searching the database
Your data matches 23 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
(click to perform a complete search on your data)
Matching statistic: St000259
Mp00317: Integer partitions —odd parts⟶ Binary words
Mp00178: Binary words —to composition⟶ Integer compositions
Mp00184: Integer compositions —to threshold graph⟶ Graphs
St000259: Graphs ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00178: Binary words —to composition⟶ Integer compositions
Mp00184: Integer compositions —to threshold graph⟶ Graphs
St000259: Graphs ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[1]
=> 1 => [1,1] => ([(0,1)],2)
=> 1
[1,1]
=> 11 => [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> 1
[3]
=> 1 => [1,1] => ([(0,1)],2)
=> 1
[2,1]
=> 01 => [2,1] => ([(0,2),(1,2)],3)
=> 2
[1,1,1]
=> 111 => [1,1,1,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 1
[3,1]
=> 11 => [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> 1
[2,1,1]
=> 011 => [2,1,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 2
[1,1,1,1]
=> 1111 => [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[5]
=> 1 => [1,1] => ([(0,1)],2)
=> 1
[4,1]
=> 01 => [2,1] => ([(0,2),(1,2)],3)
=> 2
[3,1,1]
=> 111 => [1,1,1,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 1
[2,2,1]
=> 001 => [3,1] => ([(0,3),(1,3),(2,3)],4)
=> 2
[2,1,1,1]
=> 0111 => [2,1,1,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[1,1,1,1,1]
=> 11111 => [1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1
[5,1]
=> 11 => [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> 1
[4,1,1]
=> 011 => [2,1,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 2
[3,3]
=> 11 => [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> 1
[3,2,1]
=> 101 => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> 2
[3,1,1,1]
=> 1111 => [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[2,2,1,1]
=> 0011 => [3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[2,1,1,1,1]
=> 01111 => [2,1,1,1,1] => ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
[1,1,1,1,1,1]
=> 111111 => [1,1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 1
[7]
=> 1 => [1,1] => ([(0,1)],2)
=> 1
[6,1]
=> 01 => [2,1] => ([(0,2),(1,2)],3)
=> 2
[5,1,1]
=> 111 => [1,1,1,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 1
[4,3]
=> 01 => [2,1] => ([(0,2),(1,2)],3)
=> 2
[4,2,1]
=> 001 => [3,1] => ([(0,3),(1,3),(2,3)],4)
=> 2
[4,1,1,1]
=> 0111 => [2,1,1,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[3,3,1]
=> 111 => [1,1,1,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 1
[3,2,1,1]
=> 1011 => [1,2,1,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[3,1,1,1,1]
=> 11111 => [1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1
[2,2,2,1]
=> 0001 => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 2
[2,2,1,1,1]
=> 00111 => [3,1,1,1] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
[2,1,1,1,1,1]
=> 011111 => [2,1,1,1,1,1] => ([(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 2
[7,1]
=> 11 => [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> 1
[6,1,1]
=> 011 => [2,1,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 2
[5,3]
=> 11 => [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> 1
[5,2,1]
=> 101 => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> 2
[5,1,1,1]
=> 1111 => [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[4,3,1]
=> 011 => [2,1,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 2
[4,2,1,1]
=> 0011 => [3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[4,1,1,1,1]
=> 01111 => [2,1,1,1,1] => ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
[3,3,1,1]
=> 1111 => [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[3,2,2,1]
=> 1001 => [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[3,2,1,1,1]
=> 10111 => [1,2,1,1,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
[3,1,1,1,1,1]
=> 111111 => [1,1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 1
[2,2,2,1,1]
=> 00011 => [4,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
[2,2,1,1,1,1]
=> 001111 => [3,1,1,1,1] => ([(0,3),(0,4),(0,5),(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 2
[9]
=> 1 => [1,1] => ([(0,1)],2)
=> 1
[8,1]
=> 01 => [2,1] => ([(0,2),(1,2)],3)
=> 2
Description
The diameter of a connected graph.
This is the greatest distance between any pair of vertices.
Matching statistic: St001261
Mp00317: Integer partitions —odd parts⟶ Binary words
Mp00097: Binary words —delta morphism⟶ Integer compositions
Mp00184: Integer compositions —to threshold graph⟶ Graphs
St001261: Graphs ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00097: Binary words —delta morphism⟶ Integer compositions
Mp00184: Integer compositions —to threshold graph⟶ Graphs
St001261: Graphs ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[1]
=> 1 => [1] => ([],1)
=> 1
[1,1]
=> 11 => [2] => ([],2)
=> 1
[3]
=> 1 => [1] => ([],1)
=> 1
[2,1]
=> 01 => [1,1] => ([(0,1)],2)
=> 2
[1,1,1]
=> 111 => [3] => ([],3)
=> 1
[3,1]
=> 11 => [2] => ([],2)
=> 1
[2,1,1]
=> 011 => [1,2] => ([(1,2)],3)
=> 2
[1,1,1,1]
=> 1111 => [4] => ([],4)
=> 1
[5]
=> 1 => [1] => ([],1)
=> 1
[4,1]
=> 01 => [1,1] => ([(0,1)],2)
=> 2
[3,1,1]
=> 111 => [3] => ([],3)
=> 1
[2,2,1]
=> 001 => [2,1] => ([(0,2),(1,2)],3)
=> 2
[2,1,1,1]
=> 0111 => [1,3] => ([(2,3)],4)
=> 2
[1,1,1,1,1]
=> 11111 => [5] => ([],5)
=> 1
[5,1]
=> 11 => [2] => ([],2)
=> 1
[4,1,1]
=> 011 => [1,2] => ([(1,2)],3)
=> 2
[3,3]
=> 11 => [2] => ([],2)
=> 1
[3,2,1]
=> 101 => [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> 2
[3,1,1,1]
=> 1111 => [4] => ([],4)
=> 1
[2,2,1,1]
=> 0011 => [2,2] => ([(1,3),(2,3)],4)
=> 2
[2,1,1,1,1]
=> 01111 => [1,4] => ([(3,4)],5)
=> 2
[1,1,1,1,1,1]
=> 111111 => [6] => ([],6)
=> 1
[7]
=> 1 => [1] => ([],1)
=> 1
[6,1]
=> 01 => [1,1] => ([(0,1)],2)
=> 2
[5,1,1]
=> 111 => [3] => ([],3)
=> 1
[4,3]
=> 01 => [1,1] => ([(0,1)],2)
=> 2
[4,2,1]
=> 001 => [2,1] => ([(0,2),(1,2)],3)
=> 2
[4,1,1,1]
=> 0111 => [1,3] => ([(2,3)],4)
=> 2
[3,3,1]
=> 111 => [3] => ([],3)
=> 1
[3,2,1,1]
=> 1011 => [1,1,2] => ([(1,2),(1,3),(2,3)],4)
=> 2
[3,1,1,1,1]
=> 11111 => [5] => ([],5)
=> 1
[2,2,2,1]
=> 0001 => [3,1] => ([(0,3),(1,3),(2,3)],4)
=> 2
[2,2,1,1,1]
=> 00111 => [2,3] => ([(2,4),(3,4)],5)
=> 2
[2,1,1,1,1,1]
=> 011111 => [1,5] => ([(4,5)],6)
=> 2
[7,1]
=> 11 => [2] => ([],2)
=> 1
[6,1,1]
=> 011 => [1,2] => ([(1,2)],3)
=> 2
[5,3]
=> 11 => [2] => ([],2)
=> 1
[5,2,1]
=> 101 => [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> 2
[5,1,1,1]
=> 1111 => [4] => ([],4)
=> 1
[4,3,1]
=> 011 => [1,2] => ([(1,2)],3)
=> 2
[4,2,1,1]
=> 0011 => [2,2] => ([(1,3),(2,3)],4)
=> 2
[4,1,1,1,1]
=> 01111 => [1,4] => ([(3,4)],5)
=> 2
[3,3,1,1]
=> 1111 => [4] => ([],4)
=> 1
[3,2,2,1]
=> 1001 => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> 2
[3,2,1,1,1]
=> 10111 => [1,1,3] => ([(2,3),(2,4),(3,4)],5)
=> 2
[3,1,1,1,1,1]
=> 111111 => [6] => ([],6)
=> 1
[2,2,2,1,1]
=> 00011 => [3,2] => ([(1,4),(2,4),(3,4)],5)
=> 2
[2,2,1,1,1,1]
=> 001111 => [2,4] => ([(3,5),(4,5)],6)
=> 2
[9]
=> 1 => [1] => ([],1)
=> 1
[8,1]
=> 01 => [1,1] => ([(0,1)],2)
=> 2
Description
The Castelnuovo-Mumford regularity of a graph.
Matching statistic: St000535
Mp00317: Integer partitions —odd parts⟶ Binary words
Mp00097: Binary words —delta morphism⟶ Integer compositions
Mp00184: Integer compositions —to threshold graph⟶ Graphs
St000535: Graphs ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00097: Binary words —delta morphism⟶ Integer compositions
Mp00184: Integer compositions —to threshold graph⟶ Graphs
St000535: Graphs ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[1]
=> 1 => [1] => ([],1)
=> 0 = 1 - 1
[1,1]
=> 11 => [2] => ([],2)
=> 0 = 1 - 1
[3]
=> 1 => [1] => ([],1)
=> 0 = 1 - 1
[2,1]
=> 01 => [1,1] => ([(0,1)],2)
=> 1 = 2 - 1
[1,1,1]
=> 111 => [3] => ([],3)
=> 0 = 1 - 1
[3,1]
=> 11 => [2] => ([],2)
=> 0 = 1 - 1
[2,1,1]
=> 011 => [1,2] => ([(1,2)],3)
=> 1 = 2 - 1
[1,1,1,1]
=> 1111 => [4] => ([],4)
=> 0 = 1 - 1
[5]
=> 1 => [1] => ([],1)
=> 0 = 1 - 1
[4,1]
=> 01 => [1,1] => ([(0,1)],2)
=> 1 = 2 - 1
[3,1,1]
=> 111 => [3] => ([],3)
=> 0 = 1 - 1
[2,2,1]
=> 001 => [2,1] => ([(0,2),(1,2)],3)
=> 1 = 2 - 1
[2,1,1,1]
=> 0111 => [1,3] => ([(2,3)],4)
=> 1 = 2 - 1
[1,1,1,1,1]
=> 11111 => [5] => ([],5)
=> 0 = 1 - 1
[5,1]
=> 11 => [2] => ([],2)
=> 0 = 1 - 1
[4,1,1]
=> 011 => [1,2] => ([(1,2)],3)
=> 1 = 2 - 1
[3,3]
=> 11 => [2] => ([],2)
=> 0 = 1 - 1
[3,2,1]
=> 101 => [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> 1 = 2 - 1
[3,1,1,1]
=> 1111 => [4] => ([],4)
=> 0 = 1 - 1
[2,2,1,1]
=> 0011 => [2,2] => ([(1,3),(2,3)],4)
=> 1 = 2 - 1
[2,1,1,1,1]
=> 01111 => [1,4] => ([(3,4)],5)
=> 1 = 2 - 1
[1,1,1,1,1,1]
=> 111111 => [6] => ([],6)
=> 0 = 1 - 1
[7]
=> 1 => [1] => ([],1)
=> 0 = 1 - 1
[6,1]
=> 01 => [1,1] => ([(0,1)],2)
=> 1 = 2 - 1
[5,1,1]
=> 111 => [3] => ([],3)
=> 0 = 1 - 1
[4,3]
=> 01 => [1,1] => ([(0,1)],2)
=> 1 = 2 - 1
[4,2,1]
=> 001 => [2,1] => ([(0,2),(1,2)],3)
=> 1 = 2 - 1
[4,1,1,1]
=> 0111 => [1,3] => ([(2,3)],4)
=> 1 = 2 - 1
[3,3,1]
=> 111 => [3] => ([],3)
=> 0 = 1 - 1
[3,2,1,1]
=> 1011 => [1,1,2] => ([(1,2),(1,3),(2,3)],4)
=> 1 = 2 - 1
[3,1,1,1,1]
=> 11111 => [5] => ([],5)
=> 0 = 1 - 1
[2,2,2,1]
=> 0001 => [3,1] => ([(0,3),(1,3),(2,3)],4)
=> 1 = 2 - 1
[2,2,1,1,1]
=> 00111 => [2,3] => ([(2,4),(3,4)],5)
=> 1 = 2 - 1
[2,1,1,1,1,1]
=> 011111 => [1,5] => ([(4,5)],6)
=> 1 = 2 - 1
[7,1]
=> 11 => [2] => ([],2)
=> 0 = 1 - 1
[6,1,1]
=> 011 => [1,2] => ([(1,2)],3)
=> 1 = 2 - 1
[5,3]
=> 11 => [2] => ([],2)
=> 0 = 1 - 1
[5,2,1]
=> 101 => [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> 1 = 2 - 1
[5,1,1,1]
=> 1111 => [4] => ([],4)
=> 0 = 1 - 1
[4,3,1]
=> 011 => [1,2] => ([(1,2)],3)
=> 1 = 2 - 1
[4,2,1,1]
=> 0011 => [2,2] => ([(1,3),(2,3)],4)
=> 1 = 2 - 1
[4,1,1,1,1]
=> 01111 => [1,4] => ([(3,4)],5)
=> 1 = 2 - 1
[3,3,1,1]
=> 1111 => [4] => ([],4)
=> 0 = 1 - 1
[3,2,2,1]
=> 1001 => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> 1 = 2 - 1
[3,2,1,1,1]
=> 10111 => [1,1,3] => ([(2,3),(2,4),(3,4)],5)
=> 1 = 2 - 1
[3,1,1,1,1,1]
=> 111111 => [6] => ([],6)
=> 0 = 1 - 1
[2,2,2,1,1]
=> 00011 => [3,2] => ([(1,4),(2,4),(3,4)],5)
=> 1 = 2 - 1
[2,2,1,1,1,1]
=> 001111 => [2,4] => ([(3,5),(4,5)],6)
=> 1 = 2 - 1
[9]
=> 1 => [1] => ([],1)
=> 0 = 1 - 1
[8,1]
=> 01 => [1,1] => ([(0,1)],2)
=> 1 = 2 - 1
Description
The rank-width of a graph.
Matching statistic: St001333
Mp00317: Integer partitions —odd parts⟶ Binary words
Mp00097: Binary words —delta morphism⟶ Integer compositions
Mp00184: Integer compositions —to threshold graph⟶ Graphs
St001333: Graphs ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00097: Binary words —delta morphism⟶ Integer compositions
Mp00184: Integer compositions —to threshold graph⟶ Graphs
St001333: Graphs ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[1]
=> 1 => [1] => ([],1)
=> 0 = 1 - 1
[1,1]
=> 11 => [2] => ([],2)
=> 0 = 1 - 1
[3]
=> 1 => [1] => ([],1)
=> 0 = 1 - 1
[2,1]
=> 01 => [1,1] => ([(0,1)],2)
=> 1 = 2 - 1
[1,1,1]
=> 111 => [3] => ([],3)
=> 0 = 1 - 1
[3,1]
=> 11 => [2] => ([],2)
=> 0 = 1 - 1
[2,1,1]
=> 011 => [1,2] => ([(1,2)],3)
=> 1 = 2 - 1
[1,1,1,1]
=> 1111 => [4] => ([],4)
=> 0 = 1 - 1
[5]
=> 1 => [1] => ([],1)
=> 0 = 1 - 1
[4,1]
=> 01 => [1,1] => ([(0,1)],2)
=> 1 = 2 - 1
[3,1,1]
=> 111 => [3] => ([],3)
=> 0 = 1 - 1
[2,2,1]
=> 001 => [2,1] => ([(0,2),(1,2)],3)
=> 1 = 2 - 1
[2,1,1,1]
=> 0111 => [1,3] => ([(2,3)],4)
=> 1 = 2 - 1
[1,1,1,1,1]
=> 11111 => [5] => ([],5)
=> 0 = 1 - 1
[5,1]
=> 11 => [2] => ([],2)
=> 0 = 1 - 1
[4,1,1]
=> 011 => [1,2] => ([(1,2)],3)
=> 1 = 2 - 1
[3,3]
=> 11 => [2] => ([],2)
=> 0 = 1 - 1
[3,2,1]
=> 101 => [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> 1 = 2 - 1
[3,1,1,1]
=> 1111 => [4] => ([],4)
=> 0 = 1 - 1
[2,2,1,1]
=> 0011 => [2,2] => ([(1,3),(2,3)],4)
=> 1 = 2 - 1
[2,1,1,1,1]
=> 01111 => [1,4] => ([(3,4)],5)
=> 1 = 2 - 1
[1,1,1,1,1,1]
=> 111111 => [6] => ([],6)
=> 0 = 1 - 1
[7]
=> 1 => [1] => ([],1)
=> 0 = 1 - 1
[6,1]
=> 01 => [1,1] => ([(0,1)],2)
=> 1 = 2 - 1
[5,1,1]
=> 111 => [3] => ([],3)
=> 0 = 1 - 1
[4,3]
=> 01 => [1,1] => ([(0,1)],2)
=> 1 = 2 - 1
[4,2,1]
=> 001 => [2,1] => ([(0,2),(1,2)],3)
=> 1 = 2 - 1
[4,1,1,1]
=> 0111 => [1,3] => ([(2,3)],4)
=> 1 = 2 - 1
[3,3,1]
=> 111 => [3] => ([],3)
=> 0 = 1 - 1
[3,2,1,1]
=> 1011 => [1,1,2] => ([(1,2),(1,3),(2,3)],4)
=> 1 = 2 - 1
[3,1,1,1,1]
=> 11111 => [5] => ([],5)
=> 0 = 1 - 1
[2,2,2,1]
=> 0001 => [3,1] => ([(0,3),(1,3),(2,3)],4)
=> 1 = 2 - 1
[2,2,1,1,1]
=> 00111 => [2,3] => ([(2,4),(3,4)],5)
=> 1 = 2 - 1
[2,1,1,1,1,1]
=> 011111 => [1,5] => ([(4,5)],6)
=> 1 = 2 - 1
[7,1]
=> 11 => [2] => ([],2)
=> 0 = 1 - 1
[6,1,1]
=> 011 => [1,2] => ([(1,2)],3)
=> 1 = 2 - 1
[5,3]
=> 11 => [2] => ([],2)
=> 0 = 1 - 1
[5,2,1]
=> 101 => [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> 1 = 2 - 1
[5,1,1,1]
=> 1111 => [4] => ([],4)
=> 0 = 1 - 1
[4,3,1]
=> 011 => [1,2] => ([(1,2)],3)
=> 1 = 2 - 1
[4,2,1,1]
=> 0011 => [2,2] => ([(1,3),(2,3)],4)
=> 1 = 2 - 1
[4,1,1,1,1]
=> 01111 => [1,4] => ([(3,4)],5)
=> 1 = 2 - 1
[3,3,1,1]
=> 1111 => [4] => ([],4)
=> 0 = 1 - 1
[3,2,2,1]
=> 1001 => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> 1 = 2 - 1
[3,2,1,1,1]
=> 10111 => [1,1,3] => ([(2,3),(2,4),(3,4)],5)
=> 1 = 2 - 1
[3,1,1,1,1,1]
=> 111111 => [6] => ([],6)
=> 0 = 1 - 1
[2,2,2,1,1]
=> 00011 => [3,2] => ([(1,4),(2,4),(3,4)],5)
=> 1 = 2 - 1
[2,2,1,1,1,1]
=> 001111 => [2,4] => ([(3,5),(4,5)],6)
=> 1 = 2 - 1
[9]
=> 1 => [1] => ([],1)
=> 0 = 1 - 1
[8,1]
=> 01 => [1,1] => ([(0,1)],2)
=> 1 = 2 - 1
Description
The cardinality of a minimal edge-isolating set of a graph.
Let F be a set of graphs. A set of vertices S is F-isolating, if the subgraph induced by the vertices in the complement of the closed neighbourhood of S does not contain any graph in F.
This statistic returns the cardinality of the smallest isolating set when F contains only the graph with one edge.
Matching statistic: St001393
Mp00317: Integer partitions —odd parts⟶ Binary words
Mp00097: Binary words —delta morphism⟶ Integer compositions
Mp00184: Integer compositions —to threshold graph⟶ Graphs
St001393: Graphs ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00097: Binary words —delta morphism⟶ Integer compositions
Mp00184: Integer compositions —to threshold graph⟶ Graphs
St001393: Graphs ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[1]
=> 1 => [1] => ([],1)
=> 0 = 1 - 1
[1,1]
=> 11 => [2] => ([],2)
=> 0 = 1 - 1
[3]
=> 1 => [1] => ([],1)
=> 0 = 1 - 1
[2,1]
=> 01 => [1,1] => ([(0,1)],2)
=> 1 = 2 - 1
[1,1,1]
=> 111 => [3] => ([],3)
=> 0 = 1 - 1
[3,1]
=> 11 => [2] => ([],2)
=> 0 = 1 - 1
[2,1,1]
=> 011 => [1,2] => ([(1,2)],3)
=> 1 = 2 - 1
[1,1,1,1]
=> 1111 => [4] => ([],4)
=> 0 = 1 - 1
[5]
=> 1 => [1] => ([],1)
=> 0 = 1 - 1
[4,1]
=> 01 => [1,1] => ([(0,1)],2)
=> 1 = 2 - 1
[3,1,1]
=> 111 => [3] => ([],3)
=> 0 = 1 - 1
[2,2,1]
=> 001 => [2,1] => ([(0,2),(1,2)],3)
=> 1 = 2 - 1
[2,1,1,1]
=> 0111 => [1,3] => ([(2,3)],4)
=> 1 = 2 - 1
[1,1,1,1,1]
=> 11111 => [5] => ([],5)
=> 0 = 1 - 1
[5,1]
=> 11 => [2] => ([],2)
=> 0 = 1 - 1
[4,1,1]
=> 011 => [1,2] => ([(1,2)],3)
=> 1 = 2 - 1
[3,3]
=> 11 => [2] => ([],2)
=> 0 = 1 - 1
[3,2,1]
=> 101 => [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> 1 = 2 - 1
[3,1,1,1]
=> 1111 => [4] => ([],4)
=> 0 = 1 - 1
[2,2,1,1]
=> 0011 => [2,2] => ([(1,3),(2,3)],4)
=> 1 = 2 - 1
[2,1,1,1,1]
=> 01111 => [1,4] => ([(3,4)],5)
=> 1 = 2 - 1
[1,1,1,1,1,1]
=> 111111 => [6] => ([],6)
=> 0 = 1 - 1
[7]
=> 1 => [1] => ([],1)
=> 0 = 1 - 1
[6,1]
=> 01 => [1,1] => ([(0,1)],2)
=> 1 = 2 - 1
[5,1,1]
=> 111 => [3] => ([],3)
=> 0 = 1 - 1
[4,3]
=> 01 => [1,1] => ([(0,1)],2)
=> 1 = 2 - 1
[4,2,1]
=> 001 => [2,1] => ([(0,2),(1,2)],3)
=> 1 = 2 - 1
[4,1,1,1]
=> 0111 => [1,3] => ([(2,3)],4)
=> 1 = 2 - 1
[3,3,1]
=> 111 => [3] => ([],3)
=> 0 = 1 - 1
[3,2,1,1]
=> 1011 => [1,1,2] => ([(1,2),(1,3),(2,3)],4)
=> 1 = 2 - 1
[3,1,1,1,1]
=> 11111 => [5] => ([],5)
=> 0 = 1 - 1
[2,2,2,1]
=> 0001 => [3,1] => ([(0,3),(1,3),(2,3)],4)
=> 1 = 2 - 1
[2,2,1,1,1]
=> 00111 => [2,3] => ([(2,4),(3,4)],5)
=> 1 = 2 - 1
[2,1,1,1,1,1]
=> 011111 => [1,5] => ([(4,5)],6)
=> 1 = 2 - 1
[7,1]
=> 11 => [2] => ([],2)
=> 0 = 1 - 1
[6,1,1]
=> 011 => [1,2] => ([(1,2)],3)
=> 1 = 2 - 1
[5,3]
=> 11 => [2] => ([],2)
=> 0 = 1 - 1
[5,2,1]
=> 101 => [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> 1 = 2 - 1
[5,1,1,1]
=> 1111 => [4] => ([],4)
=> 0 = 1 - 1
[4,3,1]
=> 011 => [1,2] => ([(1,2)],3)
=> 1 = 2 - 1
[4,2,1,1]
=> 0011 => [2,2] => ([(1,3),(2,3)],4)
=> 1 = 2 - 1
[4,1,1,1,1]
=> 01111 => [1,4] => ([(3,4)],5)
=> 1 = 2 - 1
[3,3,1,1]
=> 1111 => [4] => ([],4)
=> 0 = 1 - 1
[3,2,2,1]
=> 1001 => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> 1 = 2 - 1
[3,2,1,1,1]
=> 10111 => [1,1,3] => ([(2,3),(2,4),(3,4)],5)
=> 1 = 2 - 1
[3,1,1,1,1,1]
=> 111111 => [6] => ([],6)
=> 0 = 1 - 1
[2,2,2,1,1]
=> 00011 => [3,2] => ([(1,4),(2,4),(3,4)],5)
=> 1 = 2 - 1
[2,2,1,1,1,1]
=> 001111 => [2,4] => ([(3,5),(4,5)],6)
=> 1 = 2 - 1
[9]
=> 1 => [1] => ([],1)
=> 0 = 1 - 1
[8,1]
=> 01 => [1,1] => ([(0,1)],2)
=> 1 = 2 - 1
Description
The induced matching number of a graph.
An induced matching of a graph is a set of independent edges which is an induced subgraph. This statistic records the maximal number of edges in an induced matching.
Matching statistic: St001093
Mp00317: Integer partitions —odd parts⟶ Binary words
Mp00178: Binary words —to composition⟶ Integer compositions
Mp00184: Integer compositions —to threshold graph⟶ Graphs
St001093: Graphs ⟶ ℤResult quality: 99% ●values known / values provided: 99%●distinct values known / distinct values provided: 100%
Mp00178: Binary words —to composition⟶ Integer compositions
Mp00184: Integer compositions —to threshold graph⟶ Graphs
St001093: Graphs ⟶ ℤResult quality: 99% ●values known / values provided: 99%●distinct values known / distinct values provided: 100%
Values
[1]
=> 1 => [1,1] => ([(0,1)],2)
=> 2 = 1 + 1
[1,1]
=> 11 => [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> 2 = 1 + 1
[3]
=> 1 => [1,1] => ([(0,1)],2)
=> 2 = 1 + 1
[2,1]
=> 01 => [2,1] => ([(0,2),(1,2)],3)
=> 3 = 2 + 1
[1,1,1]
=> 111 => [1,1,1,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 2 = 1 + 1
[3,1]
=> 11 => [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> 2 = 1 + 1
[2,1,1]
=> 011 => [2,1,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 3 = 2 + 1
[1,1,1,1]
=> 1111 => [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2 = 1 + 1
[5]
=> 1 => [1,1] => ([(0,1)],2)
=> 2 = 1 + 1
[4,1]
=> 01 => [2,1] => ([(0,2),(1,2)],3)
=> 3 = 2 + 1
[3,1,1]
=> 111 => [1,1,1,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 2 = 1 + 1
[2,2,1]
=> 001 => [3,1] => ([(0,3),(1,3),(2,3)],4)
=> 3 = 2 + 1
[2,1,1,1]
=> 0111 => [2,1,1,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3 = 2 + 1
[1,1,1,1,1]
=> 11111 => [1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2 = 1 + 1
[5,1]
=> 11 => [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> 2 = 1 + 1
[4,1,1]
=> 011 => [2,1,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 3 = 2 + 1
[3,3]
=> 11 => [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> 2 = 1 + 1
[3,2,1]
=> 101 => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> 3 = 2 + 1
[3,1,1,1]
=> 1111 => [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2 = 1 + 1
[2,2,1,1]
=> 0011 => [3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3 = 2 + 1
[2,1,1,1,1]
=> 01111 => [2,1,1,1,1] => ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3 = 2 + 1
[1,1,1,1,1,1]
=> 111111 => [1,1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 2 = 1 + 1
[7]
=> 1 => [1,1] => ([(0,1)],2)
=> 2 = 1 + 1
[6,1]
=> 01 => [2,1] => ([(0,2),(1,2)],3)
=> 3 = 2 + 1
[5,1,1]
=> 111 => [1,1,1,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 2 = 1 + 1
[4,3]
=> 01 => [2,1] => ([(0,2),(1,2)],3)
=> 3 = 2 + 1
[4,2,1]
=> 001 => [3,1] => ([(0,3),(1,3),(2,3)],4)
=> 3 = 2 + 1
[4,1,1,1]
=> 0111 => [2,1,1,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3 = 2 + 1
[3,3,1]
=> 111 => [1,1,1,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 2 = 1 + 1
[3,2,1,1]
=> 1011 => [1,2,1,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3 = 2 + 1
[3,1,1,1,1]
=> 11111 => [1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2 = 1 + 1
[2,2,2,1]
=> 0001 => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 3 = 2 + 1
[2,2,1,1,1]
=> 00111 => [3,1,1,1] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3 = 2 + 1
[2,1,1,1,1,1]
=> 011111 => [2,1,1,1,1,1] => ([(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 3 = 2 + 1
[7,1]
=> 11 => [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> 2 = 1 + 1
[6,1,1]
=> 011 => [2,1,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 3 = 2 + 1
[5,3]
=> 11 => [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> 2 = 1 + 1
[5,2,1]
=> 101 => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> 3 = 2 + 1
[5,1,1,1]
=> 1111 => [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2 = 1 + 1
[4,3,1]
=> 011 => [2,1,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 3 = 2 + 1
[4,2,1,1]
=> 0011 => [3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3 = 2 + 1
[4,1,1,1,1]
=> 01111 => [2,1,1,1,1] => ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3 = 2 + 1
[3,3,1,1]
=> 1111 => [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2 = 1 + 1
[3,2,2,1]
=> 1001 => [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 3 = 2 + 1
[3,2,1,1,1]
=> 10111 => [1,2,1,1,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3 = 2 + 1
[3,1,1,1,1,1]
=> 111111 => [1,1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 2 = 1 + 1
[2,2,2,1,1]
=> 00011 => [4,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3 = 2 + 1
[2,2,1,1,1,1]
=> 001111 => [3,1,1,1,1] => ([(0,3),(0,4),(0,5),(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 3 = 2 + 1
[9]
=> 1 => [1,1] => ([(0,1)],2)
=> 2 = 1 + 1
[8,1]
=> 01 => [2,1] => ([(0,2),(1,2)],3)
=> 3 = 2 + 1
[3,3,2,2,1,1]
=> 110011 => [1,1,3,1,1] => ([(0,5),(0,6),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 2 + 1
[5,3,2,2,1,1]
=> 110011 => [1,1,3,1,1] => ([(0,5),(0,6),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 2 + 1
[7,3,2,2,1,1]
=> 110011 => [1,1,3,1,1] => ([(0,5),(0,6),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 2 + 1
[5,5,2,2,1,1]
=> 110011 => [1,1,3,1,1] => ([(0,5),(0,6),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 2 + 1
Description
The detour number of a graph.
This is the number of vertices in a longest induced path in a graph.
Note that [1] defines the detour number as the number of edges in a longest induced path, which is unsuitable for the empty graph.
Matching statistic: St001734
Mp00317: Integer partitions —odd parts⟶ Binary words
Mp00178: Binary words —to composition⟶ Integer compositions
Mp00184: Integer compositions —to threshold graph⟶ Graphs
St001734: Graphs ⟶ ℤResult quality: 75% ●values known / values provided: 75%●distinct values known / distinct values provided: 100%
Mp00178: Binary words —to composition⟶ Integer compositions
Mp00184: Integer compositions —to threshold graph⟶ Graphs
St001734: Graphs ⟶ ℤResult quality: 75% ●values known / values provided: 75%●distinct values known / distinct values provided: 100%
Values
[1]
=> 1 => [1,1] => ([(0,1)],2)
=> 1
[1,1]
=> 11 => [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> 1
[3]
=> 1 => [1,1] => ([(0,1)],2)
=> 1
[2,1]
=> 01 => [2,1] => ([(0,2),(1,2)],3)
=> 2
[1,1,1]
=> 111 => [1,1,1,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 1
[3,1]
=> 11 => [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> 1
[2,1,1]
=> 011 => [2,1,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 2
[1,1,1,1]
=> 1111 => [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[5]
=> 1 => [1,1] => ([(0,1)],2)
=> 1
[4,1]
=> 01 => [2,1] => ([(0,2),(1,2)],3)
=> 2
[3,1,1]
=> 111 => [1,1,1,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 1
[2,2,1]
=> 001 => [3,1] => ([(0,3),(1,3),(2,3)],4)
=> 2
[2,1,1,1]
=> 0111 => [2,1,1,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[1,1,1,1,1]
=> 11111 => [1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1
[5,1]
=> 11 => [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> 1
[4,1,1]
=> 011 => [2,1,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 2
[3,3]
=> 11 => [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> 1
[3,2,1]
=> 101 => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> 2
[3,1,1,1]
=> 1111 => [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[2,2,1,1]
=> 0011 => [3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[2,1,1,1,1]
=> 01111 => [2,1,1,1,1] => ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
[1,1,1,1,1,1]
=> 111111 => [1,1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1
[7]
=> 1 => [1,1] => ([(0,1)],2)
=> 1
[6,1]
=> 01 => [2,1] => ([(0,2),(1,2)],3)
=> 2
[5,1,1]
=> 111 => [1,1,1,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 1
[4,3]
=> 01 => [2,1] => ([(0,2),(1,2)],3)
=> 2
[4,2,1]
=> 001 => [3,1] => ([(0,3),(1,3),(2,3)],4)
=> 2
[4,1,1,1]
=> 0111 => [2,1,1,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[3,3,1]
=> 111 => [1,1,1,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 1
[3,2,1,1]
=> 1011 => [1,2,1,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[3,1,1,1,1]
=> 11111 => [1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1
[2,2,2,1]
=> 0001 => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 2
[2,2,1,1,1]
=> 00111 => [3,1,1,1] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
[2,1,1,1,1,1]
=> 011111 => [2,1,1,1,1,1] => ([(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 2
[7,1]
=> 11 => [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> 1
[6,1,1]
=> 011 => [2,1,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 2
[5,3]
=> 11 => [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> 1
[5,2,1]
=> 101 => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> 2
[5,1,1,1]
=> 1111 => [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[4,3,1]
=> 011 => [2,1,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 2
[4,2,1,1]
=> 0011 => [3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[4,1,1,1,1]
=> 01111 => [2,1,1,1,1] => ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
[3,3,1,1]
=> 1111 => [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[3,2,2,1]
=> 1001 => [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[3,2,1,1,1]
=> 10111 => [1,2,1,1,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
[3,1,1,1,1,1]
=> 111111 => [1,1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1
[2,2,2,1,1]
=> 00011 => [4,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
[2,2,1,1,1,1]
=> 001111 => [3,1,1,1,1] => ([(0,3),(0,4),(0,5),(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 2
[9]
=> 1 => [1,1] => ([(0,1)],2)
=> 1
[8,1]
=> 01 => [2,1] => ([(0,2),(1,2)],3)
=> 2
[7,1,1]
=> 111 => [1,1,1,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 1
[6,3]
=> 01 => [2,1] => ([(0,2),(1,2)],3)
=> 2
[6,2,1]
=> 001 => [3,1] => ([(0,3),(1,3),(2,3)],4)
=> 2
[6,1,1,1]
=> 0111 => [2,1,1,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[4,1,1,1,1,1]
=> 011111 => [2,1,1,1,1,1] => ([(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 2
[3,2,1,1,1,1]
=> 101111 => [1,2,1,1,1,1] => ([(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 2
[2,2,2,1,1,1]
=> 000111 => [4,1,1,1] => ([(0,4),(0,5),(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 2
[5,1,1,1,1,1]
=> 111111 => [1,1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1
[4,2,1,1,1,1]
=> 001111 => [3,1,1,1,1] => ([(0,3),(0,4),(0,5),(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 2
[3,3,1,1,1,1]
=> 111111 => [1,1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1
[3,2,2,1,1,1]
=> 100111 => [1,3,1,1,1] => ([(0,4),(0,5),(0,6),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 2
[2,2,2,2,1,1]
=> 000011 => [5,1,1] => ([(0,5),(0,6),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 2
[6,1,1,1,1,1]
=> 011111 => [2,1,1,1,1,1] => ([(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 2
[5,2,1,1,1,1]
=> 101111 => [1,2,1,1,1,1] => ([(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 2
[4,3,1,1,1,1]
=> 011111 => [2,1,1,1,1,1] => ([(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 2
[4,2,2,1,1,1]
=> 000111 => [4,1,1,1] => ([(0,4),(0,5),(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 2
[3,3,2,1,1,1]
=> 110111 => [1,1,2,1,1,1] => ([(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 2
[3,2,2,2,1,1]
=> 100011 => [1,4,1,1] => ([(0,5),(0,6),(1,5),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 2
[2,2,2,2,2,1]
=> 000001 => [6,1] => ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> ? = 2
[7,1,1,1,1,1]
=> 111111 => [1,1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1
[6,2,1,1,1,1]
=> 001111 => [3,1,1,1,1] => ([(0,3),(0,4),(0,5),(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 2
[5,3,1,1,1,1]
=> 111111 => [1,1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1
[5,2,2,1,1,1]
=> 100111 => [1,3,1,1,1] => ([(0,4),(0,5),(0,6),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 2
[4,4,1,1,1,1]
=> 001111 => [3,1,1,1,1] => ([(0,3),(0,4),(0,5),(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 2
[4,3,2,1,1,1]
=> 010111 => [2,2,1,1,1] => ([(0,4),(0,5),(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 2
[4,2,2,2,1,1]
=> 000011 => [5,1,1] => ([(0,5),(0,6),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 2
[3,3,3,1,1,1]
=> 111111 => [1,1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1
[3,3,2,2,1,1]
=> 110011 => [1,1,3,1,1] => ([(0,5),(0,6),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 2
[3,2,2,2,2,1]
=> 100001 => [1,5,1] => ([(0,6),(1,6),(2,6),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 2
[8,1,1,1,1,1]
=> 011111 => [2,1,1,1,1,1] => ([(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 2
[7,2,1,1,1,1]
=> 101111 => [1,2,1,1,1,1] => ([(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 2
[6,3,1,1,1,1]
=> 011111 => [2,1,1,1,1,1] => ([(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 2
[6,2,2,1,1,1]
=> 000111 => [4,1,1,1] => ([(0,4),(0,5),(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 2
[5,4,1,1,1,1]
=> 101111 => [1,2,1,1,1,1] => ([(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 2
[5,3,2,1,1,1]
=> 110111 => [1,1,2,1,1,1] => ([(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 2
[5,2,2,2,1,1]
=> 100011 => [1,4,1,1] => ([(0,5),(0,6),(1,5),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 2
[4,4,2,1,1,1]
=> 000111 => [4,1,1,1] => ([(0,4),(0,5),(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 2
[4,3,3,1,1,1]
=> 011111 => [2,1,1,1,1,1] => ([(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 2
[4,3,2,2,1,1]
=> 010011 => [2,3,1,1] => ([(0,5),(0,6),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 2
[4,2,2,2,2,1]
=> 000001 => [6,1] => ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> ? = 2
[3,3,3,2,1,1]
=> 111011 => [1,1,1,2,1,1] => ([(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 2
[3,3,2,2,2,1]
=> 110001 => [1,1,4,1] => ([(0,6),(1,6),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 2
[9,1,1,1,1,1]
=> 111111 => [1,1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1
[8,2,1,1,1,1]
=> 001111 => [3,1,1,1,1] => ([(0,3),(0,4),(0,5),(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 2
[7,3,1,1,1,1]
=> 111111 => [1,1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1
[7,2,2,1,1,1]
=> 100111 => [1,3,1,1,1] => ([(0,4),(0,5),(0,6),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 2
[6,4,1,1,1,1]
=> 001111 => [3,1,1,1,1] => ([(0,3),(0,4),(0,5),(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 2
[6,3,2,1,1,1]
=> 010111 => [2,2,1,1,1] => ([(0,4),(0,5),(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 2
[6,2,2,2,1,1]
=> 000011 => [5,1,1] => ([(0,5),(0,6),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 2
[5,5,1,1,1,1]
=> 111111 => [1,1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1
Description
The lettericity of a graph.
Let D be a digraph on k vertices, possibly with loops and let w be a word of length n whose letters are vertices of D.
The letter graph corresponding to D and w is the graph with vertex set {1,…,n} whose edges are the pairs (i,j) with i<j sucht that (wi,wj) is a (directed) edge of D.
Matching statistic: St000455
Mp00317: Integer partitions —odd parts⟶ Binary words
Mp00178: Binary words —to composition⟶ Integer compositions
Mp00184: Integer compositions —to threshold graph⟶ Graphs
St000455: Graphs ⟶ ℤResult quality: 65% ●values known / values provided: 65%●distinct values known / distinct values provided: 100%
Mp00178: Binary words —to composition⟶ Integer compositions
Mp00184: Integer compositions —to threshold graph⟶ Graphs
St000455: Graphs ⟶ ℤResult quality: 65% ●values known / values provided: 65%●distinct values known / distinct values provided: 100%
Values
[1]
=> 1 => [1,1] => ([(0,1)],2)
=> -1 = 1 - 2
[1,1]
=> 11 => [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> -1 = 1 - 2
[3]
=> 1 => [1,1] => ([(0,1)],2)
=> -1 = 1 - 2
[2,1]
=> 01 => [2,1] => ([(0,2),(1,2)],3)
=> 0 = 2 - 2
[1,1,1]
=> 111 => [1,1,1,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> -1 = 1 - 2
[3,1]
=> 11 => [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> -1 = 1 - 2
[2,1,1]
=> 011 => [2,1,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 0 = 2 - 2
[1,1,1,1]
=> 1111 => [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> -1 = 1 - 2
[5]
=> 1 => [1,1] => ([(0,1)],2)
=> -1 = 1 - 2
[4,1]
=> 01 => [2,1] => ([(0,2),(1,2)],3)
=> 0 = 2 - 2
[3,1,1]
=> 111 => [1,1,1,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> -1 = 1 - 2
[2,2,1]
=> 001 => [3,1] => ([(0,3),(1,3),(2,3)],4)
=> 0 = 2 - 2
[2,1,1,1]
=> 0111 => [2,1,1,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 0 = 2 - 2
[1,1,1,1,1]
=> 11111 => [1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> -1 = 1 - 2
[5,1]
=> 11 => [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> -1 = 1 - 2
[4,1,1]
=> 011 => [2,1,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 0 = 2 - 2
[3,3]
=> 11 => [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> -1 = 1 - 2
[3,2,1]
=> 101 => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> ? = 2 - 2
[3,1,1,1]
=> 1111 => [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> -1 = 1 - 2
[2,2,1,1]
=> 0011 => [3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 0 = 2 - 2
[2,1,1,1,1]
=> 01111 => [2,1,1,1,1] => ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 0 = 2 - 2
[1,1,1,1,1,1]
=> 111111 => [1,1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> -1 = 1 - 2
[7]
=> 1 => [1,1] => ([(0,1)],2)
=> -1 = 1 - 2
[6,1]
=> 01 => [2,1] => ([(0,2),(1,2)],3)
=> 0 = 2 - 2
[5,1,1]
=> 111 => [1,1,1,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> -1 = 1 - 2
[4,3]
=> 01 => [2,1] => ([(0,2),(1,2)],3)
=> 0 = 2 - 2
[4,2,1]
=> 001 => [3,1] => ([(0,3),(1,3),(2,3)],4)
=> 0 = 2 - 2
[4,1,1,1]
=> 0111 => [2,1,1,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 0 = 2 - 2
[3,3,1]
=> 111 => [1,1,1,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> -1 = 1 - 2
[3,2,1,1]
=> 1011 => [1,2,1,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 2 - 2
[3,1,1,1,1]
=> 11111 => [1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> -1 = 1 - 2
[2,2,2,1]
=> 0001 => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 0 = 2 - 2
[2,2,1,1,1]
=> 00111 => [3,1,1,1] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 0 = 2 - 2
[2,1,1,1,1,1]
=> 011111 => [2,1,1,1,1,1] => ([(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 0 = 2 - 2
[7,1]
=> 11 => [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> -1 = 1 - 2
[6,1,1]
=> 011 => [2,1,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 0 = 2 - 2
[5,3]
=> 11 => [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> -1 = 1 - 2
[5,2,1]
=> 101 => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> ? = 2 - 2
[5,1,1,1]
=> 1111 => [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> -1 = 1 - 2
[4,3,1]
=> 011 => [2,1,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 0 = 2 - 2
[4,2,1,1]
=> 0011 => [3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 0 = 2 - 2
[4,1,1,1,1]
=> 01111 => [2,1,1,1,1] => ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 0 = 2 - 2
[3,3,1,1]
=> 1111 => [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> -1 = 1 - 2
[3,2,2,1]
=> 1001 => [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 2 - 2
[3,2,1,1,1]
=> 10111 => [1,2,1,1,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 2 - 2
[3,1,1,1,1,1]
=> 111111 => [1,1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> -1 = 1 - 2
[2,2,2,1,1]
=> 00011 => [4,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 0 = 2 - 2
[2,2,1,1,1,1]
=> 001111 => [3,1,1,1,1] => ([(0,3),(0,4),(0,5),(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 0 = 2 - 2
[9]
=> 1 => [1,1] => ([(0,1)],2)
=> -1 = 1 - 2
[8,1]
=> 01 => [2,1] => ([(0,2),(1,2)],3)
=> 0 = 2 - 2
[7,1,1]
=> 111 => [1,1,1,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> -1 = 1 - 2
[6,3]
=> 01 => [2,1] => ([(0,2),(1,2)],3)
=> 0 = 2 - 2
[6,2,1]
=> 001 => [3,1] => ([(0,3),(1,3),(2,3)],4)
=> 0 = 2 - 2
[6,1,1,1]
=> 0111 => [2,1,1,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 0 = 2 - 2
[5,3,1]
=> 111 => [1,1,1,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> -1 = 1 - 2
[5,2,1,1]
=> 1011 => [1,2,1,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 2 - 2
[3,3,2,1]
=> 1101 => [1,1,2,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 2 - 2
[3,2,2,1,1]
=> 10011 => [1,3,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 2 - 2
[3,2,1,1,1,1]
=> 101111 => [1,2,1,1,1,1] => ([(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 2 - 2
[7,2,1]
=> 101 => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> ? = 2 - 2
[5,4,1]
=> 101 => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> ? = 2 - 2
[5,2,2,1]
=> 1001 => [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 2 - 2
[5,2,1,1,1]
=> 10111 => [1,2,1,1,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 2 - 2
[4,3,2,1]
=> 0101 => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 2 - 2
[3,3,2,1,1]
=> 11011 => [1,1,2,1,1] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 2 - 2
[3,2,2,2,1]
=> 10001 => [1,4,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 2 - 2
[3,2,2,1,1,1]
=> 100111 => [1,3,1,1,1] => ([(0,4),(0,5),(0,6),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 2 - 2
[7,2,1,1]
=> 1011 => [1,2,1,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 2 - 2
[5,4,1,1]
=> 1011 => [1,2,1,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 2 - 2
[5,3,2,1]
=> 1101 => [1,1,2,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 2 - 2
[5,2,2,1,1]
=> 10011 => [1,3,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 2 - 2
[5,2,1,1,1,1]
=> 101111 => [1,2,1,1,1,1] => ([(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 2 - 2
[4,3,2,1,1]
=> 01011 => [2,2,1,1] => ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 2 - 2
[3,3,2,2,1]
=> 11001 => [1,1,3,1] => ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 2 - 2
[3,3,2,1,1,1]
=> 110111 => [1,1,2,1,1,1] => ([(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 2 - 2
[3,2,2,2,1,1]
=> 100011 => [1,4,1,1] => ([(0,5),(0,6),(1,5),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 2 - 2
[9,2,1]
=> 101 => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> ? = 2 - 2
[7,4,1]
=> 101 => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> ? = 2 - 2
[7,2,2,1]
=> 1001 => [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 2 - 2
[7,2,1,1,1]
=> 10111 => [1,2,1,1,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 2 - 2
[6,3,2,1]
=> 0101 => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 2 - 2
[5,4,3]
=> 101 => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> ? = 2 - 2
[5,4,2,1]
=> 1001 => [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 2 - 2
[5,4,1,1,1]
=> 10111 => [1,2,1,1,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 2 - 2
[5,3,2,1,1]
=> 11011 => [1,1,2,1,1] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 2 - 2
[5,2,2,2,1]
=> 10001 => [1,4,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 2 - 2
[5,2,2,1,1,1]
=> 100111 => [1,3,1,1,1] => ([(0,4),(0,5),(0,6),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 2 - 2
[4,3,2,2,1]
=> 01001 => [2,3,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 2 - 2
[4,3,2,1,1,1]
=> 010111 => [2,2,1,1,1] => ([(0,4),(0,5),(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 2 - 2
[3,3,3,2,1]
=> 11101 => [1,1,1,2,1] => ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 2 - 2
[3,3,2,2,1,1]
=> 110011 => [1,1,3,1,1] => ([(0,5),(0,6),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 2 - 2
[3,2,2,2,2,1]
=> 100001 => [1,5,1] => ([(0,6),(1,6),(2,6),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 2 - 2
[9,2,1,1]
=> 1011 => [1,2,1,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 2 - 2
[7,4,1,1]
=> 1011 => [1,2,1,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 2 - 2
[7,3,2,1]
=> 1101 => [1,1,2,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 2 - 2
[7,2,2,1,1]
=> 10011 => [1,3,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 2 - 2
[7,2,1,1,1,1]
=> 101111 => [1,2,1,1,1,1] => ([(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 2 - 2
[6,3,2,1,1]
=> 01011 => [2,2,1,1] => ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 2 - 2
[5,5,2,1]
=> 1101 => [1,1,2,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 2 - 2
[5,4,3,1]
=> 1011 => [1,2,1,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 2 - 2
Description
The second largest eigenvalue of a graph if it is integral.
This statistic is undefined if the second largest eigenvalue of the graph is not integral.
Chapter 4 of [1] provides lots of context.
Matching statistic: St000396
(load all 2 compositions to match this statistic)
(load all 2 compositions to match this statistic)
Mp00321: Integer partitions —2-conjugate⟶ Integer partitions
Mp00043: Integer partitions —to Dyck path⟶ Dyck paths
Mp00034: Dyck paths —to binary tree: up step, left tree, down step, right tree⟶ Binary trees
St000396: Binary trees ⟶ ℤResult quality: 61% ●values known / values provided: 61%●distinct values known / distinct values provided: 100%
Mp00043: Integer partitions —to Dyck path⟶ Dyck paths
Mp00034: Dyck paths —to binary tree: up step, left tree, down step, right tree⟶ Binary trees
St000396: Binary trees ⟶ ℤResult quality: 61% ●values known / values provided: 61%●distinct values known / distinct values provided: 100%
Values
[1]
=> [1]
=> [1,0,1,0]
=> [.,[.,.]]
=> 1
[1,1]
=> [1,1]
=> [1,0,1,1,0,0]
=> [.,[[.,.],.]]
=> 1
[3]
=> [2,1]
=> [1,0,1,0,1,0]
=> [.,[.,[.,.]]]
=> 1
[2,1]
=> [3]
=> [1,1,1,0,0,0,1,0]
=> [[[.,.],.],[.,.]]
=> 2
[1,1,1]
=> [1,1,1]
=> [1,0,1,1,1,0,0,0]
=> [.,[[[.,.],.],.]]
=> 1
[3,1]
=> [2,1,1]
=> [1,0,1,1,0,1,0,0]
=> [.,[[.,[.,.]],.]]
=> 1
[2,1,1]
=> [3,1]
=> [1,1,0,1,0,0,1,0]
=> [[.,[.,.]],[.,.]]
=> 2
[1,1,1,1]
=> [1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,0]
=> [.,[[[[.,.],.],.],.]]
=> 1
[5]
=> [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [.,[.,[[.,.],.]]]
=> 1
[4,1]
=> [3,2]
=> [1,1,0,0,1,0,1,0]
=> [[.,.],[.,[.,.]]]
=> 2
[3,1,1]
=> [2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [.,[[[.,[.,.]],.],.]]
=> 1
[2,2,1]
=> [5]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> [[[[[.,.],.],.],.],[.,.]]
=> 2
[2,1,1,1]
=> [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [.,[[.,.],[.,.]]]
=> 2
[1,1,1,1,1]
=> [1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,0,0,0,0]
=> [.,[[[[[.,.],.],.],.],.]]
=> 1
[5,1]
=> [2,2,1,1]
=> [1,0,1,1,0,1,1,0,0,0]
=> [.,[[.,[[.,.],.]],.]]
=> 1
[4,1,1]
=> [4,1,1]
=> [1,1,0,1,1,0,0,0,1,0]
=> [[.,[[.,.],.]],[.,.]]
=> 2
[3,3]
=> [3,2,1]
=> [1,0,1,0,1,0,1,0]
=> [.,[.,[.,[.,.]]]]
=> 1
[3,2,1]
=> [3,3]
=> [1,1,1,0,0,0,1,1,0,0]
=> [[[.,.],.],[[.,.],.]]
=> 2
[3,1,1,1]
=> [2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,0,0,0,0]
=> [.,[[[[.,[.,.]],.],.],.]]
=> 1
[2,2,1,1]
=> [5,1]
=> [1,1,1,1,0,1,0,0,0,0,1,0]
=> [[[[.,[.,.]],.],.],[.,.]]
=> 2
[2,1,1,1,1]
=> [3,1,1,1]
=> [1,0,1,1,1,0,0,1,0,0]
=> [.,[[[.,.],[.,.]],.]]
=> 2
[1,1,1,1,1,1]
=> [1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> [.,[[[[[[.,.],.],.],.],.],.]]
=> 1
[7]
=> [2,2,2,1]
=> [1,0,1,0,1,1,1,0,0,0]
=> [.,[.,[[[.,.],.],.]]]
=> 1
[6,1]
=> [3,2,2]
=> [1,1,0,0,1,1,0,1,0,0]
=> [[.,.],[[.,[.,.]],.]]
=> 2
[5,1,1]
=> [2,2,1,1,1]
=> [1,0,1,1,1,0,1,1,0,0,0,0]
=> [.,[[[.,[[.,.],.]],.],.]]
=> 1
[4,3]
=> [4,3]
=> [1,1,1,0,0,0,1,0,1,0]
=> [[[.,.],.],[.,[.,.]]]
=> 2
[4,2,1]
=> [5,2]
=> [1,1,1,1,0,0,1,0,0,0,1,0]
=> [[[[.,.],[.,.]],.],[.,.]]
=> 2
[4,1,1,1]
=> [4,1,1,1]
=> [1,0,1,1,1,0,0,0,1,0]
=> [.,[[[.,.],.],[.,.]]]
=> 2
[3,3,1]
=> [3,2,1,1]
=> [1,0,1,1,0,1,0,1,0,0]
=> [.,[[.,[.,[.,.]]],.]]
=> 1
[3,2,1,1]
=> [3,3,1]
=> [1,1,0,1,0,0,1,1,0,0]
=> [[.,[.,.]],[[.,.],.]]
=> 2
[3,1,1,1,1]
=> [2,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,1,0,0,0,0,0]
=> [.,[[[[[.,[.,.]],.],.],.],.]]
=> 1
[2,2,2,1]
=> [7]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> [[[[[[[.,.],.],.],.],.],.],[.,.]]
=> ? = 2
[2,2,1,1,1]
=> [5,1,1]
=> [1,1,1,0,1,1,0,0,0,0,1,0]
=> [[[.,[[.,.],.]],.],[.,.]]
=> 2
[2,1,1,1,1,1]
=> [3,1,1,1,1]
=> [1,0,1,1,1,1,0,0,1,0,0,0]
=> [.,[[[[.,.],[.,.]],.],.]]
=> 2
[7,1]
=> [2,2,2,1,1]
=> [1,0,1,1,0,1,1,1,0,0,0,0]
=> [.,[[.,[[[.,.],.],.]],.]]
=> 1
[6,1,1]
=> [4,2,1,1]
=> [1,0,1,1,0,1,0,0,1,0]
=> [.,[[.,[.,.]],[.,.]]]
=> 2
[5,3]
=> [3,2,2,1]
=> [1,0,1,0,1,1,0,1,0,0]
=> [.,[.,[[.,[.,.]],.]]]
=> 1
[5,2,1]
=> [3,3,2]
=> [1,1,0,0,1,0,1,1,0,0]
=> [[.,.],[.,[[.,.],.]]]
=> 2
[5,1,1,1]
=> [2,2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,1,0,0,0,0,0]
=> [.,[[[[.,[[.,.],.]],.],.],.]]
=> 1
[4,3,1]
=> [4,3,1]
=> [1,1,0,1,0,0,1,0,1,0]
=> [[.,[.,.]],[.,[.,.]]]
=> 2
[4,2,1,1]
=> [6,1,1]
=> [1,1,1,1,0,1,1,0,0,0,0,0,1,0]
=> [[[[.,[[.,.],.]],.],.],[.,.]]
=> 2
[4,1,1,1,1]
=> [4,1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,1,0,0]
=> [.,[[[[.,.],.],[.,.]],.]]
=> 2
[3,3,1,1]
=> [3,2,1,1,1]
=> [1,0,1,1,1,0,1,0,1,0,0,0]
=> [.,[[[.,[.,[.,.]]],.],.]]
=> 1
[3,2,2,1]
=> [5,3]
=> [1,1,1,1,0,0,0,1,0,0,1,0]
=> [[[[.,.],.],[.,.]],[.,.]]
=> 2
[3,2,1,1,1]
=> [3,3,1,1]
=> [1,0,1,1,0,0,1,1,0,0]
=> [.,[[.,.],[[.,.],.]]]
=> 2
[3,1,1,1,1,1]
=> [2,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,0,1,0,0,0,0,0,0]
=> [.,[[[[[[.,[.,.]],.],.],.],.],.]]
=> 1
[2,2,2,1,1]
=> [7,1]
=> [1,1,1,1,1,1,0,1,0,0,0,0,0,0,1,0]
=> [[[[[[.,[.,.]],.],.],.],.],[.,.]]
=> ? = 2
[2,2,1,1,1,1]
=> [5,1,1,1]
=> [1,1,0,1,1,1,0,0,0,0,1,0]
=> [[.,[[[.,.],.],.]],[.,.]]
=> 2
[9]
=> [2,2,2,2,1]
=> [1,0,1,0,1,1,1,1,0,0,0,0]
=> [.,[.,[[[[.,.],.],.],.]]]
=> 1
[8,1]
=> [3,2,2,2]
=> [1,1,0,0,1,1,1,0,1,0,0,0]
=> [[.,.],[[[.,[.,.]],.],.]]
=> 2
[7,1,1]
=> [2,2,2,1,1,1]
=> [1,0,1,1,1,0,1,1,1,0,0,0,0,0]
=> [.,[[[.,[[[.,.],.],.]],.],.]]
=> 1
[6,3]
=> [4,3,2]
=> [1,1,0,0,1,0,1,0,1,0]
=> [[.,.],[.,[.,[.,.]]]]
=> 2
[4,2,2,1]
=> [7,2]
=> [1,1,1,1,1,1,0,0,1,0,0,0,0,0,1,0]
=> [[[[[[.,.],[.,.]],.],.],.],[.,.]]
=> ? = 2
[2,2,2,2,1]
=> [9]
=> [1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,1,0]
=> [[[[[[[[[.,.],.],.],.],.],.],.],.],[.,.]]
=> ? = 2
[2,2,2,1,1,1]
=> [7,1,1]
=> [1,1,1,1,1,0,1,1,0,0,0,0,0,0,1,0]
=> [[[[[.,[[.,.],.]],.],.],.],[.,.]]
=> ? = 2
[5,1,1,1,1,1]
=> [2,2,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,0,1,1,0,0,0,0,0,0,0]
=> [.,[[[[[[.,[[.,.],.]],.],.],.],.],.]]
=> ? = 1
[4,2,2,1,1]
=> [8,1,1]
=> [1,1,1,1,1,1,0,1,1,0,0,0,0,0,0,0,1,0]
=> [[[[[[.,[[.,.],.]],.],.],.],.],[.,.]]
=> ? = 2
[3,2,2,2,1]
=> [7,3]
=> [1,1,1,1,1,1,0,0,0,1,0,0,0,0,1,0]
=> [[[[[[.,.],.],[.,.]],.],.],[.,.]]
=> ? = 2
[2,2,2,2,1,1]
=> [9,1]
=> [1,1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0,0,1,0]
=> [[[[[[[[.,[.,.]],.],.],.],.],.],.],[.,.]]
=> ? = 2
[7,1,1,1,1]
=> [2,2,2,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,1,1,1,0,0,0,0,0,0,0]
=> [.,[[[[[.,[[[.,.],.],.]],.],.],.],.]]
=> ? = 1
[6,2,2,1]
=> [7,2,2]
=> [1,1,1,1,1,0,0,1,1,0,0,0,0,0,1,0]
=> [[[[[.,.],[[.,.],.]],.],.],[.,.]]
=> ? = 2
[4,4,2,1]
=> [7,4]
=> [1,1,1,1,1,1,0,0,0,0,1,0,0,0,1,0]
=> [[[[[[.,.],.],.],[.,.]],.],[.,.]]
=> ? = 2
[4,4,1,1,1]
=> [7,2,1,1]
=> [1,1,1,1,0,1,1,0,1,0,0,0,0,0,1,0]
=> [[[[.,[[.,[.,.]],.]],.],.],[.,.]]
=> ? = 2
[4,2,2,2,1]
=> [9,2]
=> [1,1,1,1,1,1,1,1,0,0,1,0,0,0,0,0,0,0,1,0]
=> [[[[[[[[.,.],[.,.]],.],.],.],.],.],[.,.]]
=> ? = 2
[4,2,2,1,1,1]
=> [8,1,1,1]
=> [1,1,1,1,1,0,1,1,1,0,0,0,0,0,0,0,1,0]
=> [[[[[.,[[[.,.],.],.]],.],.],.],[.,.]]
=> ? = 2
[3,2,2,2,1,1]
=> [7,3,1]
=> [1,1,1,1,1,0,1,0,0,1,0,0,0,0,1,0]
=> [[[[[.,[.,.]],[.,.]],.],.],[.,.]]
=> ? = 2
[2,2,2,2,2,1]
=> [11]
=> [1,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,1,0]
=> [[[[[[[[[[[.,.],.],.],.],.],.],.],.],.],.],[.,.]]
=> ? = 2
[9,1,1,1]
=> [2,2,2,2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,1,1,1,0,0,0,0,0,0,0]
=> [.,[[[[.,[[[[.,.],.],.],.]],.],.],.]]
=> ? = 1
[7,1,1,1,1,1]
=> [2,2,2,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,0,1,1,1,0,0,0,0,0,0,0,0]
=> [.,[[[[[[.,[[[.,.],.],.]],.],.],.],.],.]]
=> ? = 1
[6,2,2,1,1]
=> [8,2,1,1]
=> [1,1,1,1,1,0,1,1,0,1,0,0,0,0,0,0,1,0]
=> [[[[[.,[[.,[.,.]],.]],.],.],.],[.,.]]
=> ? = 2
[5,3,1,1,1,1]
=> [3,2,2,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,1,1,0,1,0,0,0,0,0,0]
=> [.,[[[[[.,[[.,[.,.]],.]],.],.],.],.]]
=> ? = 1
[5,2,2,2,1]
=> [7,3,2]
=> [1,1,1,1,1,0,0,1,0,1,0,0,0,0,1,0]
=> [[[[[.,.],[.,[.,.]]],.],.],[.,.]]
=> ? = 2
[4,4,2,1,1]
=> [8,3,1]
=> [1,1,1,1,1,1,0,1,0,0,1,0,0,0,0,0,1,0]
=> [[[[[[.,[.,.]],[.,.]],.],.],.],[.,.]]
=> ? = 2
[4,4,1,1,1,1]
=> [7,2,1,1,1]
=> [1,1,1,0,1,1,1,0,1,0,0,0,0,0,1,0]
=> [[[.,[[[.,[.,.]],.],.]],.],[.,.]]
=> ? = 2
[4,3,2,2,1]
=> [7,5]
=> [1,1,1,1,1,1,0,0,0,0,0,1,0,0,1,0]
=> [[[[[[.,.],.],.],.],[.,.]],[.,.]]
=> ? = 2
[4,2,2,2,1,1]
=> [10,1,1]
=> [1,1,1,1,1,1,1,1,0,1,1,0,0,0,0,0,0,0,0,0,1,0]
=> [[[[[[[[.,[[.,.],.]],.],.],.],.],.],.],[.,.]]
=> ? = 2
[3,2,2,2,2,1]
=> [9,3]
=> [1,1,1,1,1,1,1,1,0,0,0,1,0,0,0,0,0,0,1,0]
=> [[[[[[[[.,.],.],[.,.]],.],.],.],.],[.,.]]
=> ? = 2
[11,1,1]
=> [2,2,2,2,2,1,1,1]
=> [1,0,1,1,1,0,1,1,1,1,1,0,0,0,0,0,0,0]
=> [.,[[[.,[[[[[.,.],.],.],.],.]],.],.]]
=> ? = 1
[9,1,1,1,1]
=> [2,2,2,2,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,1,1,1,1,0,0,0,0,0,0,0,0]
=> [.,[[[[[.,[[[[.,.],.],.],.]],.],.],.],.]]
=> ? = 1
[8,2,2,1]
=> [7,2,2,2]
=> [1,1,1,1,0,0,1,1,1,0,0,0,0,0,1,0]
=> [[[[.,.],[[[.,.],.],.]],.],[.,.]]
=> ? = 2
[8,1,1,1,1,1]
=> [4,2,2,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,1,1,0,0,1,0,0,0,0,0]
=> [.,[[[[[.,[[.,.],[.,.]]],.],.],.],.]]
=> ? = 2
[7,3,1,1,1]
=> [3,2,2,2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,1,1,0,1,0,0,0,0,0,0]
=> [.,[[[[.,[[[.,[.,.]],.],.]],.],.],.]]
=> ? = 1
[6,4,2,1]
=> [7,4,2]
=> [1,1,1,1,1,0,0,1,0,0,1,0,0,0,1,0]
=> [[[[[.,.],[.,.]],[.,.]],.],[.,.]]
=> ? = 2
[6,4,1,1,1]
=> [7,2,2,1,1]
=> [1,1,1,0,1,1,0,1,1,0,0,0,0,0,1,0]
=> [[[.,[[.,[[.,.],.]],.]],.],[.,.]]
=> ? = 2
[6,2,2,2,1]
=> [9,2,2]
=> [1,1,1,1,1,1,1,0,0,1,1,0,0,0,0,0,0,0,1,0]
=> ?
=> ? = 2
[6,2,2,1,1,1]
=> [8,2,1,1,1]
=> [1,1,1,1,0,1,1,1,0,1,0,0,0,0,0,0,1,0]
=> [[[[.,[[[.,[.,.]],.],.]],.],.],[.,.]]
=> ? = 2
[5,2,2,2,1,1]
=> [8,3,1,1]
=> [1,1,1,1,1,0,1,1,0,0,1,0,0,0,0,0,1,0]
=> [[[[[.,[[.,.],[.,.]]],.],.],.],[.,.]]
=> ? = 2
[4,4,4,1]
=> [7,6]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,0,1,0]
=> [[[[[[.,.],.],.],.],.],[.,[.,.]]]
=> ? = 2
[4,4,3,1,1]
=> [7,4,1,1]
=> [1,1,1,1,0,1,1,0,0,0,1,0,0,0,1,0]
=> [[[[.,[[.,.],.]],[.,.]],.],[.,.]]
=> ? = 2
[4,4,2,2,1]
=> [9,4]
=> [1,1,1,1,1,1,1,1,0,0,0,0,1,0,0,0,0,0,1,0]
=> [[[[[[[[.,.],.],.],[.,.]],.],.],.],[.,.]]
=> ? = 2
[4,4,2,1,1,1]
=> [9,2,1,1]
=> [1,1,1,1,1,1,0,1,1,0,1,0,0,0,0,0,0,0,1,0]
=> [[[[[[.,[[.,[.,.]],.]],.],.],.],.],[.,.]]
=> ? = 2
[4,3,2,2,1,1]
=> [7,5,1]
=> [1,1,1,1,1,0,1,0,0,0,0,1,0,0,1,0]
=> [[[[[.,[.,.]],.],.],[.,.]],[.,.]]
=> ? = 2
[4,2,2,2,2,1]
=> [11,2]
=> [1,1,1,1,1,1,1,1,1,1,0,0,1,0,0,0,0,0,0,0,0,0,1,0]
=> ?
=> ? = 2
[3,3,2,2,2,1]
=> [7,3,3]
=> [1,1,1,1,1,0,0,0,1,1,0,0,0,0,1,0]
=> [[[[[.,.],.],[[.,.],.]],.],[.,.]]
=> ? = 2
[13,1]
=> [2,2,2,2,2,2,1,1]
=> [1,0,1,1,0,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> [.,[[.,[[[[[[.,.],.],.],.],.],.]],.]]
=> ? = 1
[11,1,1,1]
=> [2,2,2,2,2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,1,1,1,1,0,0,0,0,0,0,0,0]
=> [.,[[[[.,[[[[[.,.],.],.],.],.]],.],.],.]]
=> ? = 1
[10,1,1,1,1]
=> [4,2,2,2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,1,1,0,0,1,0,0,0,0,0]
=> ?
=> ? = 2
[9,3,1,1]
=> [3,2,2,2,2,1,1,1]
=> [1,0,1,1,1,0,1,1,1,1,0,1,0,0,0,0,0,0]
=> [.,[[[.,[[[[.,[.,.]],.],.],.]],.],.]]
=> ? = 1
[9,1,1,1,1,1]
=> [2,2,2,2,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,0,1,1,1,1,0,0,0,0,0,0,0,0,0]
=> ?
=> ? = 1
[8,2,2,1,1]
=> [8,2,2,1,1]
=> [1,1,1,1,0,1,1,0,1,1,0,0,0,0,0,0,1,0]
=> [[[[.,[[.,[[.,.],.]],.]],.],.],[.,.]]
=> ? = 2
Description
The register function (or Horton-Strahler number) of a binary tree.
This is different from the dimension of the associated poset for the tree [[[.,.],[.,.]],[[.,.],[.,.]]]: its register function is 3, whereas the dimension of the associated poset is 2.
Matching statistic: St000298
Mp00317: Integer partitions —odd parts⟶ Binary words
Mp00262: Binary words —poset of factors⟶ Posets
St000298: Posets ⟶ ℤResult quality: 37% ●values known / values provided: 37%●distinct values known / distinct values provided: 100%
Mp00262: Binary words —poset of factors⟶ Posets
St000298: Posets ⟶ ℤResult quality: 37% ●values known / values provided: 37%●distinct values known / distinct values provided: 100%
Values
[1]
=> 1 => ([(0,1)],2)
=> 1
[1,1]
=> 11 => ([(0,2),(2,1)],3)
=> 1
[3]
=> 1 => ([(0,1)],2)
=> 1
[2,1]
=> 01 => ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
[1,1,1]
=> 111 => ([(0,3),(2,1),(3,2)],4)
=> 1
[3,1]
=> 11 => ([(0,2),(2,1)],3)
=> 1
[2,1,1]
=> 011 => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 2
[1,1,1,1]
=> 1111 => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1
[5]
=> 1 => ([(0,1)],2)
=> 1
[4,1]
=> 01 => ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
[3,1,1]
=> 111 => ([(0,3),(2,1),(3,2)],4)
=> 1
[2,2,1]
=> 001 => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 2
[2,1,1,1]
=> 0111 => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ? = 2
[1,1,1,1,1]
=> 11111 => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 1
[5,1]
=> 11 => ([(0,2),(2,1)],3)
=> 1
[4,1,1]
=> 011 => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 2
[3,3]
=> 11 => ([(0,2),(2,1)],3)
=> 1
[3,2,1]
=> 101 => ([(0,1),(0,2),(1,4),(1,5),(2,4),(2,5),(4,3),(5,3)],6)
=> 2
[3,1,1,1]
=> 1111 => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1
[2,2,1,1]
=> 0011 => ([(0,3),(0,4),(1,7),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6),(5,7),(6,8),(7,8)],9)
=> ? = 2
[2,1,1,1,1]
=> 01111 => ([(0,2),(0,5),(1,7),(2,6),(3,4),(3,9),(4,1),(4,8),(5,3),(5,6),(6,9),(8,7),(9,8)],10)
=> ? = 2
[1,1,1,1,1,1]
=> 111111 => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 1
[7]
=> 1 => ([(0,1)],2)
=> 1
[6,1]
=> 01 => ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
[5,1,1]
=> 111 => ([(0,3),(2,1),(3,2)],4)
=> 1
[4,3]
=> 01 => ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
[4,2,1]
=> 001 => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 2
[4,1,1,1]
=> 0111 => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ? = 2
[3,3,1]
=> 111 => ([(0,3),(2,1),(3,2)],4)
=> 1
[3,2,1,1]
=> 1011 => ([(0,2),(0,3),(1,6),(2,7),(2,8),(3,1),(3,7),(3,8),(5,4),(6,4),(7,5),(8,5),(8,6)],9)
=> ? = 2
[3,1,1,1,1]
=> 11111 => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 1
[2,2,2,1]
=> 0001 => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ? = 2
[2,2,1,1,1]
=> 00111 => ([(0,4),(0,5),(1,9),(2,3),(2,11),(3,8),(4,1),(4,10),(5,2),(5,10),(7,6),(8,6),(9,7),(10,9),(10,11),(11,7),(11,8)],12)
=> ? = 2
[2,1,1,1,1,1]
=> 011111 => ([(0,2),(0,6),(1,8),(2,7),(3,5),(3,9),(4,3),(4,11),(5,1),(5,10),(6,4),(6,7),(7,11),(9,10),(10,8),(11,9)],12)
=> ? = 2
[7,1]
=> 11 => ([(0,2),(2,1)],3)
=> 1
[6,1,1]
=> 011 => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 2
[5,3]
=> 11 => ([(0,2),(2,1)],3)
=> 1
[5,2,1]
=> 101 => ([(0,1),(0,2),(1,4),(1,5),(2,4),(2,5),(4,3),(5,3)],6)
=> 2
[5,1,1,1]
=> 1111 => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1
[4,3,1]
=> 011 => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 2
[4,2,1,1]
=> 0011 => ([(0,3),(0,4),(1,7),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6),(5,7),(6,8),(7,8)],9)
=> ? = 2
[4,1,1,1,1]
=> 01111 => ([(0,2),(0,5),(1,7),(2,6),(3,4),(3,9),(4,1),(4,8),(5,3),(5,6),(6,9),(8,7),(9,8)],10)
=> ? = 2
[3,3,1,1]
=> 1111 => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1
[3,2,2,1]
=> 1001 => ([(0,2),(0,3),(1,5),(1,6),(2,7),(2,8),(3,1),(3,7),(3,8),(5,4),(6,4),(7,6),(8,5)],9)
=> ? = 2
[3,2,1,1,1]
=> 10111 => ([(0,3),(0,4),(1,2),(1,11),(2,8),(3,9),(3,10),(4,1),(4,9),(4,10),(6,7),(7,5),(8,5),(9,6),(10,6),(10,11),(11,7),(11,8)],12)
=> ? = 2
[3,1,1,1,1,1]
=> 111111 => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 1
[2,2,2,1,1]
=> 00011 => ([(0,4),(0,5),(1,9),(2,3),(2,11),(3,8),(4,1),(4,10),(5,2),(5,10),(7,6),(8,6),(9,7),(10,9),(10,11),(11,7),(11,8)],12)
=> ? = 2
[2,2,1,1,1,1]
=> 001111 => ([(0,5),(0,6),(1,4),(1,14),(2,11),(3,10),(4,3),(4,12),(5,1),(5,13),(6,2),(6,13),(8,9),(9,7),(10,7),(11,8),(12,9),(12,10),(13,11),(13,14),(14,8),(14,12)],15)
=> ? = 2
[9]
=> 1 => ([(0,1)],2)
=> 1
[8,1]
=> 01 => ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
[7,1,1]
=> 111 => ([(0,3),(2,1),(3,2)],4)
=> 1
[6,3]
=> 01 => ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
[6,2,1]
=> 001 => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 2
[6,1,1,1]
=> 0111 => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ? = 2
[5,3,1]
=> 111 => ([(0,3),(2,1),(3,2)],4)
=> 1
[5,2,1,1]
=> 1011 => ([(0,2),(0,3),(1,6),(2,7),(2,8),(3,1),(3,7),(3,8),(5,4),(6,4),(7,5),(8,5),(8,6)],9)
=> ? = 2
[5,1,1,1,1]
=> 11111 => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 1
[4,4,1]
=> 001 => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 2
[4,3,1,1]
=> 0111 => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ? = 2
[4,2,2,1]
=> 0001 => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ? = 2
[4,2,1,1,1]
=> 00111 => ([(0,4),(0,5),(1,9),(2,3),(2,11),(3,8),(4,1),(4,10),(5,2),(5,10),(7,6),(8,6),(9,7),(10,9),(10,11),(11,7),(11,8)],12)
=> ? = 2
[4,1,1,1,1,1]
=> 011111 => ([(0,2),(0,6),(1,8),(2,7),(3,5),(3,9),(4,3),(4,11),(5,1),(5,10),(6,4),(6,7),(7,11),(9,10),(10,8),(11,9)],12)
=> ? = 2
[3,3,3]
=> 111 => ([(0,3),(2,1),(3,2)],4)
=> 1
[3,3,2,1]
=> 1101 => ([(0,2),(0,3),(1,6),(2,7),(2,8),(3,1),(3,7),(3,8),(5,4),(6,4),(7,5),(8,5),(8,6)],9)
=> ? = 2
[3,3,1,1,1]
=> 11111 => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 1
[3,2,2,1,1]
=> 10011 => ([(0,3),(0,4),(1,9),(2,6),(2,11),(3,2),(3,10),(3,12),(4,1),(4,10),(4,12),(6,7),(7,5),(8,5),(9,8),(10,6),(11,7),(11,8),(12,9),(12,11)],13)
=> ? = 2
[3,2,1,1,1,1]
=> 101111 => ([(0,4),(0,5),(1,3),(1,12),(2,11),(3,2),(3,14),(4,10),(4,13),(5,1),(5,10),(5,13),(7,8),(8,9),(9,6),(10,7),(11,6),(12,8),(12,14),(13,7),(13,12),(14,9),(14,11)],15)
=> ? = 2
[2,2,2,2,1]
=> 00001 => ([(0,2),(0,5),(1,7),(2,6),(3,4),(3,9),(4,1),(4,8),(5,3),(5,6),(6,9),(8,7),(9,8)],10)
=> ? = 2
[2,2,2,1,1,1]
=> 000111 => ([(0,5),(0,6),(1,4),(1,15),(2,3),(2,14),(3,8),(4,9),(5,2),(5,13),(6,1),(6,13),(8,10),(9,11),(10,7),(11,7),(12,10),(12,11),(13,14),(13,15),(14,8),(14,12),(15,9),(15,12)],16)
=> ? = 2
[9,1]
=> 11 => ([(0,2),(2,1)],3)
=> 1
[8,1,1]
=> 011 => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 2
[7,3]
=> 11 => ([(0,2),(2,1)],3)
=> 1
[7,2,1]
=> 101 => ([(0,1),(0,2),(1,4),(1,5),(2,4),(2,5),(4,3),(5,3)],6)
=> 2
[7,1,1,1]
=> 1111 => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1
[6,3,1]
=> 011 => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 2
[6,2,1,1]
=> 0011 => ([(0,3),(0,4),(1,7),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6),(5,7),(6,8),(7,8)],9)
=> ? = 2
[6,1,1,1,1]
=> 01111 => ([(0,2),(0,5),(1,7),(2,6),(3,4),(3,9),(4,1),(4,8),(5,3),(5,6),(6,9),(8,7),(9,8)],10)
=> ? = 2
[5,2,2,1]
=> 1001 => ([(0,2),(0,3),(1,5),(1,6),(2,7),(2,8),(3,1),(3,7),(3,8),(5,4),(6,4),(7,6),(8,5)],9)
=> ? = 2
[5,2,1,1,1]
=> 10111 => ([(0,3),(0,4),(1,2),(1,11),(2,8),(3,9),(3,10),(4,1),(4,9),(4,10),(6,7),(7,5),(8,5),(9,6),(10,6),(10,11),(11,7),(11,8)],12)
=> ? = 2
[4,4,1,1]
=> 0011 => ([(0,3),(0,4),(1,7),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6),(5,7),(6,8),(7,8)],9)
=> ? = 2
[4,3,2,1]
=> 0101 => ([(0,1),(0,2),(1,6),(1,7),(2,6),(2,7),(4,3),(5,3),(6,4),(6,5),(7,4),(7,5)],8)
=> ? = 2
[4,3,1,1,1]
=> 01111 => ([(0,2),(0,5),(1,7),(2,6),(3,4),(3,9),(4,1),(4,8),(5,3),(5,6),(6,9),(8,7),(9,8)],10)
=> ? = 2
[4,2,2,1,1]
=> 00011 => ([(0,4),(0,5),(1,9),(2,3),(2,11),(3,8),(4,1),(4,10),(5,2),(5,10),(7,6),(8,6),(9,7),(10,9),(10,11),(11,7),(11,8)],12)
=> ? = 2
[4,2,1,1,1,1]
=> 001111 => ([(0,5),(0,6),(1,4),(1,14),(2,11),(3,10),(4,3),(4,12),(5,1),(5,13),(6,2),(6,13),(8,9),(9,7),(10,7),(11,8),(12,9),(12,10),(13,11),(13,14),(14,8),(14,12)],15)
=> ? = 2
[3,3,2,1,1]
=> 11011 => ([(0,2),(0,3),(1,5),(1,6),(2,10),(2,11),(3,1),(3,10),(3,11),(5,8),(6,7),(7,4),(8,4),(9,7),(9,8),(10,6),(10,9),(11,5),(11,9)],12)
=> ? = 2
[3,2,2,2,1]
=> 10001 => ([(0,3),(0,4),(1,2),(1,10),(1,11),(2,8),(2,9),(3,6),(3,7),(4,1),(4,6),(4,7),(6,11),(7,10),(8,5),(9,5),(10,8),(11,9)],12)
=> ? = 2
[3,2,2,1,1,1]
=> 100111 => ([(0,4),(0,5),(1,11),(2,1),(2,13),(3,7),(3,14),(4,2),(4,12),(4,16),(5,3),(5,12),(5,16),(7,8),(8,9),(9,6),(10,6),(11,10),(12,7),(13,11),(13,15),(14,8),(14,15),(15,9),(15,10),(16,13),(16,14)],17)
=> ? = 2
[2,2,2,2,1,1]
=> 000011 => ([(0,5),(0,6),(1,4),(1,14),(2,11),(3,10),(4,3),(4,12),(5,1),(5,13),(6,2),(6,13),(8,9),(9,7),(10,7),(11,8),(12,9),(12,10),(13,11),(13,14),(14,8),(14,12)],15)
=> ? = 2
[8,1,1,1]
=> 0111 => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ? = 2
[7,2,1,1]
=> 1011 => ([(0,2),(0,3),(1,6),(2,7),(2,8),(3,1),(3,7),(3,8),(5,4),(6,4),(7,5),(8,5),(8,6)],9)
=> ? = 2
[6,3,1,1]
=> 0111 => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ? = 2
[6,2,2,1]
=> 0001 => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ? = 2
[6,2,1,1,1]
=> 00111 => ([(0,4),(0,5),(1,9),(2,3),(2,11),(3,8),(4,1),(4,10),(5,2),(5,10),(7,6),(8,6),(9,7),(10,9),(10,11),(11,7),(11,8)],12)
=> ? = 2
[6,1,1,1,1,1]
=> 011111 => ([(0,2),(0,6),(1,8),(2,7),(3,5),(3,9),(4,3),(4,11),(5,1),(5,10),(6,4),(6,7),(7,11),(9,10),(10,8),(11,9)],12)
=> ? = 2
[5,4,1,1]
=> 1011 => ([(0,2),(0,3),(1,6),(2,7),(2,8),(3,1),(3,7),(3,8),(5,4),(6,4),(7,5),(8,5),(8,6)],9)
=> ? = 2
[5,3,2,1]
=> 1101 => ([(0,2),(0,3),(1,6),(2,7),(2,8),(3,1),(3,7),(3,8),(5,4),(6,4),(7,5),(8,5),(8,6)],9)
=> ? = 2
[5,2,2,1,1]
=> 10011 => ([(0,3),(0,4),(1,9),(2,6),(2,11),(3,2),(3,10),(3,12),(4,1),(4,10),(4,12),(6,7),(7,5),(8,5),(9,8),(10,6),(11,7),(11,8),(12,9),(12,11)],13)
=> ? = 2
[5,2,1,1,1,1]
=> 101111 => ([(0,4),(0,5),(1,3),(1,12),(2,11),(3,2),(3,14),(4,10),(4,13),(5,1),(5,10),(5,13),(7,8),(8,9),(9,6),(10,7),(11,6),(12,8),(12,14),(13,7),(13,12),(14,9),(14,11)],15)
=> ? = 2
[4,4,2,1]
=> 0001 => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ? = 2
[4,4,1,1,1]
=> 00111 => ([(0,4),(0,5),(1,9),(2,3),(2,11),(3,8),(4,1),(4,10),(5,2),(5,10),(7,6),(8,6),(9,7),(10,9),(10,11),(11,7),(11,8)],12)
=> ? = 2
Description
The order dimension or Dushnik-Miller dimension of a poset.
This is the minimal number of linear orderings whose intersection is the given poset.
The following 13 statistics, ordered by result quality, also match your data. Click on any of them to see the details.
St000845The maximal number of elements covered by an element in a poset. St000846The maximal number of elements covering an element of a poset. St001632The number of indecomposable injective modules I with dimExt1(I,A)=1 for the incidence algebra A of a poset. St000264The girth of a graph, which is not a tree. St000640The rank of the largest boolean interval in a poset. St000260The radius of a connected graph. St000836The number of descents of distance 2 of a permutation. St001057The Grundy value of the game of creating an independent set in a graph. St001115The number of even descents of a permutation. St001960The number of descents of a permutation minus one if its first entry is not one. St001729The number of visible descents of a permutation. St000887The maximal number of nonzero entries on a diagonal of a permutation matrix. St001195The global dimension of the algebra A/AfA of the corresponding Nakayama algebra A with minimal left faithful projective-injective module Af.
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!