,0],[0,0,0,0,0,1]]
=> [1,1,1,0,1,0,0,1,0,0,1,0]
=> [4,1,5,2,6,3] => ? = 2
[[0,0,1,0,0,0],[0,0,0,1,0,0],[1,0,0,0,0,0],[0,1,0,-1,1,0],[0,0,0,1,0,0],[0,0,0,0,0,1]]
=> [1,1,1,0,1,0,0,1,0,0,1,0]
=> [4,1,5,2,6,3] => ? = 2
[[0,1,0,0,0,0],[0,0,1,0,0,0],[0,0,0,1,0,0],[1,0,0,-1,1,0],[0,0,0,1,0,0],[0,0,0,0,0,1]]
=> [1,1,0,1,0,1,0,1,0,0,1,0]
=> [3,4,5,1,6,2] => ? = 2
[[0,1,0,0,0,0],[0,0,0,1,0,0],[0,0,1,0,0,0],[1,0,0,-1,1,0],[0,0,0,1,0,0],[0,0,0,0,0,1]]
=> [1,1,0,1,1,0,0,1,0,0,1,0]
=> [3,1,5,2,6,4] => ? = 3
[[0,0,1,0,0,0],[0,1,-1,1,0,0],[0,0,1,0,0,0],[1,0,0,-1,1,0],[0,0,0,1,0,0],[0,0,0,0,0,1]]
=> [1,1,1,0,1,0,0,1,0,0,1,0]
=> [4,1,5,2,6,3] => ? = 2
[[0,0,1,0,0,0],[0,0,0,1,0,0],[0,1,0,0,0,0],[1,0,0,-1,1,0],[0,0,0,1,0,0],[0,0,0,0,0,1]]
=> [1,1,1,0,1,0,0,1,0,0,1,0]
=> [4,1,5,2,6,3] => ? = 2
[[1,0,0,0,0,0],[0,0,0,1,0,0],[0,1,0,-1,1,0],[0,0,1,0,0,0],[0,0,0,1,0,0],[0,0,0,0,0,1]]
=> [1,0,1,1,1,0,1,0,0,0,1,0]
=> [2,5,1,3,6,4] => ? = 2
[[0,1,0,0,0,0],[1,-1,0,1,0,0],[0,1,0,-1,1,0],[0,0,1,0,0,0],[0,0,0,1,0,0],[0,0,0,0,0,1]]
=> [1,1,0,1,1,0,1,0,0,0,1,0]
=> [3,5,1,2,6,4] => ? = 2
[[0,0,1,0,0,0],[1,0,-1,1,0,0],[0,1,0,-1,1,0],[0,0,1,0,0,0],[0,0,0,1,0,0],[0,0,0,0,0,1]]
=> [1,1,1,0,1,0,1,0,0,0,1,0]
=> [4,5,1,2,6,3] => ? = 2
[[0,1,0,0,0,0],[0,0,0,1,0,0],[1,0,0,-1,1,0],[0,0,1,0,0,0],[0,0,0,1,0,0],[0,0,0,0,0,1]]
=> [1,1,0,1,1,0,1,0,0,0,1,0]
=> [3,5,1,2,6,4] => ? = 2
[[0,0,1,0,0,0],[0,1,-1,1,0,0],[1,0,0,-1,1,0],[0,0,1,0,0,0],[0,0,0,1,0,0],[0,0,0,0,0,1]]
=> [1,1,1,0,1,0,1,0,0,0,1,0]
=> [4,5,1,2,6,3] => ? = 2
[[0,0,0,1,0,0],[1,0,0,-1,1,0],[0,1,0,0,0,0],[0,0,1,0,0,0],[0,0,0,1,0,0],[0,0,0,0,0,1]]
=> [1,1,1,1,0,1,0,0,0,0,1,0]
=> [5,1,2,3,6,4] => ? = 2
[[0,0,0,1,0,0],[0,1,0,-1,1,0],[1,0,0,0,0,0],[0,0,1,0,0,0],[0,0,0,1,0,0],[0,0,0,0,0,1]]
=> [1,1,1,1,0,1,0,0,0,0,1,0]
=> [5,1,2,3,6,4] => ? = 2
[[1,0,0,0,0,0],[0,0,0,1,0,0],[0,0,1,-1,1,0],[0,1,0,0,0,0],[0,0,0,1,0,0],[0,0,0,0,0,1]]
=> [1,0,1,1,1,0,1,0,0,0,1,0]
=> [2,5,1,3,6,4] => ? = 2
[[0,1,0,0,0,0],[1,-1,0,1,0,0],[0,0,1,-1,1,0],[0,1,0,0,0,0],[0,0,0,1,0,0],[0,0,0,0,0,1]]
=> [1,1,0,1,1,0,1,0,0,0,1,0]
=> [3,5,1,2,6,4] => ? = 2
[[0,0,1,0,0,0],[1,0,-1,1,0,0],[0,0,1,-1,1,0],[0,1,0,0,0,0],[0,0,0,1,0,0],[0,0,0,0,0,1]]
=> [1,1,1,0,1,0,1,0,0,0,1,0]
=> [4,5,1,2,6,3] => ? = 2
[[0,1,0,0,0,0],[0,0,0,1,0,0],[1,-1,1,-1,1,0],[0,1,0,0,0,0],[0,0,0,1,0,0],[0,0,0,0,0,1]]
=> [1,1,0,1,1,0,1,0,0,0,1,0]
=> [3,5,1,2,6,4] => ? = 2
[[0,0,1,0,0,0],[0,1,-1,1,0,0],[1,-1,1,-1,1,0],[0,1,0,0,0,0],[0,0,0,1,0,0],[0,0,0,0,0,1]]
=> [1,1,1,0,1,0,1,0,0,0,1,0]
=> [4,5,1,2,6,3] => ? = 2
Description
The maximal modular displacement of a permutation.
This is $\max_{1\leq i \leq n} \left(\min(\pi(i)-i\pmod n, i-\pi(i)\pmod n)\right)$ for a permutation $\pi$ of $\{1,\dots,n\}$.
Matching statistic: St001880
Mp00007: Alternating sign matrices —to Dyck path⟶ Dyck paths
Mp00030: Dyck paths —zeta map⟶ Dyck paths
Mp00242: Dyck paths —Hessenberg poset⟶ Posets
St001880: Posets ⟶ ℤResult quality: 3% ●values known / values provided: 3%●distinct values known / distinct values provided: 25%
Mp00030: Dyck paths —zeta map⟶ Dyck paths
Mp00242: Dyck paths —Hessenberg poset⟶ Posets
St001880: Posets ⟶ ℤResult quality: 3% ●values known / values provided: 3%●distinct values known / distinct values provided: 25%
Values
[[1]]
=> [1,0]
=> [1,0]
=> ([],1)
=> ? = 0
[[1,0],[0,1]]
=> [1,0,1,0]
=> [1,1,0,0]
=> ([],2)
=> ? = 1
[[1,0,0],[0,1,0],[0,0,1]]
=> [1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> ([],3)
=> ? = 1
[[0,1,0],[1,-1,1],[0,1,0]]
=> [1,1,0,1,0,0]
=> [1,1,0,0,1,0]
=> ([(0,1),(0,2)],3)
=> ? = 1
[[0,1,0],[0,0,1],[1,0,0]]
=> [1,1,0,1,0,0]
=> [1,1,0,0,1,0]
=> ([(0,1),(0,2)],3)
=> ? = 1
[[1,0,0,0],[0,1,0,0],[0,0,1,0],[0,0,0,1]]
=> [1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> ([],4)
=> ? = 1
[[0,1,0,0],[1,-1,1,0],[0,1,0,0],[0,0,0,1]]
=> [1,1,0,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0]
=> ([(1,2),(1,3)],4)
=> ? = 2
[[0,1,0,0],[0,0,1,0],[1,0,0,0],[0,0,0,1]]
=> [1,1,0,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0]
=> ([(1,2),(1,3)],4)
=> ? = 2
[[1,0,0,0],[0,0,1,0],[0,1,-1,1],[0,0,1,0]]
=> [1,0,1,1,0,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> ? = 2
[[0,1,0,0],[1,-1,1,0],[0,1,-1,1],[0,0,1,0]]
=> [1,1,0,1,0,1,0,0]
=> [1,1,1,0,0,0,1,0]
=> ([(0,1),(0,2),(0,3)],4)
=> ? = 2
[[0,1,0,0],[0,0,1,0],[1,0,-1,1],[0,0,1,0]]
=> [1,1,0,1,0,1,0,0]
=> [1,1,1,0,0,0,1,0]
=> ([(0,1),(0,2),(0,3)],4)
=> ? = 2
[[0,0,1,0],[1,0,-1,1],[0,1,0,0],[0,0,1,0]]
=> [1,1,1,0,1,0,0,0]
=> [1,1,0,0,1,0,1,0]
=> ([(0,3),(3,1),(3,2)],4)
=> ? = 1
[[0,0,1,0],[0,1,-1,1],[1,0,0,0],[0,0,1,0]]
=> [1,1,1,0,1,0,0,0]
=> [1,1,0,0,1,0,1,0]
=> ([(0,3),(3,1),(3,2)],4)
=> ? = 1
[[1,0,0,0],[0,0,1,0],[0,0,0,1],[0,1,0,0]]
=> [1,0,1,1,0,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> ? = 2
[[0,1,0,0],[1,-1,1,0],[0,0,0,1],[0,1,0,0]]
=> [1,1,0,1,0,1,0,0]
=> [1,1,1,0,0,0,1,0]
=> ([(0,1),(0,2),(0,3)],4)
=> ? = 2
[[0,1,0,0],[0,0,1,0],[1,-1,0,1],[0,1,0,0]]
=> [1,1,0,1,0,1,0,0]
=> [1,1,1,0,0,0,1,0]
=> ([(0,1),(0,2),(0,3)],4)
=> ? = 2
[[0,0,1,0],[1,0,-1,1],[0,0,1,0],[0,1,0,0]]
=> [1,1,1,0,1,0,0,0]
=> [1,1,0,0,1,0,1,0]
=> ([(0,3),(3,1),(3,2)],4)
=> ? = 1
[[0,0,1,0],[0,1,-1,1],[1,-1,1,0],[0,1,0,0]]
=> [1,1,1,0,1,0,0,0]
=> [1,1,0,0,1,0,1,0]
=> ([(0,3),(3,1),(3,2)],4)
=> ? = 1
[[0,0,1,0],[0,0,0,1],[1,0,0,0],[0,1,0,0]]
=> [1,1,1,0,1,0,0,0]
=> [1,1,0,0,1,0,1,0]
=> ([(0,3),(3,1),(3,2)],4)
=> ? = 1
[[0,1,0,0],[0,0,1,0],[0,0,0,1],[1,0,0,0]]
=> [1,1,0,1,0,1,0,0]
=> [1,1,1,0,0,0,1,0]
=> ([(0,1),(0,2),(0,3)],4)
=> ? = 2
[[0,0,1,0],[0,1,-1,1],[0,0,1,0],[1,0,0,0]]
=> [1,1,1,0,1,0,0,0]
=> [1,1,0,0,1,0,1,0]
=> ([(0,3),(3,1),(3,2)],4)
=> ? = 1
[[0,0,1,0],[0,0,0,1],[0,1,0,0],[1,0,0,0]]
=> [1,1,1,0,1,0,0,0]
=> [1,1,0,0,1,0,1,0]
=> ([(0,3),(3,1),(3,2)],4)
=> ? = 1
[[1,0,0,0,0],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,1,0],[0,0,0,0,1]]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> ([],5)
=> ? = 1
[[0,1,0,0,0],[1,-1,1,0,0],[0,1,0,0,0],[0,0,0,1,0],[0,0,0,0,1]]
=> [1,1,0,1,0,0,1,0,1,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> ([(2,3),(2,4)],5)
=> ? = 2
[[0,1,0,0,0],[0,0,1,0,0],[1,0,0,0,0],[0,0,0,1,0],[0,0,0,0,1]]
=> [1,1,0,1,0,0,1,0,1,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> ([(2,3),(2,4)],5)
=> ? = 2
[[1,0,0,0,0],[0,0,1,0,0],[0,1,-1,1,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [1,0,1,1,0,1,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> ([(1,3),(1,4),(2,3),(2,4)],5)
=> ? = 2
[[0,1,0,0,0],[1,-1,1,0,0],[0,1,-1,1,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [1,1,0,1,0,1,0,0,1,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> ([(1,2),(1,3),(1,4)],5)
=> ? = 2
[[0,1,0,0,0],[0,0,1,0,0],[1,0,-1,1,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [1,1,0,1,0,1,0,0,1,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> ([(1,2),(1,3),(1,4)],5)
=> ? = 2
[[0,0,1,0,0],[1,0,-1,1,0],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [1,1,1,0,1,0,0,0,1,0]
=> [1,1,0,0,1,1,0,1,0,0]
=> ([(0,3),(0,4),(1,2),(2,3),(2,4)],5)
=> ? = 2
[[0,0,1,0,0],[0,1,-1,1,0],[1,0,0,0,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [1,1,1,0,1,0,0,0,1,0]
=> [1,1,0,0,1,1,0,1,0,0]
=> ([(0,3),(0,4),(1,2),(2,3),(2,4)],5)
=> ? = 2
[[1,0,0,0,0],[0,0,1,0,0],[0,0,0,1,0],[0,1,0,0,0],[0,0,0,0,1]]
=> [1,0,1,1,0,1,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> ([(1,3),(1,4),(2,3),(2,4)],5)
=> ? = 2
[[0,1,0,0,0],[1,-1,1,0,0],[0,0,0,1,0],[0,1,0,0,0],[0,0,0,0,1]]
=> [1,1,0,1,0,1,0,0,1,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> ([(1,2),(1,3),(1,4)],5)
=> ? = 2
[[0,1,0,0,0],[0,0,1,0,0],[1,-1,0,1,0],[0,1,0,0,0],[0,0,0,0,1]]
=> [1,1,0,1,0,1,0,0,1,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> ([(1,2),(1,3),(1,4)],5)
=> ? = 2
[[0,0,1,0,0],[1,0,-1,1,0],[0,0,1,0,0],[0,1,0,0,0],[0,0,0,0,1]]
=> [1,1,1,0,1,0,0,0,1,0]
=> [1,1,0,0,1,1,0,1,0,0]
=> ([(0,3),(0,4),(1,2),(2,3),(2,4)],5)
=> ? = 2
[[0,0,1,0,0],[0,1,-1,1,0],[1,-1,1,0,0],[0,1,0,0,0],[0,0,0,0,1]]
=> [1,1,1,0,1,0,0,0,1,0]
=> [1,1,0,0,1,1,0,1,0,0]
=> ([(0,3),(0,4),(1,2),(2,3),(2,4)],5)
=> ? = 2
[[0,0,1,0,0],[0,0,0,1,0],[1,0,0,0,0],[0,1,0,0,0],[0,0,0,0,1]]
=> [1,1,1,0,1,0,0,0,1,0]
=> [1,1,0,0,1,1,0,1,0,0]
=> ([(0,3),(0,4),(1,2),(2,3),(2,4)],5)
=> ? = 2
[[0,1,0,0,0],[0,0,1,0,0],[0,0,0,1,0],[1,0,0,0,0],[0,0,0,0,1]]
=> [1,1,0,1,0,1,0,0,1,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> ([(1,2),(1,3),(1,4)],5)
=> ? = 2
[[0,0,1,0,0],[0,1,-1,1,0],[0,0,1,0,0],[1,0,0,0,0],[0,0,0,0,1]]
=> [1,1,1,0,1,0,0,0,1,0]
=> [1,1,0,0,1,1,0,1,0,0]
=> ([(0,3),(0,4),(1,2),(2,3),(2,4)],5)
=> ? = 2
[[0,0,1,0,0],[0,0,0,1,0],[0,1,0,0,0],[1,0,0,0,0],[0,0,0,0,1]]
=> [1,1,1,0,1,0,0,0,1,0]
=> [1,1,0,0,1,1,0,1,0,0]
=> ([(0,3),(0,4),(1,2),(2,3),(2,4)],5)
=> ? = 2
[[1,0,0,0,0],[0,1,0,0,0],[0,0,0,1,0],[0,0,1,-1,1],[0,0,0,1,0]]
=> [1,0,1,0,1,1,0,1,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> ? = 2
[[1,0,0,0,0],[0,0,1,0,0],[0,1,-1,1,0],[0,0,1,-1,1],[0,0,0,1,0]]
=> [1,0,1,1,0,1,0,1,0,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4)],5)
=> ? = 2
[[0,1,0,0,0],[1,-1,1,0,0],[0,1,-1,1,0],[0,0,1,-1,1],[0,0,0,1,0]]
=> [1,1,0,1,0,1,0,1,0,0]
=> [1,1,1,1,0,0,0,0,1,0]
=> ([(0,1),(0,2),(0,3),(0,4)],5)
=> ? = 2
[[0,1,0,0,0],[0,0,1,0,0],[1,0,-1,1,0],[0,0,1,-1,1],[0,0,0,1,0]]
=> [1,1,0,1,0,1,0,1,0,0]
=> [1,1,1,1,0,0,0,0,1,0]
=> ([(0,1),(0,2),(0,3),(0,4)],5)
=> ? = 2
[[0,1,0,0,0],[1,-1,0,1,0],[0,1,0,0,0],[0,0,1,-1,1],[0,0,0,1,0]]
=> [1,1,0,1,1,0,0,1,0,0]
=> [1,1,0,1,1,0,0,0,1,0]
=> ([(0,1),(0,2),(0,3),(2,4),(3,4)],5)
=> ? = 2
[[0,0,1,0,0],[1,0,-1,1,0],[0,1,0,0,0],[0,0,1,-1,1],[0,0,0,1,0]]
=> [1,1,1,0,1,0,0,1,0,0]
=> [1,1,1,0,0,1,0,0,1,0]
=> ([(0,3),(0,4),(4,1),(4,2)],5)
=> ? = 2
[[0,1,0,0,0],[0,0,0,1,0],[1,0,0,0,0],[0,0,1,-1,1],[0,0,0,1,0]]
=> [1,1,0,1,1,0,0,1,0,0]
=> [1,1,0,1,1,0,0,0,1,0]
=> ([(0,1),(0,2),(0,3),(2,4),(3,4)],5)
=> ? = 2
[[0,0,1,0,0],[0,1,-1,1,0],[1,0,0,0,0],[0,0,1,-1,1],[0,0,0,1,0]]
=> [1,1,1,0,1,0,0,1,0,0]
=> [1,1,1,0,0,1,0,0,1,0]
=> ([(0,3),(0,4),(4,1),(4,2)],5)
=> ? = 2
[[1,0,0,0,0],[0,0,1,0,0],[0,0,0,1,0],[0,1,0,-1,1],[0,0,0,1,0]]
=> [1,0,1,1,0,1,0,1,0,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4)],5)
=> ? = 2
[[0,1,0,0,0],[1,-1,1,0,0],[0,0,0,1,0],[0,1,0,-1,1],[0,0,0,1,0]]
=> [1,1,0,1,0,1,0,1,0,0]
=> [1,1,1,1,0,0,0,0,1,0]
=> ([(0,1),(0,2),(0,3),(0,4)],5)
=> ? = 2
[[0,1,0,0,0],[0,0,1,0,0],[1,-1,0,1,0],[0,1,0,-1,1],[0,0,0,1,0]]
=> [1,1,0,1,0,1,0,1,0,0]
=> [1,1,1,1,0,0,0,0,1,0]
=> ([(0,1),(0,2),(0,3),(0,4)],5)
=> ? = 2
[[0,0,1,0,0,0],[1,0,-1,0,1,0],[0,1,0,0,0,0],[0,0,1,0,0,0],[0,0,0,1,-1,1],[0,0,0,0,1,0]]
=> [1,1,1,0,1,1,0,0,0,1,0,0]
=> [1,0,1,1,1,0,0,1,0,0,1,0]
=> ([(0,3),(0,4),(1,5),(2,5),(3,5),(4,1),(4,2)],6)
=> 2
[[0,0,1,0,0,0],[0,1,-1,0,1,0],[1,0,0,0,0,0],[0,0,1,0,0,0],[0,0,0,1,-1,1],[0,0,0,0,1,0]]
=> [1,1,1,0,1,1,0,0,0,1,0,0]
=> [1,0,1,1,1,0,0,1,0,0,1,0]
=> ([(0,3),(0,4),(1,5),(2,5),(3,5),(4,1),(4,2)],6)
=> 2
[[0,0,1,0,0,0],[1,0,-1,0,1,0],[0,0,1,0,0,0],[0,1,0,0,0,0],[0,0,0,1,-1,1],[0,0,0,0,1,0]]
=> [1,1,1,0,1,1,0,0,0,1,0,0]
=> [1,0,1,1,1,0,0,1,0,0,1,0]
=> ([(0,3),(0,4),(1,5),(2,5),(3,5),(4,1),(4,2)],6)
=> 2
[[0,0,1,0,0,0],[0,1,-1,0,1,0],[1,-1,1,0,0,0],[0,1,0,0,0,0],[0,0,0,1,-1,1],[0,0,0,0,1,0]]
=> [1,1,1,0,1,1,0,0,0,1,0,0]
=> [1,0,1,1,1,0,0,1,0,0,1,0]
=> ([(0,3),(0,4),(1,5),(2,5),(3,5),(4,1),(4,2)],6)
=> 2
[[0,0,1,0,0,0],[0,0,0,0,1,0],[1,0,0,0,0,0],[0,1,0,0,0,0],[0,0,0,1,-1,1],[0,0,0,0,1,0]]
=> [1,1,1,0,1,1,0,0,0,1,0,0]
=> [1,0,1,1,1,0,0,1,0,0,1,0]
=> ([(0,3),(0,4),(1,5),(2,5),(3,5),(4,1),(4,2)],6)
=> 2
[[0,0,1,0,0,0],[0,1,-1,0,1,0],[0,0,1,0,0,0],[1,0,0,0,0,0],[0,0,0,1,-1,1],[0,0,0,0,1,0]]
=> [1,1,1,0,1,1,0,0,0,1,0,0]
=> [1,0,1,1,1,0,0,1,0,0,1,0]
=> ([(0,3),(0,4),(1,5),(2,5),(3,5),(4,1),(4,2)],6)
=> 2
[[0,0,1,0,0,0],[0,0,0,0,1,0],[0,1,0,0,0,0],[1,0,0,0,0,0],[0,0,0,1,-1,1],[0,0,0,0,1,0]]
=> [1,1,1,0,1,1,0,0,0,1,0,0]
=> [1,0,1,1,1,0,0,1,0,0,1,0]
=> ([(0,3),(0,4),(1,5),(2,5),(3,5),(4,1),(4,2)],6)
=> 2
[[0,0,1,0,0,0],[1,0,-1,0,1,0],[0,1,0,0,0,0],[0,0,0,1,0,0],[0,0,1,0,-1,1],[0,0,0,0,1,0]]
=> [1,1,1,0,1,1,0,0,0,1,0,0]
=> [1,0,1,1,1,0,0,1,0,0,1,0]
=> ([(0,3),(0,4),(1,5),(2,5),(3,5),(4,1),(4,2)],6)
=> 2
[[0,0,1,0,0,0],[0,1,-1,0,1,0],[1,0,0,0,0,0],[0,0,0,1,0,0],[0,0,1,0,-1,1],[0,0,0,0,1,0]]
=> [1,1,1,0,1,1,0,0,0,1,0,0]
=> [1,0,1,1,1,0,0,1,0,0,1,0]
=> ([(0,3),(0,4),(1,5),(2,5),(3,5),(4,1),(4,2)],6)
=> 2
[[0,0,1,0,0,0],[1,0,-1,0,1,0],[0,0,1,0,0,0],[0,1,-1,1,0,0],[0,0,1,0,-1,1],[0,0,0,0,1,0]]
=> [1,1,1,0,1,1,0,0,0,1,0,0]
=> [1,0,1,1,1,0,0,1,0,0,1,0]
=> ([(0,3),(0,4),(1,5),(2,5),(3,5),(4,1),(4,2)],6)
=> 2
[[0,0,1,0,0,0],[0,1,-1,0,1,0],[1,-1,1,0,0,0],[0,1,-1,1,0,0],[0,0,1,0,-1,1],[0,0,0,0,1,0]]
=> [1,1,1,0,1,1,0,0,0,1,0,0]
=> [1,0,1,1,1,0,0,1,0,0,1,0]
=> ([(0,3),(0,4),(1,5),(2,5),(3,5),(4,1),(4,2)],6)
=> 2
[[0,0,1,0,0,0],[0,0,0,0,1,0],[1,0,0,0,0,0],[0,1,-1,1,0,0],[0,0,1,0,-1,1],[0,0,0,0,1,0]]
=> [1,1,1,0,1,1,0,0,0,1,0,0]
=> [1,0,1,1,1,0,0,1,0,0,1,0]
=> ([(0,3),(0,4),(1,5),(2,5),(3,5),(4,1),(4,2)],6)
=> 2
[[0,0,1,0,0,0],[0,1,-1,0,1,0],[0,0,1,0,0,0],[1,0,-1,1,0,0],[0,0,1,0,-1,1],[0,0,0,0,1,0]]
=> [1,1,1,0,1,1,0,0,0,1,0,0]
=> [1,0,1,1,1,0,0,1,0,0,1,0]
=> ([(0,3),(0,4),(1,5),(2,5),(3,5),(4,1),(4,2)],6)
=> 2
[[0,0,1,0,0,0],[0,0,0,0,1,0],[0,1,0,0,0,0],[1,0,-1,1,0,0],[0,0,1,0,-1,1],[0,0,0,0,1,0]]
=> [1,1,1,0,1,1,0,0,0,1,0,0]
=> [1,0,1,1,1,0,0,1,0,0,1,0]
=> ([(0,3),(0,4),(1,5),(2,5),(3,5),(4,1),(4,2)],6)
=> 2
[[0,0,1,0,0,0],[1,0,-1,0,1,0],[0,0,0,1,0,0],[0,1,0,0,0,0],[0,0,1,0,-1,1],[0,0,0,0,1,0]]
=> [1,1,1,0,1,1,0,0,0,1,0,0]
=> [1,0,1,1,1,0,0,1,0,0,1,0]
=> ([(0,3),(0,4),(1,5),(2,5),(3,5),(4,1),(4,2)],6)
=> 2
[[0,0,1,0,0,0],[0,1,-1,0,1,0],[1,-1,0,1,0,0],[0,1,0,0,0,0],[0,0,1,0,-1,1],[0,0,0,0,1,0]]
=> [1,1,1,0,1,1,0,0,0,1,0,0]
=> [1,0,1,1,1,0,0,1,0,0,1,0]
=> ([(0,3),(0,4),(1,5),(2,5),(3,5),(4,1),(4,2)],6)
=> 2
[[0,0,1,0,0,0],[0,0,0,0,1,0],[1,0,-1,1,0,0],[0,1,0,0,0,0],[0,0,1,0,-1,1],[0,0,0,0,1,0]]
=> [1,1,1,0,1,1,0,0,0,1,0,0]
=> [1,0,1,1,1,0,0,1,0,0,1,0]
=> ([(0,3),(0,4),(1,5),(2,5),(3,5),(4,1),(4,2)],6)
=> 2
[[0,0,1,0,0,0],[0,1,-1,0,1,0],[0,0,0,1,0,0],[1,0,0,0,0,0],[0,0,1,0,-1,1],[0,0,0,0,1,0]]
=> [1,1,1,0,1,1,0,0,0,1,0,0]
=> [1,0,1,1,1,0,0,1,0,0,1,0]
=> ([(0,3),(0,4),(1,5),(2,5),(3,5),(4,1),(4,2)],6)
=> 2
[[0,0,1,0,0,0],[0,0,0,0,1,0],[0,1,-1,1,0,0],[1,0,0,0,0,0],[0,0,1,0,-1,1],[0,0,0,0,1,0]]
=> [1,1,1,0,1,1,0,0,0,1,0,0]
=> [1,0,1,1,1,0,0,1,0,0,1,0]
=> ([(0,3),(0,4),(1,5),(2,5),(3,5),(4,1),(4,2)],6)
=> 2
[[0,0,1,0,0,0],[1,0,-1,0,1,0],[0,0,1,0,0,0],[0,0,0,1,0,0],[0,1,0,0,-1,1],[0,0,0,0,1,0]]
=> [1,1,1,0,1,1,0,0,0,1,0,0]
=> [1,0,1,1,1,0,0,1,0,0,1,0]
=> ([(0,3),(0,4),(1,5),(2,5),(3,5),(4,1),(4,2)],6)
=> 2
[[0,0,1,0,0,0],[0,1,-1,0,1,0],[1,-1,1,0,0,0],[0,0,0,1,0,0],[0,1,0,0,-1,1],[0,0,0,0,1,0]]
=> [1,1,1,0,1,1,0,0,0,1,0,0]
=> [1,0,1,1,1,0,0,1,0,0,1,0]
=> ([(0,3),(0,4),(1,5),(2,5),(3,5),(4,1),(4,2)],6)
=> 2
[[0,0,1,0,0,0],[0,0,0,0,1,0],[1,0,0,0,0,0],[0,0,0,1,0,0],[0,1,0,0,-1,1],[0,0,0,0,1,0]]
=> [1,1,1,0,1,1,0,0,0,1,0,0]
=> [1,0,1,1,1,0,0,1,0,0,1,0]
=> ([(0,3),(0,4),(1,5),(2,5),(3,5),(4,1),(4,2)],6)
=> 2
[[0,0,1,0,0,0],[0,1,-1,0,1,0],[0,0,1,0,0,0],[1,-1,0,1,0,0],[0,1,0,0,-1,1],[0,0,0,0,1,0]]
=> [1,1,1,0,1,1,0,0,0,1,0,0]
=> [1,0,1,1,1,0,0,1,0,0,1,0]
=> ([(0,3),(0,4),(1,5),(2,5),(3,5),(4,1),(4,2)],6)
=> 2
[[0,0,1,0,0,0],[0,0,0,0,1,0],[0,1,0,0,0,0],[1,-1,0,1,0,0],[0,1,0,0,-1,1],[0,0,0,0,1,0]]
=> [1,1,1,0,1,1,0,0,0,1,0,0]
=> [1,0,1,1,1,0,0,1,0,0,1,0]
=> ([(0,3),(0,4),(1,5),(2,5),(3,5),(4,1),(4,2)],6)
=> 2
[[0,0,1,0,0,0],[1,0,-1,0,1,0],[0,0,0,1,0,0],[0,0,1,0,0,0],[0,1,0,0,-1,1],[0,0,0,0,1,0]]
=> [1,1,1,0,1,1,0,0,0,1,0,0]
=> [1,0,1,1,1,0,0,1,0,0,1,0]
=> ([(0,3),(0,4),(1,5),(2,5),(3,5),(4,1),(4,2)],6)
=> 2
[[0,0,1,0,0,0],[0,1,-1,0,1,0],[1,-1,0,1,0,0],[0,0,1,0,0,0],[0,1,0,0,-1,1],[0,0,0,0,1,0]]
=> [1,1,1,0,1,1,0,0,0,1,0,0]
=> [1,0,1,1,1,0,0,1,0,0,1,0]
=> ([(0,3),(0,4),(1,5),(2,5),(3,5),(4,1),(4,2)],6)
=> 2
[[0,0,1,0,0,0],[0,0,0,0,1,0],[1,0,-1,1,0,0],[0,0,1,0,0,0],[0,1,0,0,-1,1],[0,0,0,0,1,0]]
=> [1,1,1,0,1,1,0,0,0,1,0,0]
=> [1,0,1,1,1,0,0,1,0,0,1,0]
=> ([(0,3),(0,4),(1,5),(2,5),(3,5),(4,1),(4,2)],6)
=> 2
[[0,0,1,0,0,0],[0,1,-1,0,1,0],[0,0,0,1,0,0],[1,-1,1,0,0,0],[0,1,0,0,-1,1],[0,0,0,0,1,0]]
=> [1,1,1,0,1,1,0,0,0,1,0,0]
=> [1,0,1,1,1,0,0,1,0,0,1,0]
=> ([(0,3),(0,4),(1,5),(2,5),(3,5),(4,1),(4,2)],6)
=> 2
[[0,0,1,0,0,0],[0,0,0,0,1,0],[0,1,-1,1,0,0],[1,-1,1,0,0,0],[0,1,0,0,-1,1],[0,0,0,0,1,0]]
=> [1,1,1,0,1,1,0,0,0,1,0,0]
=> [1,0,1,1,1,0,0,1,0,0,1,0]
=> ([(0,3),(0,4),(1,5),(2,5),(3,5),(4,1),(4,2)],6)
=> 2
[[0,0,1,0,0,0],[0,0,0,0,1,0],[0,0,0,1,0,0],[1,0,0,0,0,0],[0,1,0,0,-1,1],[0,0,0,0,1,0]]
=> [1,1,1,0,1,1,0,0,0,1,0,0]
=> [1,0,1,1,1,0,0,1,0,0,1,0]
=> ([(0,3),(0,4),(1,5),(2,5),(3,5),(4,1),(4,2)],6)
=> 2
[[0,0,1,0,0,0],[0,1,-1,0,1,0],[0,0,1,0,0,0],[0,0,0,1,0,0],[1,0,0,0,-1,1],[0,0,0,0,1,0]]
=> [1,1,1,0,1,1,0,0,0,1,0,0]
=> [1,0,1,1,1,0,0,1,0,0,1,0]
=> ([(0,3),(0,4),(1,5),(2,5),(3,5),(4,1),(4,2)],6)
=> 2
[[0,0,1,0,0,0],[0,0,0,0,1,0],[0,1,0,0,0,0],[0,0,0,1,0,0],[1,0,0,0,-1,1],[0,0,0,0,1,0]]
=> [1,1,1,0,1,1,0,0,0,1,0,0]
=> [1,0,1,1,1,0,0,1,0,0,1,0]
=> ([(0,3),(0,4),(1,5),(2,5),(3,5),(4,1),(4,2)],6)
=> 2
[[0,0,1,0,0,0],[0,1,-1,0,1,0],[0,0,0,1,0,0],[0,0,1,0,0,0],[1,0,0,0,-1,1],[0,0,0,0,1,0]]
=> [1,1,1,0,1,1,0,0,0,1,0,0]
=> [1,0,1,1,1,0,0,1,0,0,1,0]
=> ([(0,3),(0,4),(1,5),(2,5),(3,5),(4,1),(4,2)],6)
=> 2
[[0,0,1,0,0,0],[0,0,0,0,1,0],[0,1,-1,1,0,0],[0,0,1,0,0,0],[1,0,0,0,-1,1],[0,0,0,0,1,0]]
=> [1,1,1,0,1,1,0,0,0,1,0,0]
=> [1,0,1,1,1,0,0,1,0,0,1,0]
=> ([(0,3),(0,4),(1,5),(2,5),(3,5),(4,1),(4,2)],6)
=> 2
[[0,0,1,0,0,0],[0,0,0,0,1,0],[0,0,0,1,0,0],[0,1,0,0,0,0],[1,0,0,0,-1,1],[0,0,0,0,1,0]]
=> [1,1,1,0,1,1,0,0,0,1,0,0]
=> [1,0,1,1,1,0,0,1,0,0,1,0]
=> ([(0,3),(0,4),(1,5),(2,5),(3,5),(4,1),(4,2)],6)
=> 2
[[0,0,1,0,0,0],[1,0,-1,0,1,0],[0,1,0,0,0,0],[0,0,1,0,0,0],[0,0,0,0,0,1],[0,0,0,1,0,0]]
=> [1,1,1,0,1,1,0,0,0,1,0,0]
=> [1,0,1,1,1,0,0,1,0,0,1,0]
=> ([(0,3),(0,4),(1,5),(2,5),(3,5),(4,1),(4,2)],6)
=> 2
[[0,0,1,0,0,0],[0,1,-1,0,1,0],[1,0,0,0,0,0],[0,0,1,0,0,0],[0,0,0,0,0,1],[0,0,0,1,0,0]]
=> [1,1,1,0,1,1,0,0,0,1,0,0]
=> [1,0,1,1,1,0,0,1,0,0,1,0]
=> ([(0,3),(0,4),(1,5),(2,5),(3,5),(4,1),(4,2)],6)
=> 2
[[0,0,1,0,0,0],[1,0,-1,0,1,0],[0,0,1,0,0,0],[0,1,0,0,0,0],[0,0,0,0,0,1],[0,0,0,1,0,0]]
=> [1,1,1,0,1,1,0,0,0,1,0,0]
=> [1,0,1,1,1,0,0,1,0,0,1,0]
=> ([(0,3),(0,4),(1,5),(2,5),(3,5),(4,1),(4,2)],6)
=> 2
[[0,0,1,0,0,0],[0,1,-1,0,1,0],[1,-1,1,0,0,0],[0,1,0,0,0,0],[0,0,0,0,0,1],[0,0,0,1,0,0]]
=> [1,1,1,0,1,1,0,0,0,1,0,0]
=> [1,0,1,1,1,0,0,1,0,0,1,0]
=> ([(0,3),(0,4),(1,5),(2,5),(3,5),(4,1),(4,2)],6)
=> 2
[[0,0,1,0,0,0],[0,0,0,0,1,0],[1,0,0,0,0,0],[0,1,0,0,0,0],[0,0,0,0,0,1],[0,0,0,1,0,0]]
=> [1,1,1,0,1,1,0,0,0,1,0,0]
=> [1,0,1,1,1,0,0,1,0,0,1,0]
=> ([(0,3),(0,4),(1,5),(2,5),(3,5),(4,1),(4,2)],6)
=> 2
[[0,0,1,0,0,0],[0,1,-1,0,1,0],[0,0,1,0,0,0],[1,0,0,0,0,0],[0,0,0,0,0,1],[0,0,0,1,0,0]]
=> [1,1,1,0,1,1,0,0,0,1,0,0]
=> [1,0,1,1,1,0,0,1,0,0,1,0]
=> ([(0,3),(0,4),(1,5),(2,5),(3,5),(4,1),(4,2)],6)
=> 2
[[0,0,1,0,0,0],[0,0,0,0,1,0],[0,1,0,0,0,0],[1,0,0,0,0,0],[0,0,0,0,0,1],[0,0,0,1,0,0]]
=> [1,1,1,0,1,1,0,0,0,1,0,0]
=> [1,0,1,1,1,0,0,1,0,0,1,0]
=> ([(0,3),(0,4),(1,5),(2,5),(3,5),(4,1),(4,2)],6)
=> 2
[[0,0,1,0,0,0],[1,0,-1,0,1,0],[0,1,0,0,0,0],[0,0,0,1,0,0],[0,0,1,-1,0,1],[0,0,0,1,0,0]]
=> [1,1,1,0,1,1,0,0,0,1,0,0]
=> [1,0,1,1,1,0,0,1,0,0,1,0]
=> ([(0,3),(0,4),(1,5),(2,5),(3,5),(4,1),(4,2)],6)
=> 2
[[0,0,1,0,0,0],[0,1,-1,0,1,0],[1,0,0,0,0,0],[0,0,0,1,0,0],[0,0,1,-1,0,1],[0,0,0,1,0,0]]
=> [1,1,1,0,1,1,0,0,0,1,0,0]
=> [1,0,1,1,1,0,0,1,0,0,1,0]
=> ([(0,3),(0,4),(1,5),(2,5),(3,5),(4,1),(4,2)],6)
=> 2
[[0,0,1,0,0,0],[1,0,-1,0,1,0],[0,0,1,0,0,0],[0,1,-1,1,0,0],[0,0,1,-1,0,1],[0,0,0,1,0,0]]
=> [1,1,1,0,1,1,0,0,0,1,0,0]
=> [1,0,1,1,1,0,0,1,0,0,1,0]
=> ([(0,3),(0,4),(1,5),(2,5),(3,5),(4,1),(4,2)],6)
=> 2
[[0,0,1,0,0,0],[0,1,-1,0,1,0],[1,-1,1,0,0,0],[0,1,-1,1,0,0],[0,0,1,-1,0,1],[0,0,0,1,0,0]]
=> [1,1,1,0,1,1,0,0,0,1,0,0]
=> [1,0,1,1,1,0,0,1,0,0,1,0]
=> ([(0,3),(0,4),(1,5),(2,5),(3,5),(4,1),(4,2)],6)
=> 2
[[0,0,1,0,0,0],[0,0,0,0,1,0],[1,0,0,0,0,0],[0,1,-1,1,0,0],[0,0,1,-1,0,1],[0,0,0,1,0,0]]
=> [1,1,1,0,1,1,0,0,0,1,0,0]
=> [1,0,1,1,1,0,0,1,0,0,1,0]
=> ([(0,3),(0,4),(1,5),(2,5),(3,5),(4,1),(4,2)],6)
=> 2
[[0,0,1,0,0,0],[0,1,-1,0,1,0],[0,0,1,0,0,0],[1,0,-1,1,0,0],[0,0,1,-1,0,1],[0,0,0,1,0,0]]
=> [1,1,1,0,1,1,0,0,0,1,0,0]
=> [1,0,1,1,1,0,0,1,0,0,1,0]
=> ([(0,3),(0,4),(1,5),(2,5),(3,5),(4,1),(4,2)],6)
=> 2
[[0,0,1,0,0,0],[0,0,0,0,1,0],[0,1,0,0,0,0],[1,0,-1,1,0,0],[0,0,1,-1,0,1],[0,0,0,1,0,0]]
=> [1,1,1,0,1,1,0,0,0,1,0,0]
=> [1,0,1,1,1,0,0,1,0,0,1,0]
=> ([(0,3),(0,4),(1,5),(2,5),(3,5),(4,1),(4,2)],6)
=> 2
[[0,0,1,0,0,0],[1,0,-1,0,1,0],[0,0,0,1,0,0],[0,1,0,0,0,0],[0,0,1,-1,0,1],[0,0,0,1,0,0]]
=> [1,1,1,0,1,1,0,0,0,1,0,0]
=> [1,0,1,1,1,0,0,1,0,0,1,0]
=> ([(0,3),(0,4),(1,5),(2,5),(3,5),(4,1),(4,2)],6)
=> 2
Description
The number of 2-Gorenstein indecomposable injective modules in the incidence algebra of the lattice.
Matching statistic: St001879
Mp00007: Alternating sign matrices —to Dyck path⟶ Dyck paths
Mp00030: Dyck paths —zeta map⟶ Dyck paths
Mp00242: Dyck paths —Hessenberg poset⟶ Posets
St001879: Posets ⟶ ℤResult quality: 3% ●values known / values provided: 3%●distinct values known / distinct values provided: 25%
Mp00030: Dyck paths —zeta map⟶ Dyck paths
Mp00242: Dyck paths —Hessenberg poset⟶ Posets
St001879: Posets ⟶ ℤResult quality: 3% ●values known / values provided: 3%●distinct values known / distinct values provided: 25%
Values
[[1]]
=> [1,0]
=> [1,0]
=> ([],1)
=> ? = 0 + 8
[[1,0],[0,1]]
=> [1,0,1,0]
=> [1,1,0,0]
=> ([],2)
=> ? = 1 + 8
[[1,0,0],[0,1,0],[0,0,1]]
=> [1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> ([],3)
=> ? = 1 + 8
[[0,1,0],[1,-1,1],[0,1,0]]
=> [1,1,0,1,0,0]
=> [1,1,0,0,1,0]
=> ([(0,1),(0,2)],3)
=> ? = 1 + 8
[[0,1,0],[0,0,1],[1,0,0]]
=> [1,1,0,1,0,0]
=> [1,1,0,0,1,0]
=> ([(0,1),(0,2)],3)
=> ? = 1 + 8
[[1,0,0,0],[0,1,0,0],[0,0,1,0],[0,0,0,1]]
=> [1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> ([],4)
=> ? = 1 + 8
[[0,1,0,0],[1,-1,1,0],[0,1,0,0],[0,0,0,1]]
=> [1,1,0,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0]
=> ([(1,2),(1,3)],4)
=> ? = 2 + 8
[[0,1,0,0],[0,0,1,0],[1,0,0,0],[0,0,0,1]]
=> [1,1,0,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0]
=> ([(1,2),(1,3)],4)
=> ? = 2 + 8
[[1,0,0,0],[0,0,1,0],[0,1,-1,1],[0,0,1,0]]
=> [1,0,1,1,0,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> ? = 2 + 8
[[0,1,0,0],[1,-1,1,0],[0,1,-1,1],[0,0,1,0]]
=> [1,1,0,1,0,1,0,0]
=> [1,1,1,0,0,0,1,0]
=> ([(0,1),(0,2),(0,3)],4)
=> ? = 2 + 8
[[0,1,0,0],[0,0,1,0],[1,0,-1,1],[0,0,1,0]]
=> [1,1,0,1,0,1,0,0]
=> [1,1,1,0,0,0,1,0]
=> ([(0,1),(0,2),(0,3)],4)
=> ? = 2 + 8
[[0,0,1,0],[1,0,-1,1],[0,1,0,0],[0,0,1,0]]
=> [1,1,1,0,1,0,0,0]
=> [1,1,0,0,1,0,1,0]
=> ([(0,3),(3,1),(3,2)],4)
=> ? = 1 + 8
[[0,0,1,0],[0,1,-1,1],[1,0,0,0],[0,0,1,0]]
=> [1,1,1,0,1,0,0,0]
=> [1,1,0,0,1,0,1,0]
=> ([(0,3),(3,1),(3,2)],4)
=> ? = 1 + 8
[[1,0,0,0],[0,0,1,0],[0,0,0,1],[0,1,0,0]]
=> [1,0,1,1,0,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> ? = 2 + 8
[[0,1,0,0],[1,-1,1,0],[0,0,0,1],[0,1,0,0]]
=> [1,1,0,1,0,1,0,0]
=> [1,1,1,0,0,0,1,0]
=> ([(0,1),(0,2),(0,3)],4)
=> ? = 2 + 8
[[0,1,0,0],[0,0,1,0],[1,-1,0,1],[0,1,0,0]]
=> [1,1,0,1,0,1,0,0]
=> [1,1,1,0,0,0,1,0]
=> ([(0,1),(0,2),(0,3)],4)
=> ? = 2 + 8
[[0,0,1,0],[1,0,-1,1],[0,0,1,0],[0,1,0,0]]
=> [1,1,1,0,1,0,0,0]
=> [1,1,0,0,1,0,1,0]
=> ([(0,3),(3,1),(3,2)],4)
=> ? = 1 + 8
[[0,0,1,0],[0,1,-1,1],[1,-1,1,0],[0,1,0,0]]
=> [1,1,1,0,1,0,0,0]
=> [1,1,0,0,1,0,1,0]
=> ([(0,3),(3,1),(3,2)],4)
=> ? = 1 + 8
[[0,0,1,0],[0,0,0,1],[1,0,0,0],[0,1,0,0]]
=> [1,1,1,0,1,0,0,0]
=> [1,1,0,0,1,0,1,0]
=> ([(0,3),(3,1),(3,2)],4)
=> ? = 1 + 8
[[0,1,0,0],[0,0,1,0],[0,0,0,1],[1,0,0,0]]
=> [1,1,0,1,0,1,0,0]
=> [1,1,1,0,0,0,1,0]
=> ([(0,1),(0,2),(0,3)],4)
=> ? = 2 + 8
[[0,0,1,0],[0,1,-1,1],[0,0,1,0],[1,0,0,0]]
=> [1,1,1,0,1,0,0,0]
=> [1,1,0,0,1,0,1,0]
=> ([(0,3),(3,1),(3,2)],4)
=> ? = 1 + 8
[[0,0,1,0],[0,0,0,1],[0,1,0,0],[1,0,0,0]]
=> [1,1,1,0,1,0,0,0]
=> [1,1,0,0,1,0,1,0]
=> ([(0,3),(3,1),(3,2)],4)
=> ? = 1 + 8
[[1,0,0,0,0],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,1,0],[0,0,0,0,1]]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> ([],5)
=> ? = 1 + 8
[[0,1,0,0,0],[1,-1,1,0,0],[0,1,0,0,0],[0,0,0,1,0],[0,0,0,0,1]]
=> [1,1,0,1,0,0,1,0,1,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> ([(2,3),(2,4)],5)
=> ? = 2 + 8
[[0,1,0,0,0],[0,0,1,0,0],[1,0,0,0,0],[0,0,0,1,0],[0,0,0,0,1]]
=> [1,1,0,1,0,0,1,0,1,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> ([(2,3),(2,4)],5)
=> ? = 2 + 8
[[1,0,0,0,0],[0,0,1,0,0],[0,1,-1,1,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [1,0,1,1,0,1,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> ([(1,3),(1,4),(2,3),(2,4)],5)
=> ? = 2 + 8
[[0,1,0,0,0],[1,-1,1,0,0],[0,1,-1,1,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [1,1,0,1,0,1,0,0,1,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> ([(1,2),(1,3),(1,4)],5)
=> ? = 2 + 8
[[0,1,0,0,0],[0,0,1,0,0],[1,0,-1,1,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [1,1,0,1,0,1,0,0,1,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> ([(1,2),(1,3),(1,4)],5)
=> ? = 2 + 8
[[0,0,1,0,0],[1,0,-1,1,0],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [1,1,1,0,1,0,0,0,1,0]
=> [1,1,0,0,1,1,0,1,0,0]
=> ([(0,3),(0,4),(1,2),(2,3),(2,4)],5)
=> ? = 2 + 8
[[0,0,1,0,0],[0,1,-1,1,0],[1,0,0,0,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [1,1,1,0,1,0,0,0,1,0]
=> [1,1,0,0,1,1,0,1,0,0]
=> ([(0,3),(0,4),(1,2),(2,3),(2,4)],5)
=> ? = 2 + 8
[[1,0,0,0,0],[0,0,1,0,0],[0,0,0,1,0],[0,1,0,0,0],[0,0,0,0,1]]
=> [1,0,1,1,0,1,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> ([(1,3),(1,4),(2,3),(2,4)],5)
=> ? = 2 + 8
[[0,1,0,0,0],[1,-1,1,0,0],[0,0,0,1,0],[0,1,0,0,0],[0,0,0,0,1]]
=> [1,1,0,1,0,1,0,0,1,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> ([(1,2),(1,3),(1,4)],5)
=> ? = 2 + 8
[[0,1,0,0,0],[0,0,1,0,0],[1,-1,0,1,0],[0,1,0,0,0],[0,0,0,0,1]]
=> [1,1,0,1,0,1,0,0,1,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> ([(1,2),(1,3),(1,4)],5)
=> ? = 2 + 8
[[0,0,1,0,0],[1,0,-1,1,0],[0,0,1,0,0],[0,1,0,0,0],[0,0,0,0,1]]
=> [1,1,1,0,1,0,0,0,1,0]
=> [1,1,0,0,1,1,0,1,0,0]
=> ([(0,3),(0,4),(1,2),(2,3),(2,4)],5)
=> ? = 2 + 8
[[0,0,1,0,0],[0,1,-1,1,0],[1,-1,1,0,0],[0,1,0,0,0],[0,0,0,0,1]]
=> [1,1,1,0,1,0,0,0,1,0]
=> [1,1,0,0,1,1,0,1,0,0]
=> ([(0,3),(0,4),(1,2),(2,3),(2,4)],5)
=> ? = 2 + 8
[[0,0,1,0,0],[0,0,0,1,0],[1,0,0,0,0],[0,1,0,0,0],[0,0,0,0,1]]
=> [1,1,1,0,1,0,0,0,1,0]
=> [1,1,0,0,1,1,0,1,0,0]
=> ([(0,3),(0,4),(1,2),(2,3),(2,4)],5)
=> ? = 2 + 8
[[0,1,0,0,0],[0,0,1,0,0],[0,0,0,1,0],[1,0,0,0,0],[0,0,0,0,1]]
=> [1,1,0,1,0,1,0,0,1,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> ([(1,2),(1,3),(1,4)],5)
=> ? = 2 + 8
[[0,0,1,0,0],[0,1,-1,1,0],[0,0,1,0,0],[1,0,0,0,0],[0,0,0,0,1]]
=> [1,1,1,0,1,0,0,0,1,0]
=> [1,1,0,0,1,1,0,1,0,0]
=> ([(0,3),(0,4),(1,2),(2,3),(2,4)],5)
=> ? = 2 + 8
[[0,0,1,0,0],[0,0,0,1,0],[0,1,0,0,0],[1,0,0,0,0],[0,0,0,0,1]]
=> [1,1,1,0,1,0,0,0,1,0]
=> [1,1,0,0,1,1,0,1,0,0]
=> ([(0,3),(0,4),(1,2),(2,3),(2,4)],5)
=> ? = 2 + 8
[[1,0,0,0,0],[0,1,0,0,0],[0,0,0,1,0],[0,0,1,-1,1],[0,0,0,1,0]]
=> [1,0,1,0,1,1,0,1,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> ? = 2 + 8
[[1,0,0,0,0],[0,0,1,0,0],[0,1,-1,1,0],[0,0,1,-1,1],[0,0,0,1,0]]
=> [1,0,1,1,0,1,0,1,0,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4)],5)
=> ? = 2 + 8
[[0,1,0,0,0],[1,-1,1,0,0],[0,1,-1,1,0],[0,0,1,-1,1],[0,0,0,1,0]]
=> [1,1,0,1,0,1,0,1,0,0]
=> [1,1,1,1,0,0,0,0,1,0]
=> ([(0,1),(0,2),(0,3),(0,4)],5)
=> ? = 2 + 8
[[0,1,0,0,0],[0,0,1,0,0],[1,0,-1,1,0],[0,0,1,-1,1],[0,0,0,1,0]]
=> [1,1,0,1,0,1,0,1,0,0]
=> [1,1,1,1,0,0,0,0,1,0]
=> ([(0,1),(0,2),(0,3),(0,4)],5)
=> ? = 2 + 8
[[0,1,0,0,0],[1,-1,0,1,0],[0,1,0,0,0],[0,0,1,-1,1],[0,0,0,1,0]]
=> [1,1,0,1,1,0,0,1,0,0]
=> [1,1,0,1,1,0,0,0,1,0]
=> ([(0,1),(0,2),(0,3),(2,4),(3,4)],5)
=> ? = 2 + 8
[[0,0,1,0,0],[1,0,-1,1,0],[0,1,0,0,0],[0,0,1,-1,1],[0,0,0,1,0]]
=> [1,1,1,0,1,0,0,1,0,0]
=> [1,1,1,0,0,1,0,0,1,0]
=> ([(0,3),(0,4),(4,1),(4,2)],5)
=> ? = 2 + 8
[[0,1,0,0,0],[0,0,0,1,0],[1,0,0,0,0],[0,0,1,-1,1],[0,0,0,1,0]]
=> [1,1,0,1,1,0,0,1,0,0]
=> [1,1,0,1,1,0,0,0,1,0]
=> ([(0,1),(0,2),(0,3),(2,4),(3,4)],5)
=> ? = 2 + 8
[[0,0,1,0,0],[0,1,-1,1,0],[1,0,0,0,0],[0,0,1,-1,1],[0,0,0,1,0]]
=> [1,1,1,0,1,0,0,1,0,0]
=> [1,1,1,0,0,1,0,0,1,0]
=> ([(0,3),(0,4),(4,1),(4,2)],5)
=> ? = 2 + 8
[[1,0,0,0,0],[0,0,1,0,0],[0,0,0,1,0],[0,1,0,-1,1],[0,0,0,1,0]]
=> [1,0,1,1,0,1,0,1,0,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4)],5)
=> ? = 2 + 8
[[0,1,0,0,0],[1,-1,1,0,0],[0,0,0,1,0],[0,1,0,-1,1],[0,0,0,1,0]]
=> [1,1,0,1,0,1,0,1,0,0]
=> [1,1,1,1,0,0,0,0,1,0]
=> ([(0,1),(0,2),(0,3),(0,4)],5)
=> ? = 2 + 8
[[0,1,0,0,0],[0,0,1,0,0],[1,-1,0,1,0],[0,1,0,-1,1],[0,0,0,1,0]]
=> [1,1,0,1,0,1,0,1,0,0]
=> [1,1,1,1,0,0,0,0,1,0]
=> ([(0,1),(0,2),(0,3),(0,4)],5)
=> ? = 2 + 8
[[0,0,1,0,0,0],[1,0,-1,0,1,0],[0,1,0,0,0,0],[0,0,1,0,0,0],[0,0,0,1,-1,1],[0,0,0,0,1,0]]
=> [1,1,1,0,1,1,0,0,0,1,0,0]
=> [1,0,1,1,1,0,0,1,0,0,1,0]
=> ([(0,3),(0,4),(1,5),(2,5),(3,5),(4,1),(4,2)],6)
=> 10 = 2 + 8
[[0,0,1,0,0,0],[0,1,-1,0,1,0],[1,0,0,0,0,0],[0,0,1,0,0,0],[0,0,0,1,-1,1],[0,0,0,0,1,0]]
=> [1,1,1,0,1,1,0,0,0,1,0,0]
=> [1,0,1,1,1,0,0,1,0,0,1,0]
=> ([(0,3),(0,4),(1,5),(2,5),(3,5),(4,1),(4,2)],6)
=> 10 = 2 + 8
[[0,0,1,0,0,0],[1,0,-1,0,1,0],[0,0,1,0,0,0],[0,1,0,0,0,0],[0,0,0,1,-1,1],[0,0,0,0,1,0]]
=> [1,1,1,0,1,1,0,0,0,1,0,0]
=> [1,0,1,1,1,0,0,1,0,0,1,0]
=> ([(0,3),(0,4),(1,5),(2,5),(3,5),(4,1),(4,2)],6)
=> 10 = 2 + 8
[[0,0,1,0,0,0],[0,1,-1,0,1,0],[1,-1,1,0,0,0],[0,1,0,0,0,0],[0,0,0,1,-1,1],[0,0,0,0,1,0]]
=> [1,1,1,0,1,1,0,0,0,1,0,0]
=> [1,0,1,1,1,0,0,1,0,0,1,0]
=> ([(0,3),(0,4),(1,5),(2,5),(3,5),(4,1),(4,2)],6)
=> 10 = 2 + 8
[[0,0,1,0,0,0],[0,0,0,0,1,0],[1,0,0,0,0,0],[0,1,0,0,0,0],[0,0,0,1,-1,1],[0,0,0,0,1,0]]
=> [1,1,1,0,1,1,0,0,0,1,0,0]
=> [1,0,1,1,1,0,0,1,0,0,1,0]
=> ([(0,3),(0,4),(1,5),(2,5),(3,5),(4,1),(4,2)],6)
=> 10 = 2 + 8
[[0,0,1,0,0,0],[0,1,-1,0,1,0],[0,0,1,0,0,0],[1,0,0,0,0,0],[0,0,0,1,-1,1],[0,0,0,0,1,0]]
=> [1,1,1,0,1,1,0,0,0,1,0,0]
=> [1,0,1,1,1,0,0,1,0,0,1,0]
=> ([(0,3),(0,4),(1,5),(2,5),(3,5),(4,1),(4,2)],6)
=> 10 = 2 + 8
[[0,0,1,0,0,0],[0,0,0,0,1,0],[0,1,0,0,0,0],[1,0,0,0,0,0],[0,0,0,1,-1,1],[0,0,0,0,1,0]]
=> [1,1,1,0,1,1,0,0,0,1,0,0]
=> [1,0,1,1,1,0,0,1,0,0,1,0]
=> ([(0,3),(0,4),(1,5),(2,5),(3,5),(4,1),(4,2)],6)
=> 10 = 2 + 8
[[0,0,1,0,0,0],[1,0,-1,0,1,0],[0,1,0,0,0,0],[0,0,0,1,0,0],[0,0,1,0,-1,1],[0,0,0,0,1,0]]
=> [1,1,1,0,1,1,0,0,0,1,0,0]
=> [1,0,1,1,1,0,0,1,0,0,1,0]
=> ([(0,3),(0,4),(1,5),(2,5),(3,5),(4,1),(4,2)],6)
=> 10 = 2 + 8
[[0,0,1,0,0,0],[0,1,-1,0,1,0],[1,0,0,0,0,0],[0,0,0,1,0,0],[0,0,1,0,-1,1],[0,0,0,0,1,0]]
=> [1,1,1,0,1,1,0,0,0,1,0,0]
=> [1,0,1,1,1,0,0,1,0,0,1,0]
=> ([(0,3),(0,4),(1,5),(2,5),(3,5),(4,1),(4,2)],6)
=> 10 = 2 + 8
[[0,0,1,0,0,0],[1,0,-1,0,1,0],[0,0,1,0,0,0],[0,1,-1,1,0,0],[0,0,1,0,-1,1],[0,0,0,0,1,0]]
=> [1,1,1,0,1,1,0,0,0,1,0,0]
=> [1,0,1,1,1,0,0,1,0,0,1,0]
=> ([(0,3),(0,4),(1,5),(2,5),(3,5),(4,1),(4,2)],6)
=> 10 = 2 + 8
[[0,0,1,0,0,0],[0,1,-1,0,1,0],[1,-1,1,0,0,0],[0,1,-1,1,0,0],[0,0,1,0,-1,1],[0,0,0,0,1,0]]
=> [1,1,1,0,1,1,0,0,0,1,0,0]
=> [1,0,1,1,1,0,0,1,0,0,1,0]
=> ([(0,3),(0,4),(1,5),(2,5),(3,5),(4,1),(4,2)],6)
=> 10 = 2 + 8
[[0,0,1,0,0,0],[0,0,0,0,1,0],[1,0,0,0,0,0],[0,1,-1,1,0,0],[0,0,1,0,-1,1],[0,0,0,0,1,0]]
=> [1,1,1,0,1,1,0,0,0,1,0,0]
=> [1,0,1,1,1,0,0,1,0,0,1,0]
=> ([(0,3),(0,4),(1,5),(2,5),(3,5),(4,1),(4,2)],6)
=> 10 = 2 + 8
[[0,0,1,0,0,0],[0,1,-1,0,1,0],[0,0,1,0,0,0],[1,0,-1,1,0,0],[0,0,1,0,-1,1],[0,0,0,0,1,0]]
=> [1,1,1,0,1,1,0,0,0,1,0,0]
=> [1,0,1,1,1,0,0,1,0,0,1,0]
=> ([(0,3),(0,4),(1,5),(2,5),(3,5),(4,1),(4,2)],6)
=> 10 = 2 + 8
[[0,0,1,0,0,0],[0,0,0,0,1,0],[0,1,0,0,0,0],[1,0,-1,1,0,0],[0,0,1,0,-1,1],[0,0,0,0,1,0]]
=> [1,1,1,0,1,1,0,0,0,1,0,0]
=> [1,0,1,1,1,0,0,1,0,0,1,0]
=> ([(0,3),(0,4),(1,5),(2,5),(3,5),(4,1),(4,2)],6)
=> 10 = 2 + 8
[[0,0,1,0,0,0],[1,0,-1,0,1,0],[0,0,0,1,0,0],[0,1,0,0,0,0],[0,0,1,0,-1,1],[0,0,0,0,1,0]]
=> [1,1,1,0,1,1,0,0,0,1,0,0]
=> [1,0,1,1,1,0,0,1,0,0,1,0]
=> ([(0,3),(0,4),(1,5),(2,5),(3,5),(4,1),(4,2)],6)
=> 10 = 2 + 8
[[0,0,1,0,0,0],[0,1,-1,0,1,0],[1,-1,0,1,0,0],[0,1,0,0,0,0],[0,0,1,0,-1,1],[0,0,0,0,1,0]]
=> [1,1,1,0,1,1,0,0,0,1,0,0]
=> [1,0,1,1,1,0,0,1,0,0,1,0]
=> ([(0,3),(0,4),(1,5),(2,5),(3,5),(4,1),(4,2)],6)
=> 10 = 2 + 8
[[0,0,1,0,0,0],[0,0,0,0,1,0],[1,0,-1,1,0,0],[0,1,0,0,0,0],[0,0,1,0,-1,1],[0,0,0,0,1,0]]
=> [1,1,1,0,1,1,0,0,0,1,0,0]
=> [1,0,1,1,1,0,0,1,0,0,1,0]
=> ([(0,3),(0,4),(1,5),(2,5),(3,5),(4,1),(4,2)],6)
=> 10 = 2 + 8
[[0,0,1,0,0,0],[0,1,-1,0,1,0],[0,0,0,1,0,0],[1,0,0,0,0,0],[0,0,1,0,-1,1],[0,0,0,0,1,0]]
=> [1,1,1,0,1,1,0,0,0,1,0,0]
=> [1,0,1,1,1,0,0,1,0,0,1,0]
=> ([(0,3),(0,4),(1,5),(2,5),(3,5),(4,1),(4,2)],6)
=> 10 = 2 + 8
[[0,0,1,0,0,0],[0,0,0,0,1,0],[0,1,-1,1,0,0],[1,0,0,0,0,0],[0,0,1,0,-1,1],[0,0,0,0,1,0]]
=> [1,1,1,0,1,1,0,0,0,1,0,0]
=> [1,0,1,1,1,0,0,1,0,0,1,0]
=> ([(0,3),(0,4),(1,5),(2,5),(3,5),(4,1),(4,2)],6)
=> 10 = 2 + 8
[[0,0,1,0,0,0],[1,0,-1,0,1,0],[0,0,1,0,0,0],[0,0,0,1,0,0],[0,1,0,0,-1,1],[0,0,0,0,1,0]]
=> [1,1,1,0,1,1,0,0,0,1,0,0]
=> [1,0,1,1,1,0,0,1,0,0,1,0]
=> ([(0,3),(0,4),(1,5),(2,5),(3,5),(4,1),(4,2)],6)
=> 10 = 2 + 8
[[0,0,1,0,0,0],[0,1,-1,0,1,0],[1,-1,1,0,0,0],[0,0,0,1,0,0],[0,1,0,0,-1,1],[0,0,0,0,1,0]]
=> [1,1,1,0,1,1,0,0,0,1,0,0]
=> [1,0,1,1,1,0,0,1,0,0,1,0]
=> ([(0,3),(0,4),(1,5),(2,5),(3,5),(4,1),(4,2)],6)
=> 10 = 2 + 8
[[0,0,1,0,0,0],[0,0,0,0,1,0],[1,0,0,0,0,0],[0,0,0,1,0,0],[0,1,0,0,-1,1],[0,0,0,0,1,0]]
=> [1,1,1,0,1,1,0,0,0,1,0,0]
=> [1,0,1,1,1,0,0,1,0,0,1,0]
=> ([(0,3),(0,4),(1,5),(2,5),(3,5),(4,1),(4,2)],6)
=> 10 = 2 + 8
[[0,0,1,0,0,0],[0,1,-1,0,1,0],[0,0,1,0,0,0],[1,-1,0,1,0,0],[0,1,0,0,-1,1],[0,0,0,0,1,0]]
=> [1,1,1,0,1,1,0,0,0,1,0,0]
=> [1,0,1,1,1,0,0,1,0,0,1,0]
=> ([(0,3),(0,4),(1,5),(2,5),(3,5),(4,1),(4,2)],6)
=> 10 = 2 + 8
[[0,0,1,0,0,0],[0,0,0,0,1,0],[0,1,0,0,0,0],[1,-1,0,1,0,0],[0,1,0,0,-1,1],[0,0,0,0,1,0]]
=> [1,1,1,0,1,1,0,0,0,1,0,0]
=> [1,0,1,1,1,0,0,1,0,0,1,0]
=> ([(0,3),(0,4),(1,5),(2,5),(3,5),(4,1),(4,2)],6)
=> 10 = 2 + 8
[[0,0,1,0,0,0],[1,0,-1,0,1,0],[0,0,0,1,0,0],[0,0,1,0,0,0],[0,1,0,0,-1,1],[0,0,0,0,1,0]]
=> [1,1,1,0,1,1,0,0,0,1,0,0]
=> [1,0,1,1,1,0,0,1,0,0,1,0]
=> ([(0,3),(0,4),(1,5),(2,5),(3,5),(4,1),(4,2)],6)
=> 10 = 2 + 8
[[0,0,1,0,0,0],[0,1,-1,0,1,0],[1,-1,0,1,0,0],[0,0,1,0,0,0],[0,1,0,0,-1,1],[0,0,0,0,1,0]]
=> [1,1,1,0,1,1,0,0,0,1,0,0]
=> [1,0,1,1,1,0,0,1,0,0,1,0]
=> ([(0,3),(0,4),(1,5),(2,5),(3,5),(4,1),(4,2)],6)
=> 10 = 2 + 8
[[0,0,1,0,0,0],[0,0,0,0,1,0],[1,0,-1,1,0,0],[0,0,1,0,0,0],[0,1,0,0,-1,1],[0,0,0,0,1,0]]
=> [1,1,1,0,1,1,0,0,0,1,0,0]
=> [1,0,1,1,1,0,0,1,0,0,1,0]
=> ([(0,3),(0,4),(1,5),(2,5),(3,5),(4,1),(4,2)],6)
=> 10 = 2 + 8
[[0,0,1,0,0,0],[0,1,-1,0,1,0],[0,0,0,1,0,0],[1,-1,1,0,0,0],[0,1,0,0,-1,1],[0,0,0,0,1,0]]
=> [1,1,1,0,1,1,0,0,0,1,0,0]
=> [1,0,1,1,1,0,0,1,0,0,1,0]
=> ([(0,3),(0,4),(1,5),(2,5),(3,5),(4,1),(4,2)],6)
=> 10 = 2 + 8
[[0,0,1,0,0,0],[0,0,0,0,1,0],[0,1,-1,1,0,0],[1,-1,1,0,0,0],[0,1,0,0,-1,1],[0,0,0,0,1,0]]
=> [1,1,1,0,1,1,0,0,0,1,0,0]
=> [1,0,1,1,1,0,0,1,0,0,1,0]
=> ([(0,3),(0,4),(1,5),(2,5),(3,5),(4,1),(4,2)],6)
=> 10 = 2 + 8
[[0,0,1,0,0,0],[0,0,0,0,1,0],[0,0,0,1,0,0],[1,0,0,0,0,0],[0,1,0,0,-1,1],[0,0,0,0,1,0]]
=> [1,1,1,0,1,1,0,0,0,1,0,0]
=> [1,0,1,1,1,0,0,1,0,0,1,0]
=> ([(0,3),(0,4),(1,5),(2,5),(3,5),(4,1),(4,2)],6)
=> 10 = 2 + 8
[[0,0,1,0,0,0],[0,1,-1,0,1,0],[0,0,1,0,0,0],[0,0,0,1,0,0],[1,0,0,0,-1,1],[0,0,0,0,1,0]]
=> [1,1,1,0,1,1,0,0,0,1,0,0]
=> [1,0,1,1,1,0,0,1,0,0,1,0]
=> ([(0,3),(0,4),(1,5),(2,5),(3,5),(4,1),(4,2)],6)
=> 10 = 2 + 8
[[0,0,1,0,0,0],[0,0,0,0,1,0],[0,1,0,0,0,0],[0,0,0,1,0,0],[1,0,0,0,-1,1],[0,0,0,0,1,0]]
=> [1,1,1,0,1,1,0,0,0,1,0,0]
=> [1,0,1,1,1,0,0,1,0,0,1,0]
=> ([(0,3),(0,4),(1,5),(2,5),(3,5),(4,1),(4,2)],6)
=> 10 = 2 + 8
[[0,0,1,0,0,0],[0,1,-1,0,1,0],[0,0,0,1,0,0],[0,0,1,0,0,0],[1,0,0,0,-1,1],[0,0,0,0,1,0]]
=> [1,1,1,0,1,1,0,0,0,1,0,0]
=> [1,0,1,1,1,0,0,1,0,0,1,0]
=> ([(0,3),(0,4),(1,5),(2,5),(3,5),(4,1),(4,2)],6)
=> 10 = 2 + 8
[[0,0,1,0,0,0],[0,0,0,0,1,0],[0,1,-1,1,0,0],[0,0,1,0,0,0],[1,0,0,0,-1,1],[0,0,0,0,1,0]]
=> [1,1,1,0,1,1,0,0,0,1,0,0]
=> [1,0,1,1,1,0,0,1,0,0,1,0]
=> ([(0,3),(0,4),(1,5),(2,5),(3,5),(4,1),(4,2)],6)
=> 10 = 2 + 8
[[0,0,1,0,0,0],[0,0,0,0,1,0],[0,0,0,1,0,0],[0,1,0,0,0,0],[1,0,0,0,-1,1],[0,0,0,0,1,0]]
=> [1,1,1,0,1,1,0,0,0,1,0,0]
=> [1,0,1,1,1,0,0,1,0,0,1,0]
=> ([(0,3),(0,4),(1,5),(2,5),(3,5),(4,1),(4,2)],6)
=> 10 = 2 + 8
[[0,0,1,0,0,0],[1,0,-1,0,1,0],[0,1,0,0,0,0],[0,0,1,0,0,0],[0,0,0,0,0,1],[0,0,0,1,0,0]]
=> [1,1,1,0,1,1,0,0,0,1,0,0]
=> [1,0,1,1,1,0,0,1,0,0,1,0]
=> ([(0,3),(0,4),(1,5),(2,5),(3,5),(4,1),(4,2)],6)
=> 10 = 2 + 8
[[0,0,1,0,0,0],[0,1,-1,0,1,0],[1,0,0,0,0,0],[0,0,1,0,0,0],[0,0,0,0,0,1],[0,0,0,1,0,0]]
=> [1,1,1,0,1,1,0,0,0,1,0,0]
=> [1,0,1,1,1,0,0,1,0,0,1,0]
=> ([(0,3),(0,4),(1,5),(2,5),(3,5),(4,1),(4,2)],6)
=> 10 = 2 + 8
[[0,0,1,0,0,0],[1,0,-1,0,1,0],[0,0,1,0,0,0],[0,1,0,0,0,0],[0,0,0,0,0,1],[0,0,0,1,0,0]]
=> [1,1,1,0,1,1,0,0,0,1,0,0]
=> [1,0,1,1,1,0,0,1,0,0,1,0]
=> ([(0,3),(0,4),(1,5),(2,5),(3,5),(4,1),(4,2)],6)
=> 10 = 2 + 8
[[0,0,1,0,0,0],[0,1,-1,0,1,0],[1,-1,1,0,0,0],[0,1,0,0,0,0],[0,0,0,0,0,1],[0,0,0,1,0,0]]
=> [1,1,1,0,1,1,0,0,0,1,0,0]
=> [1,0,1,1,1,0,0,1,0,0,1,0]
=> ([(0,3),(0,4),(1,5),(2,5),(3,5),(4,1),(4,2)],6)
=> 10 = 2 + 8
[[0,0,1,0,0,0],[0,0,0,0,1,0],[1,0,0,0,0,0],[0,1,0,0,0,0],[0,0,0,0,0,1],[0,0,0,1,0,0]]
=> [1,1,1,0,1,1,0,0,0,1,0,0]
=> [1,0,1,1,1,0,0,1,0,0,1,0]
=> ([(0,3),(0,4),(1,5),(2,5),(3,5),(4,1),(4,2)],6)
=> 10 = 2 + 8
[[0,0,1,0,0,0],[0,1,-1,0,1,0],[0,0,1,0,0,0],[1,0,0,0,0,0],[0,0,0,0,0,1],[0,0,0,1,0,0]]
=> [1,1,1,0,1,1,0,0,0,1,0,0]
=> [1,0,1,1,1,0,0,1,0,0,1,0]
=> ([(0,3),(0,4),(1,5),(2,5),(3,5),(4,1),(4,2)],6)
=> 10 = 2 + 8
[[0,0,1,0,0,0],[0,0,0,0,1,0],[0,1,0,0,0,0],[1,0,0,0,0,0],[0,0,0,0,0,1],[0,0,0,1,0,0]]
=> [1,1,1,0,1,1,0,0,0,1,0,0]
=> [1,0,1,1,1,0,0,1,0,0,1,0]
=> ([(0,3),(0,4),(1,5),(2,5),(3,5),(4,1),(4,2)],6)
=> 10 = 2 + 8
[[0,0,1,0,0,0],[1,0,-1,0,1,0],[0,1,0,0,0,0],[0,0,0,1,0,0],[0,0,1,-1,0,1],[0,0,0,1,0,0]]
=> [1,1,1,0,1,1,0,0,0,1,0,0]
=> [1,0,1,1,1,0,0,1,0,0,1,0]
=> ([(0,3),(0,4),(1,5),(2,5),(3,5),(4,1),(4,2)],6)
=> 10 = 2 + 8
[[0,0,1,0,0,0],[0,1,-1,0,1,0],[1,0,0,0,0,0],[0,0,0,1,0,0],[0,0,1,-1,0,1],[0,0,0,1,0,0]]
=> [1,1,1,0,1,1,0,0,0,1,0,0]
=> [1,0,1,1,1,0,0,1,0,0,1,0]
=> ([(0,3),(0,4),(1,5),(2,5),(3,5),(4,1),(4,2)],6)
=> 10 = 2 + 8
[[0,0,1,0,0,0],[1,0,-1,0,1,0],[0,0,1,0,0,0],[0,1,-1,1,0,0],[0,0,1,-1,0,1],[0,0,0,1,0,0]]
=> [1,1,1,0,1,1,0,0,0,1,0,0]
=> [1,0,1,1,1,0,0,1,0,0,1,0]
=> ([(0,3),(0,4),(1,5),(2,5),(3,5),(4,1),(4,2)],6)
=> 10 = 2 + 8
[[0,0,1,0,0,0],[0,1,-1,0,1,0],[1,-1,1,0,0,0],[0,1,-1,1,0,0],[0,0,1,-1,0,1],[0,0,0,1,0,0]]
=> [1,1,1,0,1,1,0,0,0,1,0,0]
=> [1,0,1,1,1,0,0,1,0,0,1,0]
=> ([(0,3),(0,4),(1,5),(2,5),(3,5),(4,1),(4,2)],6)
=> 10 = 2 + 8
[[0,0,1,0,0,0],[0,0,0,0,1,0],[1,0,0,0,0,0],[0,1,-1,1,0,0],[0,0,1,-1,0,1],[0,0,0,1,0,0]]
=> [1,1,1,0,1,1,0,0,0,1,0,0]
=> [1,0,1,1,1,0,0,1,0,0,1,0]
=> ([(0,3),(0,4),(1,5),(2,5),(3,5),(4,1),(4,2)],6)
=> 10 = 2 + 8
[[0,0,1,0,0,0],[0,1,-1,0,1,0],[0,0,1,0,0,0],[1,0,-1,1,0,0],[0,0,1,-1,0,1],[0,0,0,1,0,0]]
=> [1,1,1,0,1,1,0,0,0,1,0,0]
=> [1,0,1,1,1,0,0,1,0,0,1,0]
=> ([(0,3),(0,4),(1,5),(2,5),(3,5),(4,1),(4,2)],6)
=> 10 = 2 + 8
[[0,0,1,0,0,0],[0,0,0,0,1,0],[0,1,0,0,0,0],[1,0,-1,1,0,0],[0,0,1,-1,0,1],[0,0,0,1,0,0]]
=> [1,1,1,0,1,1,0,0,0,1,0,0]
=> [1,0,1,1,1,0,0,1,0,0,1,0]
=> ([(0,3),(0,4),(1,5),(2,5),(3,5),(4,1),(4,2)],6)
=> 10 = 2 + 8
[[0,0,1,0,0,0],[1,0,-1,0,1,0],[0,0,0,1,0,0],[0,1,0,0,0,0],[0,0,1,-1,0,1],[0,0,0,1,0,0]]
=> [1,1,1,0,1,1,0,0,0,1,0,0]
=> [1,0,1,1,1,0,0,1,0,0,1,0]
=> ([(0,3),(0,4),(1,5),(2,5),(3,5),(4,1),(4,2)],6)
=> 10 = 2 + 8
Description
The number of indecomposable summands of the top of the first syzygy of the dual of the regular module in the incidence algebra of the lattice.
Matching statistic: St001488
Mp00007: Alternating sign matrices —to Dyck path⟶ Dyck paths
Mp00120: Dyck paths —Lalanne-Kreweras involution⟶ Dyck paths
Mp00233: Dyck paths —skew partition⟶ Skew partitions
St001488: Skew partitions ⟶ ℤResult quality: 1% ●values known / values provided: 1%●distinct values known / distinct values provided: 75%
Mp00120: Dyck paths —Lalanne-Kreweras involution⟶ Dyck paths
Mp00233: Dyck paths —skew partition⟶ Skew partitions
St001488: Skew partitions ⟶ ℤResult quality: 1% ●values known / values provided: 1%●distinct values known / distinct values provided: 75%
Values
[[1]]
=> [1,0]
=> [1,0]
=> [[1],[]]
=> 1 = 0 + 1
[[1,0],[0,1]]
=> [1,0,1,0]
=> [1,1,0,0]
=> [[2],[]]
=> 2 = 1 + 1
[[1,0,0],[0,1,0],[0,0,1]]
=> [1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> [[2,2],[]]
=> 2 = 1 + 1
[[0,1,0],[1,-1,1],[0,1,0]]
=> [1,1,0,1,0,0]
=> [1,1,0,1,0,0]
=> [[3],[]]
=> 2 = 1 + 1
[[0,1,0],[0,0,1],[1,0,0]]
=> [1,1,0,1,0,0]
=> [1,1,0,1,0,0]
=> [[3],[]]
=> 2 = 1 + 1
[[1,0,0,0],[0,1,0,0],[0,0,1,0],[0,0,0,1]]
=> [1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> [[3,3],[]]
=> ? = 1 + 1
[[0,1,0,0],[1,-1,1,0],[0,1,0,0],[0,0,0,1]]
=> [1,1,0,1,0,0,1,0]
=> [1,1,0,1,1,0,0,0]
=> [[3,3],[1]]
=> 3 = 2 + 1
[[0,1,0,0],[0,0,1,0],[1,0,0,0],[0,0,0,1]]
=> [1,1,0,1,0,0,1,0]
=> [1,1,0,1,1,0,0,0]
=> [[3,3],[1]]
=> 3 = 2 + 1
[[1,0,0,0],[0,0,1,0],[0,1,-1,1],[0,0,1,0]]
=> [1,0,1,1,0,1,0,0]
=> [1,1,1,0,0,1,0,0]
=> [[3,2],[]]
=> 3 = 2 + 1
[[0,1,0,0],[1,-1,1,0],[0,1,-1,1],[0,0,1,0]]
=> [1,1,0,1,0,1,0,0]
=> [1,1,1,0,1,0,0,0]
=> [[2,2,2],[]]
=> ? = 2 + 1
[[0,1,0,0],[0,0,1,0],[1,0,-1,1],[0,0,1,0]]
=> [1,1,0,1,0,1,0,0]
=> [1,1,1,0,1,0,0,0]
=> [[2,2,2],[]]
=> ? = 2 + 1
[[0,0,1,0],[1,0,-1,1],[0,1,0,0],[0,0,1,0]]
=> [1,1,1,0,1,0,0,0]
=> [1,1,0,1,0,1,0,0]
=> [[4],[]]
=> 2 = 1 + 1
[[0,0,1,0],[0,1,-1,1],[1,0,0,0],[0,0,1,0]]
=> [1,1,1,0,1,0,0,0]
=> [1,1,0,1,0,1,0,0]
=> [[4],[]]
=> 2 = 1 + 1
[[1,0,0,0],[0,0,1,0],[0,0,0,1],[0,1,0,0]]
=> [1,0,1,1,0,1,0,0]
=> [1,1,1,0,0,1,0,0]
=> [[3,2],[]]
=> 3 = 2 + 1
[[0,1,0,0],[1,-1,1,0],[0,0,0,1],[0,1,0,0]]
=> [1,1,0,1,0,1,0,0]
=> [1,1,1,0,1,0,0,0]
=> [[2,2,2],[]]
=> ? = 2 + 1
[[0,1,0,0],[0,0,1,0],[1,-1,0,1],[0,1,0,0]]
=> [1,1,0,1,0,1,0,0]
=> [1,1,1,0,1,0,0,0]
=> [[2,2,2],[]]
=> ? = 2 + 1
[[0,0,1,0],[1,0,-1,1],[0,0,1,0],[0,1,0,0]]
=> [1,1,1,0,1,0,0,0]
=> [1,1,0,1,0,1,0,0]
=> [[4],[]]
=> 2 = 1 + 1
[[0,0,1,0],[0,1,-1,1],[1,-1,1,0],[0,1,0,0]]
=> [1,1,1,0,1,0,0,0]
=> [1,1,0,1,0,1,0,0]
=> [[4],[]]
=> 2 = 1 + 1
[[0,0,1,0],[0,0,0,1],[1,0,0,0],[0,1,0,0]]
=> [1,1,1,0,1,0,0,0]
=> [1,1,0,1,0,1,0,0]
=> [[4],[]]
=> 2 = 1 + 1
[[0,1,0,0],[0,0,1,0],[0,0,0,1],[1,0,0,0]]
=> [1,1,0,1,0,1,0,0]
=> [1,1,1,0,1,0,0,0]
=> [[2,2,2],[]]
=> ? = 2 + 1
[[0,0,1,0],[0,1,-1,1],[0,0,1,0],[1,0,0,0]]
=> [1,1,1,0,1,0,0,0]
=> [1,1,0,1,0,1,0,0]
=> [[4],[]]
=> 2 = 1 + 1
[[0,0,1,0],[0,0,0,1],[0,1,0,0],[1,0,0,0]]
=> [1,1,1,0,1,0,0,0]
=> [1,1,0,1,0,1,0,0]
=> [[4],[]]
=> 2 = 1 + 1
[[1,0,0,0,0],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,1,0],[0,0,0,0,1]]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [[3,3,3],[]]
=> ? = 1 + 1
[[0,1,0,0,0],[1,-1,1,0,0],[0,1,0,0,0],[0,0,0,1,0],[0,0,0,0,1]]
=> [1,1,0,1,0,0,1,0,1,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> [[4,4],[1]]
=> ? = 2 + 1
[[0,1,0,0,0],[0,0,1,0,0],[1,0,0,0,0],[0,0,0,1,0],[0,0,0,0,1]]
=> [1,1,0,1,0,0,1,0,1,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> [[4,4],[1]]
=> ? = 2 + 1
[[1,0,0,0,0],[0,0,1,0,0],[0,1,-1,1,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [1,0,1,1,0,1,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> [[3,3,2],[1]]
=> ? = 2 + 1
[[0,1,0,0,0],[1,-1,1,0,0],[0,1,-1,1,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [1,1,0,1,0,1,0,0,1,0]
=> [1,1,1,0,1,1,0,0,0,0]
=> [[3,3,2],[]]
=> ? = 2 + 1
[[0,1,0,0,0],[0,0,1,0,0],[1,0,-1,1,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [1,1,0,1,0,1,0,0,1,0]
=> [1,1,1,0,1,1,0,0,0,0]
=> [[3,3,2],[]]
=> ? = 2 + 1
[[0,0,1,0,0],[1,0,-1,1,0],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [1,1,1,0,1,0,0,0,1,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> [[4,4],[2]]
=> ? = 2 + 1
[[0,0,1,0,0],[0,1,-1,1,0],[1,0,0,0,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [1,1,1,0,1,0,0,0,1,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> [[4,4],[2]]
=> ? = 2 + 1
[[1,0,0,0,0],[0,0,1,0,0],[0,0,0,1,0],[0,1,0,0,0],[0,0,0,0,1]]
=> [1,0,1,1,0,1,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> [[3,3,2],[1]]
=> ? = 2 + 1
[[0,1,0,0,0],[1,-1,1,0,0],[0,0,0,1,0],[0,1,0,0,0],[0,0,0,0,1]]
=> [1,1,0,1,0,1,0,0,1,0]
=> [1,1,1,0,1,1,0,0,0,0]
=> [[3,3,2],[]]
=> ? = 2 + 1
[[0,1,0,0,0],[0,0,1,0,0],[1,-1,0,1,0],[0,1,0,0,0],[0,0,0,0,1]]
=> [1,1,0,1,0,1,0,0,1,0]
=> [1,1,1,0,1,1,0,0,0,0]
=> [[3,3,2],[]]
=> ? = 2 + 1
[[0,0,1,0,0],[1,0,-1,1,0],[0,0,1,0,0],[0,1,0,0,0],[0,0,0,0,1]]
=> [1,1,1,0,1,0,0,0,1,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> [[4,4],[2]]
=> ? = 2 + 1
[[0,0,1,0,0],[0,1,-1,1,0],[1,-1,1,0,0],[0,1,0,0,0],[0,0,0,0,1]]
=> [1,1,1,0,1,0,0,0,1,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> [[4,4],[2]]
=> ? = 2 + 1
[[0,0,1,0,0],[0,0,0,1,0],[1,0,0,0,0],[0,1,0,0,0],[0,0,0,0,1]]
=> [1,1,1,0,1,0,0,0,1,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> [[4,4],[2]]
=> ? = 2 + 1
[[0,1,0,0,0],[0,0,1,0,0],[0,0,0,1,0],[1,0,0,0,0],[0,0,0,0,1]]
=> [1,1,0,1,0,1,0,0,1,0]
=> [1,1,1,0,1,1,0,0,0,0]
=> [[3,3,2],[]]
=> ? = 2 + 1
[[0,0,1,0,0],[0,1,-1,1,0],[0,0,1,0,0],[1,0,0,0,0],[0,0,0,0,1]]
=> [1,1,1,0,1,0,0,0,1,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> [[4,4],[2]]
=> ? = 2 + 1
[[0,0,1,0,0],[0,0,0,1,0],[0,1,0,0,0],[1,0,0,0,0],[0,0,0,0,1]]
=> [1,1,1,0,1,0,0,0,1,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> [[4,4],[2]]
=> ? = 2 + 1
[[1,0,0,0,0],[0,1,0,0,0],[0,0,0,1,0],[0,0,1,-1,1],[0,0,0,1,0]]
=> [1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> [[4,3],[]]
=> ? = 2 + 1
[[1,0,0,0,0],[0,0,1,0,0],[0,1,-1,1,0],[0,0,1,-1,1],[0,0,0,1,0]]
=> [1,0,1,1,0,1,0,1,0,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> [[3,3,3],[1]]
=> ? = 2 + 1
[[0,1,0,0,0],[1,-1,1,0,0],[0,1,-1,1,0],[0,0,1,-1,1],[0,0,0,1,0]]
=> [1,1,0,1,0,1,0,1,0,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> [[4,4],[]]
=> ? = 2 + 1
[[0,1,0,0,0],[0,0,1,0,0],[1,0,-1,1,0],[0,0,1,-1,1],[0,0,0,1,0]]
=> [1,1,0,1,0,1,0,1,0,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> [[4,4],[]]
=> ? = 2 + 1
[[0,1,0,0,0],[1,-1,0,1,0],[0,1,0,0,0],[0,0,1,-1,1],[0,0,0,1,0]]
=> [1,1,0,1,1,0,0,1,0,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> [[4,3],[1]]
=> ? = 2 + 1
[[0,0,1,0,0],[1,0,-1,1,0],[0,1,0,0,0],[0,0,1,-1,1],[0,0,0,1,0]]
=> [1,1,1,0,1,0,0,1,0,0]
=> [1,1,0,1,1,0,1,0,0,0]
=> [[3,3,3],[1,1]]
=> ? = 2 + 1
[[0,1,0,0,0],[0,0,0,1,0],[1,0,0,0,0],[0,0,1,-1,1],[0,0,0,1,0]]
=> [1,1,0,1,1,0,0,1,0,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> [[4,3],[1]]
=> ? = 2 + 1
[[0,0,1,0,0],[0,1,-1,1,0],[1,0,0,0,0],[0,0,1,-1,1],[0,0,0,1,0]]
=> [1,1,1,0,1,0,0,1,0,0]
=> [1,1,0,1,1,0,1,0,0,0]
=> [[3,3,3],[1,1]]
=> ? = 2 + 1
[[1,0,0,0,0],[0,0,1,0,0],[0,0,0,1,0],[0,1,0,-1,1],[0,0,0,1,0]]
=> [1,0,1,1,0,1,0,1,0,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> [[3,3,3],[1]]
=> ? = 2 + 1
[[0,1,0,0,0],[1,-1,1,0,0],[0,0,0,1,0],[0,1,0,-1,1],[0,0,0,1,0]]
=> [1,1,0,1,0,1,0,1,0,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> [[4,4],[]]
=> ? = 2 + 1
[[0,1,0,0,0],[0,0,1,0,0],[1,-1,0,1,0],[0,1,0,-1,1],[0,0,0,1,0]]
=> [1,1,0,1,0,1,0,1,0,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> [[4,4],[]]
=> ? = 2 + 1
[[0,1,0,0,0],[1,-1,0,1,0],[0,0,1,0,0],[0,1,0,-1,1],[0,0,0,1,0]]
=> [1,1,0,1,1,0,0,1,0,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> [[4,3],[1]]
=> ? = 2 + 1
[[0,0,1,0,0],[1,0,-1,1,0],[0,0,1,0,0],[0,1,0,-1,1],[0,0,0,1,0]]
=> [1,1,1,0,1,0,0,1,0,0]
=> [1,1,0,1,1,0,1,0,0,0]
=> [[3,3,3],[1,1]]
=> ? = 2 + 1
[[0,1,0,0,0],[0,0,0,1,0],[1,-1,1,0,0],[0,1,0,-1,1],[0,0,0,1,0]]
=> [1,1,0,1,1,0,0,1,0,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> [[4,3],[1]]
=> ? = 2 + 1
[[0,0,1,0,0],[0,1,-1,1,0],[1,-1,1,0,0],[0,1,0,-1,1],[0,0,0,1,0]]
=> [1,1,1,0,1,0,0,1,0,0]
=> [1,1,0,1,1,0,1,0,0,0]
=> [[3,3,3],[1,1]]
=> ? = 2 + 1
[[0,0,1,0,0],[0,0,0,1,0],[1,0,0,0,0],[0,1,0,-1,1],[0,0,0,1,0]]
=> [1,1,1,0,1,0,0,1,0,0]
=> [1,1,0,1,1,0,1,0,0,0]
=> [[3,3,3],[1,1]]
=> ? = 2 + 1
[[0,1,0,0,0],[0,0,1,0,0],[0,0,0,1,0],[1,0,0,-1,1],[0,0,0,1,0]]
=> [1,1,0,1,0,1,0,1,0,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> [[4,4],[]]
=> ? = 2 + 1
[[0,1,0,0,0],[0,0,0,1,0],[0,0,1,0,0],[1,0,0,-1,1],[0,0,0,1,0]]
=> [1,1,0,1,1,0,0,1,0,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> [[4,3],[1]]
=> ? = 2 + 1
[[0,0,1,0,0],[0,1,-1,1,0],[0,0,1,0,0],[1,0,0,-1,1],[0,0,0,1,0]]
=> [1,1,1,0,1,0,0,1,0,0]
=> [1,1,0,1,1,0,1,0,0,0]
=> [[3,3,3],[1,1]]
=> ? = 2 + 1
[[0,0,1,0,0],[0,0,0,1,0],[0,1,0,0,0],[1,0,0,-1,1],[0,0,0,1,0]]
=> [1,1,1,0,1,0,0,1,0,0]
=> [1,1,0,1,1,0,1,0,0,0]
=> [[3,3,3],[1,1]]
=> ? = 2 + 1
[[1,0,0,0,0],[0,0,0,1,0],[0,1,0,-1,1],[0,0,1,0,0],[0,0,0,1,0]]
=> [1,0,1,1,1,0,1,0,0,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> [[4,2],[]]
=> ? = 2 + 1
[[0,1,0,0,0],[1,-1,0,1,0],[0,1,0,-1,1],[0,0,1,0,0],[0,0,0,1,0]]
=> [1,1,0,1,1,0,1,0,0,0]
=> [1,1,1,0,1,0,0,1,0,0]
=> [[3,2,2],[]]
=> ? = 2 + 1
[[0,0,1,0,0],[1,0,-1,1,0],[0,1,0,-1,1],[0,0,1,0,0],[0,0,0,1,0]]
=> [1,1,1,0,1,0,1,0,0,0]
=> [1,1,1,0,1,0,1,0,0,0]
=> [[2,2,2,2],[]]
=> ? = 2 + 1
[[0,1,0,0,0],[0,0,0,1,0],[1,0,0,-1,1],[0,0,1,0,0],[0,0,0,1,0]]
=> [1,1,0,1,1,0,1,0,0,0]
=> [1,1,1,0,1,0,0,1,0,0]
=> [[3,2,2],[]]
=> ? = 2 + 1
[[0,0,1,0,0],[0,1,-1,1,0],[1,0,0,-1,1],[0,0,1,0,0],[0,0,0,1,0]]
=> [1,1,1,0,1,0,1,0,0,0]
=> [1,1,1,0,1,0,1,0,0,0]
=> [[2,2,2,2],[]]
=> ? = 2 + 1
[[0,0,0,1,0],[1,0,0,-1,1],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,1,0]]
=> [1,1,1,1,0,1,0,0,0,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> [[5],[]]
=> 2 = 1 + 1
[[0,0,0,1,0],[0,1,0,-1,1],[1,0,0,0,0],[0,0,1,0,0],[0,0,0,1,0]]
=> [1,1,1,1,0,1,0,0,0,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> [[5],[]]
=> 2 = 1 + 1
[[1,0,0,0,0],[0,0,0,1,0],[0,0,1,-1,1],[0,1,0,0,0],[0,0,0,1,0]]
=> [1,0,1,1,1,0,1,0,0,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> [[4,2],[]]
=> ? = 2 + 1
[[0,1,0,0,0],[1,-1,0,1,0],[0,0,1,-1,1],[0,1,0,0,0],[0,0,0,1,0]]
=> [1,1,0,1,1,0,1,0,0,0]
=> [1,1,1,0,1,0,0,1,0,0]
=> [[3,2,2],[]]
=> ? = 2 + 1
[[0,0,0,1,0],[1,0,0,-1,1],[0,0,1,0,0],[0,1,0,0,0],[0,0,0,1,0]]
=> [1,1,1,1,0,1,0,0,0,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> [[5],[]]
=> 2 = 1 + 1
[[0,0,0,1,0],[0,1,0,-1,1],[1,-1,1,0,0],[0,1,0,0,0],[0,0,0,1,0]]
=> [1,1,1,1,0,1,0,0,0,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> [[5],[]]
=> 2 = 1 + 1
[[0,0,0,1,0],[0,0,1,-1,1],[1,0,0,0,0],[0,1,0,0,0],[0,0,0,1,0]]
=> [1,1,1,1,0,1,0,0,0,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> [[5],[]]
=> 2 = 1 + 1
[[0,0,0,1,0],[0,1,0,-1,1],[0,0,1,0,0],[1,0,0,0,0],[0,0,0,1,0]]
=> [1,1,1,1,0,1,0,0,0,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> [[5],[]]
=> 2 = 1 + 1
[[0,0,0,1,0],[0,0,1,-1,1],[0,1,0,0,0],[1,0,0,0,0],[0,0,0,1,0]]
=> [1,1,1,1,0,1,0,0,0,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> [[5],[]]
=> 2 = 1 + 1
[[0,0,0,1,0],[1,0,0,-1,1],[0,1,0,0,0],[0,0,0,1,0],[0,0,1,0,0]]
=> [1,1,1,1,0,1,0,0,0,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> [[5],[]]
=> 2 = 1 + 1
[[0,0,0,1,0],[0,1,0,-1,1],[1,0,0,0,0],[0,0,0,1,0],[0,0,1,0,0]]
=> [1,1,1,1,0,1,0,0,0,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> [[5],[]]
=> 2 = 1 + 1
[[0,0,0,1,0],[1,0,0,-1,1],[0,0,1,0,0],[0,1,-1,1,0],[0,0,1,0,0]]
=> [1,1,1,1,0,1,0,0,0,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> [[5],[]]
=> 2 = 1 + 1
[[0,0,0,1,0],[0,1,0,-1,1],[1,-1,1,0,0],[0,1,-1,1,0],[0,0,1,0,0]]
=> [1,1,1,1,0,1,0,0,0,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> [[5],[]]
=> 2 = 1 + 1
[[0,0,0,1,0],[0,0,1,-1,1],[1,0,0,0,0],[0,1,-1,1,0],[0,0,1,0,0]]
=> [1,1,1,1,0,1,0,0,0,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> [[5],[]]
=> 2 = 1 + 1
[[0,0,0,1,0],[0,1,0,-1,1],[0,0,1,0,0],[1,0,-1,1,0],[0,0,1,0,0]]
=> [1,1,1,1,0,1,0,0,0,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> [[5],[]]
=> 2 = 1 + 1
[[0,0,0,1,0],[0,0,1,-1,1],[0,1,0,0,0],[1,0,-1,1,0],[0,0,1,0,0]]
=> [1,1,1,1,0,1,0,0,0,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> [[5],[]]
=> 2 = 1 + 1
[[0,0,0,1,0],[1,0,0,-1,1],[0,0,0,1,0],[0,1,0,0,0],[0,0,1,0,0]]
=> [1,1,1,1,0,1,0,0,0,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> [[5],[]]
=> 2 = 1 + 1
[[0,0,0,1,0],[0,1,0,-1,1],[1,-1,0,1,0],[0,1,0,0,0],[0,0,1,0,0]]
=> [1,1,1,1,0,1,0,0,0,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> [[5],[]]
=> 2 = 1 + 1
[[0,0,0,1,0],[0,0,1,-1,1],[1,0,-1,1,0],[0,1,0,0,0],[0,0,1,0,0]]
=> [1,1,1,1,0,1,0,0,0,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> [[5],[]]
=> 2 = 1 + 1
[[0,0,0,1,0],[0,0,0,0,1],[1,0,0,0,0],[0,1,0,0,0],[0,0,1,0,0]]
=> [1,1,1,1,0,1,0,0,0,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> [[5],[]]
=> 2 = 1 + 1
[[0,0,0,1,0],[0,1,0,-1,1],[0,0,0,1,0],[1,0,0,0,0],[0,0,1,0,0]]
=> [1,1,1,1,0,1,0,0,0,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> [[5],[]]
=> 2 = 1 + 1
[[0,0,0,1,0],[0,0,1,-1,1],[0,1,-1,1,0],[1,0,0,0,0],[0,0,1,0,0]]
=> [1,1,1,1,0,1,0,0,0,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> [[5],[]]
=> 2 = 1 + 1
[[0,0,0,1,0],[0,0,0,0,1],[0,1,0,0,0],[1,0,0,0,0],[0,0,1,0,0]]
=> [1,1,1,1,0,1,0,0,0,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> [[5],[]]
=> 2 = 1 + 1
[[0,0,0,1,0],[1,0,0,-1,1],[0,0,1,0,0],[0,0,0,1,0],[0,1,0,0,0]]
=> [1,1,1,1,0,1,0,0,0,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> [[5],[]]
=> 2 = 1 + 1
[[0,0,0,1,0],[0,1,0,-1,1],[1,-1,1,0,0],[0,0,0,1,0],[0,1,0,0,0]]
=> [1,1,1,1,0,1,0,0,0,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> [[5],[]]
=> 2 = 1 + 1
[[0,0,0,1,0],[0,0,1,-1,1],[1,0,0,0,0],[0,0,0,1,0],[0,1,0,0,0]]
=> [1,1,1,1,0,1,0,0,0,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> [[5],[]]
=> 2 = 1 + 1
[[0,0,0,1,0],[0,1,0,-1,1],[0,0,1,0,0],[1,-1,0,1,0],[0,1,0,0,0]]
=> [1,1,1,1,0,1,0,0,0,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> [[5],[]]
=> 2 = 1 + 1
[[0,0,0,1,0],[0,0,1,-1,1],[0,1,0,0,0],[1,-1,0,1,0],[0,1,0,0,0]]
=> [1,1,1,1,0,1,0,0,0,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> [[5],[]]
=> 2 = 1 + 1
[[0,0,0,1,0],[1,0,0,-1,1],[0,0,0,1,0],[0,0,1,0,0],[0,1,0,0,0]]
=> [1,1,1,1,0,1,0,0,0,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> [[5],[]]
=> 2 = 1 + 1
[[0,0,0,1,0],[0,1,0,-1,1],[1,-1,0,1,0],[0,0,1,0,0],[0,1,0,0,0]]
=> [1,1,1,1,0,1,0,0,0,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> [[5],[]]
=> 2 = 1 + 1
[[0,0,0,1,0],[0,0,1,-1,1],[1,0,-1,1,0],[0,0,1,0,0],[0,1,0,0,0]]
=> [1,1,1,1,0,1,0,0,0,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> [[5],[]]
=> 2 = 1 + 1
[[0,0,0,1,0],[0,0,0,0,1],[1,0,0,0,0],[0,0,1,0,0],[0,1,0,0,0]]
=> [1,1,1,1,0,1,0,0,0,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> [[5],[]]
=> 2 = 1 + 1
[[0,0,0,1,0],[0,1,0,-1,1],[0,0,0,1,0],[1,-1,1,0,0],[0,1,0,0,0]]
=> [1,1,1,1,0,1,0,0,0,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> [[5],[]]
=> 2 = 1 + 1
[[0,0,0,1,0],[0,0,1,-1,1],[0,1,-1,1,0],[1,-1,1,0,0],[0,1,0,0,0]]
=> [1,1,1,1,0,1,0,0,0,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> [[5],[]]
=> 2 = 1 + 1
[[0,0,0,1,0],[0,0,0,0,1],[0,1,0,0,0],[1,-1,1,0,0],[0,1,0,0,0]]
=> [1,1,1,1,0,1,0,0,0,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> [[5],[]]
=> 2 = 1 + 1
[[0,0,0,1,0],[0,0,1,-1,1],[0,0,0,1,0],[1,0,0,0,0],[0,1,0,0,0]]
=> [1,1,1,1,0,1,0,0,0,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> [[5],[]]
=> 2 = 1 + 1
Description
The number of corners of a skew partition.
This is also known as the number of removable cells of the skew partition.
Matching statistic: St001200
(load all 8 compositions to match this statistic)
(load all 8 compositions to match this statistic)
Mp00007: Alternating sign matrices —to Dyck path⟶ Dyck paths
Mp00103: Dyck paths —peeling map⟶ Dyck paths
Mp00120: Dyck paths —Lalanne-Kreweras involution⟶ Dyck paths
St001200: Dyck paths ⟶ ℤResult quality: 1% ●values known / values provided: 1%●distinct values known / distinct values provided: 25%
Mp00103: Dyck paths —peeling map⟶ Dyck paths
Mp00120: Dyck paths —Lalanne-Kreweras involution⟶ Dyck paths
St001200: Dyck paths ⟶ ℤResult quality: 1% ●values known / values provided: 1%●distinct values known / distinct values provided: 25%
Values
[[1]]
=> [1,0]
=> [1,0]
=> [1,0]
=> ? = 0 + 1
[[1,0],[0,1]]
=> [1,0,1,0]
=> [1,0,1,0]
=> [1,1,0,0]
=> ? = 1 + 1
[[1,0,0],[0,1,0],[0,0,1]]
=> [1,0,1,0,1,0]
=> [1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> ? = 1 + 1
[[0,1,0],[1,-1,1],[0,1,0]]
=> [1,1,0,1,0,0]
=> [1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> ? = 1 + 1
[[0,1,0],[0,0,1],[1,0,0]]
=> [1,1,0,1,0,0]
=> [1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> ? = 1 + 1
[[1,0,0,0],[0,1,0,0],[0,0,1,0],[0,0,0,1]]
=> [1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> ? = 1 + 1
[[0,1,0,0],[1,-1,1,0],[0,1,0,0],[0,0,0,1]]
=> [1,1,0,1,0,0,1,0]
=> [1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> ? = 2 + 1
[[0,1,0,0],[0,0,1,0],[1,0,0,0],[0,0,0,1]]
=> [1,1,0,1,0,0,1,0]
=> [1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> ? = 2 + 1
[[1,0,0,0],[0,0,1,0],[0,1,-1,1],[0,0,1,0]]
=> [1,0,1,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> ? = 2 + 1
[[0,1,0,0],[1,-1,1,0],[0,1,-1,1],[0,0,1,0]]
=> [1,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> ? = 2 + 1
[[0,1,0,0],[0,0,1,0],[1,0,-1,1],[0,0,1,0]]
=> [1,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> ? = 2 + 1
[[0,0,1,0],[1,0,-1,1],[0,1,0,0],[0,0,1,0]]
=> [1,1,1,0,1,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> ? = 1 + 1
[[0,0,1,0],[0,1,-1,1],[1,0,0,0],[0,0,1,0]]
=> [1,1,1,0,1,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> ? = 1 + 1
[[1,0,0,0],[0,0,1,0],[0,0,0,1],[0,1,0,0]]
=> [1,0,1,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> ? = 2 + 1
[[0,1,0,0],[1,-1,1,0],[0,0,0,1],[0,1,0,0]]
=> [1,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> ? = 2 + 1
[[0,1,0,0],[0,0,1,0],[1,-1,0,1],[0,1,0,0]]
=> [1,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> ? = 2 + 1
[[0,0,1,0],[1,0,-1,1],[0,0,1,0],[0,1,0,0]]
=> [1,1,1,0,1,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> ? = 1 + 1
[[0,0,1,0],[0,1,-1,1],[1,-1,1,0],[0,1,0,0]]
=> [1,1,1,0,1,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> ? = 1 + 1
[[0,0,1,0],[0,0,0,1],[1,0,0,0],[0,1,0,0]]
=> [1,1,1,0,1,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> ? = 1 + 1
[[0,1,0,0],[0,0,1,0],[0,0,0,1],[1,0,0,0]]
=> [1,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> ? = 2 + 1
[[0,0,1,0],[0,1,-1,1],[0,0,1,0],[1,0,0,0]]
=> [1,1,1,0,1,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> ? = 1 + 1
[[0,0,1,0],[0,0,0,1],[0,1,0,0],[1,0,0,0]]
=> [1,1,1,0,1,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> ? = 1 + 1
[[1,0,0,0,0],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,1,0],[0,0,0,0,1]]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> ? = 1 + 1
[[0,1,0,0,0],[1,-1,1,0,0],[0,1,0,0,0],[0,0,0,1,0],[0,0,0,0,1]]
=> [1,1,0,1,0,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> ? = 2 + 1
[[0,1,0,0,0],[0,0,1,0,0],[1,0,0,0,0],[0,0,0,1,0],[0,0,0,0,1]]
=> [1,1,0,1,0,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> ? = 2 + 1
[[1,0,0,0,0],[0,0,1,0,0],[0,1,-1,1,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [1,0,1,1,0,1,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> ? = 2 + 1
[[0,1,0,0,0],[1,-1,1,0,0],[0,1,-1,1,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [1,1,0,1,0,1,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> ? = 2 + 1
[[0,1,0,0,0],[0,0,1,0,0],[1,0,-1,1,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [1,1,0,1,0,1,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> ? = 2 + 1
[[0,0,1,0,0],[1,0,-1,1,0],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [1,1,1,0,1,0,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> ? = 2 + 1
[[0,0,1,0,0],[0,1,-1,1,0],[1,0,0,0,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [1,1,1,0,1,0,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> ? = 2 + 1
[[1,0,0,0,0],[0,0,1,0,0],[0,0,0,1,0],[0,1,0,0,0],[0,0,0,0,1]]
=> [1,0,1,1,0,1,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> ? = 2 + 1
[[0,1,0,0,0],[1,-1,1,0,0],[0,0,0,1,0],[0,1,0,0,0],[0,0,0,0,1]]
=> [1,1,0,1,0,1,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> ? = 2 + 1
[[0,1,0,0,0],[0,0,1,0,0],[1,-1,0,1,0],[0,1,0,0,0],[0,0,0,0,1]]
=> [1,1,0,1,0,1,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> ? = 2 + 1
[[0,0,1,0,0],[1,0,-1,1,0],[0,0,1,0,0],[0,1,0,0,0],[0,0,0,0,1]]
=> [1,1,1,0,1,0,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> ? = 2 + 1
[[0,0,1,0,0],[0,1,-1,1,0],[1,-1,1,0,0],[0,1,0,0,0],[0,0,0,0,1]]
=> [1,1,1,0,1,0,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> ? = 2 + 1
[[0,0,1,0,0],[0,0,0,1,0],[1,0,0,0,0],[0,1,0,0,0],[0,0,0,0,1]]
=> [1,1,1,0,1,0,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> ? = 2 + 1
[[0,1,0,0,0],[0,0,1,0,0],[0,0,0,1,0],[1,0,0,0,0],[0,0,0,0,1]]
=> [1,1,0,1,0,1,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> ? = 2 + 1
[[0,0,1,0,0],[0,1,-1,1,0],[0,0,1,0,0],[1,0,0,0,0],[0,0,0,0,1]]
=> [1,1,1,0,1,0,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> ? = 2 + 1
[[0,0,1,0,0],[0,0,0,1,0],[0,1,0,0,0],[1,0,0,0,0],[0,0,0,0,1]]
=> [1,1,1,0,1,0,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> ? = 2 + 1
[[1,0,0,0,0],[0,1,0,0,0],[0,0,0,1,0],[0,0,1,-1,1],[0,0,0,1,0]]
=> [1,0,1,0,1,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> ? = 2 + 1
[[1,0,0,0,0],[0,0,1,0,0],[0,1,-1,1,0],[0,0,1,-1,1],[0,0,0,1,0]]
=> [1,0,1,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> ? = 2 + 1
[[0,1,0,0,0],[1,-1,1,0,0],[0,1,-1,1,0],[0,0,1,-1,1],[0,0,0,1,0]]
=> [1,1,0,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> ? = 2 + 1
[[0,1,0,0,0],[0,0,1,0,0],[1,0,-1,1,0],[0,0,1,-1,1],[0,0,0,1,0]]
=> [1,1,0,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> ? = 2 + 1
[[0,1,0,0,0],[1,-1,0,1,0],[0,1,0,0,0],[0,0,1,-1,1],[0,0,0,1,0]]
=> [1,1,0,1,1,0,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> ? = 2 + 1
[[0,0,1,0,0],[1,0,-1,1,0],[0,1,0,0,0],[0,0,1,-1,1],[0,0,0,1,0]]
=> [1,1,1,0,1,0,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> ? = 2 + 1
[[0,1,0,0,0],[0,0,0,1,0],[1,0,0,0,0],[0,0,1,-1,1],[0,0,0,1,0]]
=> [1,1,0,1,1,0,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> ? = 2 + 1
[[0,0,1,0,0],[0,1,-1,1,0],[1,0,0,0,0],[0,0,1,-1,1],[0,0,0,1,0]]
=> [1,1,1,0,1,0,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> ? = 2 + 1
[[1,0,0,0,0],[0,0,1,0,0],[0,0,0,1,0],[0,1,0,-1,1],[0,0,0,1,0]]
=> [1,0,1,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> ? = 2 + 1
[[0,1,0,0,0],[1,-1,1,0,0],[0,0,0,1,0],[0,1,0,-1,1],[0,0,0,1,0]]
=> [1,1,0,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> ? = 2 + 1
[[0,1,0,0,0],[0,0,1,0,0],[1,-1,0,1,0],[0,1,0,-1,1],[0,0,0,1,0]]
=> [1,1,0,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> ? = 2 + 1
[[0,0,0,1,0],[1,0,0,-1,1],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,1,0]]
=> [1,1,1,1,0,1,0,0,0,0]
=> [1,0,1,1,0,1,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> 2 = 1 + 1
[[0,0,0,1,0],[0,1,0,-1,1],[1,0,0,0,0],[0,0,1,0,0],[0,0,0,1,0]]
=> [1,1,1,1,0,1,0,0,0,0]
=> [1,0,1,1,0,1,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> 2 = 1 + 1
[[0,0,0,1,0],[1,0,0,-1,1],[0,0,1,0,0],[0,1,0,0,0],[0,0,0,1,0]]
=> [1,1,1,1,0,1,0,0,0,0]
=> [1,0,1,1,0,1,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> 2 = 1 + 1
[[0,0,0,1,0],[0,1,0,-1,1],[1,-1,1,0,0],[0,1,0,0,0],[0,0,0,1,0]]
=> [1,1,1,1,0,1,0,0,0,0]
=> [1,0,1,1,0,1,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> 2 = 1 + 1
[[0,0,0,1,0],[0,0,1,-1,1],[1,0,0,0,0],[0,1,0,0,0],[0,0,0,1,0]]
=> [1,1,1,1,0,1,0,0,0,0]
=> [1,0,1,1,0,1,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> 2 = 1 + 1
[[0,0,0,1,0],[0,1,0,-1,1],[0,0,1,0,0],[1,0,0,0,0],[0,0,0,1,0]]
=> [1,1,1,1,0,1,0,0,0,0]
=> [1,0,1,1,0,1,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> 2 = 1 + 1
[[0,0,0,1,0],[0,0,1,-1,1],[0,1,0,0,0],[1,0,0,0,0],[0,0,0,1,0]]
=> [1,1,1,1,0,1,0,0,0,0]
=> [1,0,1,1,0,1,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> 2 = 1 + 1
[[0,0,0,1,0],[1,0,0,-1,1],[0,1,0,0,0],[0,0,0,1,0],[0,0,1,0,0]]
=> [1,1,1,1,0,1,0,0,0,0]
=> [1,0,1,1,0,1,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> 2 = 1 + 1
[[0,0,0,1,0],[0,1,0,-1,1],[1,0,0,0,0],[0,0,0,1,0],[0,0,1,0,0]]
=> [1,1,1,1,0,1,0,0,0,0]
=> [1,0,1,1,0,1,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> 2 = 1 + 1
[[0,0,0,1,0],[1,0,0,-1,1],[0,0,1,0,0],[0,1,-1,1,0],[0,0,1,0,0]]
=> [1,1,1,1,0,1,0,0,0,0]
=> [1,0,1,1,0,1,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> 2 = 1 + 1
[[0,0,0,1,0],[0,1,0,-1,1],[1,-1,1,0,0],[0,1,-1,1,0],[0,0,1,0,0]]
=> [1,1,1,1,0,1,0,0,0,0]
=> [1,0,1,1,0,1,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> 2 = 1 + 1
[[0,0,0,1,0],[0,0,1,-1,1],[1,0,0,0,0],[0,1,-1,1,0],[0,0,1,0,0]]
=> [1,1,1,1,0,1,0,0,0,0]
=> [1,0,1,1,0,1,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> 2 = 1 + 1
[[0,0,0,1,0],[0,1,0,-1,1],[0,0,1,0,0],[1,0,-1,1,0],[0,0,1,0,0]]
=> [1,1,1,1,0,1,0,0,0,0]
=> [1,0,1,1,0,1,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> 2 = 1 + 1
[[0,0,0,1,0],[0,0,1,-1,1],[0,1,0,0,0],[1,0,-1,1,0],[0,0,1,0,0]]
=> [1,1,1,1,0,1,0,0,0,0]
=> [1,0,1,1,0,1,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> 2 = 1 + 1
[[0,0,0,1,0],[1,0,0,-1,1],[0,0,0,1,0],[0,1,0,0,0],[0,0,1,0,0]]
=> [1,1,1,1,0,1,0,0,0,0]
=> [1,0,1,1,0,1,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> 2 = 1 + 1
[[0,0,0,1,0],[0,1,0,-1,1],[1,-1,0,1,0],[0,1,0,0,0],[0,0,1,0,0]]
=> [1,1,1,1,0,1,0,0,0,0]
=> [1,0,1,1,0,1,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> 2 = 1 + 1
[[0,0,0,1,0],[0,0,1,-1,1],[1,0,-1,1,0],[0,1,0,0,0],[0,0,1,0,0]]
=> [1,1,1,1,0,1,0,0,0,0]
=> [1,0,1,1,0,1,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> 2 = 1 + 1
[[0,0,0,1,0],[0,0,0,0,1],[1,0,0,0,0],[0,1,0,0,0],[0,0,1,0,0]]
=> [1,1,1,1,0,1,0,0,0,0]
=> [1,0,1,1,0,1,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> 2 = 1 + 1
[[0,0,0,1,0],[0,1,0,-1,1],[0,0,0,1,0],[1,0,0,0,0],[0,0,1,0,0]]
=> [1,1,1,1,0,1,0,0,0,0]
=> [1,0,1,1,0,1,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> 2 = 1 + 1
[[0,0,0,1,0],[0,0,1,-1,1],[0,1,-1,1,0],[1,0,0,0,0],[0,0,1,0,0]]
=> [1,1,1,1,0,1,0,0,0,0]
=> [1,0,1,1,0,1,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> 2 = 1 + 1
[[0,0,0,1,0],[0,0,0,0,1],[0,1,0,0,0],[1,0,0,0,0],[0,0,1,0,0]]
=> [1,1,1,1,0,1,0,0,0,0]
=> [1,0,1,1,0,1,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> 2 = 1 + 1
[[0,0,0,1,0],[1,0,0,-1,1],[0,0,1,0,0],[0,0,0,1,0],[0,1,0,0,0]]
=> [1,1,1,1,0,1,0,0,0,0]
=> [1,0,1,1,0,1,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> 2 = 1 + 1
[[0,0,0,1,0],[0,1,0,-1,1],[1,-1,1,0,0],[0,0,0,1,0],[0,1,0,0,0]]
=> [1,1,1,1,0,1,0,0,0,0]
=> [1,0,1,1,0,1,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> 2 = 1 + 1
[[0,0,0,1,0],[0,0,1,-1,1],[1,0,0,0,0],[0,0,0,1,0],[0,1,0,0,0]]
=> [1,1,1,1,0,1,0,0,0,0]
=> [1,0,1,1,0,1,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> 2 = 1 + 1
[[0,0,0,1,0],[0,1,0,-1,1],[0,0,1,0,0],[1,-1,0,1,0],[0,1,0,0,0]]
=> [1,1,1,1,0,1,0,0,0,0]
=> [1,0,1,1,0,1,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> 2 = 1 + 1
[[0,0,0,1,0],[0,0,1,-1,1],[0,1,0,0,0],[1,-1,0,1,0],[0,1,0,0,0]]
=> [1,1,1,1,0,1,0,0,0,0]
=> [1,0,1,1,0,1,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> 2 = 1 + 1
[[0,0,0,1,0],[1,0,0,-1,1],[0,0,0,1,0],[0,0,1,0,0],[0,1,0,0,0]]
=> [1,1,1,1,0,1,0,0,0,0]
=> [1,0,1,1,0,1,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> 2 = 1 + 1
[[0,0,0,1,0],[0,1,0,-1,1],[1,-1,0,1,0],[0,0,1,0,0],[0,1,0,0,0]]
=> [1,1,1,1,0,1,0,0,0,0]
=> [1,0,1,1,0,1,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> 2 = 1 + 1
[[0,0,0,1,0],[0,0,1,-1,1],[1,0,-1,1,0],[0,0,1,0,0],[0,1,0,0,0]]
=> [1,1,1,1,0,1,0,0,0,0]
=> [1,0,1,1,0,1,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> 2 = 1 + 1
[[0,0,0,1,0],[0,0,0,0,1],[1,0,0,0,0],[0,0,1,0,0],[0,1,0,0,0]]
=> [1,1,1,1,0,1,0,0,0,0]
=> [1,0,1,1,0,1,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> 2 = 1 + 1
[[0,0,0,1,0],[0,1,0,-1,1],[0,0,0,1,0],[1,-1,1,0,0],[0,1,0,0,0]]
=> [1,1,1,1,0,1,0,0,0,0]
=> [1,0,1,1,0,1,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> 2 = 1 + 1
[[0,0,0,1,0],[0,0,1,-1,1],[0,1,-1,1,0],[1,-1,1,0,0],[0,1,0,0,0]]
=> [1,1,1,1,0,1,0,0,0,0]
=> [1,0,1,1,0,1,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> 2 = 1 + 1
[[0,0,0,1,0],[0,0,0,0,1],[0,1,0,0,0],[1,-1,1,0,0],[0,1,0,0,0]]
=> [1,1,1,1,0,1,0,0,0,0]
=> [1,0,1,1,0,1,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> 2 = 1 + 1
[[0,0,0,1,0],[0,0,1,-1,1],[0,0,0,1,0],[1,0,0,0,0],[0,1,0,0,0]]
=> [1,1,1,1,0,1,0,0,0,0]
=> [1,0,1,1,0,1,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> 2 = 1 + 1
[[0,0,0,1,0],[0,0,0,0,1],[0,0,1,0,0],[1,0,0,0,0],[0,1,0,0,0]]
=> [1,1,1,1,0,1,0,0,0,0]
=> [1,0,1,1,0,1,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> 2 = 1 + 1
[[0,0,0,1,0],[0,1,0,-1,1],[0,0,1,0,0],[0,0,0,1,0],[1,0,0,0,0]]
=> [1,1,1,1,0,1,0,0,0,0]
=> [1,0,1,1,0,1,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> 2 = 1 + 1
[[0,0,0,1,0],[0,0,1,-1,1],[0,1,0,0,0],[0,0,0,1,0],[1,0,0,0,0]]
=> [1,1,1,1,0,1,0,0,0,0]
=> [1,0,1,1,0,1,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> 2 = 1 + 1
[[0,0,0,1,0],[0,1,0,-1,1],[0,0,0,1,0],[0,0,1,0,0],[1,0,0,0,0]]
=> [1,1,1,1,0,1,0,0,0,0]
=> [1,0,1,1,0,1,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> 2 = 1 + 1
[[0,0,0,1,0],[0,0,1,-1,1],[0,1,-1,1,0],[0,0,1,0,0],[1,0,0,0,0]]
=> [1,1,1,1,0,1,0,0,0,0]
=> [1,0,1,1,0,1,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> 2 = 1 + 1
[[0,0,0,1,0],[0,0,0,0,1],[0,1,0,0,0],[0,0,1,0,0],[1,0,0,0,0]]
=> [1,1,1,1,0,1,0,0,0,0]
=> [1,0,1,1,0,1,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> 2 = 1 + 1
[[0,0,0,1,0],[0,0,1,-1,1],[0,0,0,1,0],[0,1,0,0,0],[1,0,0,0,0]]
=> [1,1,1,1,0,1,0,0,0,0]
=> [1,0,1,1,0,1,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> 2 = 1 + 1
[[0,0,0,1,0],[0,0,0,0,1],[0,0,1,0,0],[0,1,0,0,0],[1,0,0,0,0]]
=> [1,1,1,1,0,1,0,0,0,0]
=> [1,0,1,1,0,1,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> 2 = 1 + 1
Description
The number of simple modules in $eAe$ with projective dimension at most 2 in the corresponding Nakayama algebra $A$ with minimal faithful projective-injective module $eA$.
Matching statistic: St000914
(load all 2 compositions to match this statistic)
(load all 2 compositions to match this statistic)
Mp00004: Alternating sign matrices —rotate clockwise⟶ Alternating sign matrices
Mp00001: Alternating sign matrices —to semistandard tableau via monotone triangles⟶ Semistandard tableaux
Mp00214: Semistandard tableaux —subcrystal⟶ Posets
St000914: Posets ⟶ ℤResult quality: 1% ●values known / values provided: 1%●distinct values known / distinct values provided: 25%
Mp00001: Alternating sign matrices —to semistandard tableau via monotone triangles⟶ Semistandard tableaux
Mp00214: Semistandard tableaux —subcrystal⟶ Posets
St000914: Posets ⟶ ℤResult quality: 1% ●values known / values provided: 1%●distinct values known / distinct values provided: 25%
Values
[[1]]
=> [[1]]
=> [[1]]
=> ([],1)
=> ? = 0
[[1,0],[0,1]]
=> [[0,1],[1,0]]
=> [[1,2],[2]]
=> ([(0,1)],2)
=> 1
[[1,0,0],[0,1,0],[0,0,1]]
=> [[0,0,1],[0,1,0],[1,0,0]]
=> [[1,2,3],[2,3],[3]]
=> ([(0,5),(0,6),(1,7),(2,7),(3,2),(4,1),(5,3),(6,4)],8)
=> ? = 1
[[0,1,0],[1,-1,1],[0,1,0]]
=> [[0,1,0],[1,-1,1],[0,1,0]]
=> [[1,1,2],[2,3],[3]]
=> ([(0,2),(2,1)],3)
=> 1
[[0,1,0],[0,0,1],[1,0,0]]
=> [[1,0,0],[0,0,1],[0,1,0]]
=> [[1,1,1],[2,3],[3]]
=> ([(0,1)],2)
=> 1
[[1,0,0,0],[0,1,0,0],[0,0,1,0],[0,0,0,1]]
=> [[0,0,0,1],[0,0,1,0],[0,1,0,0],[1,0,0,0]]
=> [[1,2,3,4],[2,3,4],[3,4],[4]]
=> ([(0,5),(0,16),(0,17),(1,23),(2,19),(3,11),(3,21),(4,10),(4,20),(5,12),(5,13),(6,50),(7,51),(8,24),(8,58),(9,25),(9,59),(10,14),(10,52),(11,15),(11,53),(12,26),(12,60),(13,27),(13,60),(14,54),(15,55),(16,4),(16,29),(17,3),(17,29),(18,48),(18,49),(19,32),(19,33),(20,46),(20,52),(21,47),(21,53),(22,34),(22,35),(23,18),(23,54),(23,55),(24,40),(24,42),(25,41),(25,43),(26,46),(26,56),(27,47),(27,57),(28,63),(29,1),(30,62),(31,61),(32,61),(33,61),(34,6),(34,62),(35,7),(35,62),(36,58),(37,59),(38,32),(39,33),(40,44),(41,45),(42,38),(43,39),(44,31),(45,31),(46,36),(47,37),(48,40),(48,63),(49,41),(49,63),(50,38),(51,39),(52,8),(52,36),(53,9),(53,37),(54,28),(54,48),(55,28),(55,49),(56,30),(56,34),(57,30),(57,35),(58,42),(58,50),(59,43),(59,51),(60,22),(60,56),(60,57),(62,2),(63,44),(63,45)],64)
=> ? = 1
[[0,1,0,0],[1,-1,1,0],[0,1,0,0],[0,0,0,1]]
=> [[0,0,1,0],[0,1,-1,1],[0,0,1,0],[1,0,0,0]]
=> [[1,2,2,3],[2,3,4],[3,4],[4]]
=> ([(0,10),(0,12),(1,16),(2,17),(3,21),(4,22),(5,14),(6,13),(6,14),(7,13),(7,15),(8,7),(8,21),(9,2),(9,18),(10,11),(11,5),(11,6),(12,3),(12,8),(13,19),(14,9),(14,19),(15,22),(16,20),(17,20),(18,16),(18,17),(19,18),(21,4),(21,15),(22,1)],23)
=> ? = 2
[[0,1,0,0],[0,0,1,0],[1,0,0,0],[0,0,0,1]]
=> [[0,1,0,0],[0,0,0,1],[0,0,1,0],[1,0,0,0]]
=> [[1,2,2,2],[2,3,4],[3,4],[4]]
=> ([(0,7),(0,8),(1,12),(2,11),(3,10),(4,10),(4,11),(5,3),(6,1),(6,13),(7,9),(8,5),(9,2),(9,4),(10,14),(11,6),(11,14),(13,12),(14,13)],15)
=> ? = 2
[[1,0,0,0],[0,0,1,0],[0,1,-1,1],[0,0,1,0]]
=> [[0,0,0,1],[0,1,0,0],[1,-1,1,0],[0,1,0,0]]
=> [[1,1,2,4],[2,3,4],[3,4],[4]]
=> ([(0,12),(0,13),(1,16),(2,15),(3,23),(4,19),(5,17),(5,20),(6,4),(7,5),(7,15),(7,16),(8,10),(9,7),(10,2),(11,1),(11,23),(12,8),(12,22),(13,14),(13,22),(14,3),(14,11),(15,17),(15,21),(16,20),(16,21),(17,24),(19,18),(20,19),(20,24),(21,24),(22,9),(23,6),(24,18)],25)
=> ? = 2
[[0,1,0,0],[1,-1,1,0],[0,1,-1,1],[0,0,1,0]]
=> [[0,0,1,0],[0,1,-1,1],[1,-1,1,0],[0,1,0,0]]
=> [[1,1,2,3],[2,3,4],[3,4],[4]]
=> ([(0,9),(0,11),(1,18),(2,17),(3,19),(4,13),(4,19),(5,12),(5,13),(6,16),(7,14),(8,5),(8,18),(9,10),(10,3),(10,4),(11,1),(11,8),(12,17),(13,15),(15,16),(16,14),(17,7),(18,2),(18,12),(19,6),(19,15)],20)
=> ? = 2
[[0,1,0,0],[0,0,1,0],[1,0,-1,1],[0,0,1,0]]
=> [[0,1,0,0],[0,0,0,1],[1,-1,1,0],[0,1,0,0]]
=> [[1,1,2,2],[2,3,4],[3,4],[4]]
=> ([(0,6),(0,7),(1,9),(2,12),(3,9),(3,12),(4,10),(5,1),(6,5),(7,8),(8,2),(8,3),(9,11),(11,10),(12,4),(12,11)],13)
=> ? = 2
[[0,0,1,0],[1,0,-1,1],[0,1,0,0],[0,0,1,0]]
=> [[0,0,1,0],[0,1,0,0],[1,0,-1,1],[0,0,1,0]]
=> [[1,1,2,3],[2,2,3],[3,4],[4]]
=> ([(0,3),(0,7),(1,8),(2,8),(3,9),(4,5),(5,1),(6,2),(7,4),(7,9),(9,6)],10)
=> ? = 1
[[0,0,1,0],[0,1,-1,1],[1,0,0,0],[0,0,1,0]]
=> [[0,1,0,0],[0,0,1,0],[1,0,-1,1],[0,0,1,0]]
=> [[1,1,2,2],[2,2,3],[3,4],[4]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1
[[1,0,0,0],[0,0,1,0],[0,0,0,1],[0,1,0,0]]
=> [[0,0,0,1],[1,0,0,0],[0,0,1,0],[0,1,0,0]]
=> [[1,1,1,4],[2,3,4],[3,4],[4]]
=> ([(0,5),(0,10),(1,16),(2,15),(3,14),(4,13),(5,12),(6,2),(6,13),(7,4),(7,14),(8,1),(9,6),(10,11),(10,12),(11,3),(11,7),(12,9),(13,15),(14,8),(15,16)],17)
=> ? = 2
[[0,1,0,0],[1,-1,1,0],[0,0,0,1],[0,1,0,0]]
=> [[0,0,1,0],[1,0,-1,1],[0,0,1,0],[0,1,0,0]]
=> [[1,1,1,3],[2,3,4],[3,4],[4]]
=> ([(0,6),(1,7),(2,9),(4,8),(5,1),(5,9),(6,2),(6,5),(7,8),(8,3),(9,4),(9,7)],10)
=> ? = 2
[[0,1,0,0],[0,0,1,0],[1,-1,0,1],[0,1,0,0]]
=> [[0,1,0,0],[1,-1,0,1],[0,0,1,0],[0,1,0,0]]
=> [[1,1,1,2],[2,3,4],[3,4],[4]]
=> ([(0,5),(0,6),(1,8),(2,9),(3,8),(3,9),(4,1),(5,4),(6,7),(7,2),(7,3),(8,10),(9,10)],11)
=> ? = 2
[[0,0,1,0],[1,0,-1,1],[0,0,1,0],[0,1,0,0]]
=> [[0,0,1,0],[1,0,0,0],[0,1,-1,1],[0,0,1,0]]
=> [[1,1,1,3],[2,2,3],[3,4],[4]]
=> ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
=> 1
[[0,0,1,0],[0,1,-1,1],[1,-1,1,0],[0,1,0,0]]
=> [[0,1,0,0],[1,-1,1,0],[0,1,-1,1],[0,0,1,0]]
=> [[1,1,1,2],[2,2,3],[3,4],[4]]
=> ([(0,3),(2,1),(3,2)],4)
=> 1
[[0,0,1,0],[0,0,0,1],[1,0,0,0],[0,1,0,0]]
=> [[0,1,0,0],[1,0,0,0],[0,0,0,1],[0,0,1,0]]
=> [[1,1,1,2],[2,2,2],[3,4],[4]]
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1
[[0,1,0,0],[0,0,1,0],[0,0,0,1],[1,0,0,0]]
=> [[1,0,0,0],[0,0,0,1],[0,0,1,0],[0,1,0,0]]
=> [[1,1,1,1],[2,3,4],[3,4],[4]]
=> ([(0,5),(0,6),(1,7),(2,7),(3,2),(4,1),(5,3),(6,4)],8)
=> ? = 2
[[0,0,1,0],[0,1,-1,1],[0,0,1,0],[1,0,0,0]]
=> [[1,0,0,0],[0,0,1,0],[0,1,-1,1],[0,0,1,0]]
=> [[1,1,1,1],[2,2,3],[3,4],[4]]
=> ([(0,2),(2,1)],3)
=> 1
[[0,0,1,0],[0,0,0,1],[0,1,0,0],[1,0,0,0]]
=> [[1,0,0,0],[0,1,0,0],[0,0,0,1],[0,0,1,0]]
=> [[1,1,1,1],[2,2,2],[3,4],[4]]
=> ([(0,1)],2)
=> 1
[[1,0,0,0,0],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,1,0],[0,0,0,0,1]]
=> [[0,0,0,0,1],[0,0,0,1,0],[0,0,1,0,0],[0,1,0,0,0],[1,0,0,0,0]]
=> [[1,2,3,4,5],[2,3,4,5],[3,4,5],[4,5],[5]]
=> ([(0,25),(0,26),(0,87),(0,88),(1,76),(2,75),(3,105),(3,594),(4,106),(4,595),(5,587),(6,588),(7,557),(8,558),(9,23),(9,103),(9,367),(10,24),(10,104),(10,368),(11,97),(11,577),(12,98),(12,578),(13,99),(13,642),(14,100),(14,643),(15,45),(15,449),(16,46),(16,450),(17,71),(17,662),(18,72),(18,663),(19,51),(19,526),(20,52),(20,527),(21,73),(21,93),(21,656),(22,74),(22,94),(22,657),(23,65),(23,69),(23,592),(24,66),(24,70),(24,593),(25,21),(25,67),(25,365),(26,22),(26,68),(26,366),(27,117),(27,620),(27,652),(28,118),(28,621),(28,653),(29,473),(29,616),(30,474),(30,617),(31,471),(31,477),(32,472),(32,478),(33,119),(33,655),(33,660),(34,120),(34,654),(34,661),(35,465),(35,618),(36,466),(36,619),(37,227),(37,487),(38,228),(38,488),(39,231),(39,628),(40,232),(40,629),(41,463),(41,606),(42,464),(42,607),(43,121),(43,608),(43,624),(44,122),(44,609),(44,625),(45,78),(45,604),(45,664),(46,77),(46,605),(46,664),(47,123),(47,467),(47,600),(48,124),(48,468),(48,601),(49,596),(49,626),(50,597),(50,627),(51,459),(51,469),(52,460),(52,470),(53,225),(53,612),(54,226),(54,613),(55,111),(55,481),(55,622),(56,112),(56,482),(56,623),(57,115),(57,475),(57,658),(58,116),(58,476),(58,659),(59,107),(59,479),(59,610),(60,108),(60,480),(60,611),(61,109),(61,229),(61,630),(62,110),(62,230),(62,631),(63,83),(63,485),(63,614),(64,84),(64,486),(64,615),(65,81),(65,489),(65,650),(66,82),(66,490),(66,651),(67,113),(67,598),(67,656),(68,114),(68,599),(68,657),(69,489),(69,647),(70,490),(70,646),(71,457),(71,648),(72,458),(72,649),(73,85),(73,483),(73,644),(74,86),(74,484),(74,645),(75,79),(75,461),(75,602),(76,80),(76,462),(76,603),(77,265),(77,546),(78,266),(78,547),(79,423),(79,567),(80,424),(80,568),(81,521),(81,604),(82,522),(82,605),(83,277),(83,519),(84,278),(84,520),(85,523),(85,544),(86,524),(86,545),(87,9),(87,366),(87,525),(88,10),(88,365),(88,525),(89,437),(89,439),(89,554),(90,438),(90,440),(90,555),(91,363),(91,550),(91,553),(92,364),(92,551),(92,552),(93,483),(93,548),(93,556),(94,484),(94,549),(94,556),(95,357),(95,361),(95,455),(96,358),(96,362),(96,456),(97,195),(97,433),(97,435),(98,196),(98,434),(98,436),(99,189),(99,359),(99,569),(100,190),(100,360),(100,570),(101,223),(101,451),(101,453),(102,224),(102,452),(102,454),(103,283),(103,301),(103,592),(104,284),(104,302),(104,593),(105,91),(105,523),(105,634),(105,646),(106,92),(106,524),(106,635),(106,647),(107,269),(107,271),(107,275),(108,270),(108,272),(108,276),(109,273),(109,391),(109,395),(110,274),(110,392),(110,396),(111,132),(111,267),(111,528),(112,133),(112,268),(112,529),(113,301),(113,303),(113,636),(114,302),(114,304),(114,637),(115,393),(115,445),(115,561),(116,394),(116,446),(116,562),(117,249),(117,251),(117,499),(118,250),(118,252),(118,500),(119,299),(119,502),(119,536),(120,300),(120,501),(120,537),(121,171),(121,373),(121,503),(122,172),(122,374),(122,504),(123,89),(123,505),(123,563),(123,565),(124,90),(124,506),(124,564),(124,566),(125,859),(125,860),(126,857),(126,858),(127,979),(127,980),(128,861),(128,977),(129,862),(129,978),(130,843),(130,851),(131,844),(131,852),(132,679),(132,691),(133,680),(133,692),(134,997),(135,998),(136,891),(136,937),(137,892),(137,938),(138,893),(138,945),(139,894),(139,946),(140,697),(140,929),(141,698),(141,930),(142,919),(142,920),(143,677),(143,951),(144,678),(144,952),(145,677),(145,931),(146,678),(146,932),(147,699),(148,700),(149,689),(149,971),(150,690),(150,972),(151,945),(151,975),(152,946),(152,976),(153,709),(153,765),(154,710),(154,766),(155,761),(155,881),(156,762),(156,882),(157,775),(157,961),(158,776),(158,962),(159,771),(159,963),(160,772),(160,964),(161,769),(161,883),(162,770),(162,884),(163,767),(164,768),(165,763),(165,983),(166,764),(166,984),(167,775),(167,901),(168,776),(168,902),(169,759),(169,877),(170,760),(170,878),(171,685),(171,813),(172,686),(172,814),(173,774),(173,959),(174,773),(174,960),(175,773),(175,879),(176,774),(176,880),(177,755),(178,756),(179,707),(179,815),(180,708),(180,816),(181,683),(181,757),(182,684),(182,758),(183,19),(183,777),(184,20),(184,778),(185,819),(185,885),(186,820),(186,886),(187,817),(187,887),(188,818),(188,888),(189,689),(189,787),(190,690),(190,788),(191,759),(191,760),(192,771),(192,772),(193,745),(193,769),(194,746),(194,770),(195,723),(195,799),(196,724),(196,800),(197,671),(198,672),(199,867),(200,868),(201,869),(202,870),(203,865),(203,979),(204,866),(204,980),(205,999),(206,1000),(207,833),(208,834),(209,928),(210,927),(211,741),(212,742),(213,753),(213,871),(214,754),(214,872),(215,729),(215,863),(216,730),(216,864),(217,777),(218,778),(219,765),(219,791),(220,766),(220,792),(221,749),(222,750),(223,49),(223,695),(223,697),(224,50),(224,696),(224,698),(225,7),(225,915),(226,8),(226,916),(227,5),(227,807),(228,6),(228,808),(229,43),(229,809),(230,44),(230,810),(231,35),(231,747),(232,36),(232,748),(233,296),(233,693),(233,968),(234,295),(234,694),(234,967),(235,293),(235,967),(236,294),(236,968),(237,349),(237,992),(238,350),(238,991),(239,195),(239,897),(240,196),(240,898),(241,219),(241,981),(242,220),(242,982),(243,211),(243,959),(244,212),(244,960),(245,191),(245,889),(246,191),(246,890),(247,388),(248,387),(249,540),(249,969),(250,541),(250,970),(251,542),(251,969),(252,543),(252,970),(253,407),(253,973),(254,408),(254,974),(255,193),(255,895),(255,977),(256,194),(256,896),(256,978),(257,213),(257,989),(258,214),(258,990),(259,443),(260,444),(261,397),(261,917),(262,398),(262,918),(263,126),(263,899),(264,126),(264,900),(265,457),(265,687),(266,458),(266,688),(267,321),(267,679),(268,322),(268,680),(269,287),(269,705),(270,288),(270,706),(271,371),(271,693),(272,372),(272,694),(273,401),(273,913),(274,402),(274,914),(275,485),(275,693),(275,705),(276,486),(276,694),(276,706),(277,307),(277,993),(278,308),(278,994),(279,435),(279,997),(280,436),(280,998),(281,455),(281,937),(281,955),(282,456),(282,938),(282,956),(283,449),(283,933),(284,450),(284,934),(285,327),(285,941),(286,328),(286,942),(287,359),(287,925),(288,360),(288,926),(289,245),(290,246),(291,600),(292,601),(293,145),(293,673),(293,935),(294,146),(294,674),(294,936),(295,143),(295,935),(295,943),(296,144),(296,936),(296,944),(297,132),(297,931),(297,951),(298,133),(298,932),(298,952),(299,492),(299,965),(300,491),(300,966),(301,515),(301,933),(302,516),(302,934),(303,517),(303,933),(304,518),(304,934),(305,511),(305,925),(306,512),(306,926),(307,315),(308,316),(309,189),(309,703),(310,190),(310,704),(311,404),(311,971),(312,403),(312,972),(313,136),(313,707),(313,915),(314,137),(314,708),(314,916),(315,461),(316,462),(317,241),(317,921),(318,242),(318,922),(319,147),(319,949),(320,148),(320,950),(321,602),(321,923),(322,603),(322,924),(323,235),(323,953),(324,236),(324,954),(325,415),(325,703),(326,416),(326,704),(327,163),(327,961),(328,164),(328,962),(329,153),(329,995),(330,154),(330,996),(331,187),(331,671),(331,691),(332,188),(332,672),(332,692),(333,181),(333,711),(333,913),(334,182),(334,712),(334,914),(335,169),(336,170),(337,177),(337,927),(338,178),(338,928),(339,185),(339,855),(339,947),(340,186),(340,856),(340,948),(341,161),(341,837),(342,162),(342,838),(343,155),(343,923),(344,156),(344,924),(345,173),(345,669),(346,174),(346,670),(347,179),(347,695),(347,929),(348,180),(348,696),(348,930),(349,176),(349,668),(350,175),(350,667),(351,153),(351,903),(351,985),(352,154),(352,904),(352,986),(353,155),(353,847),(353,975),(354,156),(354,848),(354,976),(355,167),(355,668),(356,168),(356,667),(357,608),(357,673),(358,609),(358,674),(359,399),(359,689),(360,400),(360,690),(361,297),(361,673),(361,943),(362,298),(362,674),(362,944),(363,299),(363,665),(363,953),(364,300),(364,666),(364,954),(365,3),(365,598),(366,4),(366,599),(367,15),(367,283),(368,16),(368,284),(369,429),(369,675),(369,797),(370,430),(370,676),(370,798),(371,149),(371,735),(372,150),(372,736),(373,411),(373,813),(374,412),(374,814),(375,357),(375,727),(375,955),(376,358),(376,728),(376,956),(377,385),(377,781),(378,386),(378,782),(379,477),(379,779),(380,478),(380,780),(381,447),(381,797),(382,448),(382,798),(383,128),(383,737),(383,849),(384,129),(384,738),(384,850),(385,130),(385,745),(385,841),(386,131),(386,746),(386,842),(387,199),(387,755),(388,200),(388,756),(389,229),(389,815),(390,230),(390,816),(391,261),(391,795),(392,262),(392,796),(393,377),(393,829),(394,378),(394,830),(395,419),(395,795),(395,913),(396,420),(396,796),(396,914),(397,459),(397,729),(397,947),(398,460),(398,730),(398,948),(399,369),(399,801),(400,370),(400,802),(401,215),(401,751),(402,216),(402,752),(403,201),(403,743),(404,202),(404,744),(405,409),(405,731),(406,410),(406,732),(407,138),(407,685),(407,743),(408,139),(408,686),(408,744),(409,393),(409,817),(409,985),(410,394),(410,818),(410,986),(411,441),(411,785),(412,442),(412,786),(413,383),(413,785),(414,384),(414,786),(415,125),(415,758),(415,845),(416,125),(416,757),(416,846),(417,251),(417,739),(417,921),(418,252),(418,740),(418,922),(419,171),(419,683),(419,827),(420,172),(420,684),(420,828),(421,185),(421,805),(422,186),(422,806),(423,163),(423,825),(424,164),(424,826),(425,169),(425,719),(426,170),(426,720),(427,187),(427,721),(427,919),(428,188),(428,722),(428,920),(429,157),(429,783),(429,941),(430,158),(430,784),(430,942),(431,165),(431,803),(432,166),(432,804),(433,245),(433,723),(434,246),(434,724),(435,425),(435,799),(436,426),(436,800),(437,417),(437,701),(437,823),(438,418),(438,702),(438,824),(439,405),(439,823),(440,406),(440,824),(441,255),(441,737),(441,761),(442,256),(442,738),(442,762),(443,130),(443,741),(443,767),(444,131),(444,742),(444,768),(445,175),(445,717),(445,829),(446,176),(446,718),(446,830),(447,167),(447,715),(447,783),(448,168),(448,716),(448,784),(449,47),(449,291),(450,48),(450,292),(451,41),(451,589),(451,697),(452,42),(452,590),(452,698),(453,61),(453,389),(453,695),(454,62),(454,390),(454,696),(455,29),(455,495),(455,943),(456,30),(456,496),(456,944),(457,579),(458,580),(459,207),(459,675),(460,208),(460,676),(461,423),(461,709),(462,424),(462,710),(463,309),(463,939),(464,310),(464,940),(465,247),(466,248),(467,563),(467,699),(468,564),(468,700),(469,285),(469,675),(470,286),(470,676),(471,239),(471,789),(472,240),(472,790),(473,238),(473,733),(474,237),(474,734),(475,445),(475,831),(476,446),(476,832),(477,177),(477,789),(478,178),(478,790),(479,63),(479,275),(479,949),(480,64),(480,276),(480,950),(481,57),(481,509),(482,58),(482,510),(483,33),(483,507),(483,681),(484,34),(484,508),(484,682),(485,27),(485,573),(485,725),(486,28),(486,574),(486,726),(487,31),(487,379),(487,807),(488,32),(488,380),(488,808),(489,18),(489,639),(490,17),(490,638),(491,149),(491,311),(492,150),(492,312),(493,321),(493,411),(494,322),(494,412),(495,407),(495,616),(495,713),(496,408),(496,617),(496,714),(497,355),(497,447),(497,992),(498,356),(498,448),(498,991),(499,349),(499,355),(500,350),(500,356),(501,309),(501,325),(502,310),(502,326),(503,151),(503,353),(503,685),(504,152),(504,354),(504,686),(505,554),(505,585),(505,963),(506,555),(506,586),(506,964),(507,532),(507,655),(508,532),(508,654),(509,413),(509,658),(510,414),(510,659),(511,307),(511,526),(512,308),(512,527),(513,405),(513,528),(513,999),(514,406),(514,529),(514,1000),(515,319),(515,610),(516,320),(516,611),(517,225),(517,313),(518,226),(518,314),(519,317),(519,417),(519,993),(520,318),(520,418),(520,994),(521,147),(521,467),(522,148),(522,468),(523,323),(523,363),(523,957),(524,324),(524,364),(524,958),(525,367),(525,368),(526,315),(526,469),(527,316),(527,470),(528,351),(528,409),(528,691),(529,352),(529,410),(529,692),(530,325),(530,533),(530,939),(531,326),(531,533),(531,940),(532,530),(532,531),(533,415),(533,416),(533,711),(533,712),(534,181),(534,419),(534,983),(535,182),(535,420),(535,984),(536,165),(536,534),(536,965),(537,166),(537,535),(537,966),(538,159),(538,192),(538,688),(539,160),(539,192),(539,687),(540,157),(540,327),(541,158),(541,328),(542,173),(542,243),(543,174),(543,244),(544,179),(544,389),(544,957),(545,180),(545,390),(545,958),(546,159),(546,505),(546,687),(547,160),(547,506),(547,688),(548,140),(548,451),(548,681),(549,141),(549,452),(549,682),(550,136),(550,281),(550,665),(551,137),(551,282),(551,666),(552,233),(552,271),(552,954),(553,234),(553,272),(553,953),(554,142),(554,427),(554,701),(555,142),(555,428),(555,702),(556,507),(556,508),(557,205),(557,513),(558,206),(558,514),(559,385),(559,443),(559,821),(560,386),(560,444),(560,822),(561,128),(561,255),(561,717),(562,129),(562,256),(562,718),(563,437),(563,519),(563,793),(563,963),(564,438),(564,520),(564,794),(564,964),(565,439),(565,513),(565,793),(566,440),(566,514),(566,794),(567,161),(567,193),(567,825),(568,162),(568,194),(568,826),(569,339),(569,397),(569,787),(570,340),(570,398),(570,788),(571,343),(571,353),(572,344),(572,354),(573,583),(573,652),(574,584),(574,653),(575,339),(575,421),(575,917),(576,340),(576,422),(576,918),(577,289),(577,433),(578,290),(578,434),(579,197),(579,331),(580,198),(580,332),(581,369),(581,632),(582,370),(582,633),(583,381),(583,497),(584,382),(584,498),(585,331),(585,427),(585,987),(586,332),(586,428),(586,988),(587,134),(587,279),(588,135),(588,280),(589,606),(589,640),(589,811),(590,607),(590,641),(590,812),(591,263),(591,264),(592,59),(592,515),(592,650),(593,60),(593,516),(593,651),(594,53),(594,517),(594,634),(595,54),(595,518),(595,635),(596,287),(596,305),(597,288),(597,306),(598,303),(598,594),(599,304),(599,595),(600,557),(600,565),(600,699),(601,558),(601,566),(601,700),(602,341),(602,567),(602,709),(603,342),(603,568),(603,710),(604,266),(604,538),(605,265),(605,539),(606,273),(606,333),(606,939),(607,274),(607,334),(607,940),(608,503),(608,571),(609,504),(609,572),(610,269),(610,596),(610,949),(611,270),(611,597),(611,950),(612,95),(612,281),(612,375),(612,915),(613,96),(613,282),(613,376),(613,916),(614,277),(614,511),(614,725),(615,278),(615,512),(615,726),(616,138),(616,151),(616,733),(617,139),(617,152),(617,734),(618,209),(618,338),(619,210),(619,337),(620,249),(620,632),(621,250),(621,633),(622,267),(622,493),(623,268),(623,494),(624,373),(624,493),(625,374),(625,494),(626,183),(626,217),(627,184),(627,218),(628,127),(628,203),(628,747),(629,127),(629,204),(629,748),(630,183),(630,391),(630,809),(631,184),(631,392),(631,810),(632,285),(632,429),(632,540),(633,286),(633,430),(633,541),(634,313),(634,550),(634,612),(634,957),(635,314),(635,551),(635,613),(635,958),(636,140),(636,223),(636,347),(637,141),(637,224),(637,348),(638,234),(638,235),(638,662),(639,233),(639,236),(639,663),(640,333),(640,395),(640,534),(640,803),(641,334),(641,396),(641,535),(641,804),(642,261),(642,569),(642,575),(643,262),(643,570),(643,576),(644,347),(644,453),(644,544),(644,681),(645,348),(645,454),(645,545),(645,682),(646,323),(646,553),(646,638),(647,324),(647,552),(647,639),(648,143),(648,145),(648,297),(649,144),(649,146),(649,298),(650,319),(650,479),(650,521),(651,320),(651,480),(651,522),(652,237),(652,497),(652,499),(653,238),(653,498),(653,500),(654,463),(654,501),(654,530),(655,464),(655,502),(655,531),(656,101),(656,548),(656,636),(656,644),(657,102),(657,549),(657,637),(657,645),(658,383),(658,441),(658,561),(658,831),(659,384),(659,442),(659,562),(659,832),(660,431),(660,536),(660,640),(661,432),(661,537),(661,641),(662,293),(662,295),(662,361),(662,648),(663,294),(663,296),(663,362),(663,649),(664,538),(664,539),(664,546),(664,547),(665,891),(665,955),(665,965),(666,892),(666,956),(666,966),(667,213),(667,879),(667,902),(668,214),(668,880),(668,901),(669,591),(669,959),(670,591),(670,960),(671,219),(671,887),(671,903),(672,220),(672,888),(672,904),(673,571),(673,931),(674,572),(674,932),(675,833),(675,941),(676,834),(676,942),(677,201),(677,873),(678,202),(678,874),(679,923),(680,924),(681,589),(681,660),(681,929),(682,590),(682,661),(682,930),(683,231),(683,911),(684,232),(684,912),(685,847),(685,945),(686,848),(686,946),(687,579),(687,585),(687,771),(688,580),(688,586),(688,772),(689,801),(690,802),(691,817),(691,903),(692,818),(692,904),(693,573),(693,735),(694,574),(694,736),(695,626),(695,630),(695,815),(696,627),(696,631),(696,816),(697,13),(697,811),(698,14),(698,812),(699,205),(699,793),(700,206),(700,794),(701,721),(701,920),(701,921),(702,722),(702,919),(702,922),(703,215),(703,787),(703,845),(704,216),(704,788),(704,846),(705,725),(705,925),(706,726),(706,926),(707,727),(707,891),(708,728),(708,892),(709,825),(709,837),(710,826),(710,838),(711,751),(711,757),(711,845),(712,752),(712,758),(712,846),(713,733),(713,743),(713,873),(714,734),(714,744),(714,874),(715,901),(715,990),(716,902),(716,989),(717,861),(717,879),(717,895),(718,862),(718,880),(718,896),(719,877),(720,878),(721,887),(721,981),(721,1015),(722,888),(722,982),(722,1015),(723,889),(724,890),(725,581),(725,620),(726,582),(726,621),(727,622),(727,1006),(728,623),(728,1007),(729,207),(729,1022),(730,208),(730,1023),(731,985),(731,995),(732,986),(732,996),(733,893),(733,975),(733,991),(734,894),(734,976),(734,992),(735,583),(735,971),(736,584),(736,972),(737,587),(737,977),(737,1013),(738,588),(738,978),(738,1014),(739,969),(739,995),(740,970),(740,996),(741,851),(741,905),(742,852),(742,906),(743,847),(743,869),(743,893),(744,848),(744,870),(744,894),(745,843),(745,1016),(746,844),(746,1017),(747,618),(747,865),(747,980),(748,619),(748,866),(748,979),(749,853),(750,854),(751,628),(751,863),(751,911),(752,629),(752,864),(752,912),(753,200),(753,1020),(754,199),(754,1021),(755,867),(756,868),(757,859),(757,911),(758,860),(758,912),(759,1012),(760,1012),(761,895),(761,1013),(762,896),(762,1014),(763,973),(764,974),(765,837),(766,838),(767,843),(767,905),(768,844),(768,906),(769,221),(769,1016),(770,222),(770,1017),(771,197),(771,987),(772,198),(772,988),(773,839),(774,840),(775,835),(776,836),(777,2),(778,1),(779,577),(780,578),(781,839),(781,841),(782,840),(782,842),(783,775),(783,875),(784,776),(784,876),(785,737),(786,738),(787,729),(787,855),(788,730),(788,856),(789,755),(789,897),(790,756),(790,898),(791,211),(791,821),(792,212),(792,822),(793,823),(793,993),(793,999),(794,824),(794,994),(794,1000),(795,827),(795,917),(796,828),(796,918),(797,783),(797,833),(798,784),(798,834),(799,719),(800,720),(801,797),(802,798),(803,575),(803,795),(803,983),(804,576),(804,796),(804,984),(805,227),(805,819),(806,228),(806,820),(807,11),(807,779),(808,12),(808,780),(809,624),(809,777),(810,625),(810,778),(811,642),(811,803),(812,643),(812,804),(813,785),(814,786),(815,217),(815,809),(816,218),(816,810),(817,829),(817,1008),(818,830),(818,1009),(819,807),(819,1010),(820,808),(820,1011),(821,741),(821,841),(822,742),(822,842),(823,731),(823,739),(824,732),(824,740),(825,745),(825,767),(825,883),(826,746),(826,768),(826,884),(827,805),(827,813),(828,806),(828,814),(829,773),(829,781),(830,774),(830,782),(831,717),(831,761),(831,849),(832,718),(832,762),(832,850),(833,875),(834,876),(835,897),(836,898),(837,883),(838,884),(839,899),(840,900),(841,851),(841,899),(841,1016),(842,852),(842,900),(842,1017),(843,799),(843,1004),(844,800),(844,1005),(845,855),(845,859),(845,863),(846,856),(846,860),(846,864),(847,881),(847,1018),(848,882),(848,1019),(849,861),(849,1013),(850,862),(850,1014),(851,857),(851,1004),(852,858),(852,1005),(853,877),(854,878),(855,885),(855,1022),(856,886),(856,1023),(857,853),(858,854),(859,885),(859,909),(860,886),(860,910),(861,907),(861,1001),(862,908),(862,1002),(863,203),(863,909),(863,1022),(864,204),(864,910),(864,1023),(865,209),(865,1003),(866,210),(866,1003),(867,889),(868,890),(869,849),(869,881),(870,850),(870,882),(871,221),(871,1020),(872,222),(872,1021),(873,831),(873,869),(874,832),(874,870),(875,789),(875,835),(876,790),(876,836),(877,1012),(878,1012),(879,871),(879,907),(880,872),(880,908),(881,1013),(882,1014),(883,905),(883,1016),(884,906),(884,1017),(885,1010),(886,1011),(887,791),(887,1008),(888,792),(888,1009),(889,760),(890,759),(891,763),(891,1006),(892,764),(892,1007),(893,716),(893,1018),(894,715),(894,1019),(895,769),(895,871),(895,1001),(896,770),(896,872),(896,1002),(897,723),(897,867),(898,724),(898,868),(899,749),(899,857),(900,750),(900,858),(901,754),(901,908),(902,753),(902,907),(903,765),(903,1008),(904,766),(904,1009),(905,1004),(906,1005),(907,1020),(908,1021),(909,865),(909,1010),(910,866),(910,1011),(911,747),(911,909),(912,748),(912,910),(913,39),(913,683),(913,751),(914,40),(914,684),(914,752),(915,55),(915,727),(915,937),(916,56),(916,728),(916,938),(917,37),(917,805),(917,947),(918,38),(918,806),(918,948),(919,346),(919,1015),(920,345),(920,1015),(921,345),(921,542),(921,981),(922,346),(922,543),(922,982),(923,341),(924,342),(925,399),(925,581),(926,400),(926,582),(927,289),(928,290),(929,431),(929,811),(930,432),(930,812),(931,343),(931,679),(932,344),(932,680),(933,291),(934,292),(935,403),(935,677),(935,713),(936,404),(936,678),(936,714),(937,481),(937,1006),(938,482),(938,1007),(939,401),(939,703),(939,711),(940,402),(940,704),(940,712),(941,471),(941,875),(941,961),(942,472),(942,876),(942,962),(943,473),(943,713),(943,951),(944,474),(944,714),(944,952),(945,465),(945,1018),(946,466),(946,1019),(947,487),(947,819),(947,1022),(948,488),(948,820),(948,1023),(949,305),(949,614),(949,705),(950,306),(950,615),(950,706),(951,475),(951,873),(952,476),(952,874),(953,372),(953,492),(953,967),(954,371),(954,491),(954,968),(955,253),(955,495),(955,1006),(956,254),(956,496),(956,1007),(957,375),(957,665),(957,707),(958,376),(958,666),(958,708),(959,264),(959,840),(960,263),(960,839),(961,239),(961,835),(962,240),(962,836),(963,317),(963,701),(963,987),(964,318),(964,702),(964,988),(965,253),(965,763),(966,254),(966,764),(967,312),(967,736),(967,935),(968,311),(968,735),(968,936),(969,259),(970,260),(971,381),(971,801),(972,382),(972,802),(973,413),(974,414),(975,257),(975,1018),(976,258),(976,1019),(977,279),(977,1001),(978,280),(978,1002),(979,337),(979,1003),(980,338),(980,1003),(981,243),(981,669),(981,791),(982,244),(982,670),(982,792),(983,421),(983,827),(984,422),(984,828),(985,377),(985,559),(985,1008),(986,378),(986,560),(986,1009),(987,241),(987,671),(987,721),(988,242),(988,672),(988,722),(989,388),(989,753),(990,387),(990,754),(991,257),(991,667),(991,716),(992,258),(992,668),(992,715),(993,329),(993,739),(994,330),(994,740),(995,259),(995,559),(996,260),(996,560),(997,335),(997,425),(998,336),(998,426),(999,329),(999,351),(999,731),(1000,330),(1000,352),(1000,732),(1001,997),(1001,1020),(1002,998),(1002,1021),(1003,927),(1003,928),(1004,719),(1004,853),(1005,720),(1005,854),(1006,509),(1006,973),(1007,510),(1007,974),(1008,781),(1008,821),(1009,782),(1009,822),(1010,779),(1011,780),(1013,134),(1013,1001),(1014,135),(1014,1002),(1015,669),(1015,670),(1016,749),(1016,1004),(1017,750),(1017,1005),(1018,247),(1018,989),(1019,248),(1019,990),(1020,335),(1021,336),(1022,379),(1022,1010),(1023,380),(1023,1011)],1024)
=> ? = 1
[[0,1,0,0,0],[1,-1,1,0,0],[0,1,0,0,0],[0,0,0,1,0],[0,0,0,0,1]]
=> [[0,0,0,1,0],[0,0,1,-1,1],[0,0,0,1,0],[0,1,0,0,0],[1,0,0,0,0]]
=> [[1,2,3,3,4],[2,3,4,5],[3,4,5],[4,5],[5]]
=> ?
=> ? = 2
[[0,1,0,0,0],[0,0,1,0,0],[1,0,0,0,0],[0,0,0,1,0],[0,0,0,0,1]]
=> [[0,0,1,0,0],[0,0,0,0,1],[0,0,0,1,0],[0,1,0,0,0],[1,0,0,0,0]]
=> [[1,2,3,3,3],[2,3,4,5],[3,4,5],[4,5],[5]]
=> ([(0,4),(0,15),(0,16),(1,34),(2,7),(2,32),(3,14),(3,33),(4,11),(4,12),(5,147),(6,38),(6,125),(7,5),(7,114),(8,39),(8,161),(9,30),(9,158),(10,31),(10,96),(11,29),(11,159),(12,28),(12,41),(12,159),(13,24),(13,75),(14,20),(14,21),(14,156),(15,2),(15,54),(16,3),(16,54),(17,68),(17,119),(18,115),(18,120),(19,113),(19,149),(20,122),(20,154),(21,122),(21,164),(22,111),(22,145),(23,67),(23,116),(24,65),(24,66),(25,42),(25,117),(25,148),(26,37),(26,152),(26,163),(27,35),(27,150),(27,155),(28,118),(28,153),(29,121),(29,162),(30,110),(30,146),(31,109),(31,112),(32,114),(32,151),(33,121),(33,156),(34,36),(34,147),(34,164),(35,79),(35,81),(36,84),(36,134),(37,80),(37,137),(38,95),(38,106),(38,107),(39,58),(39,94),(39,139),(40,52),(40,64),(40,108),(41,118),(41,132),(41,151),(42,76),(42,77),(42,78),(43,211),(44,202),(45,173),(45,214),(46,168),(47,167),(47,168),(48,217),(49,212),(49,215),(50,174),(50,215),(51,218),(52,6),(52,212),(53,10),(54,1),(55,176),(56,176),(56,211),(57,192),(57,203),(58,173),(58,186),(59,177),(59,187),(60,175),(60,177),(61,214),(62,193),(63,182),(63,200),(64,22),(64,174),(64,212),(65,181),(66,181),(67,180),(68,179),(69,96),(70,57),(70,199),(70,213),(71,60),(71,169),(71,171),(72,100),(72,206),(73,58),(73,172),(74,66),(74,197),(75,65),(76,83),(76,170),(77,91),(77,167),(78,120),(78,167),(78,170),(79,88),(80,87),(81,136),(82,67),(82,216),(83,94),(83,208),(84,110),(84,210),(85,69),(85,208),(86,63),(86,198),(87,105),(88,55),(89,93),(89,172),(90,46),(90,210),(91,45),(91,196),(92,43),(92,209),(93,44),(93,195),(94,101),(94,173),(95,86),(95,169),(96,112),(97,102),(97,166),(97,188),(98,103),(98,188),(99,57),(99,191),(100,109),(100,182),(100,213),(101,97),(101,184),(102,56),(102,183),(102,209),(103,55),(103,183),(104,48),(104,185),(105,44),(105,175),(106,59),(106,169),(106,190),(107,72),(107,190),(108,19),(108,144),(108,174),(109,62),(109,166),(110,135),(111,53),(112,92),(112,166),(113,73),(113,207),(114,9),(114,126),(115,69),(115,178),(116,74),(116,180),(117,18),(117,78),(117,218),(118,26),(118,123),(118,165),(119,23),(119,82),(119,179),(120,27),(120,140),(120,178),(121,133),(122,138),(123,130),(123,152),(124,88),(124,103),(125,53),(125,107),(126,130),(126,158),(127,59),(127,60),(127,217),(128,87),(128,131),(129,89),(129,131),(129,207),(130,128),(130,129),(131,93),(131,105),(131,171),(132,50),(132,108),(132,165),(133,51),(133,148),(134,47),(134,77),(134,210),(135,45),(135,61),(136,43),(136,56),(137,48),(137,127),(138,46),(138,47),(139,70),(139,100),(139,186),(140,143),(140,150),(141,70),(141,99),(141,206),(142,97),(142,157),(143,98),(143,124),(144,149),(144,160),(144,189),(145,83),(145,85),(146,73),(146,89),(147,84),(147,90),(148,76),(148,145),(148,218),(149,71),(149,95),(149,207),(150,79),(150,124),(151,123),(151,126),(152,80),(152,128),(153,49),(153,52),(153,165),(154,51),(154,117),(155,81),(155,157),(156,25),(156,133),(156,154),(157,92),(157,102),(157,136),(158,113),(158,129),(158,146),(159,40),(159,132),(159,153),(159,162),(160,71),(160,106),(160,127),(160,185),(161,72),(161,139),(161,141),(162,49),(162,50),(162,64),(163,104),(163,137),(163,160),(164,90),(164,134),(164,138),(165,144),(165,163),(165,215),(166,193),(166,209),(167,140),(167,196),(168,61),(168,196),(169,177),(169,198),(170,178),(170,208),(171,175),(171,195),(171,198),(172,63),(172,186),(172,195),(173,184),(174,8),(174,189),(175,202),(175,204),(176,194),(177,204),(178,142),(178,155),(179,13),(179,216),(180,197),(182,62),(182,220),(183,176),(183,201),(184,188),(185,141),(185,190),(185,217),(186,182),(186,199),(187,191),(188,183),(188,193),(189,161),(189,185),(190,187),(190,206),(191,68),(191,192),(192,179),(192,219),(193,201),(194,197),(195,199),(195,200),(195,202),(196,143),(196,214),(197,181),(198,200),(198,204),(199,203),(199,220),(200,205),(200,220),(201,180),(201,194),(202,203),(202,205),(203,219),(204,205),(205,219),(206,17),(206,191),(206,213),(207,86),(207,171),(207,172),(208,101),(208,142),(209,116),(209,201),(209,211),(210,91),(210,135),(210,168),(211,74),(211,194),(212,111),(212,125),(213,119),(213,192),(213,220),(214,98),(214,184),(215,104),(215,189),(216,75),(217,99),(217,187),(218,85),(218,115),(218,170),(219,216),(220,82),(220,219)],221)
=> ? = 2
[[1,0,0,0,0],[0,0,1,0,0],[0,1,-1,1,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [[0,0,0,0,1],[0,0,1,0,0],[0,1,-1,1,0],[0,0,1,0,0],[1,0,0,0,0]]
=> [[1,2,2,3,5],[2,3,4,5],[3,4,5],[4,5],[5]]
=> ?
=> ? = 2
[[0,1,0,0,0],[1,-1,1,0,0],[0,1,-1,1,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [[0,0,0,1,0],[0,0,1,-1,1],[0,1,-1,1,0],[0,0,1,0,0],[1,0,0,0,0]]
=> [[1,2,2,3,4],[2,3,4,5],[3,4,5],[4,5],[5]]
=> ?
=> ? = 2
[[0,1,0,0,0],[0,0,1,0,0],[1,0,-1,1,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [[0,0,1,0,0],[0,0,0,0,1],[0,1,-1,1,0],[0,0,1,0,0],[1,0,0,0,0]]
=> [[1,2,2,3,3],[2,3,4,5],[3,4,5],[4,5],[5]]
=> ?
=> ? = 2
[[0,0,1,0,0],[1,0,-1,1,0],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [[0,0,0,1,0],[0,0,1,0,0],[0,1,0,-1,1],[0,0,0,1,0],[1,0,0,0,0]]
=> [[1,2,2,3,4],[2,3,3,4],[3,4,5],[4,5],[5]]
=> ?
=> ? = 2
[[0,0,1,0,0],[0,1,-1,1,0],[1,0,0,0,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [[0,0,1,0,0],[0,0,0,1,0],[0,1,0,-1,1],[0,0,0,1,0],[1,0,0,0,0]]
=> [[1,2,2,3,3],[2,3,3,4],[3,4,5],[4,5],[5]]
=> ?
=> ? = 2
[[1,0,0,0,0],[0,0,1,0,0],[0,0,0,1,0],[0,1,0,0,0],[0,0,0,0,1]]
=> [[0,0,0,0,1],[0,1,0,0,0],[0,0,0,1,0],[0,0,1,0,0],[1,0,0,0,0]]
=> [[1,2,2,2,5],[2,3,4,5],[3,4,5],[4,5],[5]]
=> ([(0,21),(0,22),(0,50),(1,4),(1,115),(2,99),(3,152),(4,151),(5,6),(5,51),(5,117),(6,18),(6,178),(7,31),(7,120),(8,36),(8,169),(9,39),(9,121),(10,35),(10,179),(11,33),(11,168),(12,34),(12,118),(13,41),(13,64),(14,40),(14,119),(15,42),(15,132),(16,37),(16,191),(17,20),(17,38),(17,122),(18,32),(18,190),(19,25),(19,75),(20,26),(20,30),(20,145),(21,5),(21,159),(22,11),(22,116),(23,49),(23,143),(23,149),(24,84),(24,148),(25,81),(25,180),(26,150),(26,188),(27,83),(27,138),(28,53),(28,135),(28,185),(29,44),(29,86),(29,140),(30,43),(30,150),(30,181),(31,85),(31,139),(32,187),(32,189),(33,142),(33,144),(34,146),(34,147),(35,47),(35,188),(35,192),(36,134),(36,141),(37,133),(37,186),(38,136),(38,145),(39,82),(39,137),(40,45),(40,182),(40,184),(41,46),(41,183),(41,193),(42,48),(42,189),(42,193),(43,97),(43,183),(44,67),(44,171),(45,96),(45,166),(46,94),(46,160),(47,156),(47,157),(48,57),(48,165),(49,61),(49,90),(50,17),(50,116),(50,159),(51,114),(51,144),(51,178),(52,130),(52,131),(52,167),(53,52),(53,162),(53,170),(53,172),(54,203),(55,242),(56,227),(57,243),(58,241),(59,230),(59,246),(60,226),(61,196),(62,245),(62,246),(63,202),(63,247),(64,14),(65,207),(66,217),(66,229),(67,209),(68,208),(69,202),(69,211),(70,207),(70,248),(71,211),(71,236),(72,195),(73,228),(73,244),(74,248),(75,12),(76,206),(77,216),(78,215),(79,210),(80,237),(81,199),(82,238),(83,2),(83,239),(84,3),(84,198),(85,232),(86,9),(86,235),(87,95),(88,126),(88,224),(89,81),(89,242),(90,86),(90,196),(91,76),(91,241),(92,77),(92,249),(93,66),(93,195),(93,199),(94,133),(94,201),(95,65),(96,104),(96,194),(97,119),(98,137),(98,225),(98,231),(99,87),(100,169),(101,185),(102,92),(102,231),(103,128),(104,141),(104,240),(105,78),(105,240),(106,68),(106,198),(107,111),(107,232),(108,56),(108,221),(109,60),(110,60),(110,223),(111,55),(111,239),(112,58),(112,197),(113,54),(113,233),(114,132),(114,234),(115,8),(115,100),(116,10),(116,168),(117,15),(117,114),(118,147),(119,184),(120,1),(120,139),(121,82),(122,13),(122,136),(123,70),(123,214),(124,108),(124,213),(125,66),(125,212),(125,245),(126,146),(126,217),(126,244),(127,83),(127,208),(128,56),(128,206),(129,59),(129,205),(130,98),(130,200),(130,204),(131,88),(131,204),(132,28),(132,101),(133,176),(134,95),(135,172),(135,203),(136,64),(137,163),(137,238),(138,89),(138,239),(139,115),(139,232),(140,67),(140,235),(141,153),(142,154),(142,234),(143,61),(143,233),(144,155),(144,234),(145,7),(145,181),(146,124),(146,219),(147,65),(147,219),(148,27),(148,127),(148,198),(149,29),(149,90),(149,233),(150,16),(150,158),(151,104),(151,105),(152,79),(152,174),(153,70),(153,74),(154,84),(154,106),(155,113),(155,143),(156,68),(156,127),(157,85),(157,107),(158,107),(158,191),(159,117),(159,122),(160,71),(160,162),(160,201),(161,69),(161,71),(161,243),(162,167),(162,175),(162,236),(163,58),(163,91),(164,63),(164,69),(164,201),(165,63),(165,182),(165,243),(166,59),(166,62),(166,194),(167,62),(167,125),(167,200),(168,142),(168,179),(169,87),(169,134),(170,131),(170,174),(170,220),(171,98),(171,102),(171,209),(172,130),(172,171),(172,220),(172,236),(173,108),(173,128),(173,218),(174,88),(174,180),(174,210),(175,93),(175,125),(175,250),(176,72),(176,93),(177,109),(177,110),(178,23),(178,155),(178,190),(179,24),(179,154),(179,192),(180,73),(180,126),(180,199),(181,97),(181,120),(182,129),(182,166),(182,247),(183,94),(183,164),(184,96),(184,151),(184,247),(185,152),(185,170),(185,203),(186,55),(186,89),(187,54),(187,135),(188,157),(188,158),(189,57),(189,161),(190,113),(190,149),(190,187),(191,111),(191,138),(191,186),(192,106),(192,148),(192,156),(193,160),(193,161),(193,164),(193,165),(194,230),(194,240),(194,245),(195,77),(195,228),(195,229),(196,235),(197,177),(197,241),(198,19),(198,208),(199,217),(199,228),(200,212),(200,231),(200,246),(201,175),(201,176),(201,211),(202,205),(203,79),(203,220),(204,224),(204,225),(205,78),(205,230),(206,227),(207,222),(208,75),(209,80),(209,225),(210,73),(210,80),(210,224),(211,72),(211,250),(212,229),(212,249),(212,252),(213,221),(213,222),(214,177),(214,248),(215,74),(215,214),(216,76),(216,218),(217,219),(217,251),(218,206),(218,221),(219,207),(219,213),(220,204),(220,209),(220,210),(221,223),(221,227),(222,223),(223,226),(224,237),(224,244),(225,237),(225,238),(227,226),(228,251),(229,216),(229,251),(230,215),(230,252),(231,112),(231,163),(231,249),(232,100),(233,140),(233,196),(234,101),(235,121),(236,102),(236,200),(236,250),(237,103),(237,173),(238,103),(239,99),(239,242),(240,123),(240,153),(240,215),(241,109),(242,118),(243,129),(243,202),(244,124),(244,173),(244,251),(245,123),(245,252),(246,112),(246,252),(247,105),(247,194),(247,205),(248,110),(248,222),(249,91),(249,197),(249,216),(250,92),(250,195),(250,212),(251,213),(251,218),(252,197),(252,214)],253)
=> ? = 2
[[0,1,0,0,0],[1,-1,1,0,0],[0,0,0,1,0],[0,1,0,0,0],[0,0,0,0,1]]
=> [[0,0,0,1,0],[0,1,0,-1,1],[0,0,0,1,0],[0,0,1,0,0],[1,0,0,0,0]]
=> [[1,2,2,2,4],[2,3,4,5],[3,4,5],[4,5],[5]]
=> ?
=> ? = 2
[[0,1,0,0,0],[0,0,1,0,0],[1,-1,0,1,0],[0,1,0,0,0],[0,0,0,0,1]]
=> [[0,0,1,0,0],[0,1,-1,0,1],[0,0,0,1,0],[0,0,1,0,0],[1,0,0,0,0]]
=> [[1,2,2,2,3],[2,3,4,5],[3,4,5],[4,5],[5]]
=> ?
=> ? = 2
[[0,0,1,0,0],[1,0,-1,1,0],[0,0,1,0,0],[0,1,0,0,0],[0,0,0,0,1]]
=> [[0,0,0,1,0],[0,1,0,0,0],[0,0,1,-1,1],[0,0,0,1,0],[1,0,0,0,0]]
=> [[1,2,2,2,4],[2,3,3,4],[3,4,5],[4,5],[5]]
=> ?
=> ? = 2
[[0,0,1,0,0],[0,1,-1,1,0],[1,-1,1,0,0],[0,1,0,0,0],[0,0,0,0,1]]
=> [[0,0,1,0,0],[0,1,-1,1,0],[0,0,1,-1,1],[0,0,0,1,0],[1,0,0,0,0]]
=> [[1,2,2,2,3],[2,3,3,4],[3,4,5],[4,5],[5]]
=> ?
=> ? = 2
[[0,0,1,0,0],[0,0,0,1,0],[1,0,0,0,0],[0,1,0,0,0],[0,0,0,0,1]]
=> [[0,0,1,0,0],[0,1,0,0,0],[0,0,0,0,1],[0,0,0,1,0],[1,0,0,0,0]]
=> [[1,2,2,2,3],[2,3,3,3],[3,4,5],[4,5],[5]]
=> ([(0,8),(0,9),(0,19),(1,42),(2,4),(2,20),(2,29),(3,50),(4,5),(4,52),(5,3),(5,53),(6,11),(6,35),(7,12),(7,31),(8,7),(8,34),(9,2),(9,33),(10,18),(10,46),(10,48),(11,27),(11,28),(12,25),(12,47),(13,15),(13,43),(13,44),(14,16),(14,26),(14,45),(15,17),(15,41),(15,51),(16,24),(16,40),(17,23),(17,39),(18,22),(18,32),(19,33),(19,34),(20,38),(20,47),(20,52),(21,55),(22,54),(23,57),(24,56),(25,62),(26,6),(26,63),(27,58),(28,58),(29,1),(29,38),(30,27),(30,60),(31,25),(32,26),(32,54),(33,29),(34,31),(35,28),(36,43),(37,21),(37,61),(38,42),(38,62),(39,30),(39,57),(40,30),(40,56),(41,23),(41,59),(42,13),(42,36),(43,41),(43,55),(44,51),(44,55),(45,24),(45,63),(46,22),(46,61),(47,49),(47,62),(48,14),(48,32),(48,61),(49,37),(49,46),(50,21),(50,44),(51,39),(51,40),(51,59),(52,10),(52,49),(52,53),(53,37),(53,48),(53,50),(54,63),(55,59),(56,60),(57,60),(59,56),(59,57),(60,58),(61,45),(61,54),(62,36),(63,35)],64)
=> ? = 2
[[0,1,0,0,0],[0,0,1,0,0],[0,0,0,1,0],[1,0,0,0,0],[0,0,0,0,1]]
=> [[0,1,0,0,0],[0,0,0,0,1],[0,0,0,1,0],[0,0,1,0,0],[1,0,0,0,0]]
=> [[1,2,2,2,2],[2,3,4,5],[3,4,5],[4,5],[5]]
=> ([(0,5),(0,14),(0,15),(1,28),(2,9),(2,27),(3,13),(3,26),(4,21),(5,10),(5,11),(6,91),(7,81),(8,57),(9,6),(9,67),(10,18),(10,85),(11,19),(11,85),(12,20),(12,74),(13,17),(13,24),(13,93),(14,2),(14,37),(15,3),(15,37),(16,45),(16,70),(17,72),(17,88),(18,71),(18,89),(19,73),(19,90),(20,66),(20,68),(21,42),(21,65),(22,43),(22,44),(23,29),(23,87),(23,92),(24,72),(24,94),(25,31),(25,69),(25,86),(26,73),(26,93),(27,67),(27,71),(28,30),(28,91),(28,94),(29,48),(29,49),(30,50),(30,79),(31,56),(31,63),(31,64),(32,97),(33,99),(33,108),(34,98),(35,95),(35,97),(36,96),(37,1),(38,100),(39,100),(40,108),(41,109),(42,99),(43,7),(43,96),(44,8),(44,96),(45,101),(46,42),(47,65),(47,109),(48,53),(49,52),(50,66),(50,107),(51,74),(52,38),(53,39),(54,33),(54,106),(55,32),(55,107),(56,54),(56,95),(57,46),(58,62),(58,104),(59,61),(59,104),(60,58),(60,102),(61,39),(61,103),(62,38),(62,103),(63,47),(63,105),(64,70),(64,95),(64,105),(65,60),(65,99),(66,78),(67,12),(67,51),(68,46),(69,16),(69,64),(69,98),(70,23),(70,82),(70,101),(71,51),(72,80),(73,77),(74,57),(74,68),(75,53),(75,61),(76,52),(76,62),(77,34),(77,86),(78,33),(78,40),(79,35),(79,56),(79,107),(80,32),(80,35),(81,41),(81,47),(82,84),(82,87),(83,58),(83,76),(84,59),(84,75),(85,22),(85,89),(85,90),(86,63),(86,81),(86,98),(87,48),(87,75),(88,34),(88,69),(89,36),(89,44),(90,36),(90,43),(91,50),(91,55),(92,49),(92,76),(93,25),(93,77),(93,88),(94,55),(94,79),(94,80),(95,82),(95,106),(96,4),(97,40),(97,106),(98,41),(98,45),(98,105),(99,102),(101,83),(101,92),(102,104),(103,100),(104,103),(105,101),(105,109),(106,84),(106,108),(107,54),(107,78),(107,97),(108,59),(108,102),(109,60),(109,83)],110)
=> ? = 2
[[0,0,1,0,0],[0,1,-1,1,0],[0,0,1,0,0],[1,0,0,0,0],[0,0,0,0,1]]
=> [[0,1,0,0,0],[0,0,0,1,0],[0,0,1,-1,1],[0,0,0,1,0],[1,0,0,0,0]]
=> [[1,2,2,2,2],[2,3,3,4],[3,4,5],[4,5],[5]]
=> ?
=> ? = 2
[[0,0,1,0,0],[0,0,0,1,0],[0,1,0,0,0],[1,0,0,0,0],[0,0,0,0,1]]
=> [[0,1,0,0,0],[0,0,1,0,0],[0,0,0,0,1],[0,0,0,1,0],[1,0,0,0,0]]
=> [[1,2,2,2,2],[2,3,3,3],[3,4,5],[4,5],[5]]
=> ([(0,11),(0,12),(1,22),(2,19),(3,18),(3,23),(4,14),(4,20),(5,15),(6,15),(6,17),(7,5),(8,1),(8,17),(9,3),(9,21),(9,26),(10,2),(10,16),(11,13),(12,7),(13,6),(13,8),(14,29),(15,24),(16,19),(17,9),(17,22),(17,24),(18,20),(18,28),(20,10),(20,29),(21,23),(21,27),(22,25),(22,26),(23,28),(24,21),(24,25),(25,27),(26,4),(26,18),(26,27),(27,14),(27,28),(28,29),(29,16)],30)
=> ? = 2
[[1,0,0,0,0],[0,1,0,0,0],[0,0,0,1,0],[0,0,1,-1,1],[0,0,0,1,0]]
=> [[0,0,0,0,1],[0,0,0,1,0],[0,1,0,0,0],[1,-1,1,0,0],[0,1,0,0,0]]
=> [[1,1,2,4,5],[2,3,4,5],[3,4,5],[4,5],[5]]
=> ?
=> ? = 2
[[1,0,0,0,0],[0,0,1,0,0],[0,1,-1,1,0],[0,0,1,-1,1],[0,0,0,1,0]]
=> [[0,0,0,0,1],[0,0,1,0,0],[0,1,-1,1,0],[1,-1,1,0,0],[0,1,0,0,0]]
=> [[1,1,2,3,5],[2,3,4,5],[3,4,5],[4,5],[5]]
=> ?
=> ? = 2
[[0,1,0,0,0],[1,-1,1,0,0],[0,1,-1,1,0],[0,0,1,-1,1],[0,0,0,1,0]]
=> [[0,0,0,1,0],[0,0,1,-1,1],[0,1,-1,1,0],[1,-1,1,0,0],[0,1,0,0,0]]
=> [[1,1,2,3,4],[2,3,4,5],[3,4,5],[4,5],[5]]
=> ([(0,2),(0,17),(0,18),(1,16),(1,41),(2,10),(2,15),(3,207),(4,50),(4,125),(5,181),(6,49),(6,180),(7,188),(8,138),(9,46),(9,208),(10,30),(10,206),(11,35),(11,54),(12,36),(12,97),(13,37),(13,163),(14,40),(14,44),(14,202),(15,28),(15,45),(15,206),(16,26),(16,27),(16,203),(17,1),(17,124),(18,14),(18,33),(18,124),(19,52),(19,201),(19,211),(20,196),(20,200),(21,89),(21,155),(22,149),(22,156),(23,150),(23,198),(24,154),(24,199),(25,90),(25,152),(26,162),(26,210),(27,162),(27,197),(28,159),(28,191),(29,153),(29,190),(30,161),(30,209),(31,144),(31,157),(32,141),(32,151),(33,145),(33,202),(34,143),(34,189),(35,147),(35,148),(36,142),(36,146),(37,88),(37,195),(38,87),(38,192),(39,51),(39,158),(39,194),(40,42),(40,160),(40,193),(41,161),(41,203),(42,102),(42,170),(43,122),(43,123),(43,178),(44,120),(44,160),(44,179),(45,159),(45,177),(45,179),(46,76),(46,119),(46,183),(47,64),(47,121),(47,140),(48,65),(48,86),(48,139),(49,60),(49,92),(49,93),(50,43),(50,169),(50,170),(50,210),(51,99),(51,100),(51,101),(52,104),(52,109),(52,165),(53,272),(54,13),(55,225),(55,275),(56,218),(56,219),(57,227),(57,270),(58,227),(58,269),(59,12),(60,219),(60,226),(61,255),(61,276),(62,253),(62,271),(63,277),(64,269),(64,270),(65,6),(65,265),(66,230),(67,231),(67,256),(68,236),(68,271),(69,236),(69,249),(70,229),(70,247),(71,214),(71,228),(72,235),(73,228),(73,265),(74,213),(74,229),(75,234),(76,225),(76,241),(77,231),(77,234),(78,272),(79,250),(80,274),(81,260),(82,230),(83,232),(84,239),(84,254),(85,237),(86,29),(86,214),(86,265),(87,223),(88,215),(89,244),(90,32),(90,264),(91,97),(92,107),(92,219),(93,128),(93,226),(94,83),(94,275),(95,66),(96,119),(96,266),(97,142),(98,82),(99,96),(99,216),(100,136),(100,220),(101,156),(101,216),(101,220),(102,116),(102,268),(103,91),(103,266),(104,175),(104,259),(105,121),(105,263),(106,140),(106,263),(107,84),(107,248),(108,135),(109,166),(109,259),(110,133),(110,223),(111,69),(112,76),(112,224),(113,88),(113,213),(114,117),(114,262),(115,70),(115,224),(116,54),(117,58),(117,273),(118,57),(118,220),(118,273),(119,127),(119,225),(120,157),(120,212),(121,163),(121,269),(122,106),(122,217),(123,104),(123,217),(123,262),(124,4),(124,145),(125,5),(125,169),(126,155),(127,134),(127,242),(128,132),(128,238),(129,67),(129,240),(130,74),(130,243),(130,258),(131,67),(131,235),(132,146),(132,239),(132,276),(133,70),(133,218),(133,243),(134,77),(134,222),(134,240),(135,62),(135,215),(135,232),(136,55),(136,233),(137,61),(137,238),(138,21),(138,126),(139,23),(139,186),(139,214),(140,24),(140,182),(140,270),(141,98),(142,75),(142,222),(143,171),(144,11),(144,116),(145,125),(146,79),(146,222),(147,113),(147,258),(148,80),(148,258),(149,91),(149,267),(150,112),(150,261),(151,95),(152,53),(152,264),(153,59),(154,72),(154,246),(155,66),(155,244),(156,34),(156,187),(156,267),(157,38),(157,185),(158,22),(158,101),(158,277),(159,20),(159,168),(159,221),(160,19),(160,167),(160,212),(161,174),(162,3),(162,204),(163,111),(163,195),(164,134),(164,171),(165,112),(165,115),(166,74),(166,113),(167,173),(167,211),(168,173),(168,196),(169,122),(169,181),(169,268),(170,114),(170,123),(170,268),(171,75),(171,77),(172,115),(172,133),(172,261),(173,110),(173,172),(174,63),(174,194),(175,55),(175,94),(176,56),(176,60),(176,260),(177,71),(177,139),(177,221),(178,100),(178,118),(178,262),(179,167),(179,168),(180,59),(180,93),(181,47),(181,105),(181,106),(182,135),(182,199),(182,245),(183,61),(183,132),(183,241),(184,129),(184,131),(185,192),(185,205),(186,176),(186,198),(186,252),(187,184),(187,189),(188,53),(188,78),(189,72),(189,131),(190,96),(190,103),(191,65),(191,73),(191,221),(192,130),(192,148),(192,223),(193,102),(193,144),(193,212),(194,99),(194,190),(194,277),(195,68),(195,69),(195,215),(196,87),(196,110),(197,63),(197,158),(198,56),(198,92),(198,261),(199,62),(199,68),(199,246),(200,81),(200,176),(201,109),(201,205),(202,31),(202,120),(202,193),(203,39),(203,174),(203,197),(204,117),(204,118),(204,207),(205,130),(205,147),(205,166),(206,48),(206,177),(206,191),(206,209),(207,57),(207,58),(207,64),(208,128),(208,137),(208,183),(209,71),(209,73),(209,86),(210,114),(210,178),(210,204),(211,150),(211,165),(211,172),(212,185),(212,201),(213,90),(213,251),(214,9),(214,252),(215,249),(215,271),(216,266),(216,267),(217,259),(217,263),(218,247),(218,248),(219,7),(219,248),(220,187),(220,233),(221,186),(221,200),(221,228),(222,234),(222,250),(223,80),(223,243),(224,84),(224,241),(224,247),(225,242),(226,238),(227,83),(227,245),(228,81),(228,252),(229,251),(231,257),(232,249),(232,253),(233,184),(233,275),(234,89),(234,257),(235,85),(235,256),(236,85),(236,279),(237,82),(238,8),(238,276),(239,79),(239,278),(240,231),(240,250),(241,239),(241,255),(242,240),(243,229),(243,274),(244,230),(245,232),(245,246),(246,235),(246,236),(246,253),(247,254),(247,255),(248,188),(248,254),(249,279),(250,257),(251,264),(252,208),(252,260),(253,256),(253,279),(254,78),(254,278),(255,278),(256,237),(257,244),(258,25),(258,213),(258,274),(259,108),(260,137),(260,226),(261,107),(261,218),(261,224),(262,136),(262,175),(262,273),(263,108),(263,182),(264,151),(264,272),(265,153),(265,180),(266,127),(266,164),(267,143),(267,164),(268,105),(268,217),(269,111),(270,154),(270,245),(271,141),(271,279),(272,95),(273,94),(273,227),(273,233),(274,152),(274,251),(275,129),(275,242),(276,138),(276,278),(277,103),(277,149),(277,216),(278,126),(279,98),(279,237)],280)
=> ? = 2
[[0,1,0,0,0],[0,0,1,0,0],[1,0,-1,1,0],[0,0,1,-1,1],[0,0,0,1,0]]
=> [[0,0,1,0,0],[0,0,0,0,1],[0,1,-1,1,0],[1,-1,1,0,0],[0,1,0,0,0]]
=> [[1,1,2,3,3],[2,3,4,5],[3,4,5],[4,5],[5]]
=> ?
=> ? = 2
[[0,1,0,0,0],[1,-1,0,1,0],[0,1,0,0,0],[0,0,1,-1,1],[0,0,0,1,0]]
=> [[0,0,0,1,0],[0,0,1,-1,1],[0,1,0,0,0],[1,-1,0,1,0],[0,1,0,0,0]]
=> [[1,1,2,3,4],[2,3,3,5],[3,4,5],[4,5],[5]]
=> ?
=> ? = 2
[[0,0,1,0,0],[1,0,-1,1,0],[0,1,0,0,0],[0,0,1,-1,1],[0,0,0,1,0]]
=> [[0,0,0,1,0],[0,0,1,0,0],[0,1,0,-1,1],[1,-1,0,1,0],[0,1,0,0,0]]
=> [[1,1,2,3,4],[2,3,3,4],[3,4,5],[4,5],[5]]
=> ?
=> ? = 2
[[0,1,0,0,0],[0,0,0,1,0],[1,0,0,0,0],[0,0,1,-1,1],[0,0,0,1,0]]
=> [[0,0,1,0,0],[0,0,0,0,1],[0,1,0,0,0],[1,-1,0,1,0],[0,1,0,0,0]]
=> [[1,1,2,3,3],[2,3,3,5],[3,4,5],[4,5],[5]]
=> ?
=> ? = 2
[[0,0,1,0,0],[0,1,-1,1,0],[1,0,0,0,0],[0,0,1,-1,1],[0,0,0,1,0]]
=> [[0,0,1,0,0],[0,0,0,1,0],[0,1,0,-1,1],[1,-1,0,1,0],[0,1,0,0,0]]
=> [[1,1,2,3,3],[2,3,3,4],[3,4,5],[4,5],[5]]
=> ?
=> ? = 2
[[1,0,0,0,0],[0,0,1,0,0],[0,0,0,1,0],[0,1,0,-1,1],[0,0,0,1,0]]
=> [[0,0,0,0,1],[0,1,0,0,0],[0,0,0,1,0],[1,-1,1,0,0],[0,1,0,0,0]]
=> [[1,1,2,2,5],[2,3,4,5],[3,4,5],[4,5],[5]]
=> ?
=> ? = 2
[[0,1,0,0,0],[1,-1,1,0,0],[0,0,0,1,0],[0,1,0,-1,1],[0,0,0,1,0]]
=> [[0,0,0,1,0],[0,1,0,-1,1],[0,0,0,1,0],[1,-1,1,0,0],[0,1,0,0,0]]
=> [[1,1,2,2,4],[2,3,4,5],[3,4,5],[4,5],[5]]
=> ?
=> ? = 2
[[0,1,0,0,0],[0,0,1,0,0],[1,-1,0,1,0],[0,1,0,-1,1],[0,0,0,1,0]]
=> [[0,0,1,0,0],[0,1,-1,0,1],[0,0,0,1,0],[1,-1,1,0,0],[0,1,0,0,0]]
=> [[1,1,2,2,3],[2,3,4,5],[3,4,5],[4,5],[5]]
=> ?
=> ? = 2
[[0,1,0,0,0],[1,-1,0,1,0],[0,0,1,0,0],[0,1,0,-1,1],[0,0,0,1,0]]
=> [[0,0,0,1,0],[0,1,0,-1,1],[0,0,1,0,0],[1,-1,0,1,0],[0,1,0,0,0]]
=> [[1,1,2,2,4],[2,3,3,5],[3,4,5],[4,5],[5]]
=> ?
=> ? = 2
[[0,0,1,0,0],[1,0,-1,1,0],[0,0,1,0,0],[0,1,0,-1,1],[0,0,0,1,0]]
=> [[0,0,0,1,0],[0,1,0,0,0],[0,0,1,-1,1],[1,-1,0,1,0],[0,1,0,0,0]]
=> [[1,1,2,2,4],[2,3,3,4],[3,4,5],[4,5],[5]]
=> ?
=> ? = 2
[[0,1,0,0,0],[0,0,0,1,0],[1,-1,1,0,0],[0,1,0,-1,1],[0,0,0,1,0]]
=> [[0,0,1,0,0],[0,1,-1,0,1],[0,0,1,0,0],[1,-1,0,1,0],[0,1,0,0,0]]
=> [[1,1,2,2,3],[2,3,3,5],[3,4,5],[4,5],[5]]
=> ?
=> ? = 2
[[0,0,1,0,0],[0,1,-1,1,0],[1,-1,1,0,0],[0,1,0,-1,1],[0,0,0,1,0]]
=> [[0,0,1,0,0],[0,1,-1,1,0],[0,0,1,-1,1],[1,-1,0,1,0],[0,1,0,0,0]]
=> [[1,1,2,2,3],[2,3,3,4],[3,4,5],[4,5],[5]]
=> ?
=> ? = 2
[[0,0,1,0,0],[0,0,0,1,0],[1,0,0,0,0],[0,1,0,-1,1],[0,0,0,1,0]]
=> [[0,0,1,0,0],[0,1,0,0,0],[0,0,0,0,1],[1,-1,0,1,0],[0,1,0,0,0]]
=> [[1,1,2,2,3],[2,3,3,3],[3,4,5],[4,5],[5]]
=> ?
=> ? = 2
[[0,1,0,0,0],[0,0,1,0,0],[0,0,0,1,0],[1,0,0,-1,1],[0,0,0,1,0]]
=> [[0,1,0,0,0],[0,0,0,0,1],[0,0,0,1,0],[1,-1,1,0,0],[0,1,0,0,0]]
=> [[1,1,2,2,2],[2,3,4,5],[3,4,5],[4,5],[5]]
=> ?
=> ? = 2
[[0,1,0,0,0],[0,0,0,1,0],[0,0,1,0,0],[1,0,0,-1,1],[0,0,0,1,0]]
=> [[0,1,0,0,0],[0,0,0,0,1],[0,0,1,0,0],[1,-1,0,1,0],[0,1,0,0,0]]
=> [[1,1,2,2,2],[2,3,3,5],[3,4,5],[4,5],[5]]
=> ?
=> ? = 2
[[0,0,1,0,0],[0,1,-1,1,0],[0,0,1,0,0],[1,0,0,-1,1],[0,0,0,1,0]]
=> [[0,1,0,0,0],[0,0,0,1,0],[0,0,1,-1,1],[1,-1,0,1,0],[0,1,0,0,0]]
=> [[1,1,2,2,2],[2,3,3,4],[3,4,5],[4,5],[5]]
=> ?
=> ? = 2
[[0,0,1,0,0],[0,0,0,1,0],[0,1,0,0,0],[1,0,0,-1,1],[0,0,0,1,0]]
=> [[0,1,0,0,0],[0,0,1,0,0],[0,0,0,0,1],[1,-1,0,1,0],[0,1,0,0,0]]
=> [[1,1,2,2,2],[2,3,3,3],[3,4,5],[4,5],[5]]
=> ?
=> ? = 2
[[0,0,0,1,0],[0,0,1,-1,1],[0,1,-1,1,0],[1,-1,1,0,0],[0,1,0,0,0]]
=> [[0,1,0,0,0],[1,-1,1,0,0],[0,1,-1,1,0],[0,0,1,-1,1],[0,0,0,1,0]]
=> [[1,1,1,1,2],[2,2,2,3],[3,3,4],[4,5],[5]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1
[[0,0,0,1,0],[0,0,0,0,1],[0,1,0,0,0],[1,-1,1,0,0],[0,1,0,0,0]]
=> [[0,1,0,0,0],[1,-1,1,0,0],[0,1,0,0,0],[0,0,0,0,1],[0,0,0,1,0]]
=> [[1,1,1,1,2],[2,2,2,3],[3,3,3],[4,5],[5]]
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 1
[[0,0,0,1,0],[0,0,1,-1,1],[0,0,0,1,0],[1,0,0,0,0],[0,1,0,0,0]]
=> [[0,1,0,0,0],[1,0,0,0,0],[0,0,0,1,0],[0,0,1,-1,1],[0,0,0,1,0]]
=> [[1,1,1,1,2],[2,2,2,2],[3,3,4],[4,5],[5]]
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 1
[[0,0,0,1,0],[0,0,0,0,1],[0,0,1,0,0],[1,0,0,0,0],[0,1,0,0,0]]
=> [[0,1,0,0,0],[1,0,0,0,0],[0,0,1,0,0],[0,0,0,0,1],[0,0,0,1,0]]
=> [[1,1,1,1,2],[2,2,2,2],[3,3,3],[4,5],[5]]
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1
[[0,0,0,1,0],[0,1,0,-1,1],[0,0,0,1,0],[0,0,1,0,0],[1,0,0,0,0]]
=> [[1,0,0,0,0],[0,0,0,1,0],[0,1,0,0,0],[0,0,1,-1,1],[0,0,0,1,0]]
=> [[1,1,1,1,1],[2,2,2,4],[3,3,4],[4,5],[5]]
=> ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
=> 1
[[0,0,0,1,0],[0,0,1,-1,1],[0,1,-1,1,0],[0,0,1,0,0],[1,0,0,0,0]]
=> [[1,0,0,0,0],[0,0,1,0,0],[0,1,-1,1,0],[0,0,1,-1,1],[0,0,0,1,0]]
=> [[1,1,1,1,1],[2,2,2,3],[3,3,4],[4,5],[5]]
=> ([(0,3),(2,1),(3,2)],4)
=> 1
[[0,0,0,1,0],[0,0,0,0,1],[0,1,0,0,0],[0,0,1,0,0],[1,0,0,0,0]]
=> [[1,0,0,0,0],[0,0,1,0,0],[0,1,0,0,0],[0,0,0,0,1],[0,0,0,1,0]]
=> [[1,1,1,1,1],[2,2,2,3],[3,3,3],[4,5],[5]]
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1
[[0,0,0,1,0],[0,0,1,-1,1],[0,0,0,1,0],[0,1,0,0,0],[1,0,0,0,0]]
=> [[1,0,0,0,0],[0,1,0,0,0],[0,0,0,1,0],[0,0,1,-1,1],[0,0,0,1,0]]
=> [[1,1,1,1,1],[2,2,2,2],[3,3,4],[4,5],[5]]
=> ([(0,2),(2,1)],3)
=> 1
[[0,0,0,1,0],[0,0,0,0,1],[0,0,1,0,0],[0,1,0,0,0],[1,0,0,0,0]]
=> [[1,0,0,0,0],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,0,1],[0,0,0,1,0]]
=> [[1,1,1,1,1],[2,2,2,2],[3,3,3],[4,5],[5]]
=> ([(0,1)],2)
=> 1
[[0,0,0,0,1,0],[0,0,0,1,-1,1],[0,0,1,-1,1,0],[0,1,-1,1,0,0],[1,-1,1,0,0,0],[0,1,0,0,0,0]]
=> [[0,1,0,0,0,0],[1,-1,1,0,0,0],[0,1,-1,1,0,0],[0,0,1,-1,1,0],[0,0,0,1,-1,1],[0,0,0,0,1,0]]
=> [[1,1,1,1,1,2],[2,2,2,2,3],[3,3,3,4],[4,4,5],[5,6],[6]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 1
[[0,0,0,0,1,0],[0,0,0,0,0,1],[0,0,0,1,0,0],[0,1,0,0,0,0],[1,-1,1,0,0,0],[0,1,0,0,0,0]]
=> [[0,1,0,0,0,0],[1,-1,1,0,0,0],[0,1,0,0,0,0],[0,0,0,1,0,0],[0,0,0,0,0,1],[0,0,0,0,1,0]]
=> [[1,1,1,1,1,2],[2,2,2,2,3],[3,3,3,3],[4,4,4],[5,6],[6]]
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 1
[[0,0,0,0,1,0],[0,0,0,1,-1,1],[0,0,0,0,1,0],[0,0,1,0,0,0],[1,0,0,0,0,0],[0,1,0,0,0,0]]
=> [[0,1,0,0,0,0],[1,0,0,0,0,0],[0,0,1,0,0,0],[0,0,0,0,1,0],[0,0,0,1,-1,1],[0,0,0,0,1,0]]
=> [[1,1,1,1,1,2],[2,2,2,2,2],[3,3,3,3],[4,4,5],[5,6],[6]]
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 1
[[0,0,0,0,1,0],[0,0,0,0,0,1],[0,0,0,1,0,0],[0,0,1,0,0,0],[1,0,0,0,0,0],[0,1,0,0,0,0]]
=> [[0,1,0,0,0,0],[1,0,0,0,0,0],[0,0,1,0,0,0],[0,0,0,1,0,0],[0,0,0,0,0,1],[0,0,0,0,1,0]]
=> [[1,1,1,1,1,2],[2,2,2,2,2],[3,3,3,3],[4,4,4],[5,6],[6]]
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1
[[0,0,0,0,1,0],[0,0,0,1,-1,1],[0,0,1,-1,1,0],[0,1,-1,1,0,0],[0,0,1,0,0,0],[1,0,0,0,0,0]]
=> [[1,0,0,0,0,0],[0,0,1,0,0,0],[0,1,-1,1,0,0],[0,0,1,-1,1,0],[0,0,0,1,-1,1],[0,0,0,0,1,0]]
=> [[1,1,1,1,1,1],[2,2,2,2,3],[3,3,3,4],[4,4,5],[5,6],[6]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1
[[0,0,0,0,1,0],[0,0,0,0,0,1],[0,0,1,0,0,0],[0,1,-1,1,0,0],[0,0,1,0,0,0],[1,0,0,0,0,0]]
=> [[1,0,0,0,0,0],[0,0,1,0,0,0],[0,1,-1,1,0,0],[0,0,1,0,0,0],[0,0,0,0,0,1],[0,0,0,0,1,0]]
=> [[1,1,1,1,1,1],[2,2,2,2,3],[3,3,3,4],[4,4,4],[5,6],[6]]
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 1
[[0,0,0,0,1,0],[0,0,0,1,-1,1],[0,0,0,0,1,0],[0,1,0,0,0,0],[0,0,1,0,0,0],[1,0,0,0,0,0]]
=> [[1,0,0,0,0,0],[0,0,1,0,0,0],[0,1,0,0,0,0],[0,0,0,0,1,0],[0,0,0,1,-1,1],[0,0,0,0,1,0]]
=> [[1,1,1,1,1,1],[2,2,2,2,3],[3,3,3,3],[4,4,5],[5,6],[6]]
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 1
[[0,0,0,0,1,0],[0,0,0,0,0,1],[0,0,0,1,0,0],[0,1,0,0,0,0],[0,0,1,0,0,0],[1,0,0,0,0,0]]
=> [[1,0,0,0,0,0],[0,0,1,0,0,0],[0,1,0,0,0,0],[0,0,0,1,0,0],[0,0,0,0,0,1],[0,0,0,0,1,0]]
=> [[1,1,1,1,1,1],[2,2,2,2,3],[3,3,3,3],[4,4,4],[5,6],[6]]
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1
[[0,0,0,0,1,0],[0,0,1,0,-1,1],[0,0,0,0,1,0],[0,0,0,1,0,0],[0,1,0,0,0,0],[1,0,0,0,0,0]]
=> [[1,0,0,0,0,0],[0,1,0,0,0,0],[0,0,0,0,1,0],[0,0,1,0,0,0],[0,0,0,1,-1,1],[0,0,0,0,1,0]]
=> [[1,1,1,1,1,1],[2,2,2,2,2],[3,3,3,5],[4,4,5],[5,6],[6]]
=> ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
=> 1
[[0,0,0,0,1,0],[0,0,0,1,-1,1],[0,0,1,-1,1,0],[0,0,0,1,0,0],[0,1,0,0,0,0],[1,0,0,0,0,0]]
=> [[1,0,0,0,0,0],[0,1,0,0,0,0],[0,0,0,1,0,0],[0,0,1,-1,1,0],[0,0,0,1,-1,1],[0,0,0,0,1,0]]
=> [[1,1,1,1,1,1],[2,2,2,2,2],[3,3,3,4],[4,4,5],[5,6],[6]]
=> ([(0,3),(2,1),(3,2)],4)
=> 1
[[0,0,0,0,1,0],[0,0,0,0,0,1],[0,0,1,0,0,0],[0,0,0,1,0,0],[0,1,0,0,0,0],[1,0,0,0,0,0]]
=> [[1,0,0,0,0,0],[0,1,0,0,0,0],[0,0,0,1,0,0],[0,0,1,0,0,0],[0,0,0,0,0,1],[0,0,0,0,1,0]]
=> [[1,1,1,1,1,1],[2,2,2,2,2],[3,3,3,4],[4,4,4],[5,6],[6]]
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1
[[0,0,0,0,1,0],[0,0,0,1,-1,1],[0,0,0,0,1,0],[0,0,1,0,0,0],[0,1,0,0,0,0],[1,0,0,0,0,0]]
=> [[1,0,0,0,0,0],[0,1,0,0,0,0],[0,0,1,0,0,0],[0,0,0,0,1,0],[0,0,0,1,-1,1],[0,0,0,0,1,0]]
=> [[1,1,1,1,1,1],[2,2,2,2,2],[3,3,3,3],[4,4,5],[5,6],[6]]
=> ([(0,2),(2,1)],3)
=> 1
[[0,0,0,0,1,0],[0,0,0,0,0,1],[0,0,0,1,0,0],[0,0,1,0,0,0],[0,1,0,0,0,0],[1,0,0,0,0,0]]
=> [[1,0,0,0,0,0],[0,1,0,0,0,0],[0,0,1,0,0,0],[0,0,0,1,0,0],[0,0,0,0,0,1],[0,0,0,0,1,0]]
=> [[1,1,1,1,1,1],[2,2,2,2,2],[3,3,3,3],[4,4,4],[5,6],[6]]
=> ([(0,1)],2)
=> 1
Description
The sum of the values of the Möbius function of a poset.
The Möbius function $\mu$ of a finite poset is defined as
$$\mu (x,y)=\begin{cases} 1& \text{if }x = y\\
-\sum _{z: x\leq z < y}\mu (x,z)& \text{for }x < y\\
0&\text{otherwise}.
\end{cases}
$$
Since $\mu(x,y)=0$ whenever $x\not\leq y$, this statistic is
$$
\sum_{x\leq y} \mu(x,y).
$$
If the poset has a minimal or a maximal element, then the definition implies immediately that the statistic equals $1$. Moreover, the statistic equals the sum of the statistics of the connected components.
This statistic is also called the magnitude of a poset.
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!