Your data matches 2 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
Matching statistic: St000259
Mp00025: Dyck paths to 132-avoiding permutationPermutations
Mp00310: Permutations toric promotionPermutations
Mp00160: Permutations graph of inversionsGraphs
St000259: Graphs ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[1,0]
=> [1] => [1] => ([],1)
=> 0
[1,0,1,0]
=> [2,1] => [2,1] => ([(0,1)],2)
=> 1
[1,1,0,1,0,0]
=> [2,1,3] => [3,1,2] => ([(0,2),(1,2)],3)
=> 2
[1,1,1,0,0,0]
=> [1,2,3] => [3,2,1] => ([(0,1),(0,2),(1,2)],3)
=> 1
[1,0,1,1,0,0,1,0]
=> [4,2,3,1] => [3,1,4,2] => ([(0,3),(1,2),(2,3)],4)
=> 3
[1,0,1,1,1,0,0,0]
=> [2,3,4,1] => [4,2,1,3] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> 2
[1,1,1,0,0,0,1,0]
=> [4,1,2,3] => [3,4,2,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 2
[1,1,1,0,0,1,0,0]
=> [3,1,2,4] => [2,4,3,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> 2
[1,1,1,0,1,0,0,0]
=> [2,1,3,4] => [4,1,2,3] => ([(0,3),(1,3),(2,3)],4)
=> 2
[1,1,1,1,0,0,0,0]
=> [1,2,3,4] => [4,2,3,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 2
[1,0,1,1,0,0,1,0,1,0]
=> [5,4,2,3,1] => [4,3,1,5,2] => ([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> 3
[1,0,1,1,0,0,1,1,0,0]
=> [4,5,2,3,1] => [3,4,1,5,2] => ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> 3
[1,0,1,1,0,1,0,0,1,0]
=> [5,3,2,4,1] => [4,2,1,5,3] => ([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> 3
[1,0,1,1,1,0,0,0,1,0]
=> [5,2,3,4,1] => [4,5,2,1,3] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> 2
[1,0,1,1,1,0,0,1,0,0]
=> [4,2,3,5,1] => [3,5,2,1,4] => ([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> 3
[1,0,1,1,1,0,1,0,0,0]
=> [3,2,4,5,1] => [2,5,3,1,4] => ([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> 3
[1,0,1,1,1,1,0,0,0,0]
=> [2,3,4,5,1] => [5,2,3,1,4] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[1,1,0,1,0,0,1,1,0,0]
=> [4,5,2,1,3] => [3,1,4,5,2] => ([(0,4),(1,4),(2,3),(3,4)],5)
=> 3
[1,1,0,1,1,0,0,0,1,0]
=> [5,2,3,1,4] => [4,1,5,2,3] => ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> 3
[1,1,0,1,1,0,0,1,0,0]
=> [4,2,3,1,5] => [3,1,5,2,4] => ([(0,4),(1,3),(2,3),(2,4)],5)
=> 4
[1,1,0,1,1,1,0,0,0,0]
=> [2,3,4,1,5] => [5,2,1,3,4] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[1,1,1,0,0,0,1,0,1,0]
=> [5,4,1,2,3] => [4,3,5,2,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[1,1,1,0,0,0,1,1,0,0]
=> [4,5,1,2,3] => [3,4,5,2,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[1,1,1,0,0,1,0,0,1,0]
=> [5,3,1,2,4] => [4,2,5,3,1] => ([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[1,1,1,0,0,1,0,1,0,0]
=> [4,3,1,2,5] => [3,2,5,4,1] => ([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> 2
[1,1,1,0,0,1,1,0,0,0]
=> [3,4,1,2,5] => [2,3,5,4,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[1,1,1,1,0,0,0,0,1,0]
=> [5,1,2,3,4] => [4,5,2,3,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> 2
[1,1,1,1,0,0,0,1,0,0]
=> [4,1,2,3,5] => [3,5,2,4,1] => ([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[1,1,1,1,0,0,1,0,0,0]
=> [3,1,2,4,5] => [2,5,3,4,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[1,1,1,1,0,1,0,0,0,0]
=> [2,1,3,4,5] => [5,1,2,3,4] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 2
[1,1,1,1,1,0,0,0,0,0]
=> [1,2,3,4,5] => [5,2,3,4,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[1,0,1,1,0,0,1,0,1,0,1,0]
=> [6,5,4,2,3,1] => [5,4,3,1,6,2] => ([(0,5),(1,2),(1,3),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
[1,0,1,1,0,0,1,0,1,1,0,0]
=> [5,6,4,2,3,1] => [4,5,3,1,6,2] => ([(0,5),(1,2),(1,3),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
[1,0,1,1,0,0,1,1,0,0,1,0]
=> [6,4,5,2,3,1] => [5,3,4,1,6,2] => ([(0,5),(1,2),(1,3),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
[1,0,1,1,0,0,1,1,0,1,0,0]
=> [5,4,6,2,3,1] => [4,3,5,1,6,2] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)
=> 3
[1,0,1,1,0,0,1,1,1,0,0,0]
=> [4,5,6,2,3,1] => [3,4,5,1,6,2] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> 3
[1,0,1,1,0,1,0,0,1,0,1,0]
=> [6,5,3,2,4,1] => [5,4,2,1,6,3] => ([(0,3),(1,2),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
[1,0,1,1,0,1,0,0,1,1,0,0]
=> [5,6,3,2,4,1] => [4,5,2,1,6,3] => ([(0,5),(1,2),(1,3),(1,4),(2,3),(2,4),(3,5),(4,5)],6)
=> 3
[1,0,1,1,0,1,0,1,0,0,1,0]
=> [6,4,3,2,5,1] => [5,3,2,1,6,4] => ([(0,1),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
[1,0,1,1,0,1,1,0,0,0,1,0]
=> [6,3,4,2,5,1] => [5,2,3,1,6,4] => ([(0,3),(1,4),(1,5),(2,4),(2,5),(3,5),(4,5)],6)
=> 3
[1,0,1,1,1,0,0,0,1,0,1,0]
=> [6,5,2,3,4,1] => [5,4,6,2,1,3] => ([(0,1),(0,4),(0,5),(1,2),(1,3),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
[1,0,1,1,1,0,0,0,1,1,0,0]
=> [5,6,2,3,4,1] => [4,5,6,2,1,3] => ([(0,1),(0,2),(0,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
[1,0,1,1,1,0,0,1,0,0,1,0]
=> [6,4,2,3,5,1] => [5,3,6,2,1,4] => ([(0,2),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> 2
[1,0,1,1,1,0,0,1,0,1,0,0]
=> [5,4,2,3,6,1] => [4,3,6,2,1,5] => ([(0,3),(1,2),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
[1,0,1,1,1,0,0,1,1,0,0,0]
=> [4,5,2,3,6,1] => [3,4,6,2,1,5] => ([(0,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
[1,0,1,1,1,0,1,0,0,0,1,0]
=> [6,3,2,4,5,1] => [5,2,6,3,1,4] => ([(0,4),(0,5),(1,2),(1,4),(2,3),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
[1,0,1,1,1,0,1,0,0,1,0,0]
=> [5,3,2,4,6,1] => [4,2,6,3,1,5] => ([(0,4),(1,3),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> 3
[1,0,1,1,1,0,1,0,1,0,0,0]
=> [4,3,2,5,6,1] => [3,2,6,4,1,5] => ([(0,4),(1,2),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
[1,0,1,1,1,0,1,1,0,0,0,0]
=> [3,4,2,5,6,1] => [2,3,6,4,1,5] => ([(0,5),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> 3
[1,0,1,1,1,1,0,0,0,0,1,0]
=> [6,2,3,4,5,1] => [5,6,2,3,1,4] => ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)
=> 2
Description
The diameter of a connected graph. This is the greatest distance between any pair of vertices.
Matching statistic: St001195
Mp00027: Dyck paths to partitionInteger partitions
Mp00230: Integer partitions parallelogram polyominoDyck paths
Mp00199: Dyck paths prime Dyck pathDyck paths
St001195: Dyck paths ⟶ ℤResult quality: 8% values known / values provided: 8%distinct values known / distinct values provided: 20%
Values
[1,0]
=> []
=> []
=> [1,0]
=> ? = 0 - 1
[1,0,1,0]
=> [1]
=> [1,0]
=> [1,1,0,0]
=> ? = 1 - 1
[1,1,0,1,0,0]
=> [1]
=> [1,0]
=> [1,1,0,0]
=> ? = 2 - 1
[1,1,1,0,0,0]
=> []
=> []
=> [1,0]
=> ? = 1 - 1
[1,0,1,1,0,0,1,0]
=> [3,1,1]
=> [1,0,1,0,1,1,0,1,0,0]
=> [1,1,0,1,0,1,1,0,1,0,0,0]
=> ? = 3 - 1
[1,0,1,1,1,0,0,0]
=> [1,1,1]
=> [1,1,0,1,0,0]
=> [1,1,1,0,1,0,0,0]
=> 1 = 2 - 1
[1,1,1,0,0,0,1,0]
=> [3]
=> [1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,0]
=> 1 = 2 - 1
[1,1,1,0,0,1,0,0]
=> [2]
=> [1,0,1,0]
=> [1,1,0,1,0,0]
=> 1 = 2 - 1
[1,1,1,0,1,0,0,0]
=> [1]
=> [1,0]
=> [1,1,0,0]
=> ? = 2 - 1
[1,1,1,1,0,0,0,0]
=> []
=> []
=> [1,0]
=> ? = 2 - 1
[1,0,1,1,0,0,1,0,1,0]
=> [4,3,1,1]
=> [1,0,1,1,1,0,1,0,0,1,0,1,0,0]
=> [1,1,0,1,1,1,0,1,0,0,1,0,1,0,0,0]
=> ? = 3 - 1
[1,0,1,1,0,0,1,1,0,0]
=> [3,3,1,1]
=> [1,1,1,0,1,0,0,1,0,1,0,0]
=> [1,1,1,1,0,1,0,0,1,0,1,0,0,0]
=> ? = 3 - 1
[1,0,1,1,0,1,0,0,1,0]
=> [4,2,1,1]
=> [1,0,1,0,1,1,1,0,0,1,0,1,0,0]
=> [1,1,0,1,0,1,1,1,0,0,1,0,1,0,0,0]
=> ? = 3 - 1
[1,0,1,1,1,0,0,0,1,0]
=> [4,1,1,1]
=> [1,0,1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,1,0,1,0,1,1,0,1,0,1,0,0,0]
=> ? = 2 - 1
[1,0,1,1,1,0,0,1,0,0]
=> [3,1,1,1]
=> [1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,1,0,1,1,0,1,0,1,0,0,0]
=> ? = 3 - 1
[1,0,1,1,1,0,1,0,0,0]
=> [2,1,1,1]
=> [1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,1,1,0,1,0,1,0,0,0]
=> ? = 3 - 1
[1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1]
=> [1,1,0,1,0,1,0,0]
=> [1,1,1,0,1,0,1,0,0,0]
=> 1 = 2 - 1
[1,1,0,1,0,0,1,1,0,0]
=> [3,3,1]
=> [1,1,1,0,1,0,0,1,0,0]
=> [1,1,1,1,0,1,0,0,1,0,0,0]
=> ? = 3 - 1
[1,1,0,1,1,0,0,0,1,0]
=> [4,1,1]
=> [1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,1,0,1,0,1,0,1,1,0,1,0,0,0]
=> ? = 3 - 1
[1,1,0,1,1,0,0,1,0,0]
=> [3,1,1]
=> [1,0,1,0,1,1,0,1,0,0]
=> [1,1,0,1,0,1,1,0,1,0,0,0]
=> ? = 4 - 1
[1,1,0,1,1,1,0,0,0,0]
=> [1,1,1]
=> [1,1,0,1,0,0]
=> [1,1,1,0,1,0,0,0]
=> 1 = 2 - 1
[1,1,1,0,0,0,1,0,1,0]
=> [4,3]
=> [1,0,1,1,1,0,1,0,0,0]
=> [1,1,0,1,1,1,0,1,0,0,0,0]
=> ? = 2 - 1
[1,1,1,0,0,0,1,1,0,0]
=> [3,3]
=> [1,1,1,0,1,0,0,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> 1 = 2 - 1
[1,1,1,0,0,1,0,0,1,0]
=> [4,2]
=> [1,0,1,0,1,1,1,0,0,0]
=> [1,1,0,1,0,1,1,1,0,0,0,0]
=> ? = 2 - 1
[1,1,1,0,0,1,0,1,0,0]
=> [3,2]
=> [1,0,1,1,1,0,0,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> 1 = 2 - 1
[1,1,1,0,0,1,1,0,0,0]
=> [2,2]
=> [1,1,1,0,0,0]
=> [1,1,1,1,0,0,0,0]
=> 1 = 2 - 1
[1,1,1,1,0,0,0,0,1,0]
=> [4]
=> [1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> 1 = 2 - 1
[1,1,1,1,0,0,0,1,0,0]
=> [3]
=> [1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,0]
=> 1 = 2 - 1
[1,1,1,1,0,0,1,0,0,0]
=> [2]
=> [1,0,1,0]
=> [1,1,0,1,0,0]
=> 1 = 2 - 1
[1,1,1,1,0,1,0,0,0,0]
=> [1]
=> [1,0]
=> [1,1,0,0]
=> ? = 2 - 1
[1,1,1,1,1,0,0,0,0,0]
=> []
=> []
=> [1,0]
=> ? = 2 - 1
[1,0,1,1,0,0,1,0,1,0,1,0]
=> [5,4,3,1,1]
=> [1,0,1,1,1,0,1,1,1,0,0,0,0,1,0,1,0,0]
=> [1,1,0,1,1,1,0,1,1,1,0,0,0,0,1,0,1,0,0,0]
=> ? = 3 - 1
[1,0,1,1,0,0,1,0,1,1,0,0]
=> [4,4,3,1,1]
=> [1,1,1,0,1,1,1,0,0,0,0,1,0,1,0,0]
=> [1,1,1,1,0,1,1,1,0,0,0,0,1,0,1,0,0,0]
=> ? = 3 - 1
[1,0,1,1,0,0,1,1,0,0,1,0]
=> [5,3,3,1,1]
=> [1,0,1,0,1,1,1,1,1,0,0,0,0,1,0,1,0,0]
=> [1,1,0,1,0,1,1,1,1,1,0,0,0,0,1,0,1,0,0,0]
=> ? = 3 - 1
[1,0,1,1,0,0,1,1,0,1,0,0]
=> [4,3,3,1,1]
=> [1,0,1,1,1,1,1,0,0,0,0,1,0,1,0,0]
=> [1,1,0,1,1,1,1,1,0,0,0,0,1,0,1,0,0,0]
=> ? = 3 - 1
[1,0,1,1,0,0,1,1,1,0,0,0]
=> [3,3,3,1,1]
=> [1,1,1,1,1,0,0,0,0,1,0,1,0,0]
=> [1,1,1,1,1,1,0,0,0,0,1,0,1,0,0,0]
=> ? = 3 - 1
[1,0,1,1,0,1,0,0,1,0,1,0]
=> [5,4,2,1,1]
=> [1,0,1,1,1,0,1,0,1,1,0,0,0,1,0,1,0,0]
=> [1,1,0,1,1,1,0,1,0,1,1,0,0,0,1,0,1,0,0,0]
=> ? = 3 - 1
[1,0,1,1,0,1,0,0,1,1,0,0]
=> [4,4,2,1,1]
=> [1,1,1,0,1,0,1,1,0,0,0,1,0,1,0,0]
=> [1,1,1,1,0,1,0,1,1,0,0,0,1,0,1,0,0,0]
=> ? = 3 - 1
[1,0,1,1,0,1,0,1,0,0,1,0]
=> [5,3,2,1,1]
=> [1,0,1,0,1,1,1,0,1,1,0,0,0,1,0,1,0,0]
=> [1,1,0,1,0,1,1,1,0,1,1,0,0,0,1,0,1,0,0,0]
=> ? = 3 - 1
[1,0,1,1,0,1,1,0,0,0,1,0]
=> [5,2,2,1,1]
=> [1,0,1,0,1,0,1,1,1,1,0,0,0,1,0,1,0,0]
=> [1,1,0,1,0,1,0,1,1,1,1,0,0,0,1,0,1,0,0,0]
=> ? = 3 - 1
[1,0,1,1,1,0,0,0,1,0,1,0]
=> [5,4,1,1,1]
=> [1,0,1,1,1,0,1,0,1,0,0,1,0,1,0,1,0,0]
=> [1,1,0,1,1,1,0,1,0,1,0,0,1,0,1,0,1,0,0,0]
=> ? = 2 - 1
[1,0,1,1,1,0,0,0,1,1,0,0]
=> [4,4,1,1,1]
=> [1,1,1,0,1,0,1,0,0,1,0,1,0,1,0,0]
=> [1,1,1,1,0,1,0,1,0,0,1,0,1,0,1,0,0,0]
=> ? = 2 - 1
[1,0,1,1,1,0,0,1,0,0,1,0]
=> [5,3,1,1,1]
=> [1,0,1,0,1,1,1,0,1,0,0,1,0,1,0,1,0,0]
=> [1,1,0,1,0,1,1,1,0,1,0,0,1,0,1,0,1,0,0,0]
=> ? = 2 - 1
[1,0,1,1,1,0,0,1,0,1,0,0]
=> [4,3,1,1,1]
=> [1,0,1,1,1,0,1,0,0,1,0,1,0,1,0,0]
=> [1,1,0,1,1,1,0,1,0,0,1,0,1,0,1,0,0,0]
=> ? = 3 - 1
[1,0,1,1,1,0,0,1,1,0,0,0]
=> [3,3,1,1,1]
=> [1,1,1,0,1,0,0,1,0,1,0,1,0,0]
=> [1,1,1,1,0,1,0,0,1,0,1,0,1,0,0,0]
=> ? = 3 - 1
[1,0,1,1,1,0,1,0,0,0,1,0]
=> [5,2,1,1,1]
=> [1,0,1,0,1,0,1,1,1,0,0,1,0,1,0,1,0,0]
=> [1,1,0,1,0,1,0,1,1,1,0,0,1,0,1,0,1,0,0,0]
=> ? = 2 - 1
[1,0,1,1,1,0,1,0,0,1,0,0]
=> [4,2,1,1,1]
=> [1,0,1,0,1,1,1,0,0,1,0,1,0,1,0,0]
=> [1,1,0,1,0,1,1,1,0,0,1,0,1,0,1,0,0,0]
=> ? = 3 - 1
[1,0,1,1,1,0,1,0,1,0,0,0]
=> [3,2,1,1,1]
=> [1,0,1,1,1,0,0,1,0,1,0,1,0,0]
=> [1,1,0,1,1,1,0,0,1,0,1,0,1,0,0,0]
=> ? = 3 - 1
[1,0,1,1,1,0,1,1,0,0,0,0]
=> [2,2,1,1,1]
=> [1,1,1,0,0,1,0,1,0,1,0,0]
=> [1,1,1,1,0,0,1,0,1,0,1,0,0,0]
=> ? = 3 - 1
[1,0,1,1,1,1,0,0,0,0,1,0]
=> [5,1,1,1,1]
=> [1,0,1,0,1,0,1,0,1,1,0,1,0,1,0,1,0,0]
=> [1,1,0,1,0,1,0,1,0,1,1,0,1,0,1,0,1,0,0,0]
=> ? = 2 - 1
[1,0,1,1,1,1,0,0,0,1,0,0]
=> [4,1,1,1,1]
=> [1,0,1,0,1,0,1,1,0,1,0,1,0,1,0,0]
=> [1,1,0,1,0,1,0,1,1,0,1,0,1,0,1,0,0,0]
=> ? = 3 - 1
[1,0,1,1,1,1,0,0,1,0,0,0]
=> [3,1,1,1,1]
=> [1,0,1,0,1,1,0,1,0,1,0,1,0,0]
=> [1,1,0,1,0,1,1,0,1,0,1,0,1,0,0,0]
=> ? = 3 - 1
[1,0,1,1,1,1,0,1,0,0,0,0]
=> [2,1,1,1,1]
=> [1,0,1,1,0,1,0,1,0,1,0,0]
=> [1,1,0,1,1,0,1,0,1,0,1,0,0,0]
=> ? = 3 - 1
[1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1]
=> [1,1,0,1,0,1,0,1,0,0]
=> [1,1,1,0,1,0,1,0,1,0,0,0]
=> ? = 2 - 1
[1,1,0,1,0,0,1,0,1,1,0,0]
=> [4,4,3,1]
=> [1,1,1,0,1,1,1,0,0,0,0,1,0,0]
=> [1,1,1,1,0,1,1,1,0,0,0,0,1,0,0,0]
=> ? = 3 - 1
[1,1,0,1,0,0,1,1,0,0,1,0]
=> [5,3,3,1]
=> [1,0,1,0,1,1,1,1,1,0,0,0,0,1,0,0]
=> [1,1,0,1,0,1,1,1,1,1,0,0,0,0,1,0,0,0]
=> ? = 3 - 1
[1,1,0,1,0,0,1,1,0,1,0,0]
=> [4,3,3,1]
=> [1,0,1,1,1,1,1,0,0,0,0,1,0,0]
=> [1,1,0,1,1,1,1,1,0,0,0,0,1,0,0,0]
=> ? = 3 - 1
[1,1,0,1,0,0,1,1,1,0,0,0]
=> [3,3,3,1]
=> [1,1,1,1,1,0,0,0,0,1,0,0]
=> [1,1,1,1,1,1,0,0,0,0,1,0,0,0]
=> ? = 3 - 1
[1,1,0,1,0,1,0,0,1,1,0,0]
=> [4,4,2,1]
=> [1,1,1,0,1,0,1,1,0,0,0,1,0,0]
=> [1,1,1,1,0,1,0,1,1,0,0,0,1,0,0,0]
=> ? = 3 - 1
[1,1,0,1,0,1,1,0,0,0,1,0]
=> [5,2,2,1]
=> [1,0,1,0,1,0,1,1,1,1,0,0,0,1,0,0]
=> [1,1,0,1,0,1,0,1,1,1,1,0,0,0,1,0,0,0]
=> ? = 3 - 1
[1,1,0,1,1,0,0,0,1,0,1,0]
=> [5,4,1,1]
=> [1,0,1,1,1,0,1,0,1,0,0,1,0,1,0,0]
=> [1,1,0,1,1,1,0,1,0,1,0,0,1,0,1,0,0,0]
=> ? = 3 - 1
[1,1,0,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1]
=> [1,1,0,1,0,1,0,0]
=> [1,1,1,0,1,0,1,0,0,0]
=> 1 = 2 - 1
[1,1,1,0,0,1,1,1,0,0,0,0]
=> [2,2,2]
=> [1,1,1,1,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> 1 = 2 - 1
[1,1,1,0,1,1,1,0,0,0,0,0]
=> [1,1,1]
=> [1,1,0,1,0,0]
=> [1,1,1,0,1,0,0,0]
=> 1 = 2 - 1
[1,1,1,1,0,0,0,1,1,0,0,0]
=> [3,3]
=> [1,1,1,0,1,0,0,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> 1 = 2 - 1
[1,1,1,1,0,0,1,0,1,0,0,0]
=> [3,2]
=> [1,0,1,1,1,0,0,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> 1 = 2 - 1
[1,1,1,1,0,0,1,1,0,0,0,0]
=> [2,2]
=> [1,1,1,0,0,0]
=> [1,1,1,1,0,0,0,0]
=> 1 = 2 - 1
[1,1,1,1,1,0,0,0,0,1,0,0]
=> [4]
=> [1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> 1 = 2 - 1
[1,1,1,1,1,0,0,0,1,0,0,0]
=> [3]
=> [1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,0]
=> 1 = 2 - 1
[1,1,1,1,1,0,0,1,0,0,0,0]
=> [2]
=> [1,0,1,0]
=> [1,1,0,1,0,0]
=> 1 = 2 - 1
[1,1,1,0,1,1,1,1,0,0,0,0,0,0]
=> [1,1,1,1]
=> [1,1,0,1,0,1,0,0]
=> [1,1,1,0,1,0,1,0,0,0]
=> 1 = 2 - 1
[1,1,1,1,0,0,1,1,1,0,0,0,0,0]
=> [2,2,2]
=> [1,1,1,1,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> 1 = 2 - 1
[1,1,1,1,0,1,1,1,0,0,0,0,0,0]
=> [1,1,1]
=> [1,1,0,1,0,0]
=> [1,1,1,0,1,0,0,0]
=> 1 = 2 - 1
[1,1,1,1,1,0,0,0,1,1,0,0,0,0]
=> [3,3]
=> [1,1,1,0,1,0,0,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> 1 = 2 - 1
[1,1,1,1,1,0,0,1,0,1,0,0,0,0]
=> [3,2]
=> [1,0,1,1,1,0,0,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> 1 = 2 - 1
[1,1,1,1,1,0,0,1,1,0,0,0,0,0]
=> [2,2]
=> [1,1,1,0,0,0]
=> [1,1,1,1,0,0,0,0]
=> 1 = 2 - 1
[1,1,1,1,1,1,0,0,0,0,1,0,0,0]
=> [4]
=> [1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> 1 = 2 - 1
[1,1,1,1,1,1,0,0,0,1,0,0,0,0]
=> [3]
=> [1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,0]
=> 1 = 2 - 1
[1,1,1,1,1,1,0,0,1,0,0,0,0,0]
=> [2]
=> [1,0,1,0]
=> [1,1,0,1,0,0]
=> 1 = 2 - 1
Description
The global dimension of the algebra $A/AfA$ of the corresponding Nakayama algebra $A$ with minimal left faithful projective-injective module $Af$.