searching the database
Your data matches 9 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
(click to perform a complete search on your data)
Matching statistic: St000259
Mp00160: Permutations —graph of inversions⟶ Graphs
Mp00152: Graphs —Laplacian multiplicities⟶ Integer compositions
Mp00184: Integer compositions —to threshold graph⟶ Graphs
St000259: Graphs ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00152: Graphs —Laplacian multiplicities⟶ Integer compositions
Mp00184: Integer compositions —to threshold graph⟶ Graphs
St000259: Graphs ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[1] => ([],1)
=> [1] => ([],1)
=> 0
[2,1] => ([(0,1)],2)
=> [1,1] => ([(0,1)],2)
=> 1
[2,3,1] => ([(0,2),(1,2)],3)
=> [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> 1
[3,1,2] => ([(0,2),(1,2)],3)
=> [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> 1
[3,2,1] => ([(0,1),(0,2),(1,2)],3)
=> [2,1] => ([(0,2),(1,2)],3)
=> 2
[2,3,4,1] => ([(0,3),(1,3),(2,3)],4)
=> [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> 2
[2,4,1,3] => ([(0,3),(1,2),(2,3)],4)
=> [1,1,1,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 1
[2,4,3,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> [1,1,1,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 1
[3,1,4,2] => ([(0,3),(1,2),(2,3)],4)
=> [1,1,1,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 1
[3,2,4,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> [1,1,1,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 1
[3,4,1,2] => ([(0,2),(0,3),(1,2),(1,3)],4)
=> [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> 2
[3,4,2,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [2,1,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 2
[4,1,2,3] => ([(0,3),(1,3),(2,3)],4)
=> [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> 2
[4,1,3,2] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> [1,1,1,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 1
[4,2,1,3] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> [1,1,1,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 1
[4,2,3,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [2,1,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 2
[4,3,1,2] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [2,1,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 2
[4,3,2,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [3,1] => ([(0,3),(1,3),(2,3)],4)
=> 2
[2,3,4,5,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[2,3,5,1,4] => ([(0,4),(1,4),(2,3),(3,4)],5)
=> [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[2,3,5,4,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> [1,1,2,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[2,4,1,5,3] => ([(0,4),(1,3),(2,3),(2,4)],5)
=> [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[2,4,3,5,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> [1,1,2,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[2,4,5,1,3] => ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[2,4,5,3,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[2,5,1,3,4] => ([(0,4),(1,4),(2,3),(3,4)],5)
=> [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[2,5,1,4,3] => ([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[2,5,3,1,4] => ([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[2,5,3,4,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[2,5,4,1,3] => ([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[2,5,4,3,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [1,2,1,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[3,1,4,5,2] => ([(0,4),(1,4),(2,3),(3,4)],5)
=> [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[3,1,5,2,4] => ([(0,4),(1,3),(2,3),(2,4)],5)
=> [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[3,1,5,4,2] => ([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[3,2,4,5,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> [1,1,2,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[3,2,5,1,4] => ([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[3,2,5,4,1] => ([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> [1,2,1,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[3,4,1,5,2] => ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[3,4,2,5,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[3,4,5,1,2] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> [1,1,2,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[3,4,5,2,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[3,5,1,2,4] => ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[3,5,1,4,2] => ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[3,5,2,1,4] => ([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[3,5,2,4,1] => ([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[3,5,4,1,2] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[3,5,4,2,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [2,1,1,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[4,1,2,5,3] => ([(0,4),(1,4),(2,3),(3,4)],5)
=> [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[4,1,3,5,2] => ([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[4,1,5,2,3] => ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
Description
The diameter of a connected graph.
This is the greatest distance between any pair of vertices.
Matching statistic: St001418
Mp00160: Permutations —graph of inversions⟶ Graphs
Mp00152: Graphs —Laplacian multiplicities⟶ Integer compositions
Mp00231: Integer compositions —bounce path⟶ Dyck paths
St001418: Dyck paths ⟶ ℤResult quality: 67% ●values known / values provided: 100%●distinct values known / distinct values provided: 67%
Mp00152: Graphs —Laplacian multiplicities⟶ Integer compositions
Mp00231: Integer compositions —bounce path⟶ Dyck paths
St001418: Dyck paths ⟶ ℤResult quality: 67% ●values known / values provided: 100%●distinct values known / distinct values provided: 67%
Values
[1] => ([],1)
=> [1] => [1,0]
=> ? = 0 - 1
[2,1] => ([(0,1)],2)
=> [1,1] => [1,0,1,0]
=> 0 = 1 - 1
[2,3,1] => ([(0,2),(1,2)],3)
=> [1,1,1] => [1,0,1,0,1,0]
=> 0 = 1 - 1
[3,1,2] => ([(0,2),(1,2)],3)
=> [1,1,1] => [1,0,1,0,1,0]
=> 0 = 1 - 1
[3,2,1] => ([(0,1),(0,2),(1,2)],3)
=> [2,1] => [1,1,0,0,1,0]
=> 1 = 2 - 1
[2,3,4,1] => ([(0,3),(1,3),(2,3)],4)
=> [1,2,1] => [1,0,1,1,0,0,1,0]
=> 1 = 2 - 1
[2,4,1,3] => ([(0,3),(1,2),(2,3)],4)
=> [1,1,1,1] => [1,0,1,0,1,0,1,0]
=> 0 = 1 - 1
[2,4,3,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> [1,1,1,1] => [1,0,1,0,1,0,1,0]
=> 0 = 1 - 1
[3,1,4,2] => ([(0,3),(1,2),(2,3)],4)
=> [1,1,1,1] => [1,0,1,0,1,0,1,0]
=> 0 = 1 - 1
[3,2,4,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> [1,1,1,1] => [1,0,1,0,1,0,1,0]
=> 0 = 1 - 1
[3,4,1,2] => ([(0,2),(0,3),(1,2),(1,3)],4)
=> [1,2,1] => [1,0,1,1,0,0,1,0]
=> 1 = 2 - 1
[3,4,2,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [2,1,1] => [1,1,0,0,1,0,1,0]
=> 1 = 2 - 1
[4,1,2,3] => ([(0,3),(1,3),(2,3)],4)
=> [1,2,1] => [1,0,1,1,0,0,1,0]
=> 1 = 2 - 1
[4,1,3,2] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> [1,1,1,1] => [1,0,1,0,1,0,1,0]
=> 0 = 1 - 1
[4,2,1,3] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> [1,1,1,1] => [1,0,1,0,1,0,1,0]
=> 0 = 1 - 1
[4,2,3,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [2,1,1] => [1,1,0,0,1,0,1,0]
=> 1 = 2 - 1
[4,3,1,2] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [2,1,1] => [1,1,0,0,1,0,1,0]
=> 1 = 2 - 1
[4,3,2,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [3,1] => [1,1,1,0,0,0,1,0]
=> 1 = 2 - 1
[2,3,4,5,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> [1,3,1] => [1,0,1,1,1,0,0,0,1,0]
=> 1 = 2 - 1
[2,3,5,1,4] => ([(0,4),(1,4),(2,3),(3,4)],5)
=> [1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0]
=> 0 = 1 - 1
[2,3,5,4,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> [1,1,2,1] => [1,0,1,0,1,1,0,0,1,0]
=> 1 = 2 - 1
[2,4,1,5,3] => ([(0,4),(1,3),(2,3),(2,4)],5)
=> [1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0]
=> 0 = 1 - 1
[2,4,3,5,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> [1,1,2,1] => [1,0,1,0,1,1,0,0,1,0]
=> 1 = 2 - 1
[2,4,5,1,3] => ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> [1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0]
=> 0 = 1 - 1
[2,4,5,3,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0]
=> 0 = 1 - 1
[2,5,1,3,4] => ([(0,4),(1,4),(2,3),(3,4)],5)
=> [1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0]
=> 0 = 1 - 1
[2,5,1,4,3] => ([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> [1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0]
=> 0 = 1 - 1
[2,5,3,1,4] => ([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0]
=> 0 = 1 - 1
[2,5,3,4,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0]
=> 0 = 1 - 1
[2,5,4,1,3] => ([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> [1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0]
=> 0 = 1 - 1
[2,5,4,3,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [1,2,1,1] => [1,0,1,1,0,0,1,0,1,0]
=> 1 = 2 - 1
[3,1,4,5,2] => ([(0,4),(1,4),(2,3),(3,4)],5)
=> [1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0]
=> 0 = 1 - 1
[3,1,5,2,4] => ([(0,4),(1,3),(2,3),(2,4)],5)
=> [1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0]
=> 0 = 1 - 1
[3,1,5,4,2] => ([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> [1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0]
=> 0 = 1 - 1
[3,2,4,5,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> [1,1,2,1] => [1,0,1,0,1,1,0,0,1,0]
=> 1 = 2 - 1
[3,2,5,1,4] => ([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> [1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0]
=> 0 = 1 - 1
[3,2,5,4,1] => ([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> [1,2,1,1] => [1,0,1,1,0,0,1,0,1,0]
=> 1 = 2 - 1
[3,4,1,5,2] => ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> [1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0]
=> 0 = 1 - 1
[3,4,2,5,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0]
=> 0 = 1 - 1
[3,4,5,1,2] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> [1,1,2,1] => [1,0,1,0,1,1,0,0,1,0]
=> 1 = 2 - 1
[3,4,5,2,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [2,2,1] => [1,1,0,0,1,1,0,0,1,0]
=> 1 = 2 - 1
[3,5,1,2,4] => ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> [1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0]
=> 0 = 1 - 1
[3,5,1,4,2] => ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0]
=> 0 = 1 - 1
[3,5,2,1,4] => ([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> [1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0]
=> 0 = 1 - 1
[3,5,2,4,1] => ([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> [1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0]
=> 0 = 1 - 1
[3,5,4,1,2] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> [1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0]
=> 0 = 1 - 1
[3,5,4,2,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [2,1,1,1] => [1,1,0,0,1,0,1,0,1,0]
=> 1 = 2 - 1
[4,1,2,5,3] => ([(0,4),(1,4),(2,3),(3,4)],5)
=> [1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0]
=> 0 = 1 - 1
[4,1,3,5,2] => ([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0]
=> 0 = 1 - 1
[4,1,5,2,3] => ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> [1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0]
=> 0 = 1 - 1
[4,1,5,3,2] => ([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> [1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0]
=> 0 = 1 - 1
Description
Half of the global dimension of the stable Auslander algebra of the Nakayama algebra corresponding to the Dyck path.
The stable Auslander algebra is by definition the stable endomorphism ring of the direct sum of all indecomposable modules.
Matching statistic: St001093
Mp00160: Permutations —graph of inversions⟶ Graphs
Mp00152: Graphs —Laplacian multiplicities⟶ Integer compositions
Mp00184: Integer compositions —to threshold graph⟶ Graphs
St001093: Graphs ⟶ ℤResult quality: 99% ●values known / values provided: 99%●distinct values known / distinct values provided: 100%
Mp00152: Graphs —Laplacian multiplicities⟶ Integer compositions
Mp00184: Integer compositions —to threshold graph⟶ Graphs
St001093: Graphs ⟶ ℤResult quality: 99% ●values known / values provided: 99%●distinct values known / distinct values provided: 100%
Values
[1] => ([],1)
=> [1] => ([],1)
=> 1 = 0 + 1
[2,1] => ([(0,1)],2)
=> [1,1] => ([(0,1)],2)
=> 2 = 1 + 1
[2,3,1] => ([(0,2),(1,2)],3)
=> [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> 2 = 1 + 1
[3,1,2] => ([(0,2),(1,2)],3)
=> [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> 2 = 1 + 1
[3,2,1] => ([(0,1),(0,2),(1,2)],3)
=> [2,1] => ([(0,2),(1,2)],3)
=> 3 = 2 + 1
[2,3,4,1] => ([(0,3),(1,3),(2,3)],4)
=> [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> 3 = 2 + 1
[2,4,1,3] => ([(0,3),(1,2),(2,3)],4)
=> [1,1,1,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 2 = 1 + 1
[2,4,3,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> [1,1,1,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 2 = 1 + 1
[3,1,4,2] => ([(0,3),(1,2),(2,3)],4)
=> [1,1,1,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 2 = 1 + 1
[3,2,4,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> [1,1,1,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 2 = 1 + 1
[3,4,1,2] => ([(0,2),(0,3),(1,2),(1,3)],4)
=> [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> 3 = 2 + 1
[3,4,2,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [2,1,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 3 = 2 + 1
[4,1,2,3] => ([(0,3),(1,3),(2,3)],4)
=> [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> 3 = 2 + 1
[4,1,3,2] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> [1,1,1,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 2 = 1 + 1
[4,2,1,3] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> [1,1,1,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 2 = 1 + 1
[4,2,3,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [2,1,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 3 = 2 + 1
[4,3,1,2] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [2,1,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 3 = 2 + 1
[4,3,2,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [3,1] => ([(0,3),(1,3),(2,3)],4)
=> 3 = 2 + 1
[2,3,4,5,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 3 = 2 + 1
[2,3,5,1,4] => ([(0,4),(1,4),(2,3),(3,4)],5)
=> [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2 = 1 + 1
[2,3,5,4,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> [1,1,2,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3 = 2 + 1
[2,4,1,5,3] => ([(0,4),(1,3),(2,3),(2,4)],5)
=> [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2 = 1 + 1
[2,4,3,5,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> [1,1,2,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3 = 2 + 1
[2,4,5,1,3] => ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2 = 1 + 1
[2,4,5,3,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2 = 1 + 1
[2,5,1,3,4] => ([(0,4),(1,4),(2,3),(3,4)],5)
=> [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2 = 1 + 1
[2,5,1,4,3] => ([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2 = 1 + 1
[2,5,3,1,4] => ([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2 = 1 + 1
[2,5,3,4,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2 = 1 + 1
[2,5,4,1,3] => ([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2 = 1 + 1
[2,5,4,3,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [1,2,1,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3 = 2 + 1
[3,1,4,5,2] => ([(0,4),(1,4),(2,3),(3,4)],5)
=> [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2 = 1 + 1
[3,1,5,2,4] => ([(0,4),(1,3),(2,3),(2,4)],5)
=> [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2 = 1 + 1
[3,1,5,4,2] => ([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2 = 1 + 1
[3,2,4,5,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> [1,1,2,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3 = 2 + 1
[3,2,5,1,4] => ([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2 = 1 + 1
[3,2,5,4,1] => ([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> [1,2,1,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3 = 2 + 1
[3,4,1,5,2] => ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2 = 1 + 1
[3,4,2,5,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2 = 1 + 1
[3,4,5,1,2] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> [1,1,2,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3 = 2 + 1
[3,4,5,2,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3 = 2 + 1
[3,5,1,2,4] => ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2 = 1 + 1
[3,5,1,4,2] => ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2 = 1 + 1
[3,5,2,1,4] => ([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2 = 1 + 1
[3,5,2,4,1] => ([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2 = 1 + 1
[3,5,4,1,2] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2 = 1 + 1
[3,5,4,2,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [2,1,1,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3 = 2 + 1
[4,1,2,5,3] => ([(0,4),(1,4),(2,3),(3,4)],5)
=> [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2 = 1 + 1
[4,1,3,5,2] => ([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2 = 1 + 1
[4,1,5,2,3] => ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2 = 1 + 1
[2,3,4,5,7,1,6] => ([(0,6),(1,6),(2,6),(3,6),(4,5),(5,6)],7)
=> [1,1,3,1,1] => ([(0,5),(0,6),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 2 + 1
[2,3,4,7,1,5,6] => ([(0,6),(1,6),(2,6),(3,5),(4,5),(5,6)],7)
=> [1,1,3,1,1] => ([(0,5),(0,6),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 2 + 1
[2,3,7,1,4,5,6] => ([(0,6),(1,6),(2,6),(3,5),(4,5),(5,6)],7)
=> [1,1,3,1,1] => ([(0,5),(0,6),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 2 + 1
[2,4,5,6,7,1,3] => ([(0,6),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> [1,1,3,1,1] => ([(0,5),(0,6),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 2 + 1
[2,4,5,6,7,3,1] => ([(0,6),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [1,1,3,1,1] => ([(0,5),(0,6),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 2 + 1
[2,5,6,7,1,3,4] => ([(0,6),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,6),(4,6),(5,6)],7)
=> [1,1,3,1,1] => ([(0,5),(0,6),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 2 + 1
[2,7,1,3,4,5,6] => ([(0,6),(1,6),(2,6),(3,6),(4,5),(5,6)],7)
=> [1,1,3,1,1] => ([(0,5),(0,6),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 2 + 1
[2,7,3,4,5,6,1] => ([(0,6),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [1,1,3,1,1] => ([(0,5),(0,6),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 2 + 1
[3,1,4,5,6,7,2] => ([(0,6),(1,6),(2,6),(3,6),(4,5),(5,6)],7)
=> [1,1,3,1,1] => ([(0,5),(0,6),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 2 + 1
[3,2,6,7,4,5,1] => ([(0,1),(0,6),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7)
=> [1,1,3,1,1] => ([(0,5),(0,6),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 2 + 1
[3,4,5,6,1,7,2] => ([(0,6),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> [1,1,3,1,1] => ([(0,5),(0,6),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 2 + 1
[3,4,5,6,2,7,1] => ([(0,6),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [1,1,3,1,1] => ([(0,5),(0,6),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 2 + 1
[4,1,2,5,6,7,3] => ([(0,6),(1,6),(2,6),(3,5),(4,5),(5,6)],7)
=> [1,1,3,1,1] => ([(0,5),(0,6),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 2 + 1
[4,3,7,2,6,5,1] => ([(0,1),(0,5),(0,6),(1,5),(1,6),(2,3),(2,4),(2,6),(3,4),(3,6),(4,5),(4,6),(5,6)],7)
=> [1,1,3,1,1] => ([(0,5),(0,6),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 2 + 1
[4,5,2,3,7,6,1] => ([(0,1),(0,6),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7)
=> [1,1,3,1,1] => ([(0,5),(0,6),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 2 + 1
[4,5,6,1,2,7,3] => ([(0,6),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,6),(4,6),(5,6)],7)
=> [1,1,3,1,1] => ([(0,5),(0,6),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 2 + 1
[4,5,7,1,2,3,6] => ([(0,6),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,6),(4,6),(5,6)],7)
=> [1,1,3,1,1] => ([(0,5),(0,6),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 2 + 1
[4,6,7,2,3,5,1] => ([(0,4),(0,5),(0,6),(1,2),(1,3),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7)
=> [1,1,3,1,1] => ([(0,5),(0,6),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 2 + 1
[4,6,7,5,1,2,3] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,6),(4,6),(5,6)],7)
=> [1,1,3,1,1] => ([(0,5),(0,6),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 2 + 1
[4,7,5,6,1,2,3] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,6),(4,6),(5,6)],7)
=> [1,1,3,1,1] => ([(0,5),(0,6),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 2 + 1
[5,1,2,3,6,7,4] => ([(0,6),(1,6),(2,6),(3,5),(4,5),(5,6)],7)
=> [1,1,3,1,1] => ([(0,5),(0,6),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 2 + 1
[5,1,6,7,2,3,4] => ([(0,6),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,6),(4,6),(5,6)],7)
=> [1,1,3,1,1] => ([(0,5),(0,6),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 2 + 1
[5,3,2,7,6,4,1] => ([(0,1),(0,5),(0,6),(1,5),(1,6),(2,3),(2,4),(2,6),(3,4),(3,6),(4,5),(4,6),(5,6)],7)
=> [1,1,3,1,1] => ([(0,5),(0,6),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 2 + 1
[5,6,2,7,3,4,1] => ([(0,4),(0,5),(0,6),(1,2),(1,3),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7)
=> [1,1,3,1,1] => ([(0,5),(0,6),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 2 + 1
[5,6,4,7,1,2,3] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,6),(4,6),(5,6)],7)
=> [1,1,3,1,1] => ([(0,5),(0,6),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 2 + 1
[5,6,7,1,3,4,2] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,6),(4,6),(5,6)],7)
=> [1,1,3,1,1] => ([(0,5),(0,6),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 2 + 1
[5,6,7,1,4,2,3] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,6),(4,6),(5,6)],7)
=> [1,1,3,1,1] => ([(0,5),(0,6),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 2 + 1
[5,6,7,2,3,1,4] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,6),(4,6),(5,6)],7)
=> [1,1,3,1,1] => ([(0,5),(0,6),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 2 + 1
[5,6,7,3,1,2,4] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,6),(4,6),(5,6)],7)
=> [1,1,3,1,1] => ([(0,5),(0,6),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 2 + 1
[5,7,1,2,3,4,6] => ([(0,6),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> [1,1,3,1,1] => ([(0,5),(0,6),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 2 + 1
[6,1,2,3,4,7,5] => ([(0,6),(1,6),(2,6),(3,6),(4,5),(5,6)],7)
=> [1,1,3,1,1] => ([(0,5),(0,6),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 2 + 1
[6,1,7,2,3,4,5] => ([(0,6),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> [1,1,3,1,1] => ([(0,5),(0,6),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 2 + 1
[6,2,3,4,5,7,1] => ([(0,6),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [1,1,3,1,1] => ([(0,5),(0,6),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 2 + 1
[6,4,5,7,1,2,3] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,6),(4,6),(5,6)],7)
=> [1,1,3,1,1] => ([(0,5),(0,6),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 2 + 1
[7,1,3,4,5,6,2] => ([(0,6),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [1,1,3,1,1] => ([(0,5),(0,6),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 2 + 1
[7,1,6,2,3,4,5] => ([(0,6),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [1,1,3,1,1] => ([(0,5),(0,6),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 2 + 1
[7,2,1,5,6,3,4] => ([(0,1),(0,6),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7)
=> [1,1,3,1,1] => ([(0,5),(0,6),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 2 + 1
[7,2,3,4,5,1,6] => ([(0,6),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [1,1,3,1,1] => ([(0,5),(0,6),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 2 + 1
[7,3,2,6,1,5,4] => ([(0,1),(0,5),(0,6),(1,5),(1,6),(2,3),(2,4),(2,6),(3,4),(3,6),(4,5),(4,6),(5,6)],7)
=> [1,1,3,1,1] => ([(0,5),(0,6),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 2 + 1
[7,3,4,1,2,6,5] => ([(0,1),(0,6),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7)
=> [1,1,3,1,1] => ([(0,5),(0,6),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 2 + 1
[7,3,5,6,1,2,4] => ([(0,4),(0,5),(0,6),(1,2),(1,3),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7)
=> [1,1,3,1,1] => ([(0,5),(0,6),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 2 + 1
[7,4,2,1,6,5,3] => ([(0,1),(0,5),(0,6),(1,5),(1,6),(2,3),(2,4),(2,6),(3,4),(3,6),(4,5),(4,6),(5,6)],7)
=> [1,1,3,1,1] => ([(0,5),(0,6),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 2 + 1
[7,4,5,1,6,2,3] => ([(0,4),(0,5),(0,6),(1,2),(1,3),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7)
=> [1,1,3,1,1] => ([(0,5),(0,6),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 2 + 1
[7,5,1,2,3,4,6] => ([(0,6),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [1,1,3,1,1] => ([(0,5),(0,6),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 2 + 1
Description
The detour number of a graph.
This is the number of vertices in a longest induced path in a graph.
Note that [1] defines the detour number as the number of edges in a longest induced path, which is unsuitable for the empty graph.
Matching statistic: St000455
Mp00160: Permutations —graph of inversions⟶ Graphs
Mp00152: Graphs —Laplacian multiplicities⟶ Integer compositions
Mp00184: Integer compositions —to threshold graph⟶ Graphs
St000455: Graphs ⟶ ℤResult quality: 60% ●values known / values provided: 60%●distinct values known / distinct values provided: 67%
Mp00152: Graphs —Laplacian multiplicities⟶ Integer compositions
Mp00184: Integer compositions —to threshold graph⟶ Graphs
St000455: Graphs ⟶ ℤResult quality: 60% ●values known / values provided: 60%●distinct values known / distinct values provided: 67%
Values
[1] => ([],1)
=> [1] => ([],1)
=> ? = 0 - 2
[2,1] => ([(0,1)],2)
=> [1,1] => ([(0,1)],2)
=> -1 = 1 - 2
[2,3,1] => ([(0,2),(1,2)],3)
=> [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> -1 = 1 - 2
[3,1,2] => ([(0,2),(1,2)],3)
=> [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> -1 = 1 - 2
[3,2,1] => ([(0,1),(0,2),(1,2)],3)
=> [2,1] => ([(0,2),(1,2)],3)
=> 0 = 2 - 2
[2,3,4,1] => ([(0,3),(1,3),(2,3)],4)
=> [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> ? = 2 - 2
[2,4,1,3] => ([(0,3),(1,2),(2,3)],4)
=> [1,1,1,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> -1 = 1 - 2
[2,4,3,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> [1,1,1,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> -1 = 1 - 2
[3,1,4,2] => ([(0,3),(1,2),(2,3)],4)
=> [1,1,1,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> -1 = 1 - 2
[3,2,4,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> [1,1,1,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> -1 = 1 - 2
[3,4,1,2] => ([(0,2),(0,3),(1,2),(1,3)],4)
=> [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> ? = 2 - 2
[3,4,2,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [2,1,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 0 = 2 - 2
[4,1,2,3] => ([(0,3),(1,3),(2,3)],4)
=> [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> ? = 2 - 2
[4,1,3,2] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> [1,1,1,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> -1 = 1 - 2
[4,2,1,3] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> [1,1,1,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> -1 = 1 - 2
[4,2,3,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [2,1,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 0 = 2 - 2
[4,3,1,2] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [2,1,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 0 = 2 - 2
[4,3,2,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [3,1] => ([(0,3),(1,3),(2,3)],4)
=> 0 = 2 - 2
[2,3,4,5,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 2 - 2
[2,3,5,1,4] => ([(0,4),(1,4),(2,3),(3,4)],5)
=> [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> -1 = 1 - 2
[2,3,5,4,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> [1,1,2,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 2 - 2
[2,4,1,5,3] => ([(0,4),(1,3),(2,3),(2,4)],5)
=> [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> -1 = 1 - 2
[2,4,3,5,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> [1,1,2,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 2 - 2
[2,4,5,1,3] => ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> -1 = 1 - 2
[2,4,5,3,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> -1 = 1 - 2
[2,5,1,3,4] => ([(0,4),(1,4),(2,3),(3,4)],5)
=> [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> -1 = 1 - 2
[2,5,1,4,3] => ([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> -1 = 1 - 2
[2,5,3,1,4] => ([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> -1 = 1 - 2
[2,5,3,4,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> -1 = 1 - 2
[2,5,4,1,3] => ([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> -1 = 1 - 2
[2,5,4,3,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [1,2,1,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 2 - 2
[3,1,4,5,2] => ([(0,4),(1,4),(2,3),(3,4)],5)
=> [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> -1 = 1 - 2
[3,1,5,2,4] => ([(0,4),(1,3),(2,3),(2,4)],5)
=> [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> -1 = 1 - 2
[3,1,5,4,2] => ([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> -1 = 1 - 2
[3,2,4,5,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> [1,1,2,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 2 - 2
[3,2,5,1,4] => ([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> -1 = 1 - 2
[3,2,5,4,1] => ([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> [1,2,1,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 2 - 2
[3,4,1,5,2] => ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> -1 = 1 - 2
[3,4,2,5,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> -1 = 1 - 2
[3,4,5,1,2] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> [1,1,2,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 2 - 2
[3,4,5,2,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 2 - 2
[3,5,1,2,4] => ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> -1 = 1 - 2
[3,5,1,4,2] => ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> -1 = 1 - 2
[3,5,2,1,4] => ([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> -1 = 1 - 2
[3,5,2,4,1] => ([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> -1 = 1 - 2
[3,5,4,1,2] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> -1 = 1 - 2
[3,5,4,2,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [2,1,1,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 0 = 2 - 2
[4,1,2,5,3] => ([(0,4),(1,4),(2,3),(3,4)],5)
=> [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> -1 = 1 - 2
[4,1,3,5,2] => ([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> -1 = 1 - 2
[4,1,5,2,3] => ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> -1 = 1 - 2
[4,1,5,3,2] => ([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> -1 = 1 - 2
[4,2,1,5,3] => ([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> -1 = 1 - 2
[4,2,3,5,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> -1 = 1 - 2
[4,2,5,1,3] => ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> -1 = 1 - 2
[4,2,5,3,1] => ([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> -1 = 1 - 2
[4,3,1,5,2] => ([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> -1 = 1 - 2
[4,3,2,5,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [1,2,1,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 2 - 2
[4,3,5,1,2] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> -1 = 1 - 2
[4,3,5,2,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [2,1,1,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 0 = 2 - 2
[4,5,1,2,3] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> [1,1,2,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 2 - 2
[4,5,1,3,2] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> -1 = 1 - 2
[4,5,2,1,3] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> -1 = 1 - 2
[4,5,2,3,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 2 - 2
[4,5,3,1,2] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 2 - 2
[4,5,3,2,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 0 = 2 - 2
[5,1,2,3,4] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 2 - 2
[5,1,2,4,3] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> [1,1,2,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 2 - 2
[5,1,3,2,4] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> [1,1,2,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 2 - 2
[5,1,3,4,2] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> -1 = 1 - 2
[5,1,4,3,2] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [1,2,1,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 2 - 2
[5,2,1,3,4] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> [1,1,2,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 2 - 2
[5,2,1,4,3] => ([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> [1,2,1,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 2 - 2
[5,2,3,4,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 2 - 2
[5,3,2,1,4] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [1,2,1,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 2 - 2
[5,3,4,1,2] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 2 - 2
[5,4,1,2,3] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 2 - 2
[2,3,4,5,6,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> [1,4,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 2 - 2
[2,3,4,6,1,5] => ([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> [1,1,2,1,1] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 2 - 2
[2,3,4,6,5,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> [1,1,3,1] => ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 2 - 2
[2,3,5,4,6,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> [1,1,3,1] => ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 2 - 2
[2,3,5,6,4,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [1,1,1,2,1] => ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 2 - 2
[2,3,6,1,4,5] => ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> [1,1,2,1,1] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 2 - 2
[2,3,6,1,5,4] => ([(0,4),(1,4),(2,3),(2,5),(3,5),(4,5)],6)
=> [1,2,1,1,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 2 - 2
[2,3,6,4,5,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [1,1,1,2,1] => ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 2 - 2
[2,3,6,5,4,1] => ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [1,2,2,1] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 2 - 2
[2,4,1,6,5,3] => ([(0,4),(1,2),(1,5),(2,5),(3,4),(3,5)],6)
=> [1,2,1,1,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 2 - 2
[2,4,3,5,6,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> [1,1,3,1] => ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 2 - 2
[2,4,3,6,5,1] => ([(0,5),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> [1,2,2,1] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 2 - 2
[2,4,5,3,6,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [1,1,1,2,1] => ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 2 - 2
[2,4,5,6,1,3] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> [1,1,2,1,1] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 2 - 2
[2,4,5,6,3,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [1,1,2,1,1] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 2 - 2
[2,5,1,6,3,4] => ([(0,4),(1,2),(1,3),(2,5),(3,5),(4,5)],6)
=> [1,1,2,1,1] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 2 - 2
[2,5,3,4,6,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [1,1,1,2,1] => ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 2 - 2
[2,5,4,3,6,1] => ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [1,2,2,1] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 2 - 2
[2,5,6,1,3,4] => ([(0,5),(1,3),(1,4),(2,3),(2,4),(3,5),(4,5)],6)
=> [1,2,1,1,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 2 - 2
[2,5,6,1,4,3] => ([(0,5),(1,2),(1,3),(1,4),(2,3),(2,4),(3,5),(4,5)],6)
=> [1,1,2,1,1] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 2 - 2
[2,5,6,3,4,1] => ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> [1,1,2,1,1] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 2 - 2
[2,5,6,4,3,1] => ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [1,2,1,1,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 2 - 2
[2,6,1,3,4,5] => ([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> [1,1,2,1,1] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 2 - 2
[2,6,1,5,4,3] => ([(0,1),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [1,2,1,1,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 2 - 2
Description
The second largest eigenvalue of a graph if it is integral.
This statistic is undefined if the second largest eigenvalue of the graph is not integral.
Chapter 4 of [1] provides lots of context.
Matching statistic: St001431
Mp00160: Permutations —graph of inversions⟶ Graphs
Mp00152: Graphs —Laplacian multiplicities⟶ Integer compositions
Mp00231: Integer compositions —bounce path⟶ Dyck paths
St001431: Dyck paths ⟶ ℤResult quality: 8% ●values known / values provided: 8%●distinct values known / distinct values provided: 67%
Mp00152: Graphs —Laplacian multiplicities⟶ Integer compositions
Mp00231: Integer compositions —bounce path⟶ Dyck paths
St001431: Dyck paths ⟶ ℤResult quality: 8% ●values known / values provided: 8%●distinct values known / distinct values provided: 67%
Values
[1] => ([],1)
=> [1] => [1,0]
=> ? = 0 - 1
[2,1] => ([(0,1)],2)
=> [1,1] => [1,0,1,0]
=> 0 = 1 - 1
[2,3,1] => ([(0,2),(1,2)],3)
=> [1,1,1] => [1,0,1,0,1,0]
=> 0 = 1 - 1
[3,1,2] => ([(0,2),(1,2)],3)
=> [1,1,1] => [1,0,1,0,1,0]
=> 0 = 1 - 1
[3,2,1] => ([(0,1),(0,2),(1,2)],3)
=> [2,1] => [1,1,0,0,1,0]
=> 1 = 2 - 1
[2,3,4,1] => ([(0,3),(1,3),(2,3)],4)
=> [1,2,1] => [1,0,1,1,0,0,1,0]
=> 1 = 2 - 1
[2,4,1,3] => ([(0,3),(1,2),(2,3)],4)
=> [1,1,1,1] => [1,0,1,0,1,0,1,0]
=> 0 = 1 - 1
[2,4,3,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> [1,1,1,1] => [1,0,1,0,1,0,1,0]
=> 0 = 1 - 1
[3,1,4,2] => ([(0,3),(1,2),(2,3)],4)
=> [1,1,1,1] => [1,0,1,0,1,0,1,0]
=> 0 = 1 - 1
[3,2,4,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> [1,1,1,1] => [1,0,1,0,1,0,1,0]
=> 0 = 1 - 1
[3,4,1,2] => ([(0,2),(0,3),(1,2),(1,3)],4)
=> [1,2,1] => [1,0,1,1,0,0,1,0]
=> 1 = 2 - 1
[3,4,2,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [2,1,1] => [1,1,0,0,1,0,1,0]
=> 1 = 2 - 1
[4,1,2,3] => ([(0,3),(1,3),(2,3)],4)
=> [1,2,1] => [1,0,1,1,0,0,1,0]
=> 1 = 2 - 1
[4,1,3,2] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> [1,1,1,1] => [1,0,1,0,1,0,1,0]
=> 0 = 1 - 1
[4,2,1,3] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> [1,1,1,1] => [1,0,1,0,1,0,1,0]
=> 0 = 1 - 1
[4,2,3,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [2,1,1] => [1,1,0,0,1,0,1,0]
=> 1 = 2 - 1
[4,3,1,2] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [2,1,1] => [1,1,0,0,1,0,1,0]
=> 1 = 2 - 1
[4,3,2,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [3,1] => [1,1,1,0,0,0,1,0]
=> 1 = 2 - 1
[2,3,4,5,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> [1,3,1] => [1,0,1,1,1,0,0,0,1,0]
=> 1 = 2 - 1
[2,3,5,1,4] => ([(0,4),(1,4),(2,3),(3,4)],5)
=> [1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0]
=> 0 = 1 - 1
[2,3,5,4,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> [1,1,2,1] => [1,0,1,0,1,1,0,0,1,0]
=> 1 = 2 - 1
[2,4,1,5,3] => ([(0,4),(1,3),(2,3),(2,4)],5)
=> [1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0]
=> 0 = 1 - 1
[2,4,3,5,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> [1,1,2,1] => [1,0,1,0,1,1,0,0,1,0]
=> 1 = 2 - 1
[2,4,5,1,3] => ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> [1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0]
=> 0 = 1 - 1
[2,4,5,3,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0]
=> 0 = 1 - 1
[2,5,1,3,4] => ([(0,4),(1,4),(2,3),(3,4)],5)
=> [1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0]
=> 0 = 1 - 1
[2,5,1,4,3] => ([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> [1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0]
=> 0 = 1 - 1
[2,5,3,1,4] => ([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0]
=> 0 = 1 - 1
[2,5,3,4,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0]
=> 0 = 1 - 1
[2,5,4,1,3] => ([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> [1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0]
=> 0 = 1 - 1
[2,5,4,3,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [1,2,1,1] => [1,0,1,1,0,0,1,0,1,0]
=> 1 = 2 - 1
[3,1,4,5,2] => ([(0,4),(1,4),(2,3),(3,4)],5)
=> [1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0]
=> 0 = 1 - 1
[3,1,5,2,4] => ([(0,4),(1,3),(2,3),(2,4)],5)
=> [1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0]
=> 0 = 1 - 1
[3,1,5,4,2] => ([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> [1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0]
=> 0 = 1 - 1
[3,2,4,5,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> [1,1,2,1] => [1,0,1,0,1,1,0,0,1,0]
=> 1 = 2 - 1
[3,2,5,1,4] => ([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> [1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0]
=> 0 = 1 - 1
[3,2,5,4,1] => ([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> [1,2,1,1] => [1,0,1,1,0,0,1,0,1,0]
=> 1 = 2 - 1
[3,4,1,5,2] => ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> [1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0]
=> 0 = 1 - 1
[3,4,2,5,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0]
=> 0 = 1 - 1
[3,4,5,1,2] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> [1,1,2,1] => [1,0,1,0,1,1,0,0,1,0]
=> 1 = 2 - 1
[3,4,5,2,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [2,2,1] => [1,1,0,0,1,1,0,0,1,0]
=> 1 = 2 - 1
[3,5,1,2,4] => ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> [1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0]
=> 0 = 1 - 1
[3,5,1,4,2] => ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0]
=> 0 = 1 - 1
[3,5,2,1,4] => ([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> [1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0]
=> 0 = 1 - 1
[3,5,2,4,1] => ([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> [1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0]
=> 0 = 1 - 1
[3,5,4,1,2] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> [1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0]
=> 0 = 1 - 1
[3,5,4,2,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [2,1,1,1] => [1,1,0,0,1,0,1,0,1,0]
=> 1 = 2 - 1
[4,1,2,5,3] => ([(0,4),(1,4),(2,3),(3,4)],5)
=> [1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0]
=> 0 = 1 - 1
[4,1,3,5,2] => ([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0]
=> 0 = 1 - 1
[4,1,5,2,3] => ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> [1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0]
=> 0 = 1 - 1
[4,1,5,3,2] => ([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> [1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0]
=> 0 = 1 - 1
[2,3,4,5,6,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> [1,4,1] => [1,0,1,1,1,1,0,0,0,0,1,0]
=> ? = 2 - 1
[2,3,4,6,1,5] => ([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> [1,1,2,1,1] => [1,0,1,0,1,1,0,0,1,0,1,0]
=> ? = 2 - 1
[2,3,4,6,5,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> [1,1,3,1] => [1,0,1,0,1,1,1,0,0,0,1,0]
=> ? = 2 - 1
[2,3,5,4,6,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> [1,1,3,1] => [1,0,1,0,1,1,1,0,0,0,1,0]
=> ? = 2 - 1
[2,3,5,6,4,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [1,1,1,2,1] => [1,0,1,0,1,0,1,1,0,0,1,0]
=> ? = 2 - 1
[2,3,6,1,4,5] => ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> [1,1,2,1,1] => [1,0,1,0,1,1,0,0,1,0,1,0]
=> ? = 2 - 1
[2,3,6,1,5,4] => ([(0,4),(1,4),(2,3),(2,5),(3,5),(4,5)],6)
=> [1,2,1,1,1] => [1,0,1,1,0,0,1,0,1,0,1,0]
=> ? = 2 - 1
[2,3,6,4,5,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [1,1,1,2,1] => [1,0,1,0,1,0,1,1,0,0,1,0]
=> ? = 2 - 1
[2,3,6,5,4,1] => ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [1,2,2,1] => [1,0,1,1,0,0,1,1,0,0,1,0]
=> ? = 2 - 1
[2,4,1,6,5,3] => ([(0,4),(1,2),(1,5),(2,5),(3,4),(3,5)],6)
=> [1,2,1,1,1] => [1,0,1,1,0,0,1,0,1,0,1,0]
=> ? = 2 - 1
[2,4,3,5,6,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> [1,1,3,1] => [1,0,1,0,1,1,1,0,0,0,1,0]
=> ? = 2 - 1
[2,4,3,6,5,1] => ([(0,5),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> [1,2,2,1] => [1,0,1,1,0,0,1,1,0,0,1,0]
=> ? = 2 - 1
[2,4,5,3,6,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [1,1,1,2,1] => [1,0,1,0,1,0,1,1,0,0,1,0]
=> ? = 2 - 1
[2,4,5,6,1,3] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> [1,1,2,1,1] => [1,0,1,0,1,1,0,0,1,0,1,0]
=> ? = 2 - 1
[2,4,5,6,3,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [1,1,2,1,1] => [1,0,1,0,1,1,0,0,1,0,1,0]
=> ? = 2 - 1
[2,5,1,6,3,4] => ([(0,4),(1,2),(1,3),(2,5),(3,5),(4,5)],6)
=> [1,1,2,1,1] => [1,0,1,0,1,1,0,0,1,0,1,0]
=> ? = 2 - 1
[2,5,3,4,6,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [1,1,1,2,1] => [1,0,1,0,1,0,1,1,0,0,1,0]
=> ? = 2 - 1
[2,5,4,3,6,1] => ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [1,2,2,1] => [1,0,1,1,0,0,1,1,0,0,1,0]
=> ? = 2 - 1
[2,5,6,1,3,4] => ([(0,5),(1,3),(1,4),(2,3),(2,4),(3,5),(4,5)],6)
=> [1,2,1,1,1] => [1,0,1,1,0,0,1,0,1,0,1,0]
=> ? = 2 - 1
[2,5,6,1,4,3] => ([(0,5),(1,2),(1,3),(1,4),(2,3),(2,4),(3,5),(4,5)],6)
=> [1,1,2,1,1] => [1,0,1,0,1,1,0,0,1,0,1,0]
=> ? = 2 - 1
[2,5,6,3,4,1] => ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> [1,1,2,1,1] => [1,0,1,0,1,1,0,0,1,0,1,0]
=> ? = 2 - 1
[2,5,6,4,3,1] => ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [1,2,1,1,1] => [1,0,1,1,0,0,1,0,1,0,1,0]
=> ? = 2 - 1
[2,6,1,3,4,5] => ([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> [1,1,2,1,1] => [1,0,1,0,1,1,0,0,1,0,1,0]
=> ? = 2 - 1
[2,6,1,5,4,3] => ([(0,1),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [1,2,1,1,1] => [1,0,1,1,0,0,1,0,1,0,1,0]
=> ? = 2 - 1
[2,6,3,4,5,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [1,1,2,1,1] => [1,0,1,0,1,1,0,0,1,0,1,0]
=> ? = 2 - 1
[2,6,4,5,3,1] => ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [1,2,1,1,1] => [1,0,1,1,0,0,1,0,1,0,1,0]
=> ? = 2 - 1
[2,6,5,3,4,1] => ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [1,2,1,1,1] => [1,0,1,1,0,0,1,0,1,0,1,0]
=> ? = 2 - 1
[2,6,5,4,1,3] => ([(0,5),(1,2),(1,3),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [1,2,1,1,1] => [1,0,1,1,0,0,1,0,1,0,1,0]
=> ? = 2 - 1
[2,6,5,4,3,1] => ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [1,3,1,1] => [1,0,1,1,1,0,0,0,1,0,1,0]
=> ? = 2 - 1
[3,1,4,5,6,2] => ([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> [1,1,2,1,1] => [1,0,1,0,1,1,0,0,1,0,1,0]
=> ? = 2 - 1
[3,1,5,6,2,4] => ([(0,4),(1,2),(1,3),(2,5),(3,5),(4,5)],6)
=> [1,1,2,1,1] => [1,0,1,0,1,1,0,0,1,0,1,0]
=> ? = 2 - 1
[3,1,6,2,5,4] => ([(0,4),(1,2),(1,5),(2,5),(3,4),(3,5)],6)
=> [1,2,1,1,1] => [1,0,1,1,0,0,1,0,1,0,1,0]
=> ? = 2 - 1
[3,1,6,5,4,2] => ([(0,1),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [1,2,1,1,1] => [1,0,1,1,0,0,1,0,1,0,1,0]
=> ? = 2 - 1
[3,2,4,5,6,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> [1,1,3,1] => [1,0,1,0,1,1,1,0,0,0,1,0]
=> ? = 2 - 1
[3,2,4,6,5,1] => ([(0,5),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> [1,2,2,1] => [1,0,1,1,0,0,1,1,0,0,1,0]
=> ? = 2 - 1
[3,2,5,1,6,4] => ([(0,4),(1,2),(1,5),(2,5),(3,4),(3,5)],6)
=> [1,2,1,1,1] => [1,0,1,1,0,0,1,0,1,0,1,0]
=> ? = 2 - 1
[3,2,5,4,6,1] => ([(0,5),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> [1,2,2,1] => [1,0,1,1,0,0,1,1,0,0,1,0]
=> ? = 2 - 1
[3,2,5,6,1,4] => ([(0,3),(0,4),(1,2),(1,5),(2,5),(3,5),(4,5)],6)
=> [1,2,1,1,1] => [1,0,1,1,0,0,1,0,1,0,1,0]
=> ? = 2 - 1
[3,2,6,1,4,5] => ([(0,4),(1,4),(2,3),(2,5),(3,5),(4,5)],6)
=> [1,2,1,1,1] => [1,0,1,1,0,0,1,0,1,0,1,0]
=> ? = 2 - 1
[3,2,6,1,5,4] => ([(0,1),(0,5),(1,5),(2,3),(2,4),(3,4),(4,5)],6)
=> [1,3,1,1] => [1,0,1,1,1,0,0,0,1,0,1,0]
=> ? = 2 - 1
[3,2,6,5,1,4] => ([(0,1),(0,5),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> [1,1,2,1,1] => [1,0,1,0,1,1,0,0,1,0,1,0]
=> ? = 2 - 1
[3,2,6,5,4,1] => ([(0,1),(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [1,2,1,1,1] => [1,0,1,1,0,0,1,0,1,0,1,0]
=> ? = 2 - 1
[3,4,1,6,2,5] => ([(0,4),(1,2),(1,3),(2,5),(3,5),(4,5)],6)
=> [1,1,2,1,1] => [1,0,1,0,1,1,0,0,1,0,1,0]
=> ? = 2 - 1
[3,4,1,6,5,2] => ([(0,3),(0,4),(1,2),(1,5),(2,5),(3,5),(4,5)],6)
=> [1,2,1,1,1] => [1,0,1,1,0,0,1,0,1,0,1,0]
=> ? = 2 - 1
[3,4,2,5,6,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [1,1,1,2,1] => [1,0,1,0,1,0,1,1,0,0,1,0]
=> ? = 2 - 1
[3,4,5,1,6,2] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> [1,1,2,1,1] => [1,0,1,0,1,1,0,0,1,0,1,0]
=> ? = 2 - 1
[3,4,5,2,6,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [1,1,2,1,1] => [1,0,1,0,1,1,0,0,1,0,1,0]
=> ? = 2 - 1
[3,4,5,6,1,2] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> [1,1,3,1] => [1,0,1,0,1,1,1,0,0,0,1,0]
=> ? = 2 - 1
[3,4,5,6,2,1] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [2,3,1] => [1,1,0,0,1,1,1,0,0,0,1,0]
=> ? = 2 - 1
Description
Half of the Loewy length minus one of a modified stable Auslander algebra of the Nakayama algebra corresponding to the Dyck path.
The modified algebra B is obtained from the stable Auslander algebra kQ/I by deleting all relations which contain walks of length at least three (conjectural this step of deletion is not necessary as the stable higher Auslander algebras might be quadratic) and taking as B then the algebra kQ^(op)/J when J is the quadratic perp of the ideal I.
See http://www.findstat.org/DyckPaths/NakayamaAlgebras for the definition of Loewy length and Nakayama algebras associated to Dyck paths.
Matching statistic: St001877
Values
[1] => ([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ? = 0 - 1
[2,1] => ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,2),(2,1)],3)
=> 0 = 1 - 1
[2,3,1] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6)
=> ([(0,3),(2,1),(3,2)],4)
=> 0 = 1 - 1
[3,1,2] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6)
=> ([(0,3),(2,1),(3,2)],4)
=> 0 = 1 - 1
[3,2,1] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> 1 = 2 - 1
[2,3,4,1] => ([(0,1),(0,2),(0,3),(0,4),(1,7),(2,6),(3,5),(4,5),(4,6),(5,8),(6,8),(8,7)],9)
=> ([(0,1),(0,2),(0,3),(0,4),(1,7),(2,6),(3,5),(4,5),(4,6),(5,8),(6,8),(8,7)],9)
=> ([(0,5),(2,6),(3,6),(4,1),(5,2),(5,3),(6,4)],7)
=> 1 = 2 - 1
[2,4,1,3] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6)
=> ([(0,2),(2,1)],3)
=> 0 = 1 - 1
[2,4,3,1] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,6),(4,7),(5,7),(7,6)],8)
=> ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,6),(4,7),(5,7),(7,6)],8)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 0 = 1 - 1
[3,1,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6)
=> ([(0,2),(2,1)],3)
=> 0 = 1 - 1
[3,2,4,1] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,6),(4,7),(5,7),(7,6)],8)
=> ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,6),(4,7),(5,7),(7,6)],8)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 0 = 1 - 1
[3,4,1,2] => ([(0,1),(0,2),(0,3),(0,4),(1,6),(2,6),(3,5),(4,5),(5,7),(6,7)],8)
=> ([(0,1),(0,2),(0,3),(0,4),(1,6),(2,6),(3,5),(4,5),(5,7),(6,7)],8)
=> ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> 1 = 2 - 1
[3,4,2,1] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,6),(3,6),(4,5),(4,7),(5,8),(6,7),(7,8)],9)
=> ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,6),(3,6),(4,5),(4,7),(5,8),(6,7),(7,8)],9)
=> ([(0,5),(2,7),(3,6),(4,2),(4,6),(5,3),(5,4),(6,7),(7,1)],8)
=> ? = 2 - 1
[4,1,2,3] => ([(0,1),(0,2),(0,3),(0,4),(1,7),(2,6),(3,5),(4,5),(4,6),(5,8),(6,8),(8,7)],9)
=> ([(0,1),(0,2),(0,3),(0,4),(1,7),(2,6),(3,5),(4,5),(4,6),(5,8),(6,8),(8,7)],9)
=> ([(0,5),(2,6),(3,6),(4,1),(5,2),(5,3),(6,4)],7)
=> 1 = 2 - 1
[4,1,3,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,6),(4,7),(5,7),(7,6)],8)
=> ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,6),(4,7),(5,7),(7,6)],8)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 0 = 1 - 1
[4,2,1,3] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,6),(4,7),(5,7),(7,6)],8)
=> ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,6),(4,7),(5,7),(7,6)],8)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 0 = 1 - 1
[4,2,3,1] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,7),(4,6),(5,6),(5,7),(6,8),(7,8)],9)
=> ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,7),(4,6),(5,6),(5,7),(6,8),(7,8)],9)
=> ([(0,4),(1,6),(2,6),(4,5),(5,1),(5,2),(6,3)],7)
=> 1 = 2 - 1
[4,3,1,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,6),(3,6),(4,5),(4,7),(5,8),(6,7),(7,8)],9)
=> ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,6),(3,6),(4,5),(4,7),(5,8),(6,7),(7,8)],9)
=> ([(0,5),(2,7),(3,6),(4,2),(4,6),(5,3),(5,4),(6,7),(7,1)],8)
=> ? = 2 - 1
[4,3,2,1] => ([(0,1),(0,2),(0,3),(0,4),(1,9),(2,8),(3,8),(3,10),(4,9),(4,10),(6,5),(7,5),(8,6),(9,7),(10,6),(10,7)],11)
=> ([(0,1),(0,2),(0,3),(0,4),(1,9),(2,8),(3,8),(3,10),(4,9),(4,10),(6,5),(7,5),(8,6),(9,7),(10,6),(10,7)],11)
=> ([(0,7),(2,12),(3,11),(4,11),(4,12),(5,9),(6,10),(7,2),(7,3),(7,4),(8,9),(8,10),(9,13),(10,13),(11,5),(11,8),(12,6),(12,8),(13,1)],14)
=> ? = 2 - 1
[2,3,4,5,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,11),(2,10),(3,6),(4,10),(4,12),(5,11),(5,12),(7,9),(8,9),(9,6),(10,7),(11,8),(12,7),(12,8)],13)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,11),(2,10),(3,6),(4,10),(4,12),(5,11),(5,12),(7,9),(8,9),(9,6),(10,7),(11,8),(12,7),(12,8)],13)
=> ([(0,8),(1,14),(2,13),(3,13),(3,14),(5,10),(6,11),(7,4),(8,1),(8,2),(8,3),(9,10),(9,11),(10,12),(11,12),(12,7),(13,5),(13,9),(14,6),(14,9)],15)
=> ? = 2 - 1
[2,3,5,1,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,7),(2,7),(3,7),(4,6),(5,6),(6,7)],8)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,7),(2,7),(3,7),(4,6),(5,6),(6,7)],8)
=> ([(0,3),(2,1),(3,2)],4)
=> 0 = 1 - 1
[2,3,5,4,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,9),(2,6),(3,7),(4,7),(5,6),(5,8),(6,10),(7,8),(8,10),(10,9)],11)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,9),(2,6),(3,7),(4,7),(5,6),(5,8),(6,10),(7,8),(8,10),(10,9)],11)
=> ([(0,6),(2,8),(3,7),(4,2),(4,7),(5,1),(6,3),(6,4),(7,8),(8,5)],9)
=> ? = 2 - 1
[2,4,1,5,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> ([(0,2),(2,1)],3)
=> 0 = 1 - 1
[2,4,3,5,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,9),(4,8),(5,7),(6,8),(6,9),(8,10),(9,10),(10,7)],11)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,9),(4,8),(5,7),(6,8),(6,9),(8,10),(9,10),(10,7)],11)
=> ([(0,5),(2,7),(3,7),(4,1),(5,6),(6,2),(6,3),(7,4)],8)
=> ? = 2 - 1
[2,4,5,1,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,7),(2,7),(3,7),(4,6),(5,6),(6,7)],8)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,7),(2,7),(3,7),(4,6),(5,6),(6,7)],8)
=> ([(0,3),(2,1),(3,2)],4)
=> 0 = 1 - 1
[2,4,5,3,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,8),(4,9),(5,7),(6,9),(8,7),(9,8)],10)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,8),(4,9),(5,7),(6,9),(8,7),(9,8)],10)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 0 = 1 - 1
[2,5,1,3,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,7),(2,7),(3,7),(4,6),(5,6),(6,7)],8)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,7),(2,7),(3,7),(4,6),(5,6),(6,7)],8)
=> ([(0,3),(2,1),(3,2)],4)
=> 0 = 1 - 1
[2,5,1,4,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,7),(2,7),(3,7),(4,6),(5,6),(6,7)],8)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,7),(2,7),(3,7),(4,6),(5,6),(6,7)],8)
=> ([(0,3),(2,1),(3,2)],4)
=> 0 = 1 - 1
[2,5,3,1,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> ([(0,2),(2,1)],3)
=> 0 = 1 - 1
[2,5,3,4,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,8),(4,9),(5,7),(6,9),(8,7),(9,8)],10)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,8),(4,9),(5,7),(6,9),(8,7),(9,8)],10)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 0 = 1 - 1
[2,5,4,1,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,7),(2,7),(3,7),(4,6),(5,6),(6,7)],8)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,7),(2,7),(3,7),(4,6),(5,6),(6,7)],8)
=> ([(0,3),(2,1),(3,2)],4)
=> 0 = 1 - 1
[2,5,4,3,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,9),(2,8),(3,7),(4,6),(5,6),(5,7),(6,10),(7,10),(8,9),(10,8)],11)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,9),(2,8),(3,7),(4,6),(5,6),(5,7),(6,10),(7,10),(8,9),(10,8)],11)
=> ([(0,6),(2,7),(3,7),(4,1),(5,4),(6,2),(6,3),(7,5)],8)
=> ? = 2 - 1
[3,1,4,5,2] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,7),(2,7),(3,7),(4,6),(5,6),(6,7)],8)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,7),(2,7),(3,7),(4,6),(5,6),(6,7)],8)
=> ([(0,3),(2,1),(3,2)],4)
=> 0 = 1 - 1
[3,1,5,2,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> ([(0,2),(2,1)],3)
=> 0 = 1 - 1
[3,1,5,4,2] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,7),(2,7),(3,7),(4,6),(5,6),(6,7)],8)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,7),(2,7),(3,7),(4,6),(5,6),(6,7)],8)
=> ([(0,3),(2,1),(3,2)],4)
=> 0 = 1 - 1
[3,2,4,5,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,9),(2,6),(3,7),(4,7),(5,6),(5,8),(6,10),(7,8),(8,10),(10,9)],11)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,9),(2,6),(3,7),(4,7),(5,6),(5,8),(6,10),(7,8),(8,10),(10,9)],11)
=> ([(0,6),(2,8),(3,7),(4,2),(4,7),(5,1),(6,3),(6,4),(7,8),(8,5)],9)
=> ? = 2 - 1
[3,2,5,1,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,7),(2,7),(3,7),(4,6),(5,6),(6,7)],8)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,7),(2,7),(3,7),(4,6),(5,6),(6,7)],8)
=> ([(0,3),(2,1),(3,2)],4)
=> 0 = 1 - 1
[3,2,5,4,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,7),(3,7),(4,6),(5,6),(6,9),(7,9),(9,8)],10)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,7),(3,7),(4,6),(5,6),(6,9),(7,9),(9,8)],10)
=> ([(0,5),(2,6),(3,6),(4,1),(5,2),(5,3),(6,4)],7)
=> 1 = 2 - 1
[3,4,1,5,2] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,7),(2,7),(3,7),(4,6),(5,6),(6,7)],8)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,7),(2,7),(3,7),(4,6),(5,6),(6,7)],8)
=> ([(0,3),(2,1),(3,2)],4)
=> 0 = 1 - 1
[3,4,2,5,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,8),(4,9),(5,7),(6,9),(8,7),(9,8)],10)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,8),(4,9),(5,7),(6,9),(8,7),(9,8)],10)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 0 = 1 - 1
[3,4,5,1,2] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,7),(3,6),(4,6),(5,7),(5,8),(6,10),(7,9),(8,9),(9,10)],11)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,7),(3,6),(4,6),(5,7),(5,8),(6,10),(7,9),(8,9),(9,10)],11)
=> ([(0,6),(2,10),(3,8),(3,9),(4,7),(4,9),(5,7),(5,8),(6,3),(6,4),(6,5),(7,11),(8,11),(9,2),(9,11),(10,1),(11,10)],12)
=> ? = 2 - 1
[3,4,5,2,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,10),(2,9),(3,11),(4,9),(4,10),(5,8),(5,11),(7,8),(8,6),(9,7),(10,7),(11,6)],12)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,10),(2,9),(3,11),(4,9),(4,10),(5,8),(5,11),(7,8),(8,6),(9,7),(10,7),(11,6)],12)
=> ([(0,7),(2,12),(3,8),(3,9),(4,9),(4,10),(5,8),(5,10),(6,2),(6,11),(7,3),(7,4),(7,5),(8,13),(9,13),(10,6),(10,13),(11,12),(12,1),(13,11)],14)
=> ? = 2 - 1
[3,5,1,2,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,7),(2,7),(3,7),(4,6),(5,6),(6,7)],8)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,7),(2,7),(3,7),(4,6),(5,6),(6,7)],8)
=> ([(0,3),(2,1),(3,2)],4)
=> 0 = 1 - 1
[3,5,1,4,2] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> ([(0,2),(2,1)],3)
=> 0 = 1 - 1
[3,5,2,1,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,7),(2,7),(3,7),(4,6),(5,6),(6,7)],8)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,7),(2,7),(3,7),(4,6),(5,6),(6,7)],8)
=> ([(0,3),(2,1),(3,2)],4)
=> 0 = 1 - 1
[3,5,2,4,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,7),(2,7),(3,7),(4,7),(5,6),(7,6)],8)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,7),(2,7),(3,7),(4,7),(5,6),(7,6)],8)
=> ([(0,3),(2,1),(3,2)],4)
=> 0 = 1 - 1
[3,5,4,1,2] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,6),(3,6),(4,7),(5,7),(6,9),(7,8),(8,9)],10)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,6),(3,6),(4,7),(5,7),(6,9),(7,8),(8,9)],10)
=> ([(0,5),(2,7),(3,6),(4,2),(4,6),(5,3),(5,4),(6,7),(7,1)],8)
=> ? = 1 - 1
[3,5,4,2,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,6),(3,7),(4,7),(5,6),(5,9),(6,10),(7,8),(8,9),(9,10)],11)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,6),(3,7),(4,7),(5,6),(5,9),(6,10),(7,8),(8,9),(9,10)],11)
=> ([(0,6),(2,9),(3,7),(4,2),(4,8),(5,4),(5,7),(6,3),(6,5),(7,8),(8,9),(9,1)],10)
=> ? = 2 - 1
[4,1,2,5,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,7),(2,7),(3,7),(4,6),(5,6),(6,7)],8)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,7),(2,7),(3,7),(4,6),(5,6),(6,7)],8)
=> ([(0,3),(2,1),(3,2)],4)
=> 0 = 1 - 1
[4,1,3,5,2] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> ([(0,2),(2,1)],3)
=> 0 = 1 - 1
[4,1,5,2,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,7),(2,7),(3,7),(4,6),(5,6),(6,7)],8)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,7),(2,7),(3,7),(4,6),(5,6),(6,7)],8)
=> ([(0,3),(2,1),(3,2)],4)
=> 0 = 1 - 1
[4,1,5,3,2] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,7),(2,7),(3,7),(4,6),(5,6),(6,7)],8)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,7),(2,7),(3,7),(4,6),(5,6),(6,7)],8)
=> ([(0,3),(2,1),(3,2)],4)
=> 0 = 1 - 1
[4,2,1,5,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,7),(2,7),(3,7),(4,6),(5,6),(6,7)],8)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,7),(2,7),(3,7),(4,6),(5,6),(6,7)],8)
=> ([(0,3),(2,1),(3,2)],4)
=> 0 = 1 - 1
[4,2,3,5,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,8),(4,9),(5,7),(6,9),(8,7),(9,8)],10)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,8),(4,9),(5,7),(6,9),(8,7),(9,8)],10)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 0 = 1 - 1
[4,2,5,1,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> ([(0,2),(2,1)],3)
=> 0 = 1 - 1
[4,2,5,3,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,7),(2,7),(3,7),(4,7),(5,6),(7,6)],8)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,7),(2,7),(3,7),(4,7),(5,6),(7,6)],8)
=> ([(0,3),(2,1),(3,2)],4)
=> 0 = 1 - 1
[4,3,1,5,2] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,7),(2,7),(3,7),(4,6),(5,6),(6,7)],8)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,7),(2,7),(3,7),(4,6),(5,6),(6,7)],8)
=> ([(0,3),(2,1),(3,2)],4)
=> 0 = 1 - 1
[4,3,2,5,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,9),(2,8),(3,7),(4,6),(5,6),(5,7),(6,10),(7,10),(8,9),(10,8)],11)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,9),(2,8),(3,7),(4,6),(5,6),(5,7),(6,10),(7,10),(8,9),(10,8)],11)
=> ([(0,6),(2,7),(3,7),(4,1),(5,4),(6,2),(6,3),(7,5)],8)
=> ? = 2 - 1
[4,3,5,1,2] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,6),(3,6),(4,7),(5,7),(6,9),(7,8),(8,9)],10)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,6),(3,6),(4,7),(5,7),(6,9),(7,8),(8,9)],10)
=> ([(0,5),(2,7),(3,6),(4,2),(4,6),(5,3),(5,4),(6,7),(7,1)],8)
=> ? = 1 - 1
[4,3,5,2,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,6),(3,7),(4,7),(5,6),(5,9),(6,10),(7,8),(8,9),(9,10)],11)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,6),(3,7),(4,7),(5,6),(5,9),(6,10),(7,8),(8,9),(9,10)],11)
=> ([(0,6),(2,9),(3,7),(4,2),(4,8),(5,4),(5,7),(6,3),(6,5),(7,8),(8,9),(9,1)],10)
=> ? = 2 - 1
[4,5,1,2,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,7),(3,6),(4,6),(5,7),(5,8),(6,10),(7,9),(8,9),(9,10)],11)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,7),(3,6),(4,6),(5,7),(5,8),(6,10),(7,9),(8,9),(9,10)],11)
=> ([(0,6),(2,10),(3,8),(3,9),(4,7),(4,9),(5,7),(5,8),(6,3),(6,4),(6,5),(7,11),(8,11),(9,2),(9,11),(10,1),(11,10)],12)
=> ? = 2 - 1
[4,5,1,3,2] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,6),(3,6),(4,7),(5,7),(6,9),(7,8),(8,9)],10)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,6),(3,6),(4,7),(5,7),(6,9),(7,8),(8,9)],10)
=> ([(0,5),(2,7),(3,6),(4,2),(4,6),(5,3),(5,4),(6,7),(7,1)],8)
=> ? = 1 - 1
[4,5,2,1,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,6),(3,6),(4,7),(5,7),(6,9),(7,8),(8,9)],10)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,6),(3,6),(4,7),(5,7),(6,9),(7,8),(8,9)],10)
=> ([(0,5),(2,7),(3,6),(4,2),(4,6),(5,3),(5,4),(6,7),(7,1)],8)
=> ? = 1 - 1
[4,5,2,3,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,6),(3,6),(4,7),(5,7),(6,9),(7,8),(7,9),(8,10),(9,10)],11)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,6),(3,6),(4,7),(5,7),(6,9),(7,8),(7,9),(8,10),(9,10)],11)
=> ([(0,6),(1,7),(2,9),(4,8),(5,1),(5,9),(6,2),(6,5),(7,8),(8,3),(9,4),(9,7)],10)
=> ? = 2 - 1
[4,5,3,1,2] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(1,9),(2,7),(3,7),(4,6),(5,6),(6,9),(7,8),(8,10),(9,10)],11)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(1,9),(2,7),(3,7),(4,6),(5,6),(6,9),(7,8),(8,10),(9,10)],11)
=> ([(0,6),(2,9),(3,8),(4,3),(4,7),(5,2),(5,7),(6,4),(6,5),(7,8),(7,9),(8,10),(9,10),(10,1)],11)
=> ? = 2 - 1
[4,5,3,2,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,11),(2,11),(3,10),(4,9),(4,12),(5,10),(5,12),(7,6),(8,6),(9,7),(10,8),(11,9),(12,7),(12,8)],13)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,11),(2,11),(3,10),(4,9),(4,12),(5,10),(5,12),(7,6),(8,6),(9,7),(10,8),(11,9),(12,7),(12,8)],13)
=> ([(0,2),(2,6),(2,7),(2,8),(3,14),(4,15),(5,16),(6,11),(6,13),(7,10),(7,11),(8,5),(8,10),(8,13),(9,1),(10,18),(11,4),(11,18),(12,9),(13,16),(13,18),(14,9),(15,12),(16,3),(16,17),(17,12),(17,14),(18,15),(18,17)],19)
=> ? = 2 - 1
[5,1,2,3,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,11),(2,10),(3,6),(4,10),(4,12),(5,11),(5,12),(7,9),(8,9),(9,6),(10,7),(11,8),(12,7),(12,8)],13)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,11),(2,10),(3,6),(4,10),(4,12),(5,11),(5,12),(7,9),(8,9),(9,6),(10,7),(11,8),(12,7),(12,8)],13)
=> ([(0,8),(1,14),(2,13),(3,13),(3,14),(5,10),(6,11),(7,4),(8,1),(8,2),(8,3),(9,10),(9,11),(10,12),(11,12),(12,7),(13,5),(13,9),(14,6),(14,9)],15)
=> ? = 2 - 1
[5,1,2,4,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,9),(2,6),(3,7),(4,7),(5,6),(5,8),(6,10),(7,8),(8,10),(10,9)],11)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,9),(2,6),(3,7),(4,7),(5,6),(5,8),(6,10),(7,8),(8,10),(10,9)],11)
=> ([(0,6),(2,8),(3,7),(4,2),(4,7),(5,1),(6,3),(6,4),(7,8),(8,5)],9)
=> ? = 2 - 1
[5,1,3,2,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,9),(4,8),(5,7),(6,8),(6,9),(8,10),(9,10),(10,7)],11)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,9),(4,8),(5,7),(6,8),(6,9),(8,10),(9,10),(10,7)],11)
=> ([(0,5),(2,7),(3,7),(4,1),(5,6),(6,2),(6,3),(7,4)],8)
=> ? = 2 - 1
[5,1,3,4,2] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,8),(4,9),(5,7),(6,9),(8,7),(9,8)],10)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,8),(4,9),(5,7),(6,9),(8,7),(9,8)],10)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 0 = 1 - 1
[5,1,4,2,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,8),(4,9),(5,7),(6,9),(8,7),(9,8)],10)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,8),(4,9),(5,7),(6,9),(8,7),(9,8)],10)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 0 = 1 - 1
[5,1,4,3,2] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,9),(2,8),(3,7),(4,6),(5,6),(5,7),(6,10),(7,10),(8,9),(10,8)],11)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,9),(2,8),(3,7),(4,6),(5,6),(5,7),(6,10),(7,10),(8,9),(10,8)],11)
=> ([(0,6),(2,7),(3,7),(4,1),(5,4),(6,2),(6,3),(7,5)],8)
=> ? = 2 - 1
[5,2,1,3,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,9),(2,6),(3,7),(4,7),(5,6),(5,8),(6,10),(7,8),(8,10),(10,9)],11)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,9),(2,6),(3,7),(4,7),(5,6),(5,8),(6,10),(7,8),(8,10),(10,9)],11)
=> ([(0,6),(2,8),(3,7),(4,2),(4,7),(5,1),(6,3),(6,4),(7,8),(8,5)],9)
=> ? = 2 - 1
[5,2,1,4,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,7),(3,7),(4,6),(5,6),(6,9),(7,9),(9,8)],10)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,7),(3,7),(4,6),(5,6),(6,9),(7,9),(9,8)],10)
=> ([(0,5),(2,6),(3,6),(4,1),(5,2),(5,3),(6,4)],7)
=> 1 = 2 - 1
[5,2,3,1,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,8),(4,9),(5,7),(6,9),(8,7),(9,8)],10)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,8),(4,9),(5,7),(6,9),(8,7),(9,8)],10)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 0 = 1 - 1
[5,2,3,4,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,7),(3,10),(4,9),(5,9),(5,10),(7,6),(8,6),(9,11),(10,11),(11,7),(11,8)],12)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,7),(3,10),(4,9),(5,9),(5,10),(7,6),(8,6),(9,11),(10,11),(11,7),(11,8)],12)
=> ([(0,7),(2,9),(3,9),(4,8),(5,8),(6,2),(6,3),(7,4),(7,5),(8,6),(9,1)],10)
=> ? = 2 - 1
[5,2,4,1,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,7),(2,7),(3,7),(4,7),(5,6),(7,6)],8)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,7),(2,7),(3,7),(4,7),(5,6),(7,6)],8)
=> ([(0,3),(2,1),(3,2)],4)
=> 0 = 1 - 1
[5,2,4,3,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,8),(4,7),(5,9),(6,9),(7,10),(8,10),(9,7),(9,8)],11)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,8),(4,7),(5,9),(6,9),(7,10),(8,10),(9,7),(9,8)],11)
=> ([(0,5),(1,7),(2,7),(4,6),(5,4),(6,1),(6,2),(7,3)],8)
=> ? = 2 - 1
[5,3,1,2,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,8),(4,9),(5,7),(6,9),(8,7),(9,8)],10)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,8),(4,9),(5,7),(6,9),(8,7),(9,8)],10)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 0 = 1 - 1
[5,3,1,4,2] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,7),(2,7),(3,7),(4,7),(5,6),(7,6)],8)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,7),(2,7),(3,7),(4,7),(5,6),(7,6)],8)
=> ([(0,3),(2,1),(3,2)],4)
=> 0 = 1 - 1
[5,3,2,1,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,9),(2,8),(3,7),(4,6),(5,6),(5,7),(6,10),(7,10),(8,9),(10,8)],11)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,9),(2,8),(3,7),(4,6),(5,6),(5,7),(6,10),(7,10),(8,9),(10,8)],11)
=> ([(0,6),(2,7),(3,7),(4,1),(5,4),(6,2),(6,3),(7,5)],8)
=> ? = 2 - 1
[5,3,2,4,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,8),(4,7),(5,9),(6,9),(7,10),(8,10),(9,7),(9,8)],11)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,8),(4,7),(5,9),(6,9),(7,10),(8,10),(9,7),(9,8)],11)
=> ([(0,5),(1,7),(2,7),(4,6),(5,4),(6,1),(6,2),(7,3)],8)
=> ? = 2 - 1
[5,3,4,1,2] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,6),(3,6),(4,7),(5,7),(6,9),(7,8),(7,9),(8,10),(9,10)],11)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,6),(3,6),(4,7),(5,7),(6,9),(7,8),(7,9),(8,10),(9,10)],11)
=> ([(0,6),(1,7),(2,9),(4,8),(5,1),(5,9),(6,2),(6,5),(7,8),(8,3),(9,4),(9,7)],10)
=> ? = 2 - 1
[5,3,4,2,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,10),(2,12),(3,12),(4,9),(5,10),(5,11),(7,6),(8,6),(9,8),(10,7),(11,7),(11,8),(12,9),(12,11)],13)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,10),(2,12),(3,12),(4,9),(5,10),(5,11),(7,6),(8,6),(9,8),(10,7),(11,7),(11,8),(12,9),(12,11)],13)
=> ([(0,8),(1,11),(2,12),(4,14),(5,14),(5,15),(6,10),(7,4),(7,5),(7,10),(8,6),(8,7),(9,11),(9,12),(10,15),(11,13),(12,13),(13,3),(14,1),(14,9),(15,2),(15,9)],16)
=> ? = 2 - 1
[5,4,1,2,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,10),(2,9),(3,11),(4,9),(4,10),(5,8),(5,11),(7,8),(8,6),(9,7),(10,7),(11,6)],12)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,10),(2,9),(3,11),(4,9),(4,10),(5,8),(5,11),(7,8),(8,6),(9,7),(10,7),(11,6)],12)
=> ([(0,7),(2,12),(3,8),(3,9),(4,9),(4,10),(5,8),(5,10),(6,2),(6,11),(7,3),(7,4),(7,5),(8,13),(9,13),(10,6),(10,13),(11,12),(12,1),(13,11)],14)
=> ? = 2 - 1
[5,4,1,3,2] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,6),(3,7),(4,7),(5,6),(5,9),(6,10),(7,8),(8,9),(9,10)],11)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,6),(3,7),(4,7),(5,6),(5,9),(6,10),(7,8),(8,9),(9,10)],11)
=> ([(0,6),(2,9),(3,7),(4,2),(4,8),(5,4),(5,7),(6,3),(6,5),(7,8),(8,9),(9,1)],10)
=> ? = 2 - 1
[5,4,2,1,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,6),(3,7),(4,7),(5,6),(5,9),(6,10),(7,8),(8,9),(9,10)],11)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,6),(3,7),(4,7),(5,6),(5,9),(6,10),(7,8),(8,9),(9,10)],11)
=> ([(0,6),(2,9),(3,7),(4,2),(4,8),(5,4),(5,7),(6,3),(6,5),(7,8),(8,9),(9,1)],10)
=> ? = 2 - 1
[5,4,2,3,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,10),(2,12),(3,12),(4,9),(5,10),(5,11),(7,6),(8,6),(9,8),(10,7),(11,7),(11,8),(12,9),(12,11)],13)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,10),(2,12),(3,12),(4,9),(5,10),(5,11),(7,6),(8,6),(9,8),(10,7),(11,7),(11,8),(12,9),(12,11)],13)
=> ([(0,8),(1,11),(2,12),(4,14),(5,14),(5,15),(6,10),(7,4),(7,5),(7,10),(8,6),(8,7),(9,11),(9,12),(10,15),(11,13),(12,13),(13,3),(14,1),(14,9),(15,2),(15,9)],16)
=> ? = 2 - 1
[5,4,3,1,2] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,11),(2,11),(3,10),(4,9),(4,12),(5,10),(5,12),(7,6),(8,6),(9,7),(10,8),(11,9),(12,7),(12,8)],13)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,11),(2,11),(3,10),(4,9),(4,12),(5,10),(5,12),(7,6),(8,6),(9,7),(10,8),(11,9),(12,7),(12,8)],13)
=> ([(0,2),(2,6),(2,7),(2,8),(3,14),(4,15),(5,16),(6,11),(6,13),(7,10),(7,11),(8,5),(8,10),(8,13),(9,1),(10,18),(11,4),(11,18),(12,9),(13,16),(13,18),(14,9),(15,12),(16,3),(16,17),(17,12),(17,14),(18,15),(18,17)],19)
=> ? = 2 - 1
[5,4,3,2,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,12),(2,11),(3,11),(3,14),(4,12),(4,15),(5,14),(5,15),(7,9),(8,10),(9,6),(10,6),(11,7),(12,8),(13,9),(13,10),(14,7),(14,13),(15,8),(15,13)],16)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,12),(2,11),(3,11),(3,14),(4,12),(4,15),(5,14),(5,15),(7,9),(8,10),(9,6),(10,6),(11,7),(12,8),(13,9),(13,10),(14,7),(14,13),(15,8),(15,13)],16)
=> ?
=> ? = 2 - 1
[2,3,4,5,6,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,14),(2,13),(3,7),(4,13),(4,16),(5,14),(5,17),(6,16),(6,17),(8,12),(9,12),(10,8),(11,9),(12,7),(13,10),(14,11),(15,8),(15,9),(16,10),(16,15),(17,11),(17,15)],18)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,14),(2,13),(3,7),(4,13),(4,16),(5,14),(5,17),(6,16),(6,17),(8,12),(9,12),(10,8),(11,9),(12,7),(13,10),(14,11),(15,8),(15,9),(16,10),(16,15),(17,11),(17,15)],18)
=> ?
=> ? = 2 - 1
[2,3,4,6,1,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,10),(2,10),(3,10),(4,8),(5,7),(6,7),(6,8),(7,9),(8,9),(9,10)],11)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,10),(2,10),(3,10),(4,8),(5,7),(6,7),(6,8),(7,9),(8,9),(9,10)],11)
=> ?
=> ? = 2 - 1
[2,3,4,6,5,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,13),(2,13),(3,12),(4,7),(5,11),(5,14),(6,12),(6,14),(8,10),(9,10),(10,7),(11,8),(12,9),(13,11),(14,8),(14,9)],15)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,13),(2,13),(3,12),(4,7),(5,11),(5,14),(6,12),(6,14),(8,10),(9,10),(10,7),(11,8),(12,9),(13,11),(14,8),(14,9)],15)
=> ?
=> ? = 2 - 1
[2,3,5,1,6,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,8),(2,8),(3,8),(4,8),(5,7),(6,7),(7,8)],9)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,8),(2,8),(3,8),(4,8),(5,7),(6,7),(7,8)],9)
=> ?
=> ? = 1 - 1
[2,3,5,4,6,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,12),(2,14),(3,14),(4,11),(5,7),(6,12),(6,13),(8,10),(9,10),(10,7),(11,9),(12,8),(13,8),(13,9),(14,11),(14,13)],15)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,12),(2,14),(3,14),(4,11),(5,7),(6,12),(6,13),(8,10),(9,10),(10,7),(11,9),(12,8),(13,8),(13,9),(14,11),(14,13)],15)
=> ?
=> ? = 2 - 1
[2,3,5,6,1,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,9),(2,9),(3,8),(4,8),(5,7),(6,7),(7,9),(8,9)],10)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,9),(2,9),(3,8),(4,8),(5,7),(6,7),(7,9),(8,9)],10)
=> ?
=> ? = 1 - 1
[2,3,5,6,4,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,8),(2,8),(3,7),(4,10),(5,11),(6,7),(6,9),(7,12),(8,11),(9,12),(11,9),(12,10)],13)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,8),(2,8),(3,7),(4,10),(5,11),(6,7),(6,9),(7,12),(8,11),(9,12),(11,9),(12,10)],13)
=> ?
=> ? = 2 - 1
[2,3,6,1,4,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,9),(2,9),(3,8),(4,8),(5,7),(6,7),(7,9),(8,9)],10)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,9),(2,9),(3,8),(4,8),(5,7),(6,7),(7,9),(8,9)],10)
=> ?
=> ? = 2 - 1
[2,3,6,1,5,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,9),(2,9),(3,8),(4,8),(5,7),(6,7),(7,9),(8,9)],10)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,9),(2,9),(3,8),(4,8),(5,7),(6,7),(7,9),(8,9)],10)
=> ?
=> ? = 2 - 1
[2,3,6,4,1,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,8),(2,8),(3,8),(4,8),(5,7),(6,7),(7,8)],9)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,8),(2,8),(3,8),(4,8),(5,7),(6,7),(7,8)],9)
=> ?
=> ? = 1 - 1
[2,3,6,4,5,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,8),(2,8),(3,7),(4,10),(5,11),(6,7),(6,9),(7,12),(8,11),(9,12),(11,9),(12,10)],13)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,8),(2,8),(3,7),(4,10),(5,11),(6,7),(6,9),(7,12),(8,11),(9,12),(11,9),(12,10)],13)
=> ?
=> ? = 2 - 1
Description
Number of indecomposable injective modules with projective dimension 2.
Matching statistic: St001545
Values
[1] => ([],1)
=> ([],1)
=> ([],1)
=> ? = 0 + 1
[2,1] => ([(0,1)],2)
=> ([],1)
=> ([],1)
=> ? = 1 + 1
[2,3,1] => ([(0,2),(1,2)],3)
=> ([],1)
=> ([],1)
=> ? = 1 + 1
[3,1,2] => ([(0,2),(1,2)],3)
=> ([],1)
=> ([],1)
=> ? = 1 + 1
[3,2,1] => ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 2 + 1
[2,3,4,1] => ([(0,3),(1,3),(2,3)],4)
=> ([],1)
=> ([],1)
=> ? = 2 + 1
[2,4,1,3] => ([(0,3),(1,2),(2,3)],4)
=> ([],1)
=> ([],1)
=> ? = 1 + 1
[2,4,3,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 1 + 1
[3,1,4,2] => ([(0,3),(1,2),(2,3)],4)
=> ([],1)
=> ([],1)
=> ? = 1 + 1
[3,2,4,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 1 + 1
[3,4,1,2] => ([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,3),(1,2)],4)
=> ? = 2 + 1
[3,4,2,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(2,3)],4)
=> ? = 2 + 1
[4,1,2,3] => ([(0,3),(1,3),(2,3)],4)
=> ([],1)
=> ([],1)
=> ? = 2 + 1
[4,1,3,2] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 1 + 1
[4,2,1,3] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 1 + 1
[4,2,3,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(2,3)],4)
=> ? = 2 + 1
[4,3,1,2] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(2,3)],4)
=> ? = 2 + 1
[4,3,2,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([],4)
=> ? = 2 + 1
[2,3,4,5,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([],1)
=> ([],1)
=> ? = 2 + 1
[2,3,5,1,4] => ([(0,4),(1,4),(2,3),(3,4)],5)
=> ([],1)
=> ([],1)
=> ? = 1 + 1
[2,3,5,4,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 2 + 1
[2,4,1,5,3] => ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([],1)
=> ([],1)
=> ? = 1 + 1
[2,4,3,5,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 2 + 1
[2,4,5,1,3] => ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,3),(1,2)],4)
=> ? = 1 + 1
[2,4,5,3,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(2,3)],4)
=> ? = 1 + 1
[2,5,1,3,4] => ([(0,4),(1,4),(2,3),(3,4)],5)
=> ([],1)
=> ([],1)
=> ? = 1 + 1
[2,5,1,4,3] => ([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 1 + 1
[2,5,3,1,4] => ([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 1 + 1
[2,5,3,4,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(2,3)],4)
=> ? = 1 + 1
[2,5,4,1,3] => ([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(2,3)],4)
=> ? = 1 + 1
[2,5,4,3,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([],4)
=> ? = 2 + 1
[3,1,4,5,2] => ([(0,4),(1,4),(2,3),(3,4)],5)
=> ([],1)
=> ([],1)
=> ? = 1 + 1
[3,1,5,2,4] => ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([],1)
=> ([],1)
=> ? = 1 + 1
[3,1,5,4,2] => ([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 1 + 1
[3,2,4,5,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 2 + 1
[3,2,5,1,4] => ([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 1 + 1
[3,2,5,4,1] => ([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4)],5)
=> ? = 2 + 1
[3,4,1,5,2] => ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,3),(1,2)],4)
=> ? = 1 + 1
[3,4,2,5,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(2,3)],4)
=> ? = 1 + 1
[3,4,5,1,2] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1),(2,3),(2,4),(3,4)],5)
=> ? = 2 + 1
[3,4,5,2,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(2,3),(2,4),(3,4)],5)
=> ? = 2 + 1
[3,5,1,2,4] => ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,3),(1,2)],4)
=> ? = 1 + 1
[3,5,1,4,2] => ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 2 = 1 + 1
[3,5,2,1,4] => ([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(2,3)],4)
=> ? = 1 + 1
[3,5,2,4,1] => ([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,4),(2,3),(3,4)],5)
=> ? = 1 + 1
[3,5,4,1,2] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1),(2,4),(3,4)],5)
=> ? = 1 + 1
[3,5,4,2,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(2,4),(3,4)],5)
=> ? = 2 + 1
[4,1,2,5,3] => ([(0,4),(1,4),(2,3),(3,4)],5)
=> ([],1)
=> ([],1)
=> ? = 1 + 1
[4,1,3,5,2] => ([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 1 + 1
[4,1,5,2,3] => ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,3),(1,2)],4)
=> ? = 1 + 1
[4,1,5,3,2] => ([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(2,3)],4)
=> ? = 1 + 1
[4,2,5,1,3] => ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 2 = 1 + 1
[2,4,6,1,5,3] => ([(0,5),(1,3),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 2 = 1 + 1
[2,5,3,6,1,4] => ([(0,5),(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 2 = 1 + 1
[3,5,1,4,6,2] => ([(0,5),(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 2 = 1 + 1
[3,6,1,4,2,5] => ([(0,5),(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 2 = 1 + 1
[4,1,6,2,5,3] => ([(0,5),(1,3),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 2 = 1 + 1
[4,2,5,1,6,3] => ([(0,5),(1,3),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 2 = 1 + 1
[4,2,6,1,3,5] => ([(0,5),(1,3),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 2 = 1 + 1
[5,1,3,6,2,4] => ([(0,5),(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 2 = 1 + 1
[2,3,5,7,1,6,4] => ([(0,6),(1,6),(2,5),(2,6),(3,4),(3,5),(4,5),(4,6)],7)
=> ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 2 = 1 + 1
[2,3,6,4,7,1,5] => ([(0,6),(1,6),(2,3),(2,6),(3,5),(4,5),(4,6),(5,6)],7)
=> ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 2 = 1 + 1
[2,4,6,1,5,7,3] => ([(0,6),(1,4),(2,4),(2,6),(3,5),(3,6),(4,5),(5,6)],7)
=> ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 2 = 1 + 1
[2,4,7,1,5,3,6] => ([(0,6),(1,4),(2,5),(2,6),(3,4),(3,5),(4,6),(5,6)],7)
=> ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 2 = 1 + 1
[2,5,1,7,3,6,4] => ([(0,3),(1,4),(1,5),(2,4),(2,6),(3,5),(4,6),(5,6)],7)
=> ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 2 = 1 + 1
[2,5,3,6,1,7,4] => ([(0,6),(1,4),(2,4),(2,6),(3,5),(3,6),(4,5),(5,6)],7)
=> ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 2 = 1 + 1
[2,5,3,7,1,4,6] => ([(0,6),(1,4),(2,5),(2,6),(3,4),(3,5),(4,6),(5,6)],7)
=> ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 2 = 1 + 1
[2,6,1,4,7,3,5] => ([(0,4),(1,2),(1,6),(2,5),(3,5),(3,6),(4,6),(5,6)],7)
=> ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 2 = 1 + 1
[3,1,5,7,2,6,4] => ([(0,3),(1,4),(1,5),(2,4),(2,6),(3,5),(4,6),(5,6)],7)
=> ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 2 = 1 + 1
[3,1,6,4,7,2,5] => ([(0,4),(1,2),(1,6),(2,5),(3,5),(3,6),(4,6),(5,6)],7)
=> ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 2 = 1 + 1
[3,5,1,4,6,7,2] => ([(0,6),(1,6),(2,3),(2,6),(3,5),(4,5),(4,6),(5,6)],7)
=> ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 2 = 1 + 1
[3,5,1,4,7,2,6] => ([(0,4),(1,2),(1,6),(2,5),(3,5),(3,6),(4,6),(5,6)],7)
=> ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 2 = 1 + 1
[3,6,1,4,2,7,5] => ([(0,4),(1,2),(1,6),(2,5),(3,5),(3,6),(4,6),(5,6)],7)
=> ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 2 = 1 + 1
[3,7,1,4,2,5,6] => ([(0,6),(1,6),(2,3),(2,6),(3,5),(4,5),(4,6),(5,6)],7)
=> ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 2 = 1 + 1
[4,1,6,2,5,7,3] => ([(0,6),(1,4),(2,5),(2,6),(3,4),(3,5),(4,6),(5,6)],7)
=> ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 2 = 1 + 1
[4,1,7,2,5,3,6] => ([(0,6),(1,4),(2,4),(2,6),(3,5),(3,6),(4,5),(5,6)],7)
=> ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 2 = 1 + 1
[4,2,5,1,6,7,3] => ([(0,6),(1,6),(2,5),(2,6),(3,4),(3,5),(4,5),(4,6)],7)
=> ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 2 = 1 + 1
[4,2,5,1,7,3,6] => ([(0,3),(1,4),(1,5),(2,4),(2,6),(3,5),(4,6),(5,6)],7)
=> ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 2 = 1 + 1
[4,2,6,1,3,7,5] => ([(0,3),(1,4),(1,5),(2,4),(2,6),(3,5),(4,6),(5,6)],7)
=> ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 2 = 1 + 1
[4,2,7,1,3,5,6] => ([(0,6),(1,6),(2,5),(2,6),(3,4),(3,5),(4,5),(4,6)],7)
=> ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 2 = 1 + 1
[5,1,2,7,3,6,4] => ([(0,6),(1,6),(2,5),(2,6),(3,4),(3,5),(4,5),(4,6)],7)
=> ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 2 = 1 + 1
[5,1,3,6,2,7,4] => ([(0,6),(1,4),(2,5),(2,6),(3,4),(3,5),(4,6),(5,6)],7)
=> ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 2 = 1 + 1
[5,1,3,7,2,4,6] => ([(0,6),(1,4),(2,4),(2,6),(3,5),(3,6),(4,5),(5,6)],7)
=> ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 2 = 1 + 1
[6,1,2,4,7,3,5] => ([(0,6),(1,6),(2,3),(2,6),(3,5),(4,5),(4,6),(5,6)],7)
=> ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 2 = 1 + 1
Description
The second Elser number of a connected graph.
For a connected graph $G$ the $k$-th Elser number is
$$
els_k(G) = (-1)^{|V(G)|+1} \sum_N (-1)^{|E(N)|} |V(N)|^k
$$
where the sum is over all nuclei of $G$, that is, the connected subgraphs of $G$ whose vertex set is a vertex cover of $G$.
It is clear that this number is even. It was shown in [1] that it is non-negative.
Matching statistic: St001878
(load all 2 compositions to match this statistic)
(load all 2 compositions to match this statistic)
Mp00067: Permutations —Foata bijection⟶ Permutations
Mp00209: Permutations —pattern poset⟶ Posets
Mp00206: Posets —antichains of maximal size⟶ Lattices
St001878: Lattices ⟶ ℤResult quality: 1% ●values known / values provided: 1%●distinct values known / distinct values provided: 33%
Mp00209: Permutations —pattern poset⟶ Posets
Mp00206: Posets —antichains of maximal size⟶ Lattices
St001878: Lattices ⟶ ℤResult quality: 1% ●values known / values provided: 1%●distinct values known / distinct values provided: 33%
Values
[1] => [1] => ([],1)
=> ([],1)
=> ? = 0 - 1
[2,1] => [2,1] => ([(0,1)],2)
=> ([(0,1)],2)
=> ? = 1 - 1
[2,3,1] => [2,3,1] => ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([],1)
=> ? = 1 - 1
[3,1,2] => [1,3,2] => ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([],1)
=> ? = 1 - 1
[3,2,1] => [3,2,1] => ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 1 = 2 - 1
[2,3,4,1] => [2,3,4,1] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,2),(2,1)],3)
=> 1 = 2 - 1
[2,4,1,3] => [2,1,4,3] => ([(0,1),(0,2),(1,4),(1,5),(2,4),(2,5),(4,3),(5,3)],6)
=> ([(0,1)],2)
=> ? = 1 - 1
[2,4,3,1] => [4,2,3,1] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> ([],1)
=> ? = 1 - 1
[3,1,4,2] => [3,4,1,2] => ([(0,1),(0,2),(1,4),(1,5),(2,4),(2,5),(4,3),(5,3)],6)
=> ([(0,1)],2)
=> ? = 1 - 1
[3,2,4,1] => [3,2,4,1] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> ([],1)
=> ? = 1 - 1
[3,4,1,2] => [1,3,4,2] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> ([],1)
=> ? = 2 - 1
[3,4,2,1] => [3,4,2,1] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,2),(2,1)],3)
=> 1 = 2 - 1
[4,1,2,3] => [1,2,4,3] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,2),(2,1)],3)
=> 1 = 2 - 1
[4,1,3,2] => [4,1,3,2] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> ([],1)
=> ? = 1 - 1
[4,2,1,3] => [2,4,1,3] => ([(0,1),(0,2),(0,3),(0,4),(1,6),(1,7),(2,6),(2,7),(3,6),(3,7),(4,6),(4,7),(6,5),(7,5)],8)
=> ([],1)
=> ? = 1 - 1
[4,2,3,1] => [2,4,3,1] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> ([],1)
=> ? = 2 - 1
[4,3,1,2] => [1,4,3,2] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,2),(2,1)],3)
=> 1 = 2 - 1
[4,3,2,1] => [4,3,2,1] => ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> 1 = 2 - 1
[2,3,4,5,1] => [2,3,4,5,1] => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> 1 = 2 - 1
[2,3,5,1,4] => [2,3,1,5,4] => ([(0,2),(0,3),(0,4),(1,9),(1,10),(2,6),(2,7),(3,5),(3,6),(4,1),(4,5),(4,7),(5,10),(6,9),(6,10),(7,9),(7,10),(9,8),(10,8)],11)
=> ([],1)
=> ? = 1 - 1
[2,3,5,4,1] => [5,2,3,4,1] => ([(0,2),(0,3),(0,4),(1,9),(2,5),(2,7),(3,5),(3,6),(4,1),(4,6),(4,7),(5,10),(6,9),(6,10),(7,9),(7,10),(9,8),(10,8)],11)
=> ([],1)
=> ? = 2 - 1
[2,4,1,5,3] => [4,2,5,1,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,10),(1,11),(2,6),(2,9),(2,11),(3,6),(3,9),(3,10),(4,7),(4,9),(4,10),(4,11),(5,7),(5,9),(5,10),(5,11),(6,13),(7,12),(7,13),(9,12),(9,13),(10,12),(10,13),(11,12),(11,13),(12,8),(13,8)],14)
=> ([(0,1)],2)
=> ? = 1 - 1
[2,4,3,5,1] => [4,2,3,5,1] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(1,10),(2,8),(2,9),(2,10),(3,7),(3,9),(3,10),(4,5),(4,7),(4,8),(5,11),(7,11),(7,12),(8,11),(8,12),(9,12),(10,11),(10,12),(11,6),(12,6)],13)
=> ([],1)
=> ? = 2 - 1
[2,4,5,1,3] => [2,1,4,5,3] => ([(0,2),(0,3),(0,4),(1,9),(1,10),(2,6),(2,7),(3,5),(3,6),(4,1),(4,5),(4,7),(5,10),(6,9),(6,10),(7,9),(7,10),(9,8),(10,8)],11)
=> ([],1)
=> ? = 1 - 1
[2,4,5,3,1] => [4,2,5,3,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,10),(1,12),(2,8),(2,10),(2,12),(3,7),(3,10),(3,12),(4,6),(4,10),(4,12),(5,6),(5,7),(5,8),(5,12),(6,11),(6,13),(7,11),(7,13),(8,11),(8,13),(10,13),(11,9),(12,11),(12,13),(13,9)],14)
=> ([(0,1)],2)
=> ? = 1 - 1
[2,5,1,3,4] => [2,1,3,5,4] => ([(0,1),(0,2),(0,3),(1,7),(1,8),(2,5),(2,8),(3,5),(3,7),(5,9),(6,4),(7,6),(7,9),(8,6),(8,9),(9,4)],10)
=> ([(0,1)],2)
=> ? = 1 - 1
[2,5,1,4,3] => [5,2,1,4,3] => ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,6),(2,7),(2,8),(3,5),(3,7),(3,8),(5,9),(5,10),(6,9),(6,10),(7,10),(8,9),(8,10),(9,4),(10,4)],11)
=> ([],1)
=> ? = 1 - 1
[2,5,3,1,4] => [2,5,3,1,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,9),(1,10),(1,11),(1,12),(2,7),(2,11),(2,12),(3,7),(3,9),(3,10),(4,6),(4,10),(4,12),(5,6),(5,9),(5,11),(6,14),(7,13),(9,13),(9,14),(10,13),(10,14),(11,13),(11,14),(12,13),(12,14),(13,8),(14,8)],15)
=> ([],1)
=> ? = 1 - 1
[2,5,3,4,1] => [2,5,3,4,1] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(1,10),(2,8),(2,9),(2,10),(3,7),(3,9),(3,10),(4,5),(4,7),(4,8),(5,11),(7,11),(7,12),(8,11),(8,12),(9,12),(10,11),(10,12),(11,6),(12,6)],13)
=> ([],1)
=> ? = 1 - 1
[2,5,4,1,3] => [2,5,1,4,3] => ([(0,2),(0,3),(0,4),(0,5),(1,11),(1,12),(2,7),(2,10),(3,6),(3,10),(4,6),(4,8),(4,10),(5,1),(5,7),(5,8),(5,10),(6,12),(7,11),(7,12),(8,11),(8,12),(10,11),(10,12),(11,9),(12,9)],13)
=> ([],1)
=> ? = 1 - 1
[2,5,4,3,1] => [5,4,2,3,1] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ([(0,3),(2,1),(3,2)],4)
=> 1 = 2 - 1
[3,1,4,5,2] => [3,4,1,5,2] => ([(0,2),(0,3),(0,4),(0,5),(1,11),(1,12),(2,7),(2,10),(3,6),(3,10),(4,6),(4,8),(4,10),(5,1),(5,7),(5,8),(5,10),(6,12),(7,11),(7,12),(8,11),(8,12),(10,11),(10,12),(11,9),(12,9)],13)
=> ([],1)
=> ? = 1 - 1
[3,1,5,2,4] => [3,1,5,2,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,10),(1,11),(2,6),(2,9),(2,11),(3,6),(3,9),(3,10),(4,7),(4,9),(4,10),(4,11),(5,7),(5,9),(5,10),(5,11),(6,13),(7,12),(7,13),(9,12),(9,13),(10,12),(10,13),(11,12),(11,13),(12,8),(13,8)],14)
=> ([(0,1)],2)
=> ? = 1 - 1
[3,1,5,4,2] => [5,3,4,1,2] => ([(0,1),(0,2),(0,3),(1,7),(1,8),(2,5),(2,8),(3,5),(3,7),(3,8),(5,9),(6,4),(7,6),(7,9),(8,6),(8,9),(9,4)],10)
=> ([(0,1)],2)
=> ? = 1 - 1
[3,2,4,5,1] => [3,2,4,5,1] => ([(0,2),(0,3),(0,4),(1,9),(2,5),(2,7),(3,5),(3,6),(4,1),(4,6),(4,7),(5,10),(6,9),(6,10),(7,9),(7,10),(9,8),(10,8)],11)
=> ([],1)
=> ? = 2 - 1
[3,2,5,1,4] => [3,2,1,5,4] => ([(0,3),(0,4),(1,8),(2,7),(2,8),(3,1),(3,5),(4,2),(4,5),(5,7),(5,8),(7,6),(8,6)],9)
=> ([],1)
=> ? = 1 - 1
[3,2,5,4,1] => [5,3,2,4,1] => ([(0,1),(0,2),(0,3),(0,4),(1,10),(2,6),(2,7),(2,10),(3,5),(3,7),(3,10),(4,5),(4,6),(4,10),(5,9),(5,11),(6,9),(6,11),(7,9),(7,11),(9,8),(10,11),(11,8)],12)
=> ([(0,2),(2,1)],3)
=> 1 = 2 - 1
[3,4,1,5,2] => [3,4,5,1,2] => ([(0,3),(0,4),(1,8),(2,7),(2,8),(3,1),(3,5),(4,2),(4,5),(5,7),(5,8),(7,6),(8,6)],9)
=> ([],1)
=> ? = 1 - 1
[3,4,2,5,1] => [3,4,2,5,1] => ([(0,1),(0,2),(0,3),(0,4),(1,6),(1,11),(2,5),(2,11),(3,5),(3,7),(3,11),(4,6),(4,7),(4,11),(5,9),(6,10),(7,9),(7,10),(9,8),(10,8),(11,9),(11,10)],12)
=> ([(0,1)],2)
=> ? = 1 - 1
[3,4,5,1,2] => [1,3,4,5,2] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ([(0,3),(2,1),(3,2)],4)
=> 1 = 2 - 1
[3,4,5,2,1] => [3,4,5,2,1] => ([(0,3),(0,4),(1,7),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6),(5,7),(6,8),(7,8)],9)
=> ([],1)
=> ? = 2 - 1
[3,5,1,2,4] => [1,3,2,5,4] => ([(0,1),(0,2),(0,3),(1,7),(1,8),(2,5),(2,8),(3,5),(3,7),(3,8),(5,9),(6,4),(7,6),(7,9),(8,6),(8,9),(9,4)],10)
=> ([(0,1)],2)
=> ? = 1 - 1
[3,5,1,4,2] => [3,5,1,4,2] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,10),(1,11),(2,6),(2,9),(2,11),(3,6),(3,9),(3,10),(4,7),(4,9),(4,10),(4,11),(5,7),(5,9),(5,10),(5,11),(6,13),(7,12),(7,13),(9,12),(9,13),(10,12),(10,13),(11,12),(11,13),(12,8),(13,8)],14)
=> ([(0,1)],2)
=> ? = 1 - 1
[3,5,2,1,4] => [3,2,5,1,4] => ([(0,2),(0,3),(0,4),(0,5),(1,11),(1,12),(2,7),(2,10),(3,6),(3,10),(4,6),(4,8),(4,10),(5,1),(5,7),(5,8),(5,10),(6,12),(7,11),(7,12),(8,11),(8,12),(10,11),(10,12),(11,9),(12,9)],13)
=> ([],1)
=> ? = 1 - 1
[3,5,2,4,1] => [3,2,5,4,1] => ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,6),(2,7),(2,8),(3,5),(3,7),(3,8),(5,9),(5,10),(6,9),(6,10),(7,10),(8,9),(8,10),(9,4),(10,4)],11)
=> ([],1)
=> ? = 1 - 1
[3,5,4,1,2] => [1,5,3,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(1,10),(2,8),(2,9),(2,10),(3,7),(3,9),(3,10),(4,5),(4,7),(4,8),(5,11),(7,11),(7,12),(8,11),(8,12),(9,12),(10,11),(10,12),(11,6),(12,6)],13)
=> ([],1)
=> ? = 1 - 1
[3,5,4,2,1] => [5,3,4,2,1] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ([(0,3),(2,1),(3,2)],4)
=> 1 = 2 - 1
[4,1,2,5,3] => [4,1,5,2,3] => ([(0,2),(0,3),(0,4),(0,5),(1,11),(1,12),(2,7),(2,10),(3,6),(3,10),(4,6),(4,8),(4,10),(5,1),(5,7),(5,8),(5,10),(6,12),(7,11),(7,12),(8,11),(8,12),(10,11),(10,12),(11,9),(12,9)],13)
=> ([],1)
=> ? = 1 - 1
[4,1,3,5,2] => [4,1,3,5,2] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,9),(1,10),(1,11),(1,12),(2,7),(2,11),(2,12),(3,7),(3,9),(3,10),(4,6),(4,10),(4,12),(5,6),(5,9),(5,11),(6,14),(7,13),(9,13),(9,14),(10,13),(10,14),(11,13),(11,14),(12,13),(12,14),(13,8),(14,8)],15)
=> ([],1)
=> ? = 1 - 1
[4,1,5,2,3] => [1,4,5,2,3] => ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,6),(2,7),(2,8),(3,5),(3,7),(3,8),(5,9),(5,10),(6,9),(6,10),(7,10),(8,9),(8,10),(9,4),(10,4)],11)
=> ([],1)
=> ? = 1 - 1
[4,1,5,3,2] => [4,5,3,1,2] => ([(0,1),(0,2),(0,3),(1,7),(1,8),(2,5),(2,8),(3,5),(3,7),(5,9),(6,4),(7,6),(7,9),(8,6),(8,9),(9,4)],10)
=> ([(0,1)],2)
=> ? = 1 - 1
[4,2,1,5,3] => [4,5,2,1,3] => ([(0,2),(0,3),(0,4),(1,9),(1,10),(2,6),(2,7),(3,5),(3,6),(4,1),(4,5),(4,7),(5,10),(6,9),(6,10),(7,9),(7,10),(9,8),(10,8)],11)
=> ([],1)
=> ? = 1 - 1
[4,2,3,5,1] => [2,4,3,5,1] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(1,10),(2,8),(2,9),(2,10),(3,7),(3,9),(3,10),(4,5),(4,7),(4,8),(5,11),(7,11),(7,12),(8,11),(8,12),(9,12),(10,11),(10,12),(11,6),(12,6)],13)
=> ([],1)
=> ? = 1 - 1
[4,2,5,1,3] => [2,4,1,5,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,10),(1,11),(2,6),(2,9),(2,11),(3,6),(3,9),(3,10),(4,7),(4,9),(4,10),(4,11),(5,7),(5,9),(5,10),(5,11),(6,13),(7,12),(7,13),(9,12),(9,13),(10,12),(10,13),(11,12),(11,13),(12,8),(13,8)],14)
=> ([(0,1)],2)
=> ? = 1 - 1
[4,2,5,3,1] => [4,5,2,3,1] => ([(0,1),(0,2),(0,3),(1,7),(1,8),(2,5),(2,8),(3,5),(3,7),(3,8),(5,9),(6,4),(7,6),(7,9),(8,6),(8,9),(9,4)],10)
=> ([(0,1)],2)
=> ? = 1 - 1
[4,3,1,5,2] => [4,3,5,1,2] => ([(0,2),(0,3),(0,4),(1,9),(1,10),(2,6),(2,7),(3,5),(3,6),(4,1),(4,5),(4,7),(5,10),(6,9),(6,10),(7,9),(7,10),(9,8),(10,8)],11)
=> ([],1)
=> ? = 1 - 1
[4,3,2,5,1] => [4,3,2,5,1] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ([(0,3),(2,1),(3,2)],4)
=> 1 = 2 - 1
[4,3,5,1,2] => [1,4,3,5,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(1,10),(2,8),(2,9),(2,10),(3,7),(3,9),(3,10),(4,5),(4,7),(4,8),(5,11),(7,11),(7,12),(8,11),(8,12),(9,12),(10,11),(10,12),(11,6),(12,6)],13)
=> ([],1)
=> ? = 1 - 1
[4,3,5,2,1] => [4,3,5,2,1] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ([(0,3),(2,1),(3,2)],4)
=> 1 = 2 - 1
[4,5,1,2,3] => [1,2,4,5,3] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ([(0,3),(2,1),(3,2)],4)
=> 1 = 2 - 1
[4,5,1,3,2] => [4,1,5,3,2] => ([(0,2),(0,3),(0,4),(0,5),(1,11),(1,12),(2,9),(2,10),(3,6),(3,9),(4,7),(4,9),(4,10),(5,1),(5,6),(5,7),(5,10),(6,11),(6,12),(7,11),(7,12),(9,12),(10,11),(10,12),(11,8),(12,8)],13)
=> ([],1)
=> ? = 1 - 1
[4,5,2,1,3] => [2,4,5,1,3] => ([(0,2),(0,3),(0,4),(0,5),(1,11),(1,12),(2,7),(2,10),(3,6),(3,10),(4,6),(4,8),(4,10),(5,1),(5,7),(5,8),(5,10),(6,12),(7,11),(7,12),(8,11),(8,12),(10,11),(10,12),(11,9),(12,9)],13)
=> ([],1)
=> ? = 1 - 1
[4,5,2,3,1] => [2,4,5,3,1] => ([(0,1),(0,2),(0,3),(0,4),(1,6),(1,11),(2,5),(2,11),(3,5),(3,7),(3,11),(4,6),(4,7),(4,11),(5,9),(6,10),(7,9),(7,10),(9,8),(10,8),(11,9),(11,10)],12)
=> ([(0,1)],2)
=> ? = 2 - 1
[4,5,3,1,2] => [1,4,5,3,2] => ([(0,2),(0,3),(0,4),(1,9),(2,5),(2,7),(3,5),(3,6),(4,1),(4,6),(4,7),(5,10),(6,9),(6,10),(7,9),(7,10),(9,8),(10,8)],11)
=> ([],1)
=> ? = 2 - 1
[4,5,3,2,1] => [4,5,3,2,1] => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> 1 = 2 - 1
[5,1,2,3,4] => [1,2,3,5,4] => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> 1 = 2 - 1
[5,1,4,3,2] => [5,4,1,3,2] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ([(0,3),(2,1),(3,2)],4)
=> 1 = 2 - 1
[5,2,4,3,1] => [5,2,4,3,1] => ([(0,1),(0,2),(0,3),(0,4),(1,10),(2,6),(2,7),(2,10),(3,5),(3,7),(3,10),(4,5),(4,6),(4,10),(5,9),(5,11),(6,9),(6,11),(7,9),(7,11),(9,8),(10,11),(11,8)],12)
=> ([(0,2),(2,1)],3)
=> 1 = 2 - 1
[5,3,4,2,1] => [3,5,4,2,1] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ([(0,3),(2,1),(3,2)],4)
=> 1 = 2 - 1
[5,4,1,3,2] => [5,1,4,3,2] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ([(0,3),(2,1),(3,2)],4)
=> 1 = 2 - 1
[5,4,2,3,1] => [2,5,4,3,1] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ([(0,3),(2,1),(3,2)],4)
=> 1 = 2 - 1
[5,4,3,1,2] => [1,5,4,3,2] => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> 1 = 2 - 1
[5,4,3,2,1] => [5,4,3,2,1] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1 = 2 - 1
[3,4,5,1,6,2] => [3,4,5,6,1,2] => ([(0,4),(0,5),(1,7),(2,9),(2,11),(3,2),(3,10),(4,3),(4,6),(5,1),(5,6),(6,7),(6,10),(7,11),(9,8),(10,9),(10,11),(11,8)],12)
=> ([(0,3),(2,1),(3,2)],4)
=> 1 = 2 - 1
[3,4,5,6,2,1] => [3,4,5,6,2,1] => ([(0,4),(0,5),(1,9),(2,3),(2,11),(3,8),(4,1),(4,10),(5,2),(5,10),(7,6),(8,6),(9,7),(10,9),(10,11),(11,7),(11,8)],12)
=> ([(0,3),(2,1),(3,2)],4)
=> 1 = 2 - 1
[4,3,2,6,1,5] => [4,3,2,1,6,5] => ([(0,4),(0,5),(1,7),(2,9),(2,11),(3,2),(3,10),(4,3),(4,6),(5,1),(5,6),(6,7),(6,10),(7,11),(9,8),(10,9),(10,11),(11,8)],12)
=> ([(0,3),(2,1),(3,2)],4)
=> 1 = 2 - 1
[4,5,6,3,2,1] => [4,5,6,3,2,1] => ([(0,4),(0,5),(1,9),(2,3),(2,11),(3,8),(4,1),(4,10),(5,2),(5,10),(7,6),(8,6),(9,7),(10,9),(10,11),(11,7),(11,8)],12)
=> ([(0,3),(2,1),(3,2)],4)
=> 1 = 2 - 1
[6,5,1,2,3,4] => [1,2,3,6,5,4] => ([(0,4),(0,5),(1,9),(2,3),(2,11),(3,8),(4,1),(4,10),(5,2),(5,10),(7,6),(8,6),(9,7),(10,9),(10,11),(11,7),(11,8)],12)
=> ([(0,3),(2,1),(3,2)],4)
=> 1 = 2 - 1
[6,5,2,4,1,3] => [2,1,6,5,4,3] => ([(0,4),(0,5),(1,7),(2,9),(2,11),(3,2),(3,10),(4,3),(4,6),(5,1),(5,6),(6,7),(6,10),(7,11),(9,8),(10,9),(10,11),(11,8)],12)
=> ([(0,3),(2,1),(3,2)],4)
=> 1 = 2 - 1
[6,5,4,1,2,3] => [1,2,6,5,4,3] => ([(0,4),(0,5),(1,9),(2,3),(2,11),(3,8),(4,1),(4,10),(5,2),(5,10),(7,6),(8,6),(9,7),(10,9),(10,11),(11,7),(11,8)],12)
=> ([(0,3),(2,1),(3,2)],4)
=> 1 = 2 - 1
[6,5,4,3,2,1] => [6,5,4,3,2,1] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 1 = 2 - 1
[7,6,5,4,3,2,1] => [7,6,5,4,3,2,1] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 1 = 2 - 1
Description
The projective dimension of the simple modules corresponding to the minimum of L in the incidence algebra of the lattice L.
Matching statistic: St001060
Values
[1] => ([],1)
=> ([(0,1)],2)
=> ([],2)
=> ? = 0 + 1
[2,1] => ([(0,1)],2)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 1 + 1
[2,3,1] => ([(0,2),(1,2)],3)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(2,3)],4)
=> ? = 1 + 1
[3,1,2] => ([(0,2),(1,2)],3)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(2,3)],4)
=> ? = 1 + 1
[3,2,1] => ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([],4)
=> ? = 2 + 1
[2,3,4,1] => ([(0,3),(1,3),(2,3)],4)
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(2,3),(2,4),(3,4)],5)
=> ? = 2 + 1
[2,4,1,3] => ([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,4),(2,3),(3,4)],5)
=> 2 = 1 + 1
[2,4,3,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(2,4),(3,4)],5)
=> ? = 1 + 1
[3,1,4,2] => ([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,4),(2,3),(3,4)],5)
=> 2 = 1 + 1
[3,2,4,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(2,4),(3,4)],5)
=> ? = 1 + 1
[3,4,1,2] => ([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> ([(1,4),(2,3)],5)
=> ? = 2 + 1
[3,4,2,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(3,4)],5)
=> ? = 2 + 1
[4,1,2,3] => ([(0,3),(1,3),(2,3)],4)
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(2,3),(2,4),(3,4)],5)
=> ? = 2 + 1
[4,1,3,2] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(2,4),(3,4)],5)
=> ? = 1 + 1
[4,2,1,3] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(2,4),(3,4)],5)
=> ? = 1 + 1
[4,2,3,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(3,4)],5)
=> ? = 2 + 1
[4,3,1,2] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(3,4)],5)
=> ? = 2 + 1
[4,3,2,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],5)
=> ? = 2 + 1
[2,3,4,5,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 2 + 1
[2,3,5,1,4] => ([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> 2 = 1 + 1
[2,3,5,4,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 2 + 1
[2,4,1,5,3] => ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> ([(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> 2 = 1 + 1
[2,4,3,5,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 2 + 1
[2,4,5,1,3] => ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(1,2),(1,3),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,4),(2,3),(2,5),(3,5),(4,5)],6)
=> 2 = 1 + 1
[2,4,5,3,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 1 + 1
[2,5,1,3,4] => ([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> 2 = 1 + 1
[2,5,1,4,3] => ([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,3),(0,5),(1,2),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> 2 = 1 + 1
[2,5,3,1,4] => ([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> 2 = 1 + 1
[2,5,3,4,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 1 + 1
[2,5,4,1,3] => ([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(1,2),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,5),(2,5),(3,4),(4,5)],6)
=> 2 = 1 + 1
[2,5,4,3,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(2,5),(3,5),(4,5)],6)
=> ? = 2 + 1
[3,1,4,5,2] => ([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> 2 = 1 + 1
[3,1,5,2,4] => ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> ([(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> 2 = 1 + 1
[3,1,5,4,2] => ([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,3),(0,5),(1,2),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> 2 = 1 + 1
[3,2,4,5,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 2 + 1
[3,2,5,1,4] => ([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,3),(0,5),(1,2),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> 2 = 1 + 1
[3,2,5,4,1] => ([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(2,4),(2,5),(3,4),(3,5)],6)
=> ? = 2 + 1
[3,4,1,5,2] => ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(1,2),(1,3),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,4),(2,3),(2,5),(3,5),(4,5)],6)
=> 2 = 1 + 1
[3,4,2,5,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 1 + 1
[3,4,5,1,2] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> ([(1,2),(3,4),(3,5),(4,5)],6)
=> ? = 2 + 1
[3,4,5,2,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(3,4),(3,5),(4,5)],6)
=> ? = 2 + 1
[3,5,1,2,4] => ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(1,2),(1,3),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,4),(2,3),(2,5),(3,5),(4,5)],6)
=> 2 = 1 + 1
[3,5,1,4,2] => ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,5),(2,4),(3,4),(3,5)],6)
=> 2 = 1 + 1
[3,5,2,1,4] => ([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(1,2),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,5),(2,5),(3,4),(4,5)],6)
=> 2 = 1 + 1
[3,5,2,4,1] => ([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(2,5),(3,4),(4,5)],6)
=> ? = 1 + 1
[3,5,4,1,2] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> ([(1,2),(3,5),(4,5)],6)
=> ? = 1 + 1
[3,5,4,2,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(3,5),(4,5)],6)
=> ? = 2 + 1
[4,1,2,5,3] => ([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> 2 = 1 + 1
[4,1,3,5,2] => ([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> 2 = 1 + 1
[4,1,5,2,3] => ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(1,2),(1,3),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,4),(2,3),(2,5),(3,5),(4,5)],6)
=> 2 = 1 + 1
[4,1,5,3,2] => ([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(1,2),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,5),(2,5),(3,4),(4,5)],6)
=> 2 = 1 + 1
[4,2,1,5,3] => ([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,3),(0,5),(1,2),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> 2 = 1 + 1
[4,2,3,5,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 1 + 1
[4,2,5,1,3] => ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,5),(2,4),(3,4),(3,5)],6)
=> 2 = 1 + 1
[4,2,5,3,1] => ([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(2,5),(3,4),(4,5)],6)
=> ? = 1 + 1
[4,3,1,5,2] => ([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(1,2),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,5),(2,5),(3,4),(4,5)],6)
=> 2 = 1 + 1
[4,3,2,5,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(2,5),(3,5),(4,5)],6)
=> ? = 2 + 1
[4,3,5,1,2] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> ([(1,2),(3,5),(4,5)],6)
=> ? = 1 + 1
[4,3,5,2,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(3,5),(4,5)],6)
=> ? = 2 + 1
[4,5,1,2,3] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> ([(1,2),(3,4),(3,5),(4,5)],6)
=> ? = 2 + 1
[4,5,1,3,2] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> ([(1,2),(3,5),(4,5)],6)
=> ? = 1 + 1
[4,5,2,1,3] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> ([(1,2),(3,5),(4,5)],6)
=> ? = 1 + 1
[4,5,2,3,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(2,5),(3,4)],6)
=> ? = 2 + 1
[4,5,3,1,2] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(2,5),(3,4)],6)
=> ? = 2 + 1
[4,5,3,2,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(4,5)],6)
=> ? = 2 + 1
[5,1,2,3,4] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 2 + 1
[5,1,2,4,3] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 2 + 1
[5,1,3,2,4] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 2 + 1
[5,1,3,4,2] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 1 + 1
[5,1,4,2,3] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 1 + 1
[5,1,4,3,2] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(2,5),(3,5),(4,5)],6)
=> ? = 2 + 1
[5,2,1,3,4] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 2 + 1
[5,2,1,4,3] => ([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(2,4),(2,5),(3,4),(3,5)],6)
=> ? = 2 + 1
[5,2,3,1,4] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 1 + 1
Description
The distinguishing index of a graph.
This is the smallest number of colours such that there is a colouring of the edges which is not preserved by any automorphism.
If the graph has a connected component which is a single edge, or at least two isolated vertices, this statistic is undefined.
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!