Processing math: 100%

Your data matches 23 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
Matching statistic: St000259
Mp00317: Integer partitions odd partsBinary words
Mp00178: Binary words to compositionInteger compositions
Mp00184: Integer compositions to threshold graphGraphs
St000259: Graphs ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[1]
=> 1 => [1,1] => ([(0,1)],2)
=> 1
[1,1]
=> 11 => [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> 1
[3]
=> 1 => [1,1] => ([(0,1)],2)
=> 1
[2,1]
=> 01 => [2,1] => ([(0,2),(1,2)],3)
=> 2
[1,1,1]
=> 111 => [1,1,1,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 1
[3,1]
=> 11 => [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> 1
[2,1,1]
=> 011 => [2,1,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 2
[1,1,1,1]
=> 1111 => [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[5]
=> 1 => [1,1] => ([(0,1)],2)
=> 1
[4,1]
=> 01 => [2,1] => ([(0,2),(1,2)],3)
=> 2
[3,1,1]
=> 111 => [1,1,1,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 1
[2,2,1]
=> 001 => [3,1] => ([(0,3),(1,3),(2,3)],4)
=> 2
[2,1,1,1]
=> 0111 => [2,1,1,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[1,1,1,1,1]
=> 11111 => [1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1
[5,1]
=> 11 => [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> 1
[4,1,1]
=> 011 => [2,1,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 2
[3,3]
=> 11 => [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> 1
[3,2,1]
=> 101 => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> 2
[3,1,1,1]
=> 1111 => [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[2,2,1,1]
=> 0011 => [3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[2,1,1,1,1]
=> 01111 => [2,1,1,1,1] => ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
[1,1,1,1,1,1]
=> 111111 => [1,1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 1
[7]
=> 1 => [1,1] => ([(0,1)],2)
=> 1
[6,1]
=> 01 => [2,1] => ([(0,2),(1,2)],3)
=> 2
[5,1,1]
=> 111 => [1,1,1,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 1
[4,3]
=> 01 => [2,1] => ([(0,2),(1,2)],3)
=> 2
[4,2,1]
=> 001 => [3,1] => ([(0,3),(1,3),(2,3)],4)
=> 2
[4,1,1,1]
=> 0111 => [2,1,1,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[3,3,1]
=> 111 => [1,1,1,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 1
[3,2,1,1]
=> 1011 => [1,2,1,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[3,1,1,1,1]
=> 11111 => [1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1
[2,2,2,1]
=> 0001 => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 2
[2,2,1,1,1]
=> 00111 => [3,1,1,1] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
[2,1,1,1,1,1]
=> 011111 => [2,1,1,1,1,1] => ([(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 2
[7,1]
=> 11 => [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> 1
[6,1,1]
=> 011 => [2,1,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 2
[5,3]
=> 11 => [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> 1
[5,2,1]
=> 101 => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> 2
[5,1,1,1]
=> 1111 => [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[4,3,1]
=> 011 => [2,1,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 2
[4,2,1,1]
=> 0011 => [3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[4,1,1,1,1]
=> 01111 => [2,1,1,1,1] => ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
[3,3,1,1]
=> 1111 => [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[3,2,2,1]
=> 1001 => [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[3,2,1,1,1]
=> 10111 => [1,2,1,1,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
[3,1,1,1,1,1]
=> 111111 => [1,1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 1
[2,2,2,1,1]
=> 00011 => [4,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
[2,2,1,1,1,1]
=> 001111 => [3,1,1,1,1] => ([(0,3),(0,4),(0,5),(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 2
[9]
=> 1 => [1,1] => ([(0,1)],2)
=> 1
[8,1]
=> 01 => [2,1] => ([(0,2),(1,2)],3)
=> 2
Description
The diameter of a connected graph. This is the greatest distance between any pair of vertices.
Matching statistic: St001261
Mp00317: Integer partitions odd partsBinary words
Mp00097: Binary words delta morphismInteger compositions
Mp00184: Integer compositions to threshold graphGraphs
St001261: Graphs ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[1]
=> 1 => [1] => ([],1)
=> 1
[1,1]
=> 11 => [2] => ([],2)
=> 1
[3]
=> 1 => [1] => ([],1)
=> 1
[2,1]
=> 01 => [1,1] => ([(0,1)],2)
=> 2
[1,1,1]
=> 111 => [3] => ([],3)
=> 1
[3,1]
=> 11 => [2] => ([],2)
=> 1
[2,1,1]
=> 011 => [1,2] => ([(1,2)],3)
=> 2
[1,1,1,1]
=> 1111 => [4] => ([],4)
=> 1
[5]
=> 1 => [1] => ([],1)
=> 1
[4,1]
=> 01 => [1,1] => ([(0,1)],2)
=> 2
[3,1,1]
=> 111 => [3] => ([],3)
=> 1
[2,2,1]
=> 001 => [2,1] => ([(0,2),(1,2)],3)
=> 2
[2,1,1,1]
=> 0111 => [1,3] => ([(2,3)],4)
=> 2
[1,1,1,1,1]
=> 11111 => [5] => ([],5)
=> 1
[5,1]
=> 11 => [2] => ([],2)
=> 1
[4,1,1]
=> 011 => [1,2] => ([(1,2)],3)
=> 2
[3,3]
=> 11 => [2] => ([],2)
=> 1
[3,2,1]
=> 101 => [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> 2
[3,1,1,1]
=> 1111 => [4] => ([],4)
=> 1
[2,2,1,1]
=> 0011 => [2,2] => ([(1,3),(2,3)],4)
=> 2
[2,1,1,1,1]
=> 01111 => [1,4] => ([(3,4)],5)
=> 2
[1,1,1,1,1,1]
=> 111111 => [6] => ([],6)
=> 1
[7]
=> 1 => [1] => ([],1)
=> 1
[6,1]
=> 01 => [1,1] => ([(0,1)],2)
=> 2
[5,1,1]
=> 111 => [3] => ([],3)
=> 1
[4,3]
=> 01 => [1,1] => ([(0,1)],2)
=> 2
[4,2,1]
=> 001 => [2,1] => ([(0,2),(1,2)],3)
=> 2
[4,1,1,1]
=> 0111 => [1,3] => ([(2,3)],4)
=> 2
[3,3,1]
=> 111 => [3] => ([],3)
=> 1
[3,2,1,1]
=> 1011 => [1,1,2] => ([(1,2),(1,3),(2,3)],4)
=> 2
[3,1,1,1,1]
=> 11111 => [5] => ([],5)
=> 1
[2,2,2,1]
=> 0001 => [3,1] => ([(0,3),(1,3),(2,3)],4)
=> 2
[2,2,1,1,1]
=> 00111 => [2,3] => ([(2,4),(3,4)],5)
=> 2
[2,1,1,1,1,1]
=> 011111 => [1,5] => ([(4,5)],6)
=> 2
[7,1]
=> 11 => [2] => ([],2)
=> 1
[6,1,1]
=> 011 => [1,2] => ([(1,2)],3)
=> 2
[5,3]
=> 11 => [2] => ([],2)
=> 1
[5,2,1]
=> 101 => [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> 2
[5,1,1,1]
=> 1111 => [4] => ([],4)
=> 1
[4,3,1]
=> 011 => [1,2] => ([(1,2)],3)
=> 2
[4,2,1,1]
=> 0011 => [2,2] => ([(1,3),(2,3)],4)
=> 2
[4,1,1,1,1]
=> 01111 => [1,4] => ([(3,4)],5)
=> 2
[3,3,1,1]
=> 1111 => [4] => ([],4)
=> 1
[3,2,2,1]
=> 1001 => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> 2
[3,2,1,1,1]
=> 10111 => [1,1,3] => ([(2,3),(2,4),(3,4)],5)
=> 2
[3,1,1,1,1,1]
=> 111111 => [6] => ([],6)
=> 1
[2,2,2,1,1]
=> 00011 => [3,2] => ([(1,4),(2,4),(3,4)],5)
=> 2
[2,2,1,1,1,1]
=> 001111 => [2,4] => ([(3,5),(4,5)],6)
=> 2
[9]
=> 1 => [1] => ([],1)
=> 1
[8,1]
=> 01 => [1,1] => ([(0,1)],2)
=> 2
Description
The Castelnuovo-Mumford regularity of a graph.
Matching statistic: St000535
Mp00317: Integer partitions odd partsBinary words
Mp00097: Binary words delta morphismInteger compositions
Mp00184: Integer compositions to threshold graphGraphs
St000535: Graphs ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[1]
=> 1 => [1] => ([],1)
=> 0 = 1 - 1
[1,1]
=> 11 => [2] => ([],2)
=> 0 = 1 - 1
[3]
=> 1 => [1] => ([],1)
=> 0 = 1 - 1
[2,1]
=> 01 => [1,1] => ([(0,1)],2)
=> 1 = 2 - 1
[1,1,1]
=> 111 => [3] => ([],3)
=> 0 = 1 - 1
[3,1]
=> 11 => [2] => ([],2)
=> 0 = 1 - 1
[2,1,1]
=> 011 => [1,2] => ([(1,2)],3)
=> 1 = 2 - 1
[1,1,1,1]
=> 1111 => [4] => ([],4)
=> 0 = 1 - 1
[5]
=> 1 => [1] => ([],1)
=> 0 = 1 - 1
[4,1]
=> 01 => [1,1] => ([(0,1)],2)
=> 1 = 2 - 1
[3,1,1]
=> 111 => [3] => ([],3)
=> 0 = 1 - 1
[2,2,1]
=> 001 => [2,1] => ([(0,2),(1,2)],3)
=> 1 = 2 - 1
[2,1,1,1]
=> 0111 => [1,3] => ([(2,3)],4)
=> 1 = 2 - 1
[1,1,1,1,1]
=> 11111 => [5] => ([],5)
=> 0 = 1 - 1
[5,1]
=> 11 => [2] => ([],2)
=> 0 = 1 - 1
[4,1,1]
=> 011 => [1,2] => ([(1,2)],3)
=> 1 = 2 - 1
[3,3]
=> 11 => [2] => ([],2)
=> 0 = 1 - 1
[3,2,1]
=> 101 => [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> 1 = 2 - 1
[3,1,1,1]
=> 1111 => [4] => ([],4)
=> 0 = 1 - 1
[2,2,1,1]
=> 0011 => [2,2] => ([(1,3),(2,3)],4)
=> 1 = 2 - 1
[2,1,1,1,1]
=> 01111 => [1,4] => ([(3,4)],5)
=> 1 = 2 - 1
[1,1,1,1,1,1]
=> 111111 => [6] => ([],6)
=> 0 = 1 - 1
[7]
=> 1 => [1] => ([],1)
=> 0 = 1 - 1
[6,1]
=> 01 => [1,1] => ([(0,1)],2)
=> 1 = 2 - 1
[5,1,1]
=> 111 => [3] => ([],3)
=> 0 = 1 - 1
[4,3]
=> 01 => [1,1] => ([(0,1)],2)
=> 1 = 2 - 1
[4,2,1]
=> 001 => [2,1] => ([(0,2),(1,2)],3)
=> 1 = 2 - 1
[4,1,1,1]
=> 0111 => [1,3] => ([(2,3)],4)
=> 1 = 2 - 1
[3,3,1]
=> 111 => [3] => ([],3)
=> 0 = 1 - 1
[3,2,1,1]
=> 1011 => [1,1,2] => ([(1,2),(1,3),(2,3)],4)
=> 1 = 2 - 1
[3,1,1,1,1]
=> 11111 => [5] => ([],5)
=> 0 = 1 - 1
[2,2,2,1]
=> 0001 => [3,1] => ([(0,3),(1,3),(2,3)],4)
=> 1 = 2 - 1
[2,2,1,1,1]
=> 00111 => [2,3] => ([(2,4),(3,4)],5)
=> 1 = 2 - 1
[2,1,1,1,1,1]
=> 011111 => [1,5] => ([(4,5)],6)
=> 1 = 2 - 1
[7,1]
=> 11 => [2] => ([],2)
=> 0 = 1 - 1
[6,1,1]
=> 011 => [1,2] => ([(1,2)],3)
=> 1 = 2 - 1
[5,3]
=> 11 => [2] => ([],2)
=> 0 = 1 - 1
[5,2,1]
=> 101 => [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> 1 = 2 - 1
[5,1,1,1]
=> 1111 => [4] => ([],4)
=> 0 = 1 - 1
[4,3,1]
=> 011 => [1,2] => ([(1,2)],3)
=> 1 = 2 - 1
[4,2,1,1]
=> 0011 => [2,2] => ([(1,3),(2,3)],4)
=> 1 = 2 - 1
[4,1,1,1,1]
=> 01111 => [1,4] => ([(3,4)],5)
=> 1 = 2 - 1
[3,3,1,1]
=> 1111 => [4] => ([],4)
=> 0 = 1 - 1
[3,2,2,1]
=> 1001 => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> 1 = 2 - 1
[3,2,1,1,1]
=> 10111 => [1,1,3] => ([(2,3),(2,4),(3,4)],5)
=> 1 = 2 - 1
[3,1,1,1,1,1]
=> 111111 => [6] => ([],6)
=> 0 = 1 - 1
[2,2,2,1,1]
=> 00011 => [3,2] => ([(1,4),(2,4),(3,4)],5)
=> 1 = 2 - 1
[2,2,1,1,1,1]
=> 001111 => [2,4] => ([(3,5),(4,5)],6)
=> 1 = 2 - 1
[9]
=> 1 => [1] => ([],1)
=> 0 = 1 - 1
[8,1]
=> 01 => [1,1] => ([(0,1)],2)
=> 1 = 2 - 1
Description
The rank-width of a graph.
Matching statistic: St001333
Mp00317: Integer partitions odd partsBinary words
Mp00097: Binary words delta morphismInteger compositions
Mp00184: Integer compositions to threshold graphGraphs
St001333: Graphs ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[1]
=> 1 => [1] => ([],1)
=> 0 = 1 - 1
[1,1]
=> 11 => [2] => ([],2)
=> 0 = 1 - 1
[3]
=> 1 => [1] => ([],1)
=> 0 = 1 - 1
[2,1]
=> 01 => [1,1] => ([(0,1)],2)
=> 1 = 2 - 1
[1,1,1]
=> 111 => [3] => ([],3)
=> 0 = 1 - 1
[3,1]
=> 11 => [2] => ([],2)
=> 0 = 1 - 1
[2,1,1]
=> 011 => [1,2] => ([(1,2)],3)
=> 1 = 2 - 1
[1,1,1,1]
=> 1111 => [4] => ([],4)
=> 0 = 1 - 1
[5]
=> 1 => [1] => ([],1)
=> 0 = 1 - 1
[4,1]
=> 01 => [1,1] => ([(0,1)],2)
=> 1 = 2 - 1
[3,1,1]
=> 111 => [3] => ([],3)
=> 0 = 1 - 1
[2,2,1]
=> 001 => [2,1] => ([(0,2),(1,2)],3)
=> 1 = 2 - 1
[2,1,1,1]
=> 0111 => [1,3] => ([(2,3)],4)
=> 1 = 2 - 1
[1,1,1,1,1]
=> 11111 => [5] => ([],5)
=> 0 = 1 - 1
[5,1]
=> 11 => [2] => ([],2)
=> 0 = 1 - 1
[4,1,1]
=> 011 => [1,2] => ([(1,2)],3)
=> 1 = 2 - 1
[3,3]
=> 11 => [2] => ([],2)
=> 0 = 1 - 1
[3,2,1]
=> 101 => [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> 1 = 2 - 1
[3,1,1,1]
=> 1111 => [4] => ([],4)
=> 0 = 1 - 1
[2,2,1,1]
=> 0011 => [2,2] => ([(1,3),(2,3)],4)
=> 1 = 2 - 1
[2,1,1,1,1]
=> 01111 => [1,4] => ([(3,4)],5)
=> 1 = 2 - 1
[1,1,1,1,1,1]
=> 111111 => [6] => ([],6)
=> 0 = 1 - 1
[7]
=> 1 => [1] => ([],1)
=> 0 = 1 - 1
[6,1]
=> 01 => [1,1] => ([(0,1)],2)
=> 1 = 2 - 1
[5,1,1]
=> 111 => [3] => ([],3)
=> 0 = 1 - 1
[4,3]
=> 01 => [1,1] => ([(0,1)],2)
=> 1 = 2 - 1
[4,2,1]
=> 001 => [2,1] => ([(0,2),(1,2)],3)
=> 1 = 2 - 1
[4,1,1,1]
=> 0111 => [1,3] => ([(2,3)],4)
=> 1 = 2 - 1
[3,3,1]
=> 111 => [3] => ([],3)
=> 0 = 1 - 1
[3,2,1,1]
=> 1011 => [1,1,2] => ([(1,2),(1,3),(2,3)],4)
=> 1 = 2 - 1
[3,1,1,1,1]
=> 11111 => [5] => ([],5)
=> 0 = 1 - 1
[2,2,2,1]
=> 0001 => [3,1] => ([(0,3),(1,3),(2,3)],4)
=> 1 = 2 - 1
[2,2,1,1,1]
=> 00111 => [2,3] => ([(2,4),(3,4)],5)
=> 1 = 2 - 1
[2,1,1,1,1,1]
=> 011111 => [1,5] => ([(4,5)],6)
=> 1 = 2 - 1
[7,1]
=> 11 => [2] => ([],2)
=> 0 = 1 - 1
[6,1,1]
=> 011 => [1,2] => ([(1,2)],3)
=> 1 = 2 - 1
[5,3]
=> 11 => [2] => ([],2)
=> 0 = 1 - 1
[5,2,1]
=> 101 => [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> 1 = 2 - 1
[5,1,1,1]
=> 1111 => [4] => ([],4)
=> 0 = 1 - 1
[4,3,1]
=> 011 => [1,2] => ([(1,2)],3)
=> 1 = 2 - 1
[4,2,1,1]
=> 0011 => [2,2] => ([(1,3),(2,3)],4)
=> 1 = 2 - 1
[4,1,1,1,1]
=> 01111 => [1,4] => ([(3,4)],5)
=> 1 = 2 - 1
[3,3,1,1]
=> 1111 => [4] => ([],4)
=> 0 = 1 - 1
[3,2,2,1]
=> 1001 => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> 1 = 2 - 1
[3,2,1,1,1]
=> 10111 => [1,1,3] => ([(2,3),(2,4),(3,4)],5)
=> 1 = 2 - 1
[3,1,1,1,1,1]
=> 111111 => [6] => ([],6)
=> 0 = 1 - 1
[2,2,2,1,1]
=> 00011 => [3,2] => ([(1,4),(2,4),(3,4)],5)
=> 1 = 2 - 1
[2,2,1,1,1,1]
=> 001111 => [2,4] => ([(3,5),(4,5)],6)
=> 1 = 2 - 1
[9]
=> 1 => [1] => ([],1)
=> 0 = 1 - 1
[8,1]
=> 01 => [1,1] => ([(0,1)],2)
=> 1 = 2 - 1
Description
The cardinality of a minimal edge-isolating set of a graph. Let F be a set of graphs. A set of vertices S is F-isolating, if the subgraph induced by the vertices in the complement of the closed neighbourhood of S does not contain any graph in F. This statistic returns the cardinality of the smallest isolating set when F contains only the graph with one edge.
Matching statistic: St001393
Mp00317: Integer partitions odd partsBinary words
Mp00097: Binary words delta morphismInteger compositions
Mp00184: Integer compositions to threshold graphGraphs
St001393: Graphs ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[1]
=> 1 => [1] => ([],1)
=> 0 = 1 - 1
[1,1]
=> 11 => [2] => ([],2)
=> 0 = 1 - 1
[3]
=> 1 => [1] => ([],1)
=> 0 = 1 - 1
[2,1]
=> 01 => [1,1] => ([(0,1)],2)
=> 1 = 2 - 1
[1,1,1]
=> 111 => [3] => ([],3)
=> 0 = 1 - 1
[3,1]
=> 11 => [2] => ([],2)
=> 0 = 1 - 1
[2,1,1]
=> 011 => [1,2] => ([(1,2)],3)
=> 1 = 2 - 1
[1,1,1,1]
=> 1111 => [4] => ([],4)
=> 0 = 1 - 1
[5]
=> 1 => [1] => ([],1)
=> 0 = 1 - 1
[4,1]
=> 01 => [1,1] => ([(0,1)],2)
=> 1 = 2 - 1
[3,1,1]
=> 111 => [3] => ([],3)
=> 0 = 1 - 1
[2,2,1]
=> 001 => [2,1] => ([(0,2),(1,2)],3)
=> 1 = 2 - 1
[2,1,1,1]
=> 0111 => [1,3] => ([(2,3)],4)
=> 1 = 2 - 1
[1,1,1,1,1]
=> 11111 => [5] => ([],5)
=> 0 = 1 - 1
[5,1]
=> 11 => [2] => ([],2)
=> 0 = 1 - 1
[4,1,1]
=> 011 => [1,2] => ([(1,2)],3)
=> 1 = 2 - 1
[3,3]
=> 11 => [2] => ([],2)
=> 0 = 1 - 1
[3,2,1]
=> 101 => [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> 1 = 2 - 1
[3,1,1,1]
=> 1111 => [4] => ([],4)
=> 0 = 1 - 1
[2,2,1,1]
=> 0011 => [2,2] => ([(1,3),(2,3)],4)
=> 1 = 2 - 1
[2,1,1,1,1]
=> 01111 => [1,4] => ([(3,4)],5)
=> 1 = 2 - 1
[1,1,1,1,1,1]
=> 111111 => [6] => ([],6)
=> 0 = 1 - 1
[7]
=> 1 => [1] => ([],1)
=> 0 = 1 - 1
[6,1]
=> 01 => [1,1] => ([(0,1)],2)
=> 1 = 2 - 1
[5,1,1]
=> 111 => [3] => ([],3)
=> 0 = 1 - 1
[4,3]
=> 01 => [1,1] => ([(0,1)],2)
=> 1 = 2 - 1
[4,2,1]
=> 001 => [2,1] => ([(0,2),(1,2)],3)
=> 1 = 2 - 1
[4,1,1,1]
=> 0111 => [1,3] => ([(2,3)],4)
=> 1 = 2 - 1
[3,3,1]
=> 111 => [3] => ([],3)
=> 0 = 1 - 1
[3,2,1,1]
=> 1011 => [1,1,2] => ([(1,2),(1,3),(2,3)],4)
=> 1 = 2 - 1
[3,1,1,1,1]
=> 11111 => [5] => ([],5)
=> 0 = 1 - 1
[2,2,2,1]
=> 0001 => [3,1] => ([(0,3),(1,3),(2,3)],4)
=> 1 = 2 - 1
[2,2,1,1,1]
=> 00111 => [2,3] => ([(2,4),(3,4)],5)
=> 1 = 2 - 1
[2,1,1,1,1,1]
=> 011111 => [1,5] => ([(4,5)],6)
=> 1 = 2 - 1
[7,1]
=> 11 => [2] => ([],2)
=> 0 = 1 - 1
[6,1,1]
=> 011 => [1,2] => ([(1,2)],3)
=> 1 = 2 - 1
[5,3]
=> 11 => [2] => ([],2)
=> 0 = 1 - 1
[5,2,1]
=> 101 => [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> 1 = 2 - 1
[5,1,1,1]
=> 1111 => [4] => ([],4)
=> 0 = 1 - 1
[4,3,1]
=> 011 => [1,2] => ([(1,2)],3)
=> 1 = 2 - 1
[4,2,1,1]
=> 0011 => [2,2] => ([(1,3),(2,3)],4)
=> 1 = 2 - 1
[4,1,1,1,1]
=> 01111 => [1,4] => ([(3,4)],5)
=> 1 = 2 - 1
[3,3,1,1]
=> 1111 => [4] => ([],4)
=> 0 = 1 - 1
[3,2,2,1]
=> 1001 => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> 1 = 2 - 1
[3,2,1,1,1]
=> 10111 => [1,1,3] => ([(2,3),(2,4),(3,4)],5)
=> 1 = 2 - 1
[3,1,1,1,1,1]
=> 111111 => [6] => ([],6)
=> 0 = 1 - 1
[2,2,2,1,1]
=> 00011 => [3,2] => ([(1,4),(2,4),(3,4)],5)
=> 1 = 2 - 1
[2,2,1,1,1,1]
=> 001111 => [2,4] => ([(3,5),(4,5)],6)
=> 1 = 2 - 1
[9]
=> 1 => [1] => ([],1)
=> 0 = 1 - 1
[8,1]
=> 01 => [1,1] => ([(0,1)],2)
=> 1 = 2 - 1
Description
The induced matching number of a graph. An induced matching of a graph is a set of independent edges which is an induced subgraph. This statistic records the maximal number of edges in an induced matching.
Matching statistic: St001093
Mp00317: Integer partitions odd partsBinary words
Mp00178: Binary words to compositionInteger compositions
Mp00184: Integer compositions to threshold graphGraphs
St001093: Graphs ⟶ ℤResult quality: 99% values known / values provided: 99%distinct values known / distinct values provided: 100%
Values
[1]
=> 1 => [1,1] => ([(0,1)],2)
=> 2 = 1 + 1
[1,1]
=> 11 => [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> 2 = 1 + 1
[3]
=> 1 => [1,1] => ([(0,1)],2)
=> 2 = 1 + 1
[2,1]
=> 01 => [2,1] => ([(0,2),(1,2)],3)
=> 3 = 2 + 1
[1,1,1]
=> 111 => [1,1,1,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 2 = 1 + 1
[3,1]
=> 11 => [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> 2 = 1 + 1
[2,1,1]
=> 011 => [2,1,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 3 = 2 + 1
[1,1,1,1]
=> 1111 => [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2 = 1 + 1
[5]
=> 1 => [1,1] => ([(0,1)],2)
=> 2 = 1 + 1
[4,1]
=> 01 => [2,1] => ([(0,2),(1,2)],3)
=> 3 = 2 + 1
[3,1,1]
=> 111 => [1,1,1,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 2 = 1 + 1
[2,2,1]
=> 001 => [3,1] => ([(0,3),(1,3),(2,3)],4)
=> 3 = 2 + 1
[2,1,1,1]
=> 0111 => [2,1,1,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3 = 2 + 1
[1,1,1,1,1]
=> 11111 => [1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2 = 1 + 1
[5,1]
=> 11 => [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> 2 = 1 + 1
[4,1,1]
=> 011 => [2,1,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 3 = 2 + 1
[3,3]
=> 11 => [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> 2 = 1 + 1
[3,2,1]
=> 101 => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> 3 = 2 + 1
[3,1,1,1]
=> 1111 => [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2 = 1 + 1
[2,2,1,1]
=> 0011 => [3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3 = 2 + 1
[2,1,1,1,1]
=> 01111 => [2,1,1,1,1] => ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3 = 2 + 1
[1,1,1,1,1,1]
=> 111111 => [1,1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 2 = 1 + 1
[7]
=> 1 => [1,1] => ([(0,1)],2)
=> 2 = 1 + 1
[6,1]
=> 01 => [2,1] => ([(0,2),(1,2)],3)
=> 3 = 2 + 1
[5,1,1]
=> 111 => [1,1,1,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 2 = 1 + 1
[4,3]
=> 01 => [2,1] => ([(0,2),(1,2)],3)
=> 3 = 2 + 1
[4,2,1]
=> 001 => [3,1] => ([(0,3),(1,3),(2,3)],4)
=> 3 = 2 + 1
[4,1,1,1]
=> 0111 => [2,1,1,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3 = 2 + 1
[3,3,1]
=> 111 => [1,1,1,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 2 = 1 + 1
[3,2,1,1]
=> 1011 => [1,2,1,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3 = 2 + 1
[3,1,1,1,1]
=> 11111 => [1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2 = 1 + 1
[2,2,2,1]
=> 0001 => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 3 = 2 + 1
[2,2,1,1,1]
=> 00111 => [3,1,1,1] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3 = 2 + 1
[2,1,1,1,1,1]
=> 011111 => [2,1,1,1,1,1] => ([(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 3 = 2 + 1
[7,1]
=> 11 => [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> 2 = 1 + 1
[6,1,1]
=> 011 => [2,1,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 3 = 2 + 1
[5,3]
=> 11 => [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> 2 = 1 + 1
[5,2,1]
=> 101 => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> 3 = 2 + 1
[5,1,1,1]
=> 1111 => [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2 = 1 + 1
[4,3,1]
=> 011 => [2,1,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 3 = 2 + 1
[4,2,1,1]
=> 0011 => [3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3 = 2 + 1
[4,1,1,1,1]
=> 01111 => [2,1,1,1,1] => ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3 = 2 + 1
[3,3,1,1]
=> 1111 => [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2 = 1 + 1
[3,2,2,1]
=> 1001 => [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 3 = 2 + 1
[3,2,1,1,1]
=> 10111 => [1,2,1,1,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3 = 2 + 1
[3,1,1,1,1,1]
=> 111111 => [1,1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 2 = 1 + 1
[2,2,2,1,1]
=> 00011 => [4,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3 = 2 + 1
[2,2,1,1,1,1]
=> 001111 => [3,1,1,1,1] => ([(0,3),(0,4),(0,5),(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 3 = 2 + 1
[9]
=> 1 => [1,1] => ([(0,1)],2)
=> 2 = 1 + 1
[8,1]
=> 01 => [2,1] => ([(0,2),(1,2)],3)
=> 3 = 2 + 1
[3,3,2,2,1,1]
=> 110011 => [1,1,3,1,1] => ([(0,5),(0,6),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 2 + 1
[5,3,2,2,1,1]
=> 110011 => [1,1,3,1,1] => ([(0,5),(0,6),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 2 + 1
[7,3,2,2,1,1]
=> 110011 => [1,1,3,1,1] => ([(0,5),(0,6),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 2 + 1
[5,5,2,2,1,1]
=> 110011 => [1,1,3,1,1] => ([(0,5),(0,6),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 2 + 1
Description
The detour number of a graph. This is the number of vertices in a longest induced path in a graph. Note that [1] defines the detour number as the number of edges in a longest induced path, which is unsuitable for the empty graph.
Matching statistic: St001734
Mp00317: Integer partitions odd partsBinary words
Mp00178: Binary words to compositionInteger compositions
Mp00184: Integer compositions to threshold graphGraphs
St001734: Graphs ⟶ ℤResult quality: 75% values known / values provided: 75%distinct values known / distinct values provided: 100%
Values
[1]
=> 1 => [1,1] => ([(0,1)],2)
=> 1
[1,1]
=> 11 => [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> 1
[3]
=> 1 => [1,1] => ([(0,1)],2)
=> 1
[2,1]
=> 01 => [2,1] => ([(0,2),(1,2)],3)
=> 2
[1,1,1]
=> 111 => [1,1,1,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 1
[3,1]
=> 11 => [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> 1
[2,1,1]
=> 011 => [2,1,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 2
[1,1,1,1]
=> 1111 => [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[5]
=> 1 => [1,1] => ([(0,1)],2)
=> 1
[4,1]
=> 01 => [2,1] => ([(0,2),(1,2)],3)
=> 2
[3,1,1]
=> 111 => [1,1,1,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 1
[2,2,1]
=> 001 => [3,1] => ([(0,3),(1,3),(2,3)],4)
=> 2
[2,1,1,1]
=> 0111 => [2,1,1,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[1,1,1,1,1]
=> 11111 => [1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1
[5,1]
=> 11 => [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> 1
[4,1,1]
=> 011 => [2,1,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 2
[3,3]
=> 11 => [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> 1
[3,2,1]
=> 101 => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> 2
[3,1,1,1]
=> 1111 => [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[2,2,1,1]
=> 0011 => [3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[2,1,1,1,1]
=> 01111 => [2,1,1,1,1] => ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
[1,1,1,1,1,1]
=> 111111 => [1,1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1
[7]
=> 1 => [1,1] => ([(0,1)],2)
=> 1
[6,1]
=> 01 => [2,1] => ([(0,2),(1,2)],3)
=> 2
[5,1,1]
=> 111 => [1,1,1,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 1
[4,3]
=> 01 => [2,1] => ([(0,2),(1,2)],3)
=> 2
[4,2,1]
=> 001 => [3,1] => ([(0,3),(1,3),(2,3)],4)
=> 2
[4,1,1,1]
=> 0111 => [2,1,1,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[3,3,1]
=> 111 => [1,1,1,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 1
[3,2,1,1]
=> 1011 => [1,2,1,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[3,1,1,1,1]
=> 11111 => [1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1
[2,2,2,1]
=> 0001 => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 2
[2,2,1,1,1]
=> 00111 => [3,1,1,1] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
[2,1,1,1,1,1]
=> 011111 => [2,1,1,1,1,1] => ([(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 2
[7,1]
=> 11 => [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> 1
[6,1,1]
=> 011 => [2,1,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 2
[5,3]
=> 11 => [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> 1
[5,2,1]
=> 101 => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> 2
[5,1,1,1]
=> 1111 => [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[4,3,1]
=> 011 => [2,1,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 2
[4,2,1,1]
=> 0011 => [3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[4,1,1,1,1]
=> 01111 => [2,1,1,1,1] => ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
[3,3,1,1]
=> 1111 => [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[3,2,2,1]
=> 1001 => [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[3,2,1,1,1]
=> 10111 => [1,2,1,1,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
[3,1,1,1,1,1]
=> 111111 => [1,1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1
[2,2,2,1,1]
=> 00011 => [4,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
[2,2,1,1,1,1]
=> 001111 => [3,1,1,1,1] => ([(0,3),(0,4),(0,5),(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 2
[9]
=> 1 => [1,1] => ([(0,1)],2)
=> 1
[8,1]
=> 01 => [2,1] => ([(0,2),(1,2)],3)
=> 2
[7,1,1]
=> 111 => [1,1,1,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 1
[6,3]
=> 01 => [2,1] => ([(0,2),(1,2)],3)
=> 2
[6,2,1]
=> 001 => [3,1] => ([(0,3),(1,3),(2,3)],4)
=> 2
[6,1,1,1]
=> 0111 => [2,1,1,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[4,1,1,1,1,1]
=> 011111 => [2,1,1,1,1,1] => ([(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 2
[3,2,1,1,1,1]
=> 101111 => [1,2,1,1,1,1] => ([(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 2
[2,2,2,1,1,1]
=> 000111 => [4,1,1,1] => ([(0,4),(0,5),(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 2
[5,1,1,1,1,1]
=> 111111 => [1,1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1
[4,2,1,1,1,1]
=> 001111 => [3,1,1,1,1] => ([(0,3),(0,4),(0,5),(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 2
[3,3,1,1,1,1]
=> 111111 => [1,1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1
[3,2,2,1,1,1]
=> 100111 => [1,3,1,1,1] => ([(0,4),(0,5),(0,6),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 2
[2,2,2,2,1,1]
=> 000011 => [5,1,1] => ([(0,5),(0,6),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 2
[6,1,1,1,1,1]
=> 011111 => [2,1,1,1,1,1] => ([(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 2
[5,2,1,1,1,1]
=> 101111 => [1,2,1,1,1,1] => ([(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 2
[4,3,1,1,1,1]
=> 011111 => [2,1,1,1,1,1] => ([(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 2
[4,2,2,1,1,1]
=> 000111 => [4,1,1,1] => ([(0,4),(0,5),(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 2
[3,3,2,1,1,1]
=> 110111 => [1,1,2,1,1,1] => ([(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 2
[3,2,2,2,1,1]
=> 100011 => [1,4,1,1] => ([(0,5),(0,6),(1,5),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 2
[2,2,2,2,2,1]
=> 000001 => [6,1] => ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> ? = 2
[7,1,1,1,1,1]
=> 111111 => [1,1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1
[6,2,1,1,1,1]
=> 001111 => [3,1,1,1,1] => ([(0,3),(0,4),(0,5),(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 2
[5,3,1,1,1,1]
=> 111111 => [1,1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1
[5,2,2,1,1,1]
=> 100111 => [1,3,1,1,1] => ([(0,4),(0,5),(0,6),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 2
[4,4,1,1,1,1]
=> 001111 => [3,1,1,1,1] => ([(0,3),(0,4),(0,5),(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 2
[4,3,2,1,1,1]
=> 010111 => [2,2,1,1,1] => ([(0,4),(0,5),(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 2
[4,2,2,2,1,1]
=> 000011 => [5,1,1] => ([(0,5),(0,6),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 2
[3,3,3,1,1,1]
=> 111111 => [1,1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1
[3,3,2,2,1,1]
=> 110011 => [1,1,3,1,1] => ([(0,5),(0,6),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 2
[3,2,2,2,2,1]
=> 100001 => [1,5,1] => ([(0,6),(1,6),(2,6),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 2
[8,1,1,1,1,1]
=> 011111 => [2,1,1,1,1,1] => ([(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 2
[7,2,1,1,1,1]
=> 101111 => [1,2,1,1,1,1] => ([(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 2
[6,3,1,1,1,1]
=> 011111 => [2,1,1,1,1,1] => ([(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 2
[6,2,2,1,1,1]
=> 000111 => [4,1,1,1] => ([(0,4),(0,5),(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 2
[5,4,1,1,1,1]
=> 101111 => [1,2,1,1,1,1] => ([(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 2
[5,3,2,1,1,1]
=> 110111 => [1,1,2,1,1,1] => ([(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 2
[5,2,2,2,1,1]
=> 100011 => [1,4,1,1] => ([(0,5),(0,6),(1,5),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 2
[4,4,2,1,1,1]
=> 000111 => [4,1,1,1] => ([(0,4),(0,5),(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 2
[4,3,3,1,1,1]
=> 011111 => [2,1,1,1,1,1] => ([(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 2
[4,3,2,2,1,1]
=> 010011 => [2,3,1,1] => ([(0,5),(0,6),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 2
[4,2,2,2,2,1]
=> 000001 => [6,1] => ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> ? = 2
[3,3,3,2,1,1]
=> 111011 => [1,1,1,2,1,1] => ([(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 2
[3,3,2,2,2,1]
=> 110001 => [1,1,4,1] => ([(0,6),(1,6),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 2
[9,1,1,1,1,1]
=> 111111 => [1,1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1
[8,2,1,1,1,1]
=> 001111 => [3,1,1,1,1] => ([(0,3),(0,4),(0,5),(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 2
[7,3,1,1,1,1]
=> 111111 => [1,1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1
[7,2,2,1,1,1]
=> 100111 => [1,3,1,1,1] => ([(0,4),(0,5),(0,6),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 2
[6,4,1,1,1,1]
=> 001111 => [3,1,1,1,1] => ([(0,3),(0,4),(0,5),(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 2
[6,3,2,1,1,1]
=> 010111 => [2,2,1,1,1] => ([(0,4),(0,5),(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 2
[6,2,2,2,1,1]
=> 000011 => [5,1,1] => ([(0,5),(0,6),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 2
[5,5,1,1,1,1]
=> 111111 => [1,1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1
Description
The lettericity of a graph. Let D be a digraph on k vertices, possibly with loops and let w be a word of length n whose letters are vertices of D. The letter graph corresponding to D and w is the graph with vertex set {1,,n} whose edges are the pairs (i,j) with i<j sucht that (wi,wj) is a (directed) edge of D.
Matching statistic: St000455
Mp00317: Integer partitions odd partsBinary words
Mp00178: Binary words to compositionInteger compositions
Mp00184: Integer compositions to threshold graphGraphs
St000455: Graphs ⟶ ℤResult quality: 65% values known / values provided: 65%distinct values known / distinct values provided: 100%
Values
[1]
=> 1 => [1,1] => ([(0,1)],2)
=> -1 = 1 - 2
[1,1]
=> 11 => [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> -1 = 1 - 2
[3]
=> 1 => [1,1] => ([(0,1)],2)
=> -1 = 1 - 2
[2,1]
=> 01 => [2,1] => ([(0,2),(1,2)],3)
=> 0 = 2 - 2
[1,1,1]
=> 111 => [1,1,1,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> -1 = 1 - 2
[3,1]
=> 11 => [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> -1 = 1 - 2
[2,1,1]
=> 011 => [2,1,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 0 = 2 - 2
[1,1,1,1]
=> 1111 => [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> -1 = 1 - 2
[5]
=> 1 => [1,1] => ([(0,1)],2)
=> -1 = 1 - 2
[4,1]
=> 01 => [2,1] => ([(0,2),(1,2)],3)
=> 0 = 2 - 2
[3,1,1]
=> 111 => [1,1,1,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> -1 = 1 - 2
[2,2,1]
=> 001 => [3,1] => ([(0,3),(1,3),(2,3)],4)
=> 0 = 2 - 2
[2,1,1,1]
=> 0111 => [2,1,1,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 0 = 2 - 2
[1,1,1,1,1]
=> 11111 => [1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> -1 = 1 - 2
[5,1]
=> 11 => [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> -1 = 1 - 2
[4,1,1]
=> 011 => [2,1,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 0 = 2 - 2
[3,3]
=> 11 => [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> -1 = 1 - 2
[3,2,1]
=> 101 => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> ? = 2 - 2
[3,1,1,1]
=> 1111 => [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> -1 = 1 - 2
[2,2,1,1]
=> 0011 => [3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 0 = 2 - 2
[2,1,1,1,1]
=> 01111 => [2,1,1,1,1] => ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 0 = 2 - 2
[1,1,1,1,1,1]
=> 111111 => [1,1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> -1 = 1 - 2
[7]
=> 1 => [1,1] => ([(0,1)],2)
=> -1 = 1 - 2
[6,1]
=> 01 => [2,1] => ([(0,2),(1,2)],3)
=> 0 = 2 - 2
[5,1,1]
=> 111 => [1,1,1,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> -1 = 1 - 2
[4,3]
=> 01 => [2,1] => ([(0,2),(1,2)],3)
=> 0 = 2 - 2
[4,2,1]
=> 001 => [3,1] => ([(0,3),(1,3),(2,3)],4)
=> 0 = 2 - 2
[4,1,1,1]
=> 0111 => [2,1,1,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 0 = 2 - 2
[3,3,1]
=> 111 => [1,1,1,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> -1 = 1 - 2
[3,2,1,1]
=> 1011 => [1,2,1,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 2 - 2
[3,1,1,1,1]
=> 11111 => [1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> -1 = 1 - 2
[2,2,2,1]
=> 0001 => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 0 = 2 - 2
[2,2,1,1,1]
=> 00111 => [3,1,1,1] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 0 = 2 - 2
[2,1,1,1,1,1]
=> 011111 => [2,1,1,1,1,1] => ([(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 0 = 2 - 2
[7,1]
=> 11 => [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> -1 = 1 - 2
[6,1,1]
=> 011 => [2,1,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 0 = 2 - 2
[5,3]
=> 11 => [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> -1 = 1 - 2
[5,2,1]
=> 101 => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> ? = 2 - 2
[5,1,1,1]
=> 1111 => [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> -1 = 1 - 2
[4,3,1]
=> 011 => [2,1,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 0 = 2 - 2
[4,2,1,1]
=> 0011 => [3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 0 = 2 - 2
[4,1,1,1,1]
=> 01111 => [2,1,1,1,1] => ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 0 = 2 - 2
[3,3,1,1]
=> 1111 => [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> -1 = 1 - 2
[3,2,2,1]
=> 1001 => [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 2 - 2
[3,2,1,1,1]
=> 10111 => [1,2,1,1,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 2 - 2
[3,1,1,1,1,1]
=> 111111 => [1,1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> -1 = 1 - 2
[2,2,2,1,1]
=> 00011 => [4,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 0 = 2 - 2
[2,2,1,1,1,1]
=> 001111 => [3,1,1,1,1] => ([(0,3),(0,4),(0,5),(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 0 = 2 - 2
[9]
=> 1 => [1,1] => ([(0,1)],2)
=> -1 = 1 - 2
[8,1]
=> 01 => [2,1] => ([(0,2),(1,2)],3)
=> 0 = 2 - 2
[7,1,1]
=> 111 => [1,1,1,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> -1 = 1 - 2
[6,3]
=> 01 => [2,1] => ([(0,2),(1,2)],3)
=> 0 = 2 - 2
[6,2,1]
=> 001 => [3,1] => ([(0,3),(1,3),(2,3)],4)
=> 0 = 2 - 2
[6,1,1,1]
=> 0111 => [2,1,1,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 0 = 2 - 2
[5,3,1]
=> 111 => [1,1,1,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> -1 = 1 - 2
[5,2,1,1]
=> 1011 => [1,2,1,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 2 - 2
[3,3,2,1]
=> 1101 => [1,1,2,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 2 - 2
[3,2,2,1,1]
=> 10011 => [1,3,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 2 - 2
[3,2,1,1,1,1]
=> 101111 => [1,2,1,1,1,1] => ([(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 2 - 2
[7,2,1]
=> 101 => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> ? = 2 - 2
[5,4,1]
=> 101 => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> ? = 2 - 2
[5,2,2,1]
=> 1001 => [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 2 - 2
[5,2,1,1,1]
=> 10111 => [1,2,1,1,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 2 - 2
[4,3,2,1]
=> 0101 => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 2 - 2
[3,3,2,1,1]
=> 11011 => [1,1,2,1,1] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 2 - 2
[3,2,2,2,1]
=> 10001 => [1,4,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 2 - 2
[3,2,2,1,1,1]
=> 100111 => [1,3,1,1,1] => ([(0,4),(0,5),(0,6),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 2 - 2
[7,2,1,1]
=> 1011 => [1,2,1,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 2 - 2
[5,4,1,1]
=> 1011 => [1,2,1,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 2 - 2
[5,3,2,1]
=> 1101 => [1,1,2,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 2 - 2
[5,2,2,1,1]
=> 10011 => [1,3,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 2 - 2
[5,2,1,1,1,1]
=> 101111 => [1,2,1,1,1,1] => ([(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 2 - 2
[4,3,2,1,1]
=> 01011 => [2,2,1,1] => ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 2 - 2
[3,3,2,2,1]
=> 11001 => [1,1,3,1] => ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 2 - 2
[3,3,2,1,1,1]
=> 110111 => [1,1,2,1,1,1] => ([(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 2 - 2
[3,2,2,2,1,1]
=> 100011 => [1,4,1,1] => ([(0,5),(0,6),(1,5),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 2 - 2
[9,2,1]
=> 101 => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> ? = 2 - 2
[7,4,1]
=> 101 => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> ? = 2 - 2
[7,2,2,1]
=> 1001 => [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 2 - 2
[7,2,1,1,1]
=> 10111 => [1,2,1,1,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 2 - 2
[6,3,2,1]
=> 0101 => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 2 - 2
[5,4,3]
=> 101 => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> ? = 2 - 2
[5,4,2,1]
=> 1001 => [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 2 - 2
[5,4,1,1,1]
=> 10111 => [1,2,1,1,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 2 - 2
[5,3,2,1,1]
=> 11011 => [1,1,2,1,1] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 2 - 2
[5,2,2,2,1]
=> 10001 => [1,4,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 2 - 2
[5,2,2,1,1,1]
=> 100111 => [1,3,1,1,1] => ([(0,4),(0,5),(0,6),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 2 - 2
[4,3,2,2,1]
=> 01001 => [2,3,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 2 - 2
[4,3,2,1,1,1]
=> 010111 => [2,2,1,1,1] => ([(0,4),(0,5),(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 2 - 2
[3,3,3,2,1]
=> 11101 => [1,1,1,2,1] => ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 2 - 2
[3,3,2,2,1,1]
=> 110011 => [1,1,3,1,1] => ([(0,5),(0,6),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 2 - 2
[3,2,2,2,2,1]
=> 100001 => [1,5,1] => ([(0,6),(1,6),(2,6),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 2 - 2
[9,2,1,1]
=> 1011 => [1,2,1,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 2 - 2
[7,4,1,1]
=> 1011 => [1,2,1,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 2 - 2
[7,3,2,1]
=> 1101 => [1,1,2,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 2 - 2
[7,2,2,1,1]
=> 10011 => [1,3,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 2 - 2
[7,2,1,1,1,1]
=> 101111 => [1,2,1,1,1,1] => ([(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 2 - 2
[6,3,2,1,1]
=> 01011 => [2,2,1,1] => ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 2 - 2
[5,5,2,1]
=> 1101 => [1,1,2,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 2 - 2
[5,4,3,1]
=> 1011 => [1,2,1,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 2 - 2
Description
The second largest eigenvalue of a graph if it is integral. This statistic is undefined if the second largest eigenvalue of the graph is not integral. Chapter 4 of [1] provides lots of context.
Mp00321: Integer partitions 2-conjugateInteger partitions
Mp00043: Integer partitions to Dyck pathDyck paths
Mp00034: Dyck paths to binary tree: up step, left tree, down step, right treeBinary trees
St000396: Binary trees ⟶ ℤResult quality: 61% values known / values provided: 61%distinct values known / distinct values provided: 100%
Values
[1]
=> [1]
=> [1,0,1,0]
=> [.,[.,.]]
=> 1
[1,1]
=> [1,1]
=> [1,0,1,1,0,0]
=> [.,[[.,.],.]]
=> 1
[3]
=> [2,1]
=> [1,0,1,0,1,0]
=> [.,[.,[.,.]]]
=> 1
[2,1]
=> [3]
=> [1,1,1,0,0,0,1,0]
=> [[[.,.],.],[.,.]]
=> 2
[1,1,1]
=> [1,1,1]
=> [1,0,1,1,1,0,0,0]
=> [.,[[[.,.],.],.]]
=> 1
[3,1]
=> [2,1,1]
=> [1,0,1,1,0,1,0,0]
=> [.,[[.,[.,.]],.]]
=> 1
[2,1,1]
=> [3,1]
=> [1,1,0,1,0,0,1,0]
=> [[.,[.,.]],[.,.]]
=> 2
[1,1,1,1]
=> [1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,0]
=> [.,[[[[.,.],.],.],.]]
=> 1
[5]
=> [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [.,[.,[[.,.],.]]]
=> 1
[4,1]
=> [3,2]
=> [1,1,0,0,1,0,1,0]
=> [[.,.],[.,[.,.]]]
=> 2
[3,1,1]
=> [2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [.,[[[.,[.,.]],.],.]]
=> 1
[2,2,1]
=> [5]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> [[[[[.,.],.],.],.],[.,.]]
=> 2
[2,1,1,1]
=> [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [.,[[.,.],[.,.]]]
=> 2
[1,1,1,1,1]
=> [1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,0,0,0,0]
=> [.,[[[[[.,.],.],.],.],.]]
=> 1
[5,1]
=> [2,2,1,1]
=> [1,0,1,1,0,1,1,0,0,0]
=> [.,[[.,[[.,.],.]],.]]
=> 1
[4,1,1]
=> [4,1,1]
=> [1,1,0,1,1,0,0,0,1,0]
=> [[.,[[.,.],.]],[.,.]]
=> 2
[3,3]
=> [3,2,1]
=> [1,0,1,0,1,0,1,0]
=> [.,[.,[.,[.,.]]]]
=> 1
[3,2,1]
=> [3,3]
=> [1,1,1,0,0,0,1,1,0,0]
=> [[[.,.],.],[[.,.],.]]
=> 2
[3,1,1,1]
=> [2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,0,0,0,0]
=> [.,[[[[.,[.,.]],.],.],.]]
=> 1
[2,2,1,1]
=> [5,1]
=> [1,1,1,1,0,1,0,0,0,0,1,0]
=> [[[[.,[.,.]],.],.],[.,.]]
=> 2
[2,1,1,1,1]
=> [3,1,1,1]
=> [1,0,1,1,1,0,0,1,0,0]
=> [.,[[[.,.],[.,.]],.]]
=> 2
[1,1,1,1,1,1]
=> [1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> [.,[[[[[[.,.],.],.],.],.],.]]
=> 1
[7]
=> [2,2,2,1]
=> [1,0,1,0,1,1,1,0,0,0]
=> [.,[.,[[[.,.],.],.]]]
=> 1
[6,1]
=> [3,2,2]
=> [1,1,0,0,1,1,0,1,0,0]
=> [[.,.],[[.,[.,.]],.]]
=> 2
[5,1,1]
=> [2,2,1,1,1]
=> [1,0,1,1,1,0,1,1,0,0,0,0]
=> [.,[[[.,[[.,.],.]],.],.]]
=> 1
[4,3]
=> [4,3]
=> [1,1,1,0,0,0,1,0,1,0]
=> [[[.,.],.],[.,[.,.]]]
=> 2
[4,2,1]
=> [5,2]
=> [1,1,1,1,0,0,1,0,0,0,1,0]
=> [[[[.,.],[.,.]],.],[.,.]]
=> 2
[4,1,1,1]
=> [4,1,1,1]
=> [1,0,1,1,1,0,0,0,1,0]
=> [.,[[[.,.],.],[.,.]]]
=> 2
[3,3,1]
=> [3,2,1,1]
=> [1,0,1,1,0,1,0,1,0,0]
=> [.,[[.,[.,[.,.]]],.]]
=> 1
[3,2,1,1]
=> [3,3,1]
=> [1,1,0,1,0,0,1,1,0,0]
=> [[.,[.,.]],[[.,.],.]]
=> 2
[3,1,1,1,1]
=> [2,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,1,0,0,0,0,0]
=> [.,[[[[[.,[.,.]],.],.],.],.]]
=> 1
[2,2,2,1]
=> [7]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> [[[[[[[.,.],.],.],.],.],.],[.,.]]
=> ? = 2
[2,2,1,1,1]
=> [5,1,1]
=> [1,1,1,0,1,1,0,0,0,0,1,0]
=> [[[.,[[.,.],.]],.],[.,.]]
=> 2
[2,1,1,1,1,1]
=> [3,1,1,1,1]
=> [1,0,1,1,1,1,0,0,1,0,0,0]
=> [.,[[[[.,.],[.,.]],.],.]]
=> 2
[7,1]
=> [2,2,2,1,1]
=> [1,0,1,1,0,1,1,1,0,0,0,0]
=> [.,[[.,[[[.,.],.],.]],.]]
=> 1
[6,1,1]
=> [4,2,1,1]
=> [1,0,1,1,0,1,0,0,1,0]
=> [.,[[.,[.,.]],[.,.]]]
=> 2
[5,3]
=> [3,2,2,1]
=> [1,0,1,0,1,1,0,1,0,0]
=> [.,[.,[[.,[.,.]],.]]]
=> 1
[5,2,1]
=> [3,3,2]
=> [1,1,0,0,1,0,1,1,0,0]
=> [[.,.],[.,[[.,.],.]]]
=> 2
[5,1,1,1]
=> [2,2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,1,0,0,0,0,0]
=> [.,[[[[.,[[.,.],.]],.],.],.]]
=> 1
[4,3,1]
=> [4,3,1]
=> [1,1,0,1,0,0,1,0,1,0]
=> [[.,[.,.]],[.,[.,.]]]
=> 2
[4,2,1,1]
=> [6,1,1]
=> [1,1,1,1,0,1,1,0,0,0,0,0,1,0]
=> [[[[.,[[.,.],.]],.],.],[.,.]]
=> 2
[4,1,1,1,1]
=> [4,1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,1,0,0]
=> [.,[[[[.,.],.],[.,.]],.]]
=> 2
[3,3,1,1]
=> [3,2,1,1,1]
=> [1,0,1,1,1,0,1,0,1,0,0,0]
=> [.,[[[.,[.,[.,.]]],.],.]]
=> 1
[3,2,2,1]
=> [5,3]
=> [1,1,1,1,0,0,0,1,0,0,1,0]
=> [[[[.,.],.],[.,.]],[.,.]]
=> 2
[3,2,1,1,1]
=> [3,3,1,1]
=> [1,0,1,1,0,0,1,1,0,0]
=> [.,[[.,.],[[.,.],.]]]
=> 2
[3,1,1,1,1,1]
=> [2,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,0,1,0,0,0,0,0,0]
=> [.,[[[[[[.,[.,.]],.],.],.],.],.]]
=> 1
[2,2,2,1,1]
=> [7,1]
=> [1,1,1,1,1,1,0,1,0,0,0,0,0,0,1,0]
=> [[[[[[.,[.,.]],.],.],.],.],[.,.]]
=> ? = 2
[2,2,1,1,1,1]
=> [5,1,1,1]
=> [1,1,0,1,1,1,0,0,0,0,1,0]
=> [[.,[[[.,.],.],.]],[.,.]]
=> 2
[9]
=> [2,2,2,2,1]
=> [1,0,1,0,1,1,1,1,0,0,0,0]
=> [.,[.,[[[[.,.],.],.],.]]]
=> 1
[8,1]
=> [3,2,2,2]
=> [1,1,0,0,1,1,1,0,1,0,0,0]
=> [[.,.],[[[.,[.,.]],.],.]]
=> 2
[7,1,1]
=> [2,2,2,1,1,1]
=> [1,0,1,1,1,0,1,1,1,0,0,0,0,0]
=> [.,[[[.,[[[.,.],.],.]],.],.]]
=> 1
[6,3]
=> [4,3,2]
=> [1,1,0,0,1,0,1,0,1,0]
=> [[.,.],[.,[.,[.,.]]]]
=> 2
[4,2,2,1]
=> [7,2]
=> [1,1,1,1,1,1,0,0,1,0,0,0,0,0,1,0]
=> [[[[[[.,.],[.,.]],.],.],.],[.,.]]
=> ? = 2
[2,2,2,2,1]
=> [9]
=> [1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,1,0]
=> [[[[[[[[[.,.],.],.],.],.],.],.],.],[.,.]]
=> ? = 2
[2,2,2,1,1,1]
=> [7,1,1]
=> [1,1,1,1,1,0,1,1,0,0,0,0,0,0,1,0]
=> [[[[[.,[[.,.],.]],.],.],.],[.,.]]
=> ? = 2
[5,1,1,1,1,1]
=> [2,2,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,0,1,1,0,0,0,0,0,0,0]
=> [.,[[[[[[.,[[.,.],.]],.],.],.],.],.]]
=> ? = 1
[4,2,2,1,1]
=> [8,1,1]
=> [1,1,1,1,1,1,0,1,1,0,0,0,0,0,0,0,1,0]
=> [[[[[[.,[[.,.],.]],.],.],.],.],[.,.]]
=> ? = 2
[3,2,2,2,1]
=> [7,3]
=> [1,1,1,1,1,1,0,0,0,1,0,0,0,0,1,0]
=> [[[[[[.,.],.],[.,.]],.],.],[.,.]]
=> ? = 2
[2,2,2,2,1,1]
=> [9,1]
=> [1,1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0,0,1,0]
=> [[[[[[[[.,[.,.]],.],.],.],.],.],.],[.,.]]
=> ? = 2
[7,1,1,1,1]
=> [2,2,2,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,1,1,1,0,0,0,0,0,0,0]
=> [.,[[[[[.,[[[.,.],.],.]],.],.],.],.]]
=> ? = 1
[6,2,2,1]
=> [7,2,2]
=> [1,1,1,1,1,0,0,1,1,0,0,0,0,0,1,0]
=> [[[[[.,.],[[.,.],.]],.],.],[.,.]]
=> ? = 2
[4,4,2,1]
=> [7,4]
=> [1,1,1,1,1,1,0,0,0,0,1,0,0,0,1,0]
=> [[[[[[.,.],.],.],[.,.]],.],[.,.]]
=> ? = 2
[4,4,1,1,1]
=> [7,2,1,1]
=> [1,1,1,1,0,1,1,0,1,0,0,0,0,0,1,0]
=> [[[[.,[[.,[.,.]],.]],.],.],[.,.]]
=> ? = 2
[4,2,2,2,1]
=> [9,2]
=> [1,1,1,1,1,1,1,1,0,0,1,0,0,0,0,0,0,0,1,0]
=> [[[[[[[[.,.],[.,.]],.],.],.],.],.],[.,.]]
=> ? = 2
[4,2,2,1,1,1]
=> [8,1,1,1]
=> [1,1,1,1,1,0,1,1,1,0,0,0,0,0,0,0,1,0]
=> [[[[[.,[[[.,.],.],.]],.],.],.],[.,.]]
=> ? = 2
[3,2,2,2,1,1]
=> [7,3,1]
=> [1,1,1,1,1,0,1,0,0,1,0,0,0,0,1,0]
=> [[[[[.,[.,.]],[.,.]],.],.],[.,.]]
=> ? = 2
[2,2,2,2,2,1]
=> [11]
=> [1,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,1,0]
=> [[[[[[[[[[[.,.],.],.],.],.],.],.],.],.],.],[.,.]]
=> ? = 2
[9,1,1,1]
=> [2,2,2,2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,1,1,1,0,0,0,0,0,0,0]
=> [.,[[[[.,[[[[.,.],.],.],.]],.],.],.]]
=> ? = 1
[7,1,1,1,1,1]
=> [2,2,2,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,0,1,1,1,0,0,0,0,0,0,0,0]
=> [.,[[[[[[.,[[[.,.],.],.]],.],.],.],.],.]]
=> ? = 1
[6,2,2,1,1]
=> [8,2,1,1]
=> [1,1,1,1,1,0,1,1,0,1,0,0,0,0,0,0,1,0]
=> [[[[[.,[[.,[.,.]],.]],.],.],.],[.,.]]
=> ? = 2
[5,3,1,1,1,1]
=> [3,2,2,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,1,1,0,1,0,0,0,0,0,0]
=> [.,[[[[[.,[[.,[.,.]],.]],.],.],.],.]]
=> ? = 1
[5,2,2,2,1]
=> [7,3,2]
=> [1,1,1,1,1,0,0,1,0,1,0,0,0,0,1,0]
=> [[[[[.,.],[.,[.,.]]],.],.],[.,.]]
=> ? = 2
[4,4,2,1,1]
=> [8,3,1]
=> [1,1,1,1,1,1,0,1,0,0,1,0,0,0,0,0,1,0]
=> [[[[[[.,[.,.]],[.,.]],.],.],.],[.,.]]
=> ? = 2
[4,4,1,1,1,1]
=> [7,2,1,1,1]
=> [1,1,1,0,1,1,1,0,1,0,0,0,0,0,1,0]
=> [[[.,[[[.,[.,.]],.],.]],.],[.,.]]
=> ? = 2
[4,3,2,2,1]
=> [7,5]
=> [1,1,1,1,1,1,0,0,0,0,0,1,0,0,1,0]
=> [[[[[[.,.],.],.],.],[.,.]],[.,.]]
=> ? = 2
[4,2,2,2,1,1]
=> [10,1,1]
=> [1,1,1,1,1,1,1,1,0,1,1,0,0,0,0,0,0,0,0,0,1,0]
=> [[[[[[[[.,[[.,.],.]],.],.],.],.],.],.],[.,.]]
=> ? = 2
[3,2,2,2,2,1]
=> [9,3]
=> [1,1,1,1,1,1,1,1,0,0,0,1,0,0,0,0,0,0,1,0]
=> [[[[[[[[.,.],.],[.,.]],.],.],.],.],[.,.]]
=> ? = 2
[11,1,1]
=> [2,2,2,2,2,1,1,1]
=> [1,0,1,1,1,0,1,1,1,1,1,0,0,0,0,0,0,0]
=> [.,[[[.,[[[[[.,.],.],.],.],.]],.],.]]
=> ? = 1
[9,1,1,1,1]
=> [2,2,2,2,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,1,1,1,1,0,0,0,0,0,0,0,0]
=> [.,[[[[[.,[[[[.,.],.],.],.]],.],.],.],.]]
=> ? = 1
[8,2,2,1]
=> [7,2,2,2]
=> [1,1,1,1,0,0,1,1,1,0,0,0,0,0,1,0]
=> [[[[.,.],[[[.,.],.],.]],.],[.,.]]
=> ? = 2
[8,1,1,1,1,1]
=> [4,2,2,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,1,1,0,0,1,0,0,0,0,0]
=> [.,[[[[[.,[[.,.],[.,.]]],.],.],.],.]]
=> ? = 2
[7,3,1,1,1]
=> [3,2,2,2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,1,1,0,1,0,0,0,0,0,0]
=> [.,[[[[.,[[[.,[.,.]],.],.]],.],.],.]]
=> ? = 1
[6,4,2,1]
=> [7,4,2]
=> [1,1,1,1,1,0,0,1,0,0,1,0,0,0,1,0]
=> [[[[[.,.],[.,.]],[.,.]],.],[.,.]]
=> ? = 2
[6,4,1,1,1]
=> [7,2,2,1,1]
=> [1,1,1,0,1,1,0,1,1,0,0,0,0,0,1,0]
=> [[[.,[[.,[[.,.],.]],.]],.],[.,.]]
=> ? = 2
[6,2,2,2,1]
=> [9,2,2]
=> [1,1,1,1,1,1,1,0,0,1,1,0,0,0,0,0,0,0,1,0]
=> ?
=> ? = 2
[6,2,2,1,1,1]
=> [8,2,1,1,1]
=> [1,1,1,1,0,1,1,1,0,1,0,0,0,0,0,0,1,0]
=> [[[[.,[[[.,[.,.]],.],.]],.],.],[.,.]]
=> ? = 2
[5,2,2,2,1,1]
=> [8,3,1,1]
=> [1,1,1,1,1,0,1,1,0,0,1,0,0,0,0,0,1,0]
=> [[[[[.,[[.,.],[.,.]]],.],.],.],[.,.]]
=> ? = 2
[4,4,4,1]
=> [7,6]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,0,1,0]
=> [[[[[[.,.],.],.],.],.],[.,[.,.]]]
=> ? = 2
[4,4,3,1,1]
=> [7,4,1,1]
=> [1,1,1,1,0,1,1,0,0,0,1,0,0,0,1,0]
=> [[[[.,[[.,.],.]],[.,.]],.],[.,.]]
=> ? = 2
[4,4,2,2,1]
=> [9,4]
=> [1,1,1,1,1,1,1,1,0,0,0,0,1,0,0,0,0,0,1,0]
=> [[[[[[[[.,.],.],.],[.,.]],.],.],.],[.,.]]
=> ? = 2
[4,4,2,1,1,1]
=> [9,2,1,1]
=> [1,1,1,1,1,1,0,1,1,0,1,0,0,0,0,0,0,0,1,0]
=> [[[[[[.,[[.,[.,.]],.]],.],.],.],.],[.,.]]
=> ? = 2
[4,3,2,2,1,1]
=> [7,5,1]
=> [1,1,1,1,1,0,1,0,0,0,0,1,0,0,1,0]
=> [[[[[.,[.,.]],.],.],[.,.]],[.,.]]
=> ? = 2
[4,2,2,2,2,1]
=> [11,2]
=> [1,1,1,1,1,1,1,1,1,1,0,0,1,0,0,0,0,0,0,0,0,0,1,0]
=> ?
=> ? = 2
[3,3,2,2,2,1]
=> [7,3,3]
=> [1,1,1,1,1,0,0,0,1,1,0,0,0,0,1,0]
=> [[[[[.,.],.],[[.,.],.]],.],[.,.]]
=> ? = 2
[13,1]
=> [2,2,2,2,2,2,1,1]
=> [1,0,1,1,0,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> [.,[[.,[[[[[[.,.],.],.],.],.],.]],.]]
=> ? = 1
[11,1,1,1]
=> [2,2,2,2,2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,1,1,1,1,0,0,0,0,0,0,0,0]
=> [.,[[[[.,[[[[[.,.],.],.],.],.]],.],.],.]]
=> ? = 1
[10,1,1,1,1]
=> [4,2,2,2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,1,1,0,0,1,0,0,0,0,0]
=> ?
=> ? = 2
[9,3,1,1]
=> [3,2,2,2,2,1,1,1]
=> [1,0,1,1,1,0,1,1,1,1,0,1,0,0,0,0,0,0]
=> [.,[[[.,[[[[.,[.,.]],.],.],.]],.],.]]
=> ? = 1
[9,1,1,1,1,1]
=> [2,2,2,2,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,0,1,1,1,1,0,0,0,0,0,0,0,0,0]
=> ?
=> ? = 1
[8,2,2,1,1]
=> [8,2,2,1,1]
=> [1,1,1,1,0,1,1,0,1,1,0,0,0,0,0,0,1,0]
=> [[[[.,[[.,[[.,.],.]],.]],.],.],[.,.]]
=> ? = 2
Description
The register function (or Horton-Strahler number) of a binary tree. This is different from the dimension of the associated poset for the tree [[[.,.],[.,.]],[[.,.],[.,.]]]: its register function is 3, whereas the dimension of the associated poset is 2.
Matching statistic: St000298
Mp00317: Integer partitions odd partsBinary words
Mp00262: Binary words poset of factorsPosets
St000298: Posets ⟶ ℤResult quality: 37% values known / values provided: 37%distinct values known / distinct values provided: 100%
Values
[1]
=> 1 => ([(0,1)],2)
=> 1
[1,1]
=> 11 => ([(0,2),(2,1)],3)
=> 1
[3]
=> 1 => ([(0,1)],2)
=> 1
[2,1]
=> 01 => ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
[1,1,1]
=> 111 => ([(0,3),(2,1),(3,2)],4)
=> 1
[3,1]
=> 11 => ([(0,2),(2,1)],3)
=> 1
[2,1,1]
=> 011 => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 2
[1,1,1,1]
=> 1111 => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1
[5]
=> 1 => ([(0,1)],2)
=> 1
[4,1]
=> 01 => ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
[3,1,1]
=> 111 => ([(0,3),(2,1),(3,2)],4)
=> 1
[2,2,1]
=> 001 => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 2
[2,1,1,1]
=> 0111 => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ? = 2
[1,1,1,1,1]
=> 11111 => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 1
[5,1]
=> 11 => ([(0,2),(2,1)],3)
=> 1
[4,1,1]
=> 011 => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 2
[3,3]
=> 11 => ([(0,2),(2,1)],3)
=> 1
[3,2,1]
=> 101 => ([(0,1),(0,2),(1,4),(1,5),(2,4),(2,5),(4,3),(5,3)],6)
=> 2
[3,1,1,1]
=> 1111 => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1
[2,2,1,1]
=> 0011 => ([(0,3),(0,4),(1,7),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6),(5,7),(6,8),(7,8)],9)
=> ? = 2
[2,1,1,1,1]
=> 01111 => ([(0,2),(0,5),(1,7),(2,6),(3,4),(3,9),(4,1),(4,8),(5,3),(5,6),(6,9),(8,7),(9,8)],10)
=> ? = 2
[1,1,1,1,1,1]
=> 111111 => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 1
[7]
=> 1 => ([(0,1)],2)
=> 1
[6,1]
=> 01 => ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
[5,1,1]
=> 111 => ([(0,3),(2,1),(3,2)],4)
=> 1
[4,3]
=> 01 => ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
[4,2,1]
=> 001 => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 2
[4,1,1,1]
=> 0111 => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ? = 2
[3,3,1]
=> 111 => ([(0,3),(2,1),(3,2)],4)
=> 1
[3,2,1,1]
=> 1011 => ([(0,2),(0,3),(1,6),(2,7),(2,8),(3,1),(3,7),(3,8),(5,4),(6,4),(7,5),(8,5),(8,6)],9)
=> ? = 2
[3,1,1,1,1]
=> 11111 => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 1
[2,2,2,1]
=> 0001 => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ? = 2
[2,2,1,1,1]
=> 00111 => ([(0,4),(0,5),(1,9),(2,3),(2,11),(3,8),(4,1),(4,10),(5,2),(5,10),(7,6),(8,6),(9,7),(10,9),(10,11),(11,7),(11,8)],12)
=> ? = 2
[2,1,1,1,1,1]
=> 011111 => ([(0,2),(0,6),(1,8),(2,7),(3,5),(3,9),(4,3),(4,11),(5,1),(5,10),(6,4),(6,7),(7,11),(9,10),(10,8),(11,9)],12)
=> ? = 2
[7,1]
=> 11 => ([(0,2),(2,1)],3)
=> 1
[6,1,1]
=> 011 => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 2
[5,3]
=> 11 => ([(0,2),(2,1)],3)
=> 1
[5,2,1]
=> 101 => ([(0,1),(0,2),(1,4),(1,5),(2,4),(2,5),(4,3),(5,3)],6)
=> 2
[5,1,1,1]
=> 1111 => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1
[4,3,1]
=> 011 => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 2
[4,2,1,1]
=> 0011 => ([(0,3),(0,4),(1,7),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6),(5,7),(6,8),(7,8)],9)
=> ? = 2
[4,1,1,1,1]
=> 01111 => ([(0,2),(0,5),(1,7),(2,6),(3,4),(3,9),(4,1),(4,8),(5,3),(5,6),(6,9),(8,7),(9,8)],10)
=> ? = 2
[3,3,1,1]
=> 1111 => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1
[3,2,2,1]
=> 1001 => ([(0,2),(0,3),(1,5),(1,6),(2,7),(2,8),(3,1),(3,7),(3,8),(5,4),(6,4),(7,6),(8,5)],9)
=> ? = 2
[3,2,1,1,1]
=> 10111 => ([(0,3),(0,4),(1,2),(1,11),(2,8),(3,9),(3,10),(4,1),(4,9),(4,10),(6,7),(7,5),(8,5),(9,6),(10,6),(10,11),(11,7),(11,8)],12)
=> ? = 2
[3,1,1,1,1,1]
=> 111111 => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 1
[2,2,2,1,1]
=> 00011 => ([(0,4),(0,5),(1,9),(2,3),(2,11),(3,8),(4,1),(4,10),(5,2),(5,10),(7,6),(8,6),(9,7),(10,9),(10,11),(11,7),(11,8)],12)
=> ? = 2
[2,2,1,1,1,1]
=> 001111 => ([(0,5),(0,6),(1,4),(1,14),(2,11),(3,10),(4,3),(4,12),(5,1),(5,13),(6,2),(6,13),(8,9),(9,7),(10,7),(11,8),(12,9),(12,10),(13,11),(13,14),(14,8),(14,12)],15)
=> ? = 2
[9]
=> 1 => ([(0,1)],2)
=> 1
[8,1]
=> 01 => ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
[7,1,1]
=> 111 => ([(0,3),(2,1),(3,2)],4)
=> 1
[6,3]
=> 01 => ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
[6,2,1]
=> 001 => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 2
[6,1,1,1]
=> 0111 => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ? = 2
[5,3,1]
=> 111 => ([(0,3),(2,1),(3,2)],4)
=> 1
[5,2,1,1]
=> 1011 => ([(0,2),(0,3),(1,6),(2,7),(2,8),(3,1),(3,7),(3,8),(5,4),(6,4),(7,5),(8,5),(8,6)],9)
=> ? = 2
[5,1,1,1,1]
=> 11111 => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 1
[4,4,1]
=> 001 => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 2
[4,3,1,1]
=> 0111 => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ? = 2
[4,2,2,1]
=> 0001 => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ? = 2
[4,2,1,1,1]
=> 00111 => ([(0,4),(0,5),(1,9),(2,3),(2,11),(3,8),(4,1),(4,10),(5,2),(5,10),(7,6),(8,6),(9,7),(10,9),(10,11),(11,7),(11,8)],12)
=> ? = 2
[4,1,1,1,1,1]
=> 011111 => ([(0,2),(0,6),(1,8),(2,7),(3,5),(3,9),(4,3),(4,11),(5,1),(5,10),(6,4),(6,7),(7,11),(9,10),(10,8),(11,9)],12)
=> ? = 2
[3,3,3]
=> 111 => ([(0,3),(2,1),(3,2)],4)
=> 1
[3,3,2,1]
=> 1101 => ([(0,2),(0,3),(1,6),(2,7),(2,8),(3,1),(3,7),(3,8),(5,4),(6,4),(7,5),(8,5),(8,6)],9)
=> ? = 2
[3,3,1,1,1]
=> 11111 => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 1
[3,2,2,1,1]
=> 10011 => ([(0,3),(0,4),(1,9),(2,6),(2,11),(3,2),(3,10),(3,12),(4,1),(4,10),(4,12),(6,7),(7,5),(8,5),(9,8),(10,6),(11,7),(11,8),(12,9),(12,11)],13)
=> ? = 2
[3,2,1,1,1,1]
=> 101111 => ([(0,4),(0,5),(1,3),(1,12),(2,11),(3,2),(3,14),(4,10),(4,13),(5,1),(5,10),(5,13),(7,8),(8,9),(9,6),(10,7),(11,6),(12,8),(12,14),(13,7),(13,12),(14,9),(14,11)],15)
=> ? = 2
[2,2,2,2,1]
=> 00001 => ([(0,2),(0,5),(1,7),(2,6),(3,4),(3,9),(4,1),(4,8),(5,3),(5,6),(6,9),(8,7),(9,8)],10)
=> ? = 2
[2,2,2,1,1,1]
=> 000111 => ([(0,5),(0,6),(1,4),(1,15),(2,3),(2,14),(3,8),(4,9),(5,2),(5,13),(6,1),(6,13),(8,10),(9,11),(10,7),(11,7),(12,10),(12,11),(13,14),(13,15),(14,8),(14,12),(15,9),(15,12)],16)
=> ? = 2
[9,1]
=> 11 => ([(0,2),(2,1)],3)
=> 1
[8,1,1]
=> 011 => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 2
[7,3]
=> 11 => ([(0,2),(2,1)],3)
=> 1
[7,2,1]
=> 101 => ([(0,1),(0,2),(1,4),(1,5),(2,4),(2,5),(4,3),(5,3)],6)
=> 2
[7,1,1,1]
=> 1111 => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1
[6,3,1]
=> 011 => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 2
[6,2,1,1]
=> 0011 => ([(0,3),(0,4),(1,7),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6),(5,7),(6,8),(7,8)],9)
=> ? = 2
[6,1,1,1,1]
=> 01111 => ([(0,2),(0,5),(1,7),(2,6),(3,4),(3,9),(4,1),(4,8),(5,3),(5,6),(6,9),(8,7),(9,8)],10)
=> ? = 2
[5,2,2,1]
=> 1001 => ([(0,2),(0,3),(1,5),(1,6),(2,7),(2,8),(3,1),(3,7),(3,8),(5,4),(6,4),(7,6),(8,5)],9)
=> ? = 2
[5,2,1,1,1]
=> 10111 => ([(0,3),(0,4),(1,2),(1,11),(2,8),(3,9),(3,10),(4,1),(4,9),(4,10),(6,7),(7,5),(8,5),(9,6),(10,6),(10,11),(11,7),(11,8)],12)
=> ? = 2
[4,4,1,1]
=> 0011 => ([(0,3),(0,4),(1,7),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6),(5,7),(6,8),(7,8)],9)
=> ? = 2
[4,3,2,1]
=> 0101 => ([(0,1),(0,2),(1,6),(1,7),(2,6),(2,7),(4,3),(5,3),(6,4),(6,5),(7,4),(7,5)],8)
=> ? = 2
[4,3,1,1,1]
=> 01111 => ([(0,2),(0,5),(1,7),(2,6),(3,4),(3,9),(4,1),(4,8),(5,3),(5,6),(6,9),(8,7),(9,8)],10)
=> ? = 2
[4,2,2,1,1]
=> 00011 => ([(0,4),(0,5),(1,9),(2,3),(2,11),(3,8),(4,1),(4,10),(5,2),(5,10),(7,6),(8,6),(9,7),(10,9),(10,11),(11,7),(11,8)],12)
=> ? = 2
[4,2,1,1,1,1]
=> 001111 => ([(0,5),(0,6),(1,4),(1,14),(2,11),(3,10),(4,3),(4,12),(5,1),(5,13),(6,2),(6,13),(8,9),(9,7),(10,7),(11,8),(12,9),(12,10),(13,11),(13,14),(14,8),(14,12)],15)
=> ? = 2
[3,3,2,1,1]
=> 11011 => ([(0,2),(0,3),(1,5),(1,6),(2,10),(2,11),(3,1),(3,10),(3,11),(5,8),(6,7),(7,4),(8,4),(9,7),(9,8),(10,6),(10,9),(11,5),(11,9)],12)
=> ? = 2
[3,2,2,2,1]
=> 10001 => ([(0,3),(0,4),(1,2),(1,10),(1,11),(2,8),(2,9),(3,6),(3,7),(4,1),(4,6),(4,7),(6,11),(7,10),(8,5),(9,5),(10,8),(11,9)],12)
=> ? = 2
[3,2,2,1,1,1]
=> 100111 => ([(0,4),(0,5),(1,11),(2,1),(2,13),(3,7),(3,14),(4,2),(4,12),(4,16),(5,3),(5,12),(5,16),(7,8),(8,9),(9,6),(10,6),(11,10),(12,7),(13,11),(13,15),(14,8),(14,15),(15,9),(15,10),(16,13),(16,14)],17)
=> ? = 2
[2,2,2,2,1,1]
=> 000011 => ([(0,5),(0,6),(1,4),(1,14),(2,11),(3,10),(4,3),(4,12),(5,1),(5,13),(6,2),(6,13),(8,9),(9,7),(10,7),(11,8),(12,9),(12,10),(13,11),(13,14),(14,8),(14,12)],15)
=> ? = 2
[8,1,1,1]
=> 0111 => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ? = 2
[7,2,1,1]
=> 1011 => ([(0,2),(0,3),(1,6),(2,7),(2,8),(3,1),(3,7),(3,8),(5,4),(6,4),(7,5),(8,5),(8,6)],9)
=> ? = 2
[6,3,1,1]
=> 0111 => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ? = 2
[6,2,2,1]
=> 0001 => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ? = 2
[6,2,1,1,1]
=> 00111 => ([(0,4),(0,5),(1,9),(2,3),(2,11),(3,8),(4,1),(4,10),(5,2),(5,10),(7,6),(8,6),(9,7),(10,9),(10,11),(11,7),(11,8)],12)
=> ? = 2
[6,1,1,1,1,1]
=> 011111 => ([(0,2),(0,6),(1,8),(2,7),(3,5),(3,9),(4,3),(4,11),(5,1),(5,10),(6,4),(6,7),(7,11),(9,10),(10,8),(11,9)],12)
=> ? = 2
[5,4,1,1]
=> 1011 => ([(0,2),(0,3),(1,6),(2,7),(2,8),(3,1),(3,7),(3,8),(5,4),(6,4),(7,5),(8,5),(8,6)],9)
=> ? = 2
[5,3,2,1]
=> 1101 => ([(0,2),(0,3),(1,6),(2,7),(2,8),(3,1),(3,7),(3,8),(5,4),(6,4),(7,5),(8,5),(8,6)],9)
=> ? = 2
[5,2,2,1,1]
=> 10011 => ([(0,3),(0,4),(1,9),(2,6),(2,11),(3,2),(3,10),(3,12),(4,1),(4,10),(4,12),(6,7),(7,5),(8,5),(9,8),(10,6),(11,7),(11,8),(12,9),(12,11)],13)
=> ? = 2
[5,2,1,1,1,1]
=> 101111 => ([(0,4),(0,5),(1,3),(1,12),(2,11),(3,2),(3,14),(4,10),(4,13),(5,1),(5,10),(5,13),(7,8),(8,9),(9,6),(10,7),(11,6),(12,8),(12,14),(13,7),(13,12),(14,9),(14,11)],15)
=> ? = 2
[4,4,2,1]
=> 0001 => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ? = 2
[4,4,1,1,1]
=> 00111 => ([(0,4),(0,5),(1,9),(2,3),(2,11),(3,8),(4,1),(4,10),(5,2),(5,10),(7,6),(8,6),(9,7),(10,9),(10,11),(11,7),(11,8)],12)
=> ? = 2
Description
The order dimension or Dushnik-Miller dimension of a poset. This is the minimal number of linear orderings whose intersection is the given poset.
The following 13 statistics, ordered by result quality, also match your data. Click on any of them to see the details.
St000845The maximal number of elements covered by an element in a poset. St000846The maximal number of elements covering an element of a poset. St001632The number of indecomposable injective modules I with dimExt1(I,A)=1 for the incidence algebra A of a poset. St000264The girth of a graph, which is not a tree. St000640The rank of the largest boolean interval in a poset. St000260The radius of a connected graph. St000836The number of descents of distance 2 of a permutation. St001057The Grundy value of the game of creating an independent set in a graph. St001115The number of even descents of a permutation. St001960The number of descents of a permutation minus one if its first entry is not one. St001729The number of visible descents of a permutation. St000887The maximal number of nonzero entries on a diagonal of a permutation matrix. St001195The global dimension of the algebra A/AfA of the corresponding Nakayama algebra A with minimal left faithful projective-injective module Af.