searching the database
Your data matches 5 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
(click to perform a complete search on your data)
Matching statistic: St000047
(load all 2 compositions to match this statistic)
(load all 2 compositions to match this statistic)
St000047: Integer compositions ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[1] => 1
[1,1] => 1
[2] => 1
[1,1,1] => 1
[1,2] => 1
[2,1] => 2
[3] => 1
[1,1,1,1] => 1
[1,1,2] => 1
[1,2,1] => 2
[1,3] => 1
[2,1,1] => 3
[2,2] => 3
[3,1] => 3
[4] => 1
[1,1,1,1,1] => 1
[1,1,1,2] => 1
[1,1,2,1] => 2
[1,1,3] => 1
[1,2,1,1] => 3
[1,2,2] => 3
[1,3,1] => 3
[1,4] => 1
[2,1,1,1] => 4
[2,1,2] => 4
[2,2,1] => 8
[2,3] => 4
[3,1,1] => 6
[3,2] => 6
[4,1] => 4
[5] => 1
[1,1,1,1,1,1] => 1
[1,1,1,1,2] => 1
[1,1,1,2,1] => 2
[1,1,1,3] => 1
[1,1,2,1,1] => 3
[1,1,2,2] => 3
[1,1,3,1] => 3
[1,1,4] => 1
[1,2,1,1,1] => 4
[1,2,1,2] => 4
[1,2,2,1] => 8
[1,2,3] => 4
[1,3,1,1] => 6
[1,3,2] => 6
[1,4,1] => 4
[1,5] => 1
[2,1,1,1,1] => 5
[2,1,1,2] => 5
[2,1,2,1] => 10
Description
The number of standard immaculate tableaux of a given shape.
See Proposition 3.13 of [2] for a hook-length counting formula of these tableaux.
Matching statistic: St000255
(load all 2 compositions to match this statistic)
(load all 2 compositions to match this statistic)
Mp00038: Integer compositions —reverse⟶ Integer compositions
Mp00231: Integer compositions —bounce path⟶ Dyck paths
Mp00119: Dyck paths —to 321-avoiding permutation (Krattenthaler)⟶ Permutations
St000255: Permutations ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00231: Integer compositions —bounce path⟶ Dyck paths
Mp00119: Dyck paths —to 321-avoiding permutation (Krattenthaler)⟶ Permutations
St000255: Permutations ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[1] => [1] => [1,0]
=> [1] => 1
[1,1] => [1,1] => [1,0,1,0]
=> [1,2] => 1
[2] => [2] => [1,1,0,0]
=> [2,1] => 1
[1,1,1] => [1,1,1] => [1,0,1,0,1,0]
=> [1,2,3] => 1
[1,2] => [2,1] => [1,1,0,0,1,0]
=> [2,1,3] => 1
[2,1] => [1,2] => [1,0,1,1,0,0]
=> [1,3,2] => 2
[3] => [3] => [1,1,1,0,0,0]
=> [3,1,2] => 1
[1,1,1,1] => [1,1,1,1] => [1,0,1,0,1,0,1,0]
=> [1,2,3,4] => 1
[1,1,2] => [2,1,1] => [1,1,0,0,1,0,1,0]
=> [2,1,3,4] => 1
[1,2,1] => [1,2,1] => [1,0,1,1,0,0,1,0]
=> [1,3,2,4] => 2
[1,3] => [3,1] => [1,1,1,0,0,0,1,0]
=> [3,1,2,4] => 1
[2,1,1] => [1,1,2] => [1,0,1,0,1,1,0,0]
=> [1,2,4,3] => 3
[2,2] => [2,2] => [1,1,0,0,1,1,0,0]
=> [2,1,4,3] => 3
[3,1] => [1,3] => [1,0,1,1,1,0,0,0]
=> [1,4,2,3] => 3
[4] => [4] => [1,1,1,1,0,0,0,0]
=> [4,1,2,3] => 1
[1,1,1,1,1] => [1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0]
=> [1,2,3,4,5] => 1
[1,1,1,2] => [2,1,1,1] => [1,1,0,0,1,0,1,0,1,0]
=> [2,1,3,4,5] => 1
[1,1,2,1] => [1,2,1,1] => [1,0,1,1,0,0,1,0,1,0]
=> [1,3,2,4,5] => 2
[1,1,3] => [3,1,1] => [1,1,1,0,0,0,1,0,1,0]
=> [3,1,2,4,5] => 1
[1,2,1,1] => [1,1,2,1] => [1,0,1,0,1,1,0,0,1,0]
=> [1,2,4,3,5] => 3
[1,2,2] => [2,2,1] => [1,1,0,0,1,1,0,0,1,0]
=> [2,1,4,3,5] => 3
[1,3,1] => [1,3,1] => [1,0,1,1,1,0,0,0,1,0]
=> [1,4,2,3,5] => 3
[1,4] => [4,1] => [1,1,1,1,0,0,0,0,1,0]
=> [4,1,2,3,5] => 1
[2,1,1,1] => [1,1,1,2] => [1,0,1,0,1,0,1,1,0,0]
=> [1,2,3,5,4] => 4
[2,1,2] => [2,1,2] => [1,1,0,0,1,0,1,1,0,0]
=> [2,1,3,5,4] => 4
[2,2,1] => [1,2,2] => [1,0,1,1,0,0,1,1,0,0]
=> [1,3,2,5,4] => 8
[2,3] => [3,2] => [1,1,1,0,0,0,1,1,0,0]
=> [3,1,2,5,4] => 4
[3,1,1] => [1,1,3] => [1,0,1,0,1,1,1,0,0,0]
=> [1,2,5,3,4] => 6
[3,2] => [2,3] => [1,1,0,0,1,1,1,0,0,0]
=> [2,1,5,3,4] => 6
[4,1] => [1,4] => [1,0,1,1,1,1,0,0,0,0]
=> [1,5,2,3,4] => 4
[5] => [5] => [1,1,1,1,1,0,0,0,0,0]
=> [5,1,2,3,4] => 1
[1,1,1,1,1,1] => [1,1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,2,3,4,5,6] => 1
[1,1,1,1,2] => [2,1,1,1,1] => [1,1,0,0,1,0,1,0,1,0,1,0]
=> [2,1,3,4,5,6] => 1
[1,1,1,2,1] => [1,2,1,1,1] => [1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,3,2,4,5,6] => 2
[1,1,1,3] => [3,1,1,1] => [1,1,1,0,0,0,1,0,1,0,1,0]
=> [3,1,2,4,5,6] => 1
[1,1,2,1,1] => [1,1,2,1,1] => [1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,2,4,3,5,6] => 3
[1,1,2,2] => [2,2,1,1] => [1,1,0,0,1,1,0,0,1,0,1,0]
=> [2,1,4,3,5,6] => 3
[1,1,3,1] => [1,3,1,1] => [1,0,1,1,1,0,0,0,1,0,1,0]
=> [1,4,2,3,5,6] => 3
[1,1,4] => [4,1,1] => [1,1,1,1,0,0,0,0,1,0,1,0]
=> [4,1,2,3,5,6] => 1
[1,2,1,1,1] => [1,1,1,2,1] => [1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,2,3,5,4,6] => 4
[1,2,1,2] => [2,1,2,1] => [1,1,0,0,1,0,1,1,0,0,1,0]
=> [2,1,3,5,4,6] => 4
[1,2,2,1] => [1,2,2,1] => [1,0,1,1,0,0,1,1,0,0,1,0]
=> [1,3,2,5,4,6] => 8
[1,2,3] => [3,2,1] => [1,1,1,0,0,0,1,1,0,0,1,0]
=> [3,1,2,5,4,6] => 4
[1,3,1,1] => [1,1,3,1] => [1,0,1,0,1,1,1,0,0,0,1,0]
=> [1,2,5,3,4,6] => 6
[1,3,2] => [2,3,1] => [1,1,0,0,1,1,1,0,0,0,1,0]
=> [2,1,5,3,4,6] => 6
[1,4,1] => [1,4,1] => [1,0,1,1,1,1,0,0,0,0,1,0]
=> [1,5,2,3,4,6] => 4
[1,5] => [5,1] => [1,1,1,1,1,0,0,0,0,0,1,0]
=> [5,1,2,3,4,6] => 1
[2,1,1,1,1] => [1,1,1,1,2] => [1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,2,3,4,6,5] => 5
[2,1,1,2] => [2,1,1,2] => [1,1,0,0,1,0,1,0,1,1,0,0]
=> [2,1,3,4,6,5] => 5
[2,1,2,1] => [1,2,1,2] => [1,0,1,1,0,0,1,0,1,1,0,0]
=> [1,3,2,4,6,5] => 10
Description
The number of reduced Kogan faces with the permutation as type.
This is equivalent to finding the number of ways to represent the permutation $\pi \in S_{n+1}$ as a reduced subword of $s_n (s_{n-1} s_n) (s_{n-2} s_{n-1} s_n) \dotsm (s_1 \dotsm s_n)$, or the number of reduced pipe dreams for $\pi$.
Matching statistic: St000100
Mp00231: Integer compositions —bounce path⟶ Dyck paths
Mp00034: Dyck paths —to binary tree: up step, left tree, down step, right tree⟶ Binary trees
Mp00013: Binary trees —to poset⟶ Posets
St000100: Posets ⟶ ℤResult quality: 99% ●values known / values provided: 99%●distinct values known / distinct values provided: 100%
Mp00034: Dyck paths —to binary tree: up step, left tree, down step, right tree⟶ Binary trees
Mp00013: Binary trees —to poset⟶ Posets
St000100: Posets ⟶ ℤResult quality: 99% ●values known / values provided: 99%●distinct values known / distinct values provided: 100%
Values
[1] => [1,0]
=> [.,.]
=> ([],1)
=> ? = 1
[1,1] => [1,0,1,0]
=> [.,[.,.]]
=> ([(0,1)],2)
=> 1
[2] => [1,1,0,0]
=> [[.,.],.]
=> ([(0,1)],2)
=> 1
[1,1,1] => [1,0,1,0,1,0]
=> [.,[.,[.,.]]]
=> ([(0,2),(2,1)],3)
=> 1
[1,2] => [1,0,1,1,0,0]
=> [.,[[.,.],.]]
=> ([(0,2),(2,1)],3)
=> 1
[2,1] => [1,1,0,0,1,0]
=> [[.,.],[.,.]]
=> ([(0,2),(1,2)],3)
=> 2
[3] => [1,1,1,0,0,0]
=> [[[.,.],.],.]
=> ([(0,2),(2,1)],3)
=> 1
[1,1,1,1] => [1,0,1,0,1,0,1,0]
=> [.,[.,[.,[.,.]]]]
=> ([(0,3),(2,1),(3,2)],4)
=> 1
[1,1,2] => [1,0,1,0,1,1,0,0]
=> [.,[.,[[.,.],.]]]
=> ([(0,3),(2,1),(3,2)],4)
=> 1
[1,2,1] => [1,0,1,1,0,0,1,0]
=> [.,[[.,.],[.,.]]]
=> ([(0,3),(1,3),(3,2)],4)
=> 2
[1,3] => [1,0,1,1,1,0,0,0]
=> [.,[[[.,.],.],.]]
=> ([(0,3),(2,1),(3,2)],4)
=> 1
[2,1,1] => [1,1,0,0,1,0,1,0]
=> [[.,.],[.,[.,.]]]
=> ([(0,3),(1,2),(2,3)],4)
=> 3
[2,2] => [1,1,0,0,1,1,0,0]
=> [[.,.],[[.,.],.]]
=> ([(0,3),(1,2),(2,3)],4)
=> 3
[3,1] => [1,1,1,0,0,0,1,0]
=> [[[.,.],.],[.,.]]
=> ([(0,3),(1,2),(2,3)],4)
=> 3
[4] => [1,1,1,1,0,0,0,0]
=> [[[[.,.],.],.],.]
=> ([(0,3),(2,1),(3,2)],4)
=> 1
[1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0]
=> [.,[.,[.,[.,[.,.]]]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1
[1,1,1,2] => [1,0,1,0,1,0,1,1,0,0]
=> [.,[.,[.,[[.,.],.]]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1
[1,1,2,1] => [1,0,1,0,1,1,0,0,1,0]
=> [.,[.,[[.,.],[.,.]]]]
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> 2
[1,1,3] => [1,0,1,0,1,1,1,0,0,0]
=> [.,[.,[[[.,.],.],.]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1
[1,2,1,1] => [1,0,1,1,0,0,1,0,1,0]
=> [.,[[.,.],[.,[.,.]]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> 3
[1,2,2] => [1,0,1,1,0,0,1,1,0,0]
=> [.,[[.,.],[[.,.],.]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> 3
[1,3,1] => [1,0,1,1,1,0,0,0,1,0]
=> [.,[[[.,.],.],[.,.]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> 3
[1,4] => [1,0,1,1,1,1,0,0,0,0]
=> [.,[[[[.,.],.],.],.]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1
[2,1,1,1] => [1,1,0,0,1,0,1,0,1,0]
=> [[.,.],[.,[.,[.,.]]]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> 4
[2,1,2] => [1,1,0,0,1,0,1,1,0,0]
=> [[.,.],[.,[[.,.],.]]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> 4
[2,2,1] => [1,1,0,0,1,1,0,0,1,0]
=> [[.,.],[[.,.],[.,.]]]
=> ([(0,4),(1,3),(2,3),(3,4)],5)
=> 8
[2,3] => [1,1,0,0,1,1,1,0,0,0]
=> [[.,.],[[[.,.],.],.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> 4
[3,1,1] => [1,1,1,0,0,0,1,0,1,0]
=> [[[.,.],.],[.,[.,.]]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> 6
[3,2] => [1,1,1,0,0,0,1,1,0,0]
=> [[[.,.],.],[[.,.],.]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> 6
[4,1] => [1,1,1,1,0,0,0,0,1,0]
=> [[[[.,.],.],.],[.,.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> 4
[5] => [1,1,1,1,1,0,0,0,0,0]
=> [[[[[.,.],.],.],.],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1
[1,1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0,1,0]
=> [.,[.,[.,[.,[.,[.,.]]]]]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 1
[1,1,1,1,2] => [1,0,1,0,1,0,1,0,1,1,0,0]
=> [.,[.,[.,[.,[[.,.],.]]]]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 1
[1,1,1,2,1] => [1,0,1,0,1,0,1,1,0,0,1,0]
=> [.,[.,[.,[[.,.],[.,.]]]]]
=> ([(0,5),(1,5),(3,2),(4,3),(5,4)],6)
=> 2
[1,1,1,3] => [1,0,1,0,1,0,1,1,1,0,0,0]
=> [.,[.,[.,[[[.,.],.],.]]]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 1
[1,1,2,1,1] => [1,0,1,0,1,1,0,0,1,0,1,0]
=> [.,[.,[[.,.],[.,[.,.]]]]]
=> ([(0,5),(1,3),(3,5),(4,2),(5,4)],6)
=> 3
[1,1,2,2] => [1,0,1,0,1,1,0,0,1,1,0,0]
=> [.,[.,[[.,.],[[.,.],.]]]]
=> ([(0,5),(1,3),(3,5),(4,2),(5,4)],6)
=> 3
[1,1,3,1] => [1,0,1,0,1,1,1,0,0,0,1,0]
=> [.,[.,[[[.,.],.],[.,.]]]]
=> ([(0,5),(1,3),(3,5),(4,2),(5,4)],6)
=> 3
[1,1,4] => [1,0,1,0,1,1,1,1,0,0,0,0]
=> [.,[.,[[[[.,.],.],.],.]]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 1
[1,2,1,1,1] => [1,0,1,1,0,0,1,0,1,0,1,0]
=> [.,[[.,.],[.,[.,[.,.]]]]]
=> ([(0,5),(1,4),(2,5),(4,2),(5,3)],6)
=> 4
[1,2,1,2] => [1,0,1,1,0,0,1,0,1,1,0,0]
=> [.,[[.,.],[.,[[.,.],.]]]]
=> ([(0,5),(1,4),(2,5),(4,2),(5,3)],6)
=> 4
[1,2,2,1] => [1,0,1,1,0,0,1,1,0,0,1,0]
=> [.,[[.,.],[[.,.],[.,.]]]]
=> ([(0,5),(1,4),(2,4),(4,5),(5,3)],6)
=> 8
[1,2,3] => [1,0,1,1,0,0,1,1,1,0,0,0]
=> [.,[[.,.],[[[.,.],.],.]]]
=> ([(0,5),(1,4),(2,5),(4,2),(5,3)],6)
=> 4
[1,3,1,1] => [1,0,1,1,1,0,0,0,1,0,1,0]
=> [.,[[[.,.],.],[.,[.,.]]]]
=> ([(0,4),(1,3),(3,5),(4,5),(5,2)],6)
=> 6
[1,3,2] => [1,0,1,1,1,0,0,0,1,1,0,0]
=> [.,[[[.,.],.],[[.,.],.]]]
=> ([(0,4),(1,3),(3,5),(4,5),(5,2)],6)
=> 6
[1,4,1] => [1,0,1,1,1,1,0,0,0,0,1,0]
=> [.,[[[[.,.],.],.],[.,.]]]
=> ([(0,5),(1,4),(2,5),(4,2),(5,3)],6)
=> 4
[1,5] => [1,0,1,1,1,1,1,0,0,0,0,0]
=> [.,[[[[[.,.],.],.],.],.]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 1
[2,1,1,1,1] => [1,1,0,0,1,0,1,0,1,0,1,0]
=> [[.,.],[.,[.,[.,[.,.]]]]]
=> ([(0,5),(1,4),(2,5),(3,2),(4,3)],6)
=> 5
[2,1,1,2] => [1,1,0,0,1,0,1,0,1,1,0,0]
=> [[.,.],[.,[.,[[.,.],.]]]]
=> ([(0,5),(1,4),(2,5),(3,2),(4,3)],6)
=> 5
[2,1,2,1] => [1,1,0,0,1,0,1,1,0,0,1,0]
=> [[.,.],[.,[[.,.],[.,.]]]]
=> ([(0,5),(1,4),(2,4),(3,5),(4,3)],6)
=> 10
[2,1,3] => [1,1,0,0,1,0,1,1,1,0,0,0]
=> [[.,.],[.,[[[.,.],.],.]]]
=> ([(0,5),(1,4),(2,5),(3,2),(4,3)],6)
=> 5
Description
The number of linear extensions of a poset.
Matching statistic: St000045
(load all 4 compositions to match this statistic)
(load all 4 compositions to match this statistic)
Mp00231: Integer compositions —bounce path⟶ Dyck paths
Mp00034: Dyck paths —to binary tree: up step, left tree, down step, right tree⟶ Binary trees
St000045: Binary trees ⟶ ℤResult quality: 74% ●values known / values provided: 74%●distinct values known / distinct values provided: 91%
Mp00034: Dyck paths —to binary tree: up step, left tree, down step, right tree⟶ Binary trees
St000045: Binary trees ⟶ ℤResult quality: 74% ●values known / values provided: 74%●distinct values known / distinct values provided: 91%
Values
[1] => [1,0]
=> [.,.]
=> ? = 1
[1,1] => [1,0,1,0]
=> [.,[.,.]]
=> ? = 1
[2] => [1,1,0,0]
=> [[.,.],.]
=> ? = 1
[1,1,1] => [1,0,1,0,1,0]
=> [.,[.,[.,.]]]
=> 1
[1,2] => [1,0,1,1,0,0]
=> [.,[[.,.],.]]
=> 1
[2,1] => [1,1,0,0,1,0]
=> [[.,.],[.,.]]
=> 2
[3] => [1,1,1,0,0,0]
=> [[[.,.],.],.]
=> 1
[1,1,1,1] => [1,0,1,0,1,0,1,0]
=> [.,[.,[.,[.,.]]]]
=> 1
[1,1,2] => [1,0,1,0,1,1,0,0]
=> [.,[.,[[.,.],.]]]
=> 1
[1,2,1] => [1,0,1,1,0,0,1,0]
=> [.,[[.,.],[.,.]]]
=> 2
[1,3] => [1,0,1,1,1,0,0,0]
=> [.,[[[.,.],.],.]]
=> 1
[2,1,1] => [1,1,0,0,1,0,1,0]
=> [[.,.],[.,[.,.]]]
=> 3
[2,2] => [1,1,0,0,1,1,0,0]
=> [[.,.],[[.,.],.]]
=> 3
[3,1] => [1,1,1,0,0,0,1,0]
=> [[[.,.],.],[.,.]]
=> 3
[4] => [1,1,1,1,0,0,0,0]
=> [[[[.,.],.],.],.]
=> 1
[1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0]
=> [.,[.,[.,[.,[.,.]]]]]
=> 1
[1,1,1,2] => [1,0,1,0,1,0,1,1,0,0]
=> [.,[.,[.,[[.,.],.]]]]
=> 1
[1,1,2,1] => [1,0,1,0,1,1,0,0,1,0]
=> [.,[.,[[.,.],[.,.]]]]
=> 2
[1,1,3] => [1,0,1,0,1,1,1,0,0,0]
=> [.,[.,[[[.,.],.],.]]]
=> 1
[1,2,1,1] => [1,0,1,1,0,0,1,0,1,0]
=> [.,[[.,.],[.,[.,.]]]]
=> 3
[1,2,2] => [1,0,1,1,0,0,1,1,0,0]
=> [.,[[.,.],[[.,.],.]]]
=> 3
[1,3,1] => [1,0,1,1,1,0,0,0,1,0]
=> [.,[[[.,.],.],[.,.]]]
=> 3
[1,4] => [1,0,1,1,1,1,0,0,0,0]
=> [.,[[[[.,.],.],.],.]]
=> 1
[2,1,1,1] => [1,1,0,0,1,0,1,0,1,0]
=> [[.,.],[.,[.,[.,.]]]]
=> 4
[2,1,2] => [1,1,0,0,1,0,1,1,0,0]
=> [[.,.],[.,[[.,.],.]]]
=> 4
[2,2,1] => [1,1,0,0,1,1,0,0,1,0]
=> [[.,.],[[.,.],[.,.]]]
=> 8
[2,3] => [1,1,0,0,1,1,1,0,0,0]
=> [[.,.],[[[.,.],.],.]]
=> 4
[3,1,1] => [1,1,1,0,0,0,1,0,1,0]
=> [[[.,.],.],[.,[.,.]]]
=> 6
[3,2] => [1,1,1,0,0,0,1,1,0,0]
=> [[[.,.],.],[[.,.],.]]
=> 6
[4,1] => [1,1,1,1,0,0,0,0,1,0]
=> [[[[.,.],.],.],[.,.]]
=> 4
[5] => [1,1,1,1,1,0,0,0,0,0]
=> [[[[[.,.],.],.],.],.]
=> 1
[1,1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0,1,0]
=> [.,[.,[.,[.,[.,[.,.]]]]]]
=> 1
[1,1,1,1,2] => [1,0,1,0,1,0,1,0,1,1,0,0]
=> [.,[.,[.,[.,[[.,.],.]]]]]
=> 1
[1,1,1,2,1] => [1,0,1,0,1,0,1,1,0,0,1,0]
=> [.,[.,[.,[[.,.],[.,.]]]]]
=> 2
[1,1,1,3] => [1,0,1,0,1,0,1,1,1,0,0,0]
=> [.,[.,[.,[[[.,.],.],.]]]]
=> 1
[1,1,2,1,1] => [1,0,1,0,1,1,0,0,1,0,1,0]
=> [.,[.,[[.,.],[.,[.,.]]]]]
=> 3
[1,1,2,2] => [1,0,1,0,1,1,0,0,1,1,0,0]
=> [.,[.,[[.,.],[[.,.],.]]]]
=> 3
[1,1,3,1] => [1,0,1,0,1,1,1,0,0,0,1,0]
=> [.,[.,[[[.,.],.],[.,.]]]]
=> 3
[1,1,4] => [1,0,1,0,1,1,1,1,0,0,0,0]
=> [.,[.,[[[[.,.],.],.],.]]]
=> 1
[1,2,1,1,1] => [1,0,1,1,0,0,1,0,1,0,1,0]
=> [.,[[.,.],[.,[.,[.,.]]]]]
=> 4
[1,2,1,2] => [1,0,1,1,0,0,1,0,1,1,0,0]
=> [.,[[.,.],[.,[[.,.],.]]]]
=> 4
[1,2,2,1] => [1,0,1,1,0,0,1,1,0,0,1,0]
=> [.,[[.,.],[[.,.],[.,.]]]]
=> 8
[1,2,3] => [1,0,1,1,0,0,1,1,1,0,0,0]
=> [.,[[.,.],[[[.,.],.],.]]]
=> 4
[1,3,1,1] => [1,0,1,1,1,0,0,0,1,0,1,0]
=> [.,[[[.,.],.],[.,[.,.]]]]
=> 6
[1,3,2] => [1,0,1,1,1,0,0,0,1,1,0,0]
=> [.,[[[.,.],.],[[.,.],.]]]
=> 6
[1,4,1] => [1,0,1,1,1,1,0,0,0,0,1,0]
=> [.,[[[[.,.],.],.],[.,.]]]
=> 4
[1,5] => [1,0,1,1,1,1,1,0,0,0,0,0]
=> [.,[[[[[.,.],.],.],.],.]]
=> 1
[2,1,1,1,1] => [1,1,0,0,1,0,1,0,1,0,1,0]
=> [[.,.],[.,[.,[.,[.,.]]]]]
=> 5
[2,1,1,2] => [1,1,0,0,1,0,1,0,1,1,0,0]
=> [[.,.],[.,[.,[[.,.],.]]]]
=> 5
[2,1,2,1] => [1,1,0,0,1,0,1,1,0,0,1,0]
=> [[.,.],[.,[[.,.],[.,.]]]]
=> 10
[2,1,3] => [1,1,0,0,1,0,1,1,1,0,0,0]
=> [[.,.],[.,[[[.,.],.],.]]]
=> 5
[2,2,1,1] => [1,1,0,0,1,1,0,0,1,0,1,0]
=> [[.,.],[[.,.],[.,[.,.]]]]
=> 15
[2,2,2] => [1,1,0,0,1,1,0,0,1,1,0,0]
=> [[.,.],[[.,.],[[.,.],.]]]
=> 15
[1,1,1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [.,[.,[.,[.,[.,[.,[.,.]]]]]]]
=> ? = 1
[1,1,1,1,1,2] => [1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [.,[.,[.,[.,[.,[[.,.],.]]]]]]
=> ? = 1
[1,1,1,1,2,1] => [1,0,1,0,1,0,1,0,1,1,0,0,1,0]
=> [.,[.,[.,[.,[[.,.],[.,.]]]]]]
=> ? = 2
[1,1,1,1,3] => [1,0,1,0,1,0,1,0,1,1,1,0,0,0]
=> [.,[.,[.,[.,[[[.,.],.],.]]]]]
=> ? = 1
[1,1,1,4] => [1,0,1,0,1,0,1,1,1,1,0,0,0,0]
=> [.,[.,[.,[[[[.,.],.],.],.]]]]
=> ? = 1
[1,1,5] => [1,0,1,0,1,1,1,1,1,0,0,0,0,0]
=> [.,[.,[[[[[.,.],.],.],.],.]]]
=> ? = 1
[1,2,1,1,1,1] => [1,0,1,1,0,0,1,0,1,0,1,0,1,0]
=> [.,[[.,.],[.,[.,[.,[.,.]]]]]]
=> ? = 5
[1,4,2] => [1,0,1,1,1,1,0,0,0,0,1,1,0,0]
=> [.,[[[[.,.],.],.],[[.,.],.]]]
=> ? = 10
[1,6] => [1,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> [.,[[[[[[.,.],.],.],.],.],.]]
=> ? = 1
[2,1,1,1,1,1] => [1,1,0,0,1,0,1,0,1,0,1,0,1,0]
=> [[.,.],[.,[.,[.,[.,[.,.]]]]]]
=> ? = 6
[2,1,1,3] => [1,1,0,0,1,0,1,0,1,1,1,0,0,0]
=> [[.,.],[.,[.,[[[.,.],.],.]]]]
=> ? = 6
[2,1,4] => [1,1,0,0,1,0,1,1,1,1,0,0,0,0]
=> [[.,.],[.,[[[[.,.],.],.],.]]]
=> ? = 6
[2,4,1] => [1,1,0,0,1,1,1,1,0,0,0,0,1,0]
=> [[.,.],[[[[.,.],.],.],[.,.]]]
=> ? = 24
[2,5] => [1,1,0,0,1,1,1,1,1,0,0,0,0,0]
=> [[.,.],[[[[[.,.],.],.],.],.]]
=> ? = 6
[3,1,1,2] => [1,1,1,0,0,0,1,0,1,0,1,1,0,0]
=> [[[.,.],.],[.,[.,[[.,.],.]]]]
=> ? = 15
[4,1,2] => [1,1,1,1,0,0,0,0,1,0,1,1,0,0]
=> [[[[.,.],.],.],[.,[[.,.],.]]]
=> ? = 20
[5,2] => [1,1,1,1,1,0,0,0,0,0,1,1,0,0]
=> [[[[[.,.],.],.],.],[[.,.],.]]
=> ? = 15
[6,1] => [1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> [[[[[[.,.],.],.],.],.],[.,.]]
=> ? = 6
Description
The number of linear extensions of a binary tree.
Also, the number of increasing / decreasing binary trees labelled by $1, \dots, n$ of this shape.
Also, the size of the sylvester class corresponding to this tree when the Tamari order is seen as a quotient poset of the right weak order on permutations.
Also, the number of permutations which give this tree shape when inserted in a binary search tree.
Also, the number of permutations which increasing / decreasing tree is of this shape.
Matching statistic: St001881
Mp00041: Integer compositions —conjugate⟶ Integer compositions
Mp00184: Integer compositions —to threshold graph⟶ Graphs
Mp00266: Graphs —connected vertex partitions⟶ Lattices
St001881: Lattices ⟶ ℤResult quality: 27% ●values known / values provided: 32%●distinct values known / distinct values provided: 27%
Mp00184: Integer compositions —to threshold graph⟶ Graphs
Mp00266: Graphs —connected vertex partitions⟶ Lattices
St001881: Lattices ⟶ ℤResult quality: 27% ●values known / values provided: 32%●distinct values known / distinct values provided: 27%
Values
[1] => [1] => ([],1)
=> ([],1)
=> 1
[1,1] => [2] => ([],2)
=> ([],1)
=> 1
[2] => [1,1] => ([(0,1)],2)
=> ([(0,1)],2)
=> 1
[1,1,1] => [3] => ([],3)
=> ([],1)
=> 1
[1,2] => [1,2] => ([(1,2)],3)
=> ([(0,1)],2)
=> 1
[2,1] => [2,1] => ([(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
[3] => [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> 1
[1,1,1,1] => [4] => ([],4)
=> ([],1)
=> 1
[1,1,2] => [1,3] => ([(2,3)],4)
=> ([(0,1)],2)
=> 1
[1,2,1] => [2,2] => ([(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
[1,3] => [1,1,2] => ([(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> 1
[2,1,1] => [3,1] => ([(0,3),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> 3
[2,2] => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(0,4),(1,7),(1,8),(2,6),(2,8),(3,5),(3,8),(4,5),(4,6),(4,7),(5,9),(6,9),(7,9),(8,9)],10)
=> ? = 3
[3,1] => [2,1,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,10),(1,11),(2,8),(2,9),(2,11),(3,6),(3,7),(3,11),(4,7),(4,9),(4,10),(5,6),(5,8),(5,10),(6,12),(7,12),(8,12),(9,12),(10,12),(11,12)],13)
=> ? = 3
[4] => [1,1,1,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,9),(1,11),(1,13),(2,9),(2,10),(2,12),(3,8),(3,10),(3,13),(4,8),(4,11),(4,12),(5,7),(5,12),(5,13),(6,7),(6,10),(6,11),(7,14),(8,14),(9,14),(10,14),(11,14),(12,14),(13,14)],15)
=> ? = 1
[1,1,1,1,1] => [5] => ([],5)
=> ([],1)
=> 1
[1,1,1,2] => [1,4] => ([(3,4)],5)
=> ([(0,1)],2)
=> 1
[1,1,2,1] => [2,3] => ([(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
[1,1,3] => [1,1,3] => ([(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> 1
[1,2,1,1] => [3,2] => ([(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> 3
[1,2,2] => [1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,7),(1,8),(2,6),(2,8),(3,5),(3,8),(4,5),(4,6),(4,7),(5,9),(6,9),(7,9),(8,9)],10)
=> ? = 3
[1,3,1] => [2,1,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,10),(1,11),(2,8),(2,9),(2,11),(3,6),(3,7),(3,11),(4,7),(4,9),(4,10),(5,6),(5,8),(5,10),(6,12),(7,12),(8,12),(9,12),(10,12),(11,12)],13)
=> ? = 3
[1,4] => [1,1,1,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,9),(1,11),(1,13),(2,9),(2,10),(2,12),(3,8),(3,10),(3,13),(4,8),(4,11),(4,12),(5,7),(5,12),(5,13),(6,7),(6,10),(6,11),(7,14),(8,14),(9,14),(10,14),(11,14),(12,14),(13,14)],15)
=> ? = 1
[2,1,1,1] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,8),(1,9),(1,10),(2,6),(2,7),(2,10),(3,5),(3,7),(3,9),(4,5),(4,6),(4,8),(5,11),(5,14),(6,11),(6,12),(7,11),(7,13),(8,12),(8,14),(9,13),(9,14),(10,12),(10,13),(11,15),(12,15),(13,15),(14,15)],16)
=> ? = 4
[2,1,2] => [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,9),(1,12),(1,16),(2,8),(2,11),(2,16),(3,7),(3,10),(3,16),(4,6),(4,10),(4,11),(4,12),(5,6),(5,7),(5,8),(5,9),(6,13),(6,14),(6,15),(7,13),(7,17),(8,14),(8,17),(9,15),(9,17),(10,13),(10,18),(11,14),(11,18),(12,15),(12,18),(13,19),(14,19),(15,19),(16,17),(16,18),(17,19),(18,19)],20)
=> ? = 4
[2,2,1] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,7),(1,20),(1,21),(2,9),(2,14),(2,15),(2,21),(3,8),(3,12),(3,13),(3,21),(4,11),(4,13),(4,15),(4,20),(5,10),(5,12),(5,14),(5,20),(6,7),(6,8),(6,9),(6,10),(6,11),(7,22),(7,23),(8,16),(8,17),(8,22),(9,18),(9,19),(9,22),(10,16),(10,18),(10,23),(11,17),(11,19),(11,23),(12,16),(12,24),(13,17),(13,24),(14,18),(14,24),(15,19),(15,24),(16,25),(17,25),(18,25),(19,25),(20,23),(20,24),(21,22),(21,24),(22,25),(23,25),(24,25)],26)
=> ? = 8
[2,3] => [1,1,2,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,9),(1,16),(1,21),(1,23),(2,8),(2,16),(2,20),(2,22),(3,10),(3,15),(3,20),(3,23),(4,11),(4,15),(4,21),(4,22),(5,13),(5,14),(5,22),(5,23),(6,12),(6,14),(6,20),(6,21),(7,8),(7,9),(7,10),(7,11),(7,12),(7,13),(8,17),(8,24),(8,26),(9,17),(9,25),(9,27),(10,18),(10,24),(10,27),(11,18),(11,25),(11,26),(12,19),(12,24),(12,25),(13,19),(13,26),(13,27),(14,19),(14,28),(15,18),(15,28),(16,17),(16,28),(17,29),(18,29),(19,29),(20,24),(20,28),(21,25),(21,28),(22,26),(22,28),(23,27),(23,28),(24,29),(25,29),(26,29),(27,29),(28,29)],30)
=> ? = 4
[3,1,1] => [3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,28),(1,29),(1,30),(2,9),(2,13),(2,18),(2,19),(2,30),(3,8),(3,12),(3,16),(3,17),(3,30),(4,11),(4,15),(4,17),(4,19),(4,29),(5,10),(5,14),(5,16),(5,18),(5,29),(6,12),(6,13),(6,14),(6,15),(6,28),(7,8),(7,9),(7,10),(7,11),(7,28),(8,20),(8,21),(8,32),(9,22),(9,23),(9,32),(10,20),(10,22),(10,33),(11,21),(11,23),(11,33),(12,24),(12,25),(12,32),(13,26),(13,27),(13,32),(14,24),(14,26),(14,33),(15,25),(15,27),(15,33),(16,20),(16,24),(16,31),(17,21),(17,25),(17,31),(18,22),(18,26),(18,31),(19,23),(19,27),(19,31),(20,34),(21,34),(22,34),(23,34),(24,34),(25,34),(26,34),(27,34),(28,32),(28,33),(29,31),(29,33),(30,31),(30,32),(31,34),(32,34),(33,34)],35)
=> ? = 6
[3,2] => [1,2,1,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(1,9),(1,26),(1,27),(1,28),(2,9),(2,10),(2,11),(2,29),(2,30),(3,13),(3,17),(3,21),(3,28),(3,30),(4,12),(4,16),(4,21),(4,27),(4,29),(5,15),(5,18),(5,20),(5,27),(5,30),(6,14),(6,19),(6,20),(6,28),(6,29),(7,11),(7,16),(7,17),(7,18),(7,19),(7,26),(8,10),(8,12),(8,13),(8,14),(8,15),(8,26),(9,35),(9,38),(10,31),(10,32),(10,35),(11,33),(11,34),(11,35),(12,22),(12,31),(12,36),(13,22),(13,32),(13,37),(14,23),(14,31),(14,37),(15,23),(15,32),(15,36),(16,24),(16,33),(16,36),(17,24),(17,34),(17,37),(18,25),(18,34),(18,36),(19,25),(19,33),(19,37),(20,23),(20,25),(20,38),(21,22),(21,24),(21,38),(22,39),(23,39),(24,39),(25,39),(26,35),(26,36),(26,37),(27,36),(27,38),(28,37),(28,38),(29,31),(29,33),(29,38),(30,32),(30,34),(30,38),(31,39),(32,39),(33,39),(34,39),(35,39),(36,39),(37,39),(38,39)],40)
=> ? = 6
[4,1] => [2,1,1,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(0,9),(1,12),(1,15),(1,28),(1,31),(1,34),(2,11),(2,14),(2,28),(2,30),(2,33),(3,10),(3,13),(3,28),(3,29),(3,32),(4,10),(4,16),(4,19),(4,21),(4,30),(4,31),(5,11),(5,17),(5,20),(5,22),(5,29),(5,31),(6,12),(6,18),(6,23),(6,24),(6,29),(6,30),(7,13),(7,16),(7,20),(7,23),(7,33),(7,34),(8,14),(8,17),(8,19),(8,24),(8,32),(8,34),(9,15),(9,18),(9,21),(9,22),(9,32),(9,33),(10,25),(10,35),(10,45),(11,26),(11,36),(11,45),(12,27),(12,37),(12,45),(13,25),(13,38),(13,44),(14,26),(14,39),(14,44),(15,27),(15,40),(15,44),(16,25),(16,42),(16,43),(17,26),(17,41),(17,43),(18,27),(18,41),(18,42),(19,35),(19,39),(19,43),(20,36),(20,38),(20,43),(21,35),(21,40),(21,42),(22,36),(22,40),(22,41),(23,37),(23,38),(23,42),(24,37),(24,39),(24,41),(25,46),(26,46),(27,46),(28,44),(28,45),(29,38),(29,41),(29,45),(30,39),(30,42),(30,45),(31,40),(31,43),(31,45),(32,35),(32,41),(32,44),(33,36),(33,42),(33,44),(34,37),(34,43),(34,44),(35,46),(36,46),(37,46),(38,46),(39,46),(40,46),(41,46),(42,46),(43,46),(44,46),(45,46)],47)
=> ? = 4
[5] => [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(0,9),(0,10),(1,13),(1,14),(1,20),(1,28),(1,29),(1,31),(2,11),(2,12),(2,19),(2,26),(2,27),(2,31),(3,16),(3,18),(3,22),(3,27),(3,29),(3,30),(4,15),(4,17),(4,21),(4,26),(4,28),(4,30),(5,11),(5,15),(5,24),(5,29),(5,32),(5,34),(6,12),(6,16),(6,25),(6,28),(6,32),(6,35),(7,13),(7,17),(7,25),(7,27),(7,33),(7,34),(8,14),(8,18),(8,24),(8,26),(8,33),(8,35),(9,21),(9,22),(9,23),(9,31),(9,34),(9,35),(10,19),(10,20),(10,23),(10,30),(10,32),(10,33),(11,36),(11,40),(11,50),(12,36),(12,41),(12,49),(13,37),(13,42),(13,50),(14,37),(14,43),(14,49),(15,38),(15,40),(15,48),(16,39),(16,41),(16,48),(17,38),(17,42),(17,47),(18,39),(18,43),(18,47),(19,36),(19,44),(19,47),(20,37),(20,44),(20,48),(21,38),(21,45),(21,49),(22,39),(22,45),(22,50),(23,44),(23,45),(23,46),(24,40),(24,43),(24,46),(25,41),(25,42),(25,46),(26,40),(26,47),(26,49),(27,41),(27,47),(27,50),(28,42),(28,48),(28,49),(29,43),(29,48),(29,50),(30,45),(30,47),(30,48),(31,44),(31,49),(31,50),(32,36),(32,46),(32,48),(33,37),(33,46),(33,47),(34,38),(34,46),(34,50),(35,39),(35,46),(35,49),(36,51),(37,51),(38,51),(39,51),(40,51),(41,51),(42,51),(43,51),(44,51),(45,51),(46,51),(47,51),(48,51),(49,51),(50,51)],52)
=> ? = 1
[1,1,1,1,1,1] => [6] => ([],6)
=> ([],1)
=> 1
[1,1,1,1,2] => [1,5] => ([(4,5)],6)
=> ([(0,1)],2)
=> 1
[1,1,1,2,1] => [2,4] => ([(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
[1,1,1,3] => [1,1,4] => ([(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> 1
[1,1,2,1,1] => [3,3] => ([(2,5),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> 3
[1,1,2,2] => [1,2,3] => ([(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(1,7),(1,8),(2,6),(2,8),(3,5),(3,8),(4,5),(4,6),(4,7),(5,9),(6,9),(7,9),(8,9)],10)
=> ? = 3
[1,1,3,1] => [2,1,3] => ([(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,10),(1,11),(2,8),(2,9),(2,11),(3,6),(3,7),(3,11),(4,7),(4,9),(4,10),(5,6),(5,8),(5,10),(6,12),(7,12),(8,12),(9,12),(10,12),(11,12)],13)
=> ? = 3
[1,1,4] => [1,1,1,3] => ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,9),(1,11),(1,13),(2,9),(2,10),(2,12),(3,8),(3,10),(3,13),(4,8),(4,11),(4,12),(5,7),(5,12),(5,13),(6,7),(6,10),(6,11),(7,14),(8,14),(9,14),(10,14),(11,14),(12,14),(13,14)],15)
=> ? = 1
[1,2,1,1,1] => [4,2] => ([(1,5),(2,5),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(1,8),(1,9),(1,10),(2,6),(2,7),(2,10),(3,5),(3,7),(3,9),(4,5),(4,6),(4,8),(5,11),(5,14),(6,11),(6,12),(7,11),(7,13),(8,12),(8,14),(9,13),(9,14),(10,12),(10,13),(11,15),(12,15),(13,15),(14,15)],16)
=> ? = 4
[1,2,1,2] => [1,3,2] => ([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,9),(1,12),(1,16),(2,8),(2,11),(2,16),(3,7),(3,10),(3,16),(4,6),(4,10),(4,11),(4,12),(5,6),(5,7),(5,8),(5,9),(6,13),(6,14),(6,15),(7,13),(7,17),(8,14),(8,17),(9,15),(9,17),(10,13),(10,18),(11,14),(11,18),(12,15),(12,18),(13,19),(14,19),(15,19),(16,17),(16,18),(17,19),(18,19)],20)
=> ? = 4
[1,2,2,1] => [2,2,2] => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,7),(1,20),(1,21),(2,9),(2,14),(2,15),(2,21),(3,8),(3,12),(3,13),(3,21),(4,11),(4,13),(4,15),(4,20),(5,10),(5,12),(5,14),(5,20),(6,7),(6,8),(6,9),(6,10),(6,11),(7,22),(7,23),(8,16),(8,17),(8,22),(9,18),(9,19),(9,22),(10,16),(10,18),(10,23),(11,17),(11,19),(11,23),(12,16),(12,24),(13,17),(13,24),(14,18),(14,24),(15,19),(15,24),(16,25),(17,25),(18,25),(19,25),(20,23),(20,24),(21,22),(21,24),(22,25),(23,25),(24,25)],26)
=> ? = 8
[1,2,3] => [1,1,2,2] => ([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,9),(1,16),(1,21),(1,23),(2,8),(2,16),(2,20),(2,22),(3,10),(3,15),(3,20),(3,23),(4,11),(4,15),(4,21),(4,22),(5,13),(5,14),(5,22),(5,23),(6,12),(6,14),(6,20),(6,21),(7,8),(7,9),(7,10),(7,11),(7,12),(7,13),(8,17),(8,24),(8,26),(9,17),(9,25),(9,27),(10,18),(10,24),(10,27),(11,18),(11,25),(11,26),(12,19),(12,24),(12,25),(13,19),(13,26),(13,27),(14,19),(14,28),(15,18),(15,28),(16,17),(16,28),(17,29),(18,29),(19,29),(20,24),(20,28),(21,25),(21,28),(22,26),(22,28),(23,27),(23,28),(24,29),(25,29),(26,29),(27,29),(28,29)],30)
=> ? = 4
[1,3,1,1] => [3,1,2] => ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,28),(1,29),(1,30),(2,9),(2,13),(2,18),(2,19),(2,30),(3,8),(3,12),(3,16),(3,17),(3,30),(4,11),(4,15),(4,17),(4,19),(4,29),(5,10),(5,14),(5,16),(5,18),(5,29),(6,12),(6,13),(6,14),(6,15),(6,28),(7,8),(7,9),(7,10),(7,11),(7,28),(8,20),(8,21),(8,32),(9,22),(9,23),(9,32),(10,20),(10,22),(10,33),(11,21),(11,23),(11,33),(12,24),(12,25),(12,32),(13,26),(13,27),(13,32),(14,24),(14,26),(14,33),(15,25),(15,27),(15,33),(16,20),(16,24),(16,31),(17,21),(17,25),(17,31),(18,22),(18,26),(18,31),(19,23),(19,27),(19,31),(20,34),(21,34),(22,34),(23,34),(24,34),(25,34),(26,34),(27,34),(28,32),(28,33),(29,31),(29,33),(30,31),(30,32),(31,34),(32,34),(33,34)],35)
=> ? = 6
[1,3,2] => [1,2,1,2] => ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(1,9),(1,26),(1,27),(1,28),(2,9),(2,10),(2,11),(2,29),(2,30),(3,13),(3,17),(3,21),(3,28),(3,30),(4,12),(4,16),(4,21),(4,27),(4,29),(5,15),(5,18),(5,20),(5,27),(5,30),(6,14),(6,19),(6,20),(6,28),(6,29),(7,11),(7,16),(7,17),(7,18),(7,19),(7,26),(8,10),(8,12),(8,13),(8,14),(8,15),(8,26),(9,35),(9,38),(10,31),(10,32),(10,35),(11,33),(11,34),(11,35),(12,22),(12,31),(12,36),(13,22),(13,32),(13,37),(14,23),(14,31),(14,37),(15,23),(15,32),(15,36),(16,24),(16,33),(16,36),(17,24),(17,34),(17,37),(18,25),(18,34),(18,36),(19,25),(19,33),(19,37),(20,23),(20,25),(20,38),(21,22),(21,24),(21,38),(22,39),(23,39),(24,39),(25,39),(26,35),(26,36),(26,37),(27,36),(27,38),(28,37),(28,38),(29,31),(29,33),(29,38),(30,32),(30,34),(30,38),(31,39),(32,39),(33,39),(34,39),(35,39),(36,39),(37,39),(38,39)],40)
=> ? = 6
[1,4,1] => [2,1,1,2] => ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(0,9),(1,12),(1,15),(1,28),(1,31),(1,34),(2,11),(2,14),(2,28),(2,30),(2,33),(3,10),(3,13),(3,28),(3,29),(3,32),(4,10),(4,16),(4,19),(4,21),(4,30),(4,31),(5,11),(5,17),(5,20),(5,22),(5,29),(5,31),(6,12),(6,18),(6,23),(6,24),(6,29),(6,30),(7,13),(7,16),(7,20),(7,23),(7,33),(7,34),(8,14),(8,17),(8,19),(8,24),(8,32),(8,34),(9,15),(9,18),(9,21),(9,22),(9,32),(9,33),(10,25),(10,35),(10,45),(11,26),(11,36),(11,45),(12,27),(12,37),(12,45),(13,25),(13,38),(13,44),(14,26),(14,39),(14,44),(15,27),(15,40),(15,44),(16,25),(16,42),(16,43),(17,26),(17,41),(17,43),(18,27),(18,41),(18,42),(19,35),(19,39),(19,43),(20,36),(20,38),(20,43),(21,35),(21,40),(21,42),(22,36),(22,40),(22,41),(23,37),(23,38),(23,42),(24,37),(24,39),(24,41),(25,46),(26,46),(27,46),(28,44),(28,45),(29,38),(29,41),(29,45),(30,39),(30,42),(30,45),(31,40),(31,43),(31,45),(32,35),(32,41),(32,44),(33,36),(33,42),(33,44),(34,37),(34,43),(34,44),(35,46),(36,46),(37,46),(38,46),(39,46),(40,46),(41,46),(42,46),(43,46),(44,46),(45,46)],47)
=> ? = 4
[1,5] => [1,1,1,1,2] => ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(0,9),(0,10),(1,13),(1,14),(1,20),(1,28),(1,29),(1,31),(2,11),(2,12),(2,19),(2,26),(2,27),(2,31),(3,16),(3,18),(3,22),(3,27),(3,29),(3,30),(4,15),(4,17),(4,21),(4,26),(4,28),(4,30),(5,11),(5,15),(5,24),(5,29),(5,32),(5,34),(6,12),(6,16),(6,25),(6,28),(6,32),(6,35),(7,13),(7,17),(7,25),(7,27),(7,33),(7,34),(8,14),(8,18),(8,24),(8,26),(8,33),(8,35),(9,21),(9,22),(9,23),(9,31),(9,34),(9,35),(10,19),(10,20),(10,23),(10,30),(10,32),(10,33),(11,36),(11,40),(11,50),(12,36),(12,41),(12,49),(13,37),(13,42),(13,50),(14,37),(14,43),(14,49),(15,38),(15,40),(15,48),(16,39),(16,41),(16,48),(17,38),(17,42),(17,47),(18,39),(18,43),(18,47),(19,36),(19,44),(19,47),(20,37),(20,44),(20,48),(21,38),(21,45),(21,49),(22,39),(22,45),(22,50),(23,44),(23,45),(23,46),(24,40),(24,43),(24,46),(25,41),(25,42),(25,46),(26,40),(26,47),(26,49),(27,41),(27,47),(27,50),(28,42),(28,48),(28,49),(29,43),(29,48),(29,50),(30,45),(30,47),(30,48),(31,44),(31,49),(31,50),(32,36),(32,46),(32,48),(33,37),(33,46),(33,47),(34,38),(34,46),(34,50),(35,39),(35,46),(35,49),(36,51),(37,51),(38,51),(39,51),(40,51),(41,51),(42,51),(43,51),(44,51),(45,51),(46,51),(47,51),(48,51),(49,51),(50,51)],52)
=> ? = 1
[2,1,1,1,1] => [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,12),(1,13),(1,14),(1,15),(2,9),(2,10),(2,11),(2,15),(3,7),(3,8),(3,11),(3,14),(4,6),(4,8),(4,10),(4,13),(5,6),(5,7),(5,9),(5,12),(6,16),(6,19),(6,22),(7,16),(7,17),(7,20),(8,16),(8,18),(8,21),(9,17),(9,19),(9,23),(10,18),(10,19),(10,24),(11,17),(11,18),(11,25),(12,20),(12,22),(12,23),(13,21),(13,22),(13,24),(14,20),(14,21),(14,25),(15,23),(15,24),(15,25),(16,29),(16,30),(17,26),(17,30),(18,27),(18,30),(19,28),(19,30),(20,26),(20,29),(21,27),(21,29),(22,28),(22,29),(23,26),(23,28),(24,27),(24,28),(25,26),(25,27),(26,31),(27,31),(28,31),(29,31),(30,31)],32)
=> ? = 5
[2,1,1,2] => [1,4,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,16),(1,17),(1,18),(1,29),(2,13),(2,14),(2,15),(2,29),(3,10),(3,11),(3,12),(3,29),(4,8),(4,9),(4,12),(4,15),(4,18),(5,7),(5,9),(5,11),(5,14),(5,17),(6,7),(6,8),(6,10),(6,13),(6,16),(7,19),(7,22),(7,25),(7,28),(8,19),(8,20),(8,23),(8,26),(9,19),(9,21),(9,24),(9,27),(10,20),(10,22),(10,30),(11,21),(11,22),(11,31),(12,20),(12,21),(12,32),(13,23),(13,25),(13,30),(14,24),(14,25),(14,31),(15,23),(15,24),(15,32),(16,26),(16,28),(16,30),(17,27),(17,28),(17,31),(18,26),(18,27),(18,32),(19,33),(19,34),(19,35),(20,33),(20,36),(21,33),(21,37),(22,33),(22,38),(23,34),(23,36),(24,34),(24,37),(25,34),(25,38),(26,35),(26,36),(27,35),(27,37),(28,35),(28,38),(29,30),(29,31),(29,32),(30,36),(30,38),(31,37),(31,38),(32,36),(32,37),(33,39),(34,39),(35,39),(36,39),(37,39),(38,39)],40)
=> ? = 5
[2,1,2,1] => [2,3,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,8),(1,9),(1,36),(1,37),(2,12),(2,16),(2,21),(2,22),(2,37),(3,11),(3,15),(3,19),(3,20),(3,37),(4,14),(4,18),(4,20),(4,22),(4,36),(5,13),(5,17),(5,19),(5,21),(5,36),(6,9),(6,10),(6,15),(6,16),(6,17),(6,18),(7,8),(7,10),(7,11),(7,12),(7,13),(7,14),(8,35),(8,38),(8,39),(9,35),(9,40),(9,41),(10,31),(10,32),(10,33),(10,34),(10,35),(11,23),(11,24),(11,31),(11,38),(12,25),(12,26),(12,32),(12,38),(13,23),(13,25),(13,33),(13,39),(14,24),(14,26),(14,34),(14,39),(15,27),(15,28),(15,31),(15,40),(16,29),(16,30),(16,32),(16,40),(17,27),(17,29),(17,33),(17,41),(18,28),(18,30),(18,34),(18,41),(19,23),(19,27),(19,48),(20,24),(20,28),(20,48),(21,25),(21,29),(21,48),(22,26),(22,30),(22,48),(23,42),(23,49),(24,43),(24,49),(25,44),(25,49),(26,45),(26,49),(27,42),(27,50),(28,43),(28,50),(29,44),(29,50),(30,45),(30,50),(31,42),(31,43),(31,46),(32,44),(32,45),(32,46),(33,42),(33,44),(33,47),(34,43),(34,45),(34,47),(35,46),(35,47),(36,39),(36,41),(36,48),(37,38),(37,40),(37,48),(38,46),(38,49),(39,47),(39,49),(40,46),(40,50),(41,47),(41,50),(42,51),(43,51),(44,51),(45,51),(46,51),(47,51),(48,49),(48,50),(49,51),(50,51)],52)
=> ? = 10
[2,1,3] => [1,1,3,1] => ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(1,11),(1,17),(1,24),(1,38),(1,40),(2,10),(2,16),(2,24),(2,37),(2,39),(3,12),(3,18),(3,23),(3,37),(3,40),(4,13),(4,19),(4,23),(4,38),(4,39),(5,15),(5,21),(5,22),(5,39),(5,40),(6,14),(6,20),(6,22),(6,37),(6,38),(7,9),(7,16),(7,17),(7,18),(7,19),(7,20),(7,21),(8,9),(8,10),(8,11),(8,12),(8,13),(8,14),(8,15),(9,31),(9,32),(9,33),(9,34),(9,35),(9,36),(10,25),(10,31),(10,41),(10,43),(11,25),(11,32),(11,42),(11,44),(12,26),(12,33),(12,41),(12,44),(13,26),(13,34),(13,42),(13,43),(14,27),(14,35),(14,41),(14,42),(15,27),(15,36),(15,43),(15,44),(16,28),(16,31),(16,45),(16,47),(17,28),(17,32),(17,46),(17,48),(18,29),(18,33),(18,45),(18,48),(19,29),(19,34),(19,46),(19,47),(20,30),(20,35),(20,45),(20,46),(21,30),(21,36),(21,47),(21,48),(22,27),(22,30),(22,56),(23,26),(23,29),(23,56),(24,25),(24,28),(24,56),(25,49),(25,57),(26,50),(26,57),(27,51),(27,57),(28,49),(28,58),(29,50),(29,58),(30,51),(30,58),(31,49),(31,52),(31,54),(32,49),(32,53),(32,55),(33,50),(33,52),(33,55),(34,50),(34,53),(34,54),(35,51),(35,52),(35,53),(36,51),(36,54),(36,55),(37,41),(37,45),(37,56),(38,42),(38,46),(38,56),(39,43),(39,47),(39,56),(40,44),(40,48),(40,56),(41,52),(41,57),(42,53),(42,57),(43,54),(43,57),(44,55),(44,57),(45,52),(45,58),(46,53),(46,58),(47,54),(47,58),(48,55),(48,58),(49,59),(50,59),(51,59),(52,59),(53,59),(54,59),(55,59),(56,57),(56,58),(57,59),(58,59)],60)
=> ? = 5
[2,2,1,1] => [3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(1,9),(1,22),(1,23),(1,24),(1,25),(1,26),(1,27),(2,11),(2,15),(2,20),(2,21),(2,23),(2,50),(3,10),(3,14),(3,18),(3,19),(3,22),(3,50),(4,13),(4,17),(4,19),(4,21),(4,25),(4,49),(5,12),(5,16),(5,18),(5,20),(5,24),(5,49),(6,14),(6,15),(6,16),(6,17),(6,27),(6,48),(7,10),(7,11),(7,12),(7,13),(7,26),(7,48),(8,9),(8,48),(8,49),(8,50),(9,59),(9,60),(9,61),(10,28),(10,40),(10,41),(10,63),(11,29),(11,42),(11,43),(11,63),(12,30),(12,40),(12,42),(12,64),(13,31),(13,41),(13,43),(13,64),(14,32),(14,44),(14,45),(14,63),(15,33),(15,46),(15,47),(15,63),(16,34),(16,44),(16,46),(16,64),(17,35),(17,45),(17,47),(17,64),(18,36),(18,40),(18,44),(18,62),(19,37),(19,41),(19,45),(19,62),(20,38),(20,42),(20,46),(20,62),(21,39),(21,43),(21,47),(21,62),(22,28),(22,32),(22,36),(22,37),(22,59),(23,29),(23,33),(23,38),(23,39),(23,59),(24,30),(24,34),(24,36),(24,38),(24,60),(25,31),(25,35),(25,37),(25,39),(25,60),(26,28),(26,29),(26,30),(26,31),(26,61),(27,32),(27,33),(27,34),(27,35),(27,61),(28,51),(28,52),(28,66),(29,53),(29,54),(29,66),(30,51),(30,53),(30,67),(31,52),(31,54),(31,67),(32,55),(32,56),(32,66),(33,57),(33,58),(33,66),(34,55),(34,57),(34,67),(35,56),(35,58),(35,67),(36,51),(36,55),(36,65),(37,52),(37,56),(37,65),(38,53),(38,57),(38,65),(39,54),(39,58),(39,65),(40,51),(40,68),(41,52),(41,68),(42,53),(42,68),(43,54),(43,68),(44,55),(44,68),(45,56),(45,68),(46,57),(46,68),(47,58),(47,68),(48,61),(48,63),(48,64),(49,60),(49,62),(49,64),(50,59),(50,62),(50,63),(51,69),(52,69),(53,69),(54,69),(55,69),(56,69),(57,69),(58,69),(59,65),(59,66),(60,65),(60,67),(61,66),(61,67),(62,65),(62,68),(63,66),(63,68),(64,67),(64,68),(65,69),(66,69),(67,69),(68,69)],70)
=> ? = 15
[2,2,2] => [1,2,2,1] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(0,9),(1,10),(1,22),(1,23),(1,24),(1,25),(1,26),(1,29),(1,30),(2,13),(2,18),(2,19),(2,20),(2,21),(2,30),(2,36),(3,12),(3,14),(3,15),(3,16),(3,17),(3,29),(3,36),(4,11),(4,12),(4,13),(4,26),(4,51),(4,52),(5,15),(5,19),(5,23),(5,28),(5,50),(5,52),(6,14),(6,18),(6,22),(6,28),(6,49),(6,51),(7,17),(7,20),(7,24),(7,27),(7,49),(7,52),(8,16),(8,21),(8,25),(8,27),(8,50),(8,51),(9,10),(9,11),(9,36),(9,49),(9,50),(10,31),(10,58),(10,59),(10,60),(11,31),(11,57),(11,74),(12,32),(12,57),(12,63),(12,64),(13,33),(13,57),(13,65),(13,66),(14,37),(14,45),(14,63),(14,72),(15,38),(15,45),(15,64),(15,73),(16,39),(16,46),(16,63),(16,73),(17,40),(17,46),(17,64),(17,72),(18,41),(18,47),(18,65),(18,72),(19,42),(19,47),(19,66),(19,73),(20,43),(20,48),(20,66),(20,72),(21,44),(21,48),(21,65),(21,73),(22,34),(22,37),(22,41),(22,58),(22,61),(23,34),(23,38),(23,42),(23,59),(23,62),(24,35),(24,40),(24,43),(24,58),(24,62),(25,35),(25,39),(25,44),(25,59),(25,61),(26,31),(26,32),(26,33),(26,61),(26,62),(27,35),(27,46),(27,48),(27,74),(28,34),(28,45),(28,47),(28,74),(29,32),(29,37),(29,38),(29,39),(29,40),(29,60),(30,33),(30,41),(30,42),(30,43),(30,44),(30,60),(31,71),(31,77),(32,67),(32,68),(32,71),(33,69),(33,70),(33,71),(34,53),(34,55),(34,77),(35,54),(35,56),(35,77),(36,57),(36,60),(36,72),(36,73),(37,53),(37,67),(37,75),(38,53),(38,68),(38,76),(39,54),(39,67),(39,76),(40,54),(40,68),(40,75),(41,55),(41,69),(41,75),(42,55),(42,70),(42,76),(43,56),(43,70),(43,75),(44,56),(44,69),(44,76),(45,53),(45,78),(46,54),(46,78),(47,55),(47,78),(48,56),(48,78),(49,58),(49,72),(49,74),(50,59),(50,73),(50,74),(51,61),(51,63),(51,65),(51,74),(52,62),(52,64),(52,66),(52,74),(53,79),(54,79),(55,79),(56,79),(57,71),(57,78),(58,75),(58,77),(59,76),(59,77),(60,71),(60,75),(60,76),(61,67),(61,69),(61,77),(62,68),(62,70),(62,77),(63,67),(63,78),(64,68),(64,78),(65,69),(65,78),(66,70),(66,78),(67,79),(68,79),(69,79),(70,79),(71,79),(72,75),(72,78),(73,76),(73,78),(74,77),(74,78),(75,79),(76,79),(77,79),(78,79)],80)
=> ? = 15
[2,3,1] => [2,1,2,1] => ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(0,9),(0,10),(1,17),(1,18),(1,19),(1,29),(1,30),(1,31),(1,32),(1,33),(1,34),(2,15),(2,16),(2,22),(2,28),(2,31),(2,55),(2,56),(3,12),(3,14),(3,21),(3,27),(3,30),(3,54),(3,56),(4,11),(4,13),(4,20),(4,26),(4,29),(4,54),(4,55),(5,13),(5,14),(5,25),(5,28),(5,32),(5,57),(5,58),(6,11),(6,15),(6,23),(6,27),(6,33),(6,57),(6,59),(7,12),(7,16),(7,24),(7,26),(7,34),(7,58),(7,59),(8,17),(8,20),(8,24),(8,41),(8,56),(8,57),(9,18),(9,21),(9,23),(9,41),(9,55),(9,58),(10,19),(10,22),(10,25),(10,41),(10,54),(10,59),(11,35),(11,70),(11,74),(11,82),(12,36),(12,71),(12,75),(12,82),(13,37),(13,70),(13,73),(13,83),(14,38),(14,71),(14,73),(14,84),(15,39),(15,72),(15,74),(15,84),(16,40),(16,72),(16,75),(16,83),(17,45),(17,49),(17,63),(17,66),(17,67),(18,46),(18,48),(18,63),(18,65),(18,68),(19,47),(19,50),(19,63),(19,64),(19,69),(20,45),(20,51),(20,70),(20,89),(21,46),(21,52),(21,71),(21,89),(22,47),(22,53),(22,72),(22,89),(23,48),(23,52),(23,74),(23,88),(24,49),(24,51),(24,75),(24,88),(25,50),(25,53),(25,73),(25,88),(26,42),(26,51),(26,82),(26,83),(27,43),(27,52),(27,82),(27,84),(28,44),(28,53),(28,83),(28,84),(29,35),(29,37),(29,42),(29,45),(29,64),(29,65),(30,36),(30,38),(30,43),(30,46),(30,64),(30,66),(31,39),(31,40),(31,44),(31,47),(31,65),(31,66),(32,37),(32,38),(32,44),(32,50),(32,67),(32,68),(33,35),(33,39),(33,43),(33,48),(33,67),(33,69),(34,36),(34,40),(34,42),(34,49),(34,68),(34,69),(35,76),(35,80),(35,85),(36,77),(36,81),(36,85),(37,76),(37,79),(37,86),(38,77),(38,79),(38,87),(39,78),(39,80),(39,87),(40,78),(40,81),(40,86),(41,63),(41,88),(41,89),(42,60),(42,85),(42,86),(43,61),(43,85),(43,87),(44,62),(44,86),(44,87),(45,60),(45,76),(45,90),(46,61),(46,77),(46,90),(47,62),(47,78),(47,90),(48,61),(48,80),(48,91),(49,60),(49,81),(49,91),(50,62),(50,79),(50,91),(51,60),(51,92),(52,61),(52,92),(53,62),(53,92),(54,64),(54,73),(54,82),(54,89),(55,65),(55,74),(55,83),(55,89),(56,66),(56,75),(56,84),(56,89),(57,67),(57,70),(57,84),(57,88),(58,68),(58,71),(58,83),(58,88),(59,69),(59,72),(59,82),(59,88),(60,93),(61,93),(62,93),(63,90),(63,91),(64,79),(64,85),(64,90),(65,80),(65,86),(65,90),(66,81),(66,87),(66,90),(67,76),(67,87),(67,91),(68,77),(68,86),(68,91),(69,78),(69,85),(69,91),(70,76),(70,92),(71,77),(71,92),(72,78),(72,92),(73,79),(73,92),(74,80),(74,92),(75,81),(75,92),(76,93),(77,93),(78,93),(79,93),(80,93),(81,93),(82,85),(82,92),(83,86),(83,92),(84,87),(84,92),(85,93),(86,93),(87,93),(88,91),(88,92),(89,90),(89,92),(90,93),(91,93),(92,93)],94)
=> ? = 15
[2,4] => [1,1,1,2,1] => ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(0,9),(0,10),(0,11),(1,13),(1,24),(1,25),(1,31),(1,54),(1,55),(1,57),(2,12),(2,22),(2,23),(2,30),(2,52),(2,53),(2,57),(3,15),(3,27),(3,29),(3,33),(3,53),(3,55),(3,56),(4,14),(4,26),(4,28),(4,32),(4,52),(4,54),(4,56),(5,16),(5,22),(5,26),(5,35),(5,55),(5,58),(5,60),(6,17),(6,23),(6,27),(6,36),(6,54),(6,58),(6,61),(7,18),(7,24),(7,28),(7,36),(7,53),(7,59),(7,60),(8,19),(8,25),(8,29),(8,35),(8,52),(8,59),(8,61),(9,21),(9,32),(9,33),(9,34),(9,57),(9,60),(9,61),(10,20),(10,30),(10,31),(10,34),(10,56),(10,58),(10,59),(11,12),(11,13),(11,14),(11,15),(11,16),(11,17),(11,18),(11,19),(11,20),(11,21),(12,37),(12,38),(12,45),(12,72),(12,73),(12,77),(13,39),(13,40),(13,46),(13,74),(13,75),(13,77),(14,41),(14,43),(14,47),(14,72),(14,74),(14,76),(15,42),(15,44),(15,48),(15,73),(15,75),(15,76),(16,37),(16,41),(16,49),(16,75),(16,78),(16,80),(17,38),(17,42),(17,50),(17,74),(17,78),(17,81),(18,39),(18,43),(18,50),(18,73),(18,79),(18,80),(19,40),(19,44),(19,49),(19,72),(19,79),(19,81),(20,45),(20,46),(20,51),(20,76),(20,78),(20,79),(21,47),(21,48),(21,51),(21,77),(21,80),(21,81),(22,37),(22,62),(22,66),(22,96),(23,38),(23,62),(23,67),(23,95),(24,39),(24,63),(24,68),(24,96),(25,40),(25,63),(25,69),(25,95),(26,41),(26,64),(26,66),(26,94),(27,42),(27,65),(27,67),(27,94),(28,43),(28,64),(28,68),(28,93),(29,44),(29,65),(29,69),(29,93),(30,45),(30,62),(30,70),(30,93),(31,46),(31,63),(31,70),(31,94),(32,47),(32,64),(32,71),(32,95),(33,48),(33,65),(33,71),(33,96),(34,51),(34,70),(34,71),(34,92),(35,49),(35,66),(35,69),(35,92),(36,50),(36,67),(36,68),(36,92),(37,82),(37,86),(37,100),(38,82),(38,87),(38,99),(39,83),(39,88),(39,100),(40,83),(40,89),(40,99),(41,84),(41,86),(41,98),(42,85),(42,87),(42,98),(43,84),(43,88),(43,97),(44,85),(44,89),(44,97),(45,82),(45,90),(45,97),(46,83),(46,90),(46,98),(47,84),(47,91),(47,99),(48,85),(48,91),(48,100),(49,86),(49,89),(49,101),(50,87),(50,88),(50,101),(51,90),(51,91),(51,101),(52,66),(52,72),(52,93),(52,95),(53,67),(53,73),(53,93),(53,96),(54,68),(54,74),(54,94),(54,95),(55,69),(55,75),(55,94),(55,96),(56,71),(56,76),(56,93),(56,94),(57,70),(57,77),(57,95),(57,96),(58,62),(58,78),(58,92),(58,94),(59,63),(59,79),(59,92),(59,93),(60,64),(60,80),(60,92),(60,96),(61,65),(61,81),(61,92),(61,95),(62,82),(62,102),(63,83),(63,102),(64,84),(64,102),(65,85),(65,102),(66,86),(66,102),(67,87),(67,102),(68,88),(68,102),(69,89),(69,102),(70,90),(70,102),(71,91),(71,102),(72,86),(72,97),(72,99),(73,87),(73,97),(73,100),(74,88),(74,98),(74,99),(75,89),(75,98),(75,100),(76,91),(76,97),(76,98),(77,90),(77,99),(77,100),(78,82),(78,98),(78,101),(79,83),(79,97),(79,101),(80,84),(80,100),(80,101),(81,85),(81,99),(81,101),(82,103),(83,103),(84,103),(85,103),(86,103),(87,103),(88,103),(89,103),(90,103),(91,103),(92,101),(92,102),(93,97),(93,102),(94,98),(94,102),(95,99),(95,102),(96,100),(96,102),(97,103),(98,103),(99,103),(100,103),(101,103),(102,103)],104)
=> ? = 5
[3,1,1,1] => [4,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(0,9),(1,11),(1,15),(1,20),(1,21),(1,23),(1,29),(1,69),(2,10),(2,14),(2,18),(2,19),(2,22),(2,28),(2,69),(3,13),(3,17),(3,19),(3,21),(3,25),(3,31),(3,68),(4,12),(4,16),(4,18),(4,20),(4,24),(4,30),(4,68),(5,14),(5,15),(5,16),(5,17),(5,27),(5,33),(5,67),(6,10),(6,11),(6,12),(6,13),(6,26),(6,32),(6,67),(7,28),(7,29),(7,30),(7,31),(7,32),(7,33),(7,66),(8,22),(8,23),(8,24),(8,25),(8,26),(8,27),(8,66),(9,66),(9,67),(9,68),(9,69),(10,34),(10,46),(10,58),(10,59),(10,87),(11,35),(11,47),(11,60),(11,61),(11,87),(12,36),(12,48),(12,58),(12,60),(12,88),(13,37),(13,49),(13,59),(13,61),(13,88),(14,38),(14,50),(14,62),(14,63),(14,87),(15,39),(15,51),(15,64),(15,65),(15,87),(16,40),(16,52),(16,62),(16,64),(16,88),(17,41),(17,53),(17,63),(17,65),(17,88),(18,42),(18,54),(18,58),(18,62),(18,86),(19,43),(19,55),(19,59),(19,63),(19,86),(20,44),(20,56),(20,60),(20,64),(20,86),(21,45),(21,57),(21,61),(21,65),(21,86),(22,34),(22,38),(22,42),(22,43),(22,89),(23,35),(23,39),(23,44),(23,45),(23,89),(24,36),(24,40),(24,42),(24,44),(24,90),(25,37),(25,41),(25,43),(25,45),(25,90),(26,34),(26,35),(26,36),(26,37),(26,91),(27,38),(27,39),(27,40),(27,41),(27,91),(28,46),(28,50),(28,54),(28,55),(28,89),(29,47),(29,51),(29,56),(29,57),(29,89),(30,48),(30,52),(30,54),(30,56),(30,90),(31,49),(31,53),(31,55),(31,57),(31,90),(32,46),(32,47),(32,48),(32,49),(32,91),(33,50),(33,51),(33,52),(33,53),(33,91),(34,70),(34,71),(34,93),(35,72),(35,73),(35,93),(36,70),(36,72),(36,94),(37,71),(37,73),(37,94),(38,74),(38,75),(38,93),(39,76),(39,77),(39,93),(40,74),(40,76),(40,94),(41,75),(41,77),(41,94),(42,70),(42,74),(42,95),(43,71),(43,75),(43,95),(44,72),(44,76),(44,95),(45,73),(45,77),(45,95),(46,78),(46,79),(46,93),(47,80),(47,81),(47,93),(48,78),(48,80),(48,94),(49,79),(49,81),(49,94),(50,82),(50,83),(50,93),(51,84),(51,85),(51,93),(52,82),(52,84),(52,94),(53,83),(53,85),(53,94),(54,78),(54,82),(54,95),(55,79),(55,83),(55,95),(56,80),(56,84),(56,95),(57,81),(57,85),(57,95),(58,70),(58,78),(58,92),(59,71),(59,79),(59,92),(60,72),(60,80),(60,92),(61,73),(61,81),(61,92),(62,74),(62,82),(62,92),(63,75),(63,83),(63,92),(64,76),(64,84),(64,92),(65,77),(65,85),(65,92),(66,89),(66,90),(66,91),(67,87),(67,88),(67,91),(68,86),(68,88),(68,90),(69,86),(69,87),(69,89),(70,96),(71,96),(72,96),(73,96),(74,96),(75,96),(76,96),(77,96),(78,96),(79,96),(80,96),(81,96),(82,96),(83,96),(84,96),(85,96),(86,92),(86,95),(87,92),(87,93),(88,92),(88,94),(89,93),(89,95),(90,94),(90,95),(91,93),(91,94),(92,96),(93,96),(94,96),(95,96)],97)
=> ? = 10
[3,1,2] => [1,3,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(0,9),(0,10),(1,13),(1,17),(1,21),(1,25),(1,29),(1,36),(1,37),(1,43),(2,12),(2,16),(2,20),(2,24),(2,28),(2,34),(2,35),(2,43),(3,15),(3,19),(3,23),(3,27),(3,31),(3,35),(3,37),(3,42),(4,14),(4,18),(4,22),(4,26),(4,30),(4,34),(4,36),(4,42),(5,11),(5,12),(5,13),(5,14),(5,15),(5,70),(5,71),(6,20),(6,21),(6,22),(6,23),(6,33),(6,69),(6,71),(7,16),(7,17),(7,18),(7,19),(7,33),(7,68),(7,70),(8,28),(8,29),(8,30),(8,31),(8,32),(8,68),(8,71),(9,24),(9,25),(9,26),(9,27),(9,32),(9,69),(9,70),(10,11),(10,42),(10,43),(10,68),(10,69),(11,80),(11,81),(11,103),(12,38),(12,39),(12,80),(12,82),(12,86),(13,40),(13,41),(13,80),(13,83),(13,87),(14,38),(14,40),(14,81),(14,84),(14,88),(15,39),(15,41),(15,81),(15,85),(15,89),(16,44),(16,45),(16,60),(16,82),(16,99),(17,46),(17,47),(17,61),(17,83),(17,99),(18,44),(18,46),(18,62),(18,84),(18,100),(19,45),(19,47),(19,63),(19,85),(19,100),(20,48),(20,49),(20,60),(20,86),(20,101),(21,50),(21,51),(21,61),(21,87),(21,101),(22,48),(22,50),(22,62),(22,88),(22,102),(23,49),(23,51),(23,63),(23,89),(23,102),(24,52),(24,53),(24,64),(24,82),(24,101),(25,54),(25,55),(25,65),(25,83),(25,101),(26,52),(26,54),(26,66),(26,84),(26,102),(27,53),(27,55),(27,67),(27,85),(27,102),(28,56),(28,57),(28,64),(28,86),(28,99),(29,58),(29,59),(29,65),(29,87),(29,99),(30,56),(30,58),(30,66),(30,88),(30,100),(31,57),(31,59),(31,67),(31,89),(31,100),(32,64),(32,65),(32,66),(32,67),(32,103),(33,60),(33,61),(33,62),(33,63),(33,103),(34,38),(34,44),(34,48),(34,52),(34,56),(34,98),(35,39),(35,45),(35,49),(35,53),(35,57),(35,98),(36,40),(36,46),(36,50),(36,54),(36,58),(36,98),(37,41),(37,47),(37,51),(37,55),(37,59),(37,98),(38,90),(38,94),(38,104),(39,91),(39,95),(39,104),(40,92),(40,96),(40,104),(41,93),(41,97),(41,104),(42,81),(42,98),(42,100),(42,102),(43,80),(43,98),(43,99),(43,101),(44,72),(44,90),(44,105),(45,73),(45,91),(45,105),(46,74),(46,92),(46,105),(47,75),(47,93),(47,105),(48,72),(48,94),(48,106),(49,73),(49,95),(49,106),(50,74),(50,96),(50,106),(51,75),(51,97),(51,106),(52,76),(52,90),(52,106),(53,77),(53,91),(53,106),(54,78),(54,92),(54,106),(55,79),(55,93),(55,106),(56,76),(56,94),(56,105),(57,77),(57,95),(57,105),(58,78),(58,96),(58,105),(59,79),(59,97),(59,105),(60,72),(60,73),(60,107),(61,74),(61,75),(61,107),(62,72),(62,74),(62,108),(63,73),(63,75),(63,108),(64,76),(64,77),(64,107),(65,78),(65,79),(65,107),(66,76),(66,78),(66,108),(67,77),(67,79),(67,108),(68,99),(68,100),(68,103),(69,101),(69,102),(69,103),(70,82),(70,83),(70,84),(70,85),(70,103),(71,86),(71,87),(71,88),(71,89),(71,103),(72,109),(73,109),(74,109),(75,109),(76,109),(77,109),(78,109),(79,109),(80,104),(80,107),(81,104),(81,108),(82,90),(82,91),(82,107),(83,92),(83,93),(83,107),(84,90),(84,92),(84,108),(85,91),(85,93),(85,108),(86,94),(86,95),(86,107),(87,96),(87,97),(87,107),(88,94),(88,96),(88,108),(89,95),(89,97),(89,108),(90,109),(91,109),(92,109),(93,109),(94,109),(95,109),(96,109),(97,109),(98,104),(98,105),(98,106),(99,105),(99,107),(100,105),(100,108),(101,106),(101,107),(102,106),(102,108),(103,107),(103,108),(104,109),(105,109),(106,109),(107,109),(108,109)],110)
=> ? = 10
[3,2,1] => [2,2,1,1] => ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(0,9),(0,10),(0,11),(1,16),(1,17),(1,30),(1,31),(1,39),(1,40),(1,41),(1,42),(1,49),(2,14),(2,15),(2,28),(2,29),(2,35),(2,36),(2,37),(2,38),(2,49),(3,19),(3,23),(3,27),(3,34),(3,36),(3,40),(3,74),(3,79),(4,18),(4,22),(4,26),(4,33),(4,35),(4,39),(4,74),(4,78),(5,21),(5,22),(5,24),(5,34),(5,37),(5,41),(5,75),(5,76),(6,20),(6,23),(6,25),(6,33),(6,38),(6,42),(6,75),(6,77),(7,13),(7,20),(7,21),(7,29),(7,31),(7,32),(7,78),(7,79),(8,12),(8,18),(8,19),(8,28),(8,30),(8,32),(8,76),(8,77),(9,14),(9,16),(9,25),(9,26),(9,48),(9,76),(9,79),(10,15),(10,17),(10,24),(10,27),(10,48),(10,77),(10,78),(11,12),(11,13),(11,48),(11,49),(11,74),(11,75),(12,43),(12,84),(12,98),(12,121),(13,43),(13,85),(13,99),(13,122),(14,55),(14,56),(14,86),(14,89),(14,109),(15,54),(15,57),(15,87),(15,88),(15,109),(16,59),(16,60),(16,90),(16,93),(16,109),(17,58),(17,61),(17,91),(17,92),(17,109),(18,62),(18,66),(18,84),(18,94),(18,113),(19,63),(19,67),(19,84),(19,95),(19,114),(20,64),(20,68),(20,85),(20,97),(20,113),(21,65),(21,69),(21,85),(21,96),(21,114),(22,50),(22,52),(22,94),(22,96),(22,110),(23,51),(23,53),(23,95),(23,97),(23,110),(24,54),(24,58),(24,71),(24,96),(24,121),(25,55),(25,59),(25,70),(25,97),(25,121),(26,56),(26,60),(26,70),(26,94),(26,122),(27,57),(27,61),(27,71),(27,95),(27,122),(28,62),(28,63),(28,72),(28,86),(28,87),(28,98),(29,64),(29,65),(29,72),(29,88),(29,89),(29,99),(30,66),(30,67),(30,73),(30,90),(30,91),(30,98),(31,68),(31,69),(31,73),(31,92),(31,93),(31,99),(32,43),(32,72),(32,73),(32,113),(32,114),(33,44),(33,46),(33,70),(33,110),(33,113),(34,45),(34,47),(34,71),(34,110),(34,114),(35,44),(35,50),(35,56),(35,62),(35,88),(35,111),(36,45),(36,51),(36,57),(36,63),(36,89),(36,111),(37,45),(37,50),(37,54),(37,65),(37,86),(37,112),(38,44),(38,51),(38,55),(38,64),(38,87),(38,112),(39,46),(39,52),(39,60),(39,66),(39,92),(39,111),(40,47),(40,53),(40,61),(40,67),(40,93),(40,111),(41,47),(41,52),(41,58),(41,69),(41,90),(41,112),(42,46),(42,53),(42,59),(42,68),(42,91),(42,112),(43,100),(43,126),(44,80),(44,117),(44,123),(45,81),(45,118),(45,123),(46,82),(46,119),(46,123),(47,83),(47,120),(47,123),(48,109),(48,121),(48,122),(49,98),(49,99),(49,109),(49,111),(49,112),(50,101),(50,103),(50,123),(51,102),(51,104),(51,123),(52,105),(52,107),(52,123),(53,106),(53,108),(53,123),(54,81),(54,103),(54,124),(55,80),(55,104),(55,124),(56,80),(56,101),(56,125),(57,81),(57,102),(57,125),(58,83),(58,107),(58,124),(59,82),(59,108),(59,124),(60,82),(60,105),(60,125),(61,83),(61,106),(61,125),(62,101),(62,115),(62,117),(63,102),(63,115),(63,118),(64,104),(64,116),(64,117),(65,103),(65,116),(65,118),(66,105),(66,115),(66,119),(67,106),(67,115),(67,120),(68,108),(68,116),(68,119),(69,107),(69,116),(69,120),(70,80),(70,82),(70,126),(71,81),(71,83),(71,126),(72,100),(72,117),(72,118),(73,100),(73,119),(73,120),(74,84),(74,110),(74,111),(74,122),(75,85),(75,110),(75,112),(75,121),(76,86),(76,90),(76,94),(76,114),(76,121),(77,87),(77,91),(77,95),(77,113),(77,121),(78,88),(78,92),(78,96),(78,113),(78,122),(79,89),(79,93),(79,97),(79,114),(79,122),(80,127),(81,127),(82,127),(83,127),(84,115),(84,126),(85,116),(85,126),(86,101),(86,118),(86,124),(87,102),(87,117),(87,124),(88,103),(88,117),(88,125),(89,104),(89,118),(89,125),(90,105),(90,120),(90,124),(91,106),(91,119),(91,124),(92,107),(92,119),(92,125),(93,108),(93,120),(93,125),(94,101),(94,105),(94,126),(95,102),(95,106),(95,126),(96,103),(96,107),(96,126),(97,104),(97,108),(97,126),(98,100),(98,115),(98,124),(99,100),(99,116),(99,125),(100,127),(101,127),(102,127),(103,127),(104,127),(105,127),(106,127),(107,127),(108,127),(109,124),(109,125),(110,123),(110,126),(111,115),(111,123),(111,125),(112,116),(112,123),(112,124),(113,117),(113,119),(113,126),(114,118),(114,120),(114,126),(115,127),(116,127),(117,127),(118,127),(119,127),(120,127),(121,124),(121,126),(122,125),(122,126),(123,127),(124,127),(125,127),(126,127)],128)
=> ? = 20
[3,3] => [1,1,2,1,1] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(0,9),(0,10),(0,11),(0,12),(1,19),(1,20),(1,21),(1,40),(1,41),(1,42),(1,43),(1,44),(1,45),(1,46),(2,16),(2,17),(2,18),(2,34),(2,35),(2,36),(2,37),(2,38),(2,39),(2,46),(3,15),(3,18),(3,21),(3,30),(3,33),(3,76),(3,79),(3,80),(4,14),(4,17),(4,20),(4,29),(4,32),(4,75),(4,78),(4,80),(5,13),(5,16),(5,19),(5,28),(5,31),(5,74),(5,77),(5,80),(6,23),(6,26),(6,28),(6,34),(6,40),(6,71),(6,75),(6,76),(7,22),(7,27),(7,29),(7,35),(7,41),(7,72),(7,74),(7,76),(8,24),(8,25),(8,30),(8,36),(8,42),(8,73),(8,74),(8,75),(9,25),(9,27),(9,31),(9,37),(9,43),(9,71),(9,78),(9,79),(10,24),(10,26),(10,32),(10,38),(10,44),(10,72),(10,77),(10,79),(11,22),(11,23),(11,33),(11,39),(11,45),(11,73),(11,77),(11,78),(12,13),(12,14),(12,15),(12,46),(12,71),(12,72),(12,73),(13,81),(13,84),(13,99),(13,127),(14,81),(14,85),(14,100),(14,128),(15,81),(15,86),(15,101),(15,129),(16,47),(16,50),(16,82),(16,84),(16,87),(16,90),(17,48),(17,51),(17,82),(17,85),(17,88),(17,91),(18,49),(18,52),(18,82),(18,86),(18,89),(18,92),(19,53),(19,56),(19,83),(19,84),(19,93),(19,96),(20,54),(20,57),(20,83),(20,85),(20,94),(20,97),(21,55),(21,58),(21,83),(21,86),(21,95),(21,98),(22,59),(22,65),(22,103),(22,107),(22,127),(23,60),(23,66),(23,102),(23,107),(23,128),(24,61),(24,67),(24,104),(24,106),(24,127),(25,62),(25,68),(25,104),(25,105),(25,128),(26,63),(26,69),(26,102),(26,106),(26,129),(27,64),(27,70),(27,103),(27,105),(27,129),(28,47),(28,53),(28,99),(28,102),(28,131),(29,48),(29,54),(29,100),(29,103),(29,131),(30,49),(30,55),(30,101),(30,104),(30,131),(31,50),(31,56),(31,99),(31,105),(31,130),(32,51),(32,57),(32,100),(32,106),(32,130),(33,52),(33,58),(33,101),(33,107),(33,130),(34,47),(34,60),(34,63),(34,88),(34,89),(34,120),(35,48),(35,59),(35,64),(35,87),(35,89),(35,121),(36,49),(36,61),(36,62),(36,87),(36,88),(36,122),(37,50),(37,62),(37,64),(37,91),(37,92),(37,120),(38,51),(38,61),(38,63),(38,90),(38,92),(38,121),(39,52),(39,59),(39,60),(39,90),(39,91),(39,122),(40,53),(40,66),(40,69),(40,94),(40,95),(40,120),(41,54),(41,65),(41,70),(41,93),(41,95),(41,121),(42,55),(42,67),(42,68),(42,93),(42,94),(42,122),(43,56),(43,68),(43,70),(43,97),(43,98),(43,120),(44,57),(44,67),(44,69),(44,96),(44,98),(44,121),(45,58),(45,65),(45,66),(45,96),(45,97),(45,122),(46,84),(46,85),(46,86),(46,120),(46,121),(46,122),(47,108),(47,124),(47,132),(48,109),(48,125),(48,132),(49,110),(49,126),(49,132),(50,111),(50,124),(50,133),(51,112),(51,125),(51,133),(52,113),(52,126),(52,133),(53,114),(53,124),(53,134),(54,115),(54,125),(54,134),(55,116),(55,126),(55,134),(56,117),(56,124),(56,135),(57,118),(57,125),(57,135),(58,119),(58,126),(58,135),(59,109),(59,113),(59,136),(60,108),(60,113),(60,137),(61,110),(61,112),(61,136),(62,110),(62,111),(62,137),(63,108),(63,112),(63,138),(64,109),(64,111),(64,138),(65,115),(65,119),(65,136),(66,114),(66,119),(66,137),(67,116),(67,118),(67,136),(68,116),(68,117),(68,137),(69,114),(69,118),(69,138),(70,115),(70,117),(70,138),(71,99),(71,120),(71,128),(71,129),(72,100),(72,121),(72,127),(72,129),(73,101),(73,122),(73,127),(73,128),(74,87),(74,93),(74,105),(74,127),(74,131),(75,88),(75,94),(75,106),(75,128),(75,131),(76,89),(76,95),(76,107),(76,129),(76,131),(77,90),(77,96),(77,102),(77,127),(77,130),(78,91),(78,97),(78,103),(78,128),(78,130),(79,92),(79,98),(79,104),(79,129),(79,130),(80,81),(80,82),(80,83),(80,130),(80,131),(81,123),(81,139),(82,123),(82,132),(82,133),(83,123),(83,134),(83,135),(84,123),(84,124),(84,136),(85,123),(85,125),(85,137),(86,123),(86,126),(86,138),(87,111),(87,132),(87,136),(88,112),(88,132),(88,137),(89,113),(89,132),(89,138),(90,108),(90,133),(90,136),(91,109),(91,133),(91,137),(92,110),(92,133),(92,138),(93,117),(93,134),(93,136),(94,118),(94,134),(94,137),(95,119),(95,134),(95,138),(96,114),(96,135),(96,136),(97,115),(97,135),(97,137),(98,116),(98,135),(98,138),(99,124),(99,139),(100,125),(100,139),(101,126),(101,139),(102,108),(102,114),(102,139),(103,109),(103,115),(103,139),(104,110),(104,116),(104,139),(105,111),(105,117),(105,139),(106,112),(106,118),(106,139),(107,113),(107,119),(107,139),(108,140),(109,140),(110,140),(111,140),(112,140),(113,140),(114,140),(115,140),(116,140),(117,140),(118,140),(119,140),(120,124),(120,137),(120,138),(121,125),(121,136),(121,138),(122,126),(122,136),(122,137),(123,140),(124,140),(125,140),(126,140),(127,136),(127,139),(128,137),(128,139),(129,138),(129,139),(130,133),(130,135),(130,139),(131,132),(131,134),(131,139),(132,140),(133,140),(134,140),(135,140),(136,140),(137,140),(138,140),(139,140)],141)
=> ? = 10
[4,1,1] => [3,1,1,1] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(0,9),(0,10),(0,11),(0,12),(1,15),(1,26),(1,27),(1,32),(1,33),(1,41),(1,42),(1,91),(1,94),(2,14),(2,23),(2,25),(2,29),(2,31),(2,40),(2,42),(2,90),(2,93),(3,13),(3,22),(3,24),(3,28),(3,30),(3,40),(3,41),(3,89),(3,92),(4,18),(4,24),(4,25),(4,34),(4,35),(4,43),(4,44),(4,86),(4,94),(5,17),(5,22),(5,26),(5,36),(5,38),(5,43),(5,45),(5,87),(5,93),(6,16),(6,23),(6,27),(6,37),(6,39),(6,44),(6,45),(6,88),(6,92),(7,21),(7,30),(7,31),(7,36),(7,37),(7,46),(7,47),(7,86),(7,91),(8,20),(8,28),(8,32),(8,34),(8,39),(8,46),(8,48),(8,87),(8,90),(9,19),(9,29),(9,33),(9,35),(9,38),(9,47),(9,48),(9,88),(9,89),(10,19),(10,20),(10,21),(10,49),(10,92),(10,93),(10,94),(11,16),(11,17),(11,18),(11,49),(11,89),(11,90),(11,91),(12,13),(12,14),(12,15),(12,49),(12,86),(12,87),(12,88),(13,53),(13,54),(13,98),(13,100),(13,134),(14,53),(14,55),(14,99),(14,101),(14,135),(15,54),(15,55),(15,102),(15,103),(15,136),(16,56),(16,58),(16,107),(16,108),(16,134),(17,57),(17,58),(17,106),(17,109),(17,135),(18,56),(18,57),(18,104),(18,105),(18,136),(19,59),(19,61),(19,113),(19,114),(19,134),(20,60),(20,61),(20,112),(20,115),(20,135),(21,59),(21,60),(21,110),(21,111),(21,136),(22,63),(22,65),(22,80),(22,98),(22,106),(22,131),(23,64),(23,66),(23,81),(23,99),(23,107),(23,131),(24,62),(24,65),(24,82),(24,100),(24,104),(24,132),(25,62),(25,66),(25,83),(25,101),(25,105),(25,133),(26,63),(26,67),(26,84),(26,102),(26,109),(26,133),(27,64),(27,67),(27,85),(27,103),(27,108),(27,132),(28,69),(28,74),(28,82),(28,98),(28,112),(28,128),(29,70),(29,75),(29,83),(29,99),(29,113),(29,128),(30,68),(30,74),(30,80),(30,100),(30,110),(30,129),(31,68),(31,75),(31,81),(31,101),(31,111),(31,130),(32,69),(32,76),(32,85),(32,102),(32,115),(32,130),(33,70),(33,76),(33,84),(33,103),(33,114),(33,129),(34,72),(34,79),(34,82),(34,105),(34,115),(34,126),(35,71),(35,79),(35,83),(35,104),(35,114),(35,125),(36,73),(36,77),(36,80),(36,109),(36,111),(36,126),(37,73),(37,78),(37,81),(37,108),(37,110),(37,125),(38,71),(38,77),(38,84),(38,106),(38,113),(38,127),(39,72),(39,78),(39,85),(39,107),(39,112),(39,127),(40,50),(40,53),(40,62),(40,68),(40,128),(40,131),(41,50),(41,54),(41,63),(41,69),(41,129),(41,132),(42,50),(42,55),(42,64),(42,70),(42,130),(42,133),(43,51),(43,57),(43,65),(43,71),(43,126),(43,133),(44,51),(44,56),(44,66),(44,72),(44,125),(44,132),(45,51),(45,58),(45,67),(45,73),(45,127),(45,131),(46,52),(46,60),(46,74),(46,78),(46,126),(46,130),(47,52),(47,59),(47,75),(47,77),(47,125),(47,129),(48,52),(48,61),(48,76),(48,79),(48,127),(48,128),(49,134),(49,135),(49,136),(50,95),(50,147),(50,148),(51,96),(51,146),(51,148),(52,97),(52,146),(52,147),(53,95),(53,118),(53,151),(54,95),(54,116),(54,149),(55,95),(55,117),(55,150),(56,96),(56,120),(56,149),(57,96),(57,119),(57,150),(58,96),(58,121),(58,151),(59,97),(59,123),(59,149),(60,97),(60,122),(60,150),(61,97),(61,124),(61,151),(62,118),(62,142),(62,148),(63,116),(63,140),(63,148),(64,117),(64,141),(64,148),(65,119),(65,137),(65,148),(66,120),(66,138),(66,148),(67,121),(67,139),(67,148),(68,118),(68,143),(68,147),(69,116),(69,144),(69,147),(70,117),(70,145),(70,147),(71,119),(71,145),(71,146),(72,120),(72,144),(72,146),(73,121),(73,143),(73,146),(74,122),(74,137),(74,147),(75,123),(75,138),(75,147),(76,124),(76,139),(76,147),(77,123),(77,140),(77,146),(78,122),(78,141),(78,146),(79,124),(79,142),(79,146),(80,137),(80,140),(80,143),(81,138),(81,141),(81,143),(82,137),(82,142),(82,144),(83,138),(83,142),(83,145),(84,139),(84,140),(84,145),(85,139),(85,141),(85,144),(86,100),(86,101),(86,125),(86,126),(86,136),(87,98),(87,102),(87,126),(87,127),(87,135),(88,99),(88,103),(88,125),(88,127),(88,134),(89,104),(89,106),(89,128),(89,129),(89,134),(90,105),(90,107),(90,128),(90,130),(90,135),(91,108),(91,109),(91,129),(91,130),(91,136),(92,110),(92,112),(92,131),(92,132),(92,134),(93,111),(93,113),(93,131),(93,133),(93,135),(94,114),(94,115),(94,132),(94,133),(94,136),(95,152),(96,152),(97,152),(98,116),(98,137),(98,151),(99,117),(99,138),(99,151),(100,118),(100,137),(100,149),(101,118),(101,138),(101,150),(102,116),(102,139),(102,150),(103,117),(103,139),(103,149),(104,119),(104,142),(104,149),(105,120),(105,142),(105,150),(106,119),(106,140),(106,151),(107,120),(107,141),(107,151),(108,121),(108,141),(108,149),(109,121),(109,140),(109,150),(110,122),(110,143),(110,149),(111,123),(111,143),(111,150),(112,122),(112,144),(112,151),(113,123),(113,145),(113,151),(114,124),(114,145),(114,149),(115,124),(115,144),(115,150),(116,152),(117,152),(118,152),(119,152),(120,152),(121,152),(122,152),(123,152),(124,152),(125,138),(125,146),(125,149),(126,137),(126,146),(126,150),(127,139),(127,146),(127,151),(128,142),(128,147),(128,151),(129,140),(129,147),(129,149),(130,141),(130,147),(130,150),(131,143),(131,148),(131,151),(132,144),(132,148),(132,149),(133,145),(133,148),(133,150),(134,149),(134,151),(135,150),(135,151),(136,149),(136,150),(137,152),(138,152),(139,152),(140,152),(141,152),(142,152),(143,152),(144,152),(145,152),(146,152),(147,152),(148,152),(149,152),(150,152),(151,152)],153)
=> ? = 10
[4,2] => [1,2,1,1,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(0,9),(0,10),(0,11),(0,12),(0,13),(1,25),(1,30),(1,31),(1,36),(1,37),(1,40),(1,43),(1,46),(1,64),(1,65),(2,24),(2,27),(2,29),(2,33),(2,35),(2,39),(2,42),(2,45),(2,63),(2,65),(3,23),(3,26),(3,28),(3,32),(3,34),(3,38),(3,41),(3,44),(3,63),(3,64),(4,20),(4,21),(4,22),(4,23),(4,24),(4,25),(4,90),(4,91),(4,92),(5,16),(5,28),(5,29),(5,43),(5,47),(5,48),(5,84),(5,85),(5,90),(6,14),(6,26),(6,30),(6,42),(6,49),(6,51),(6,84),(6,86),(6,91),(7,15),(7,27),(7,31),(7,41),(7,50),(7,52),(7,85),(7,86),(7,92),(8,19),(8,34),(8,35),(8,46),(8,49),(8,50),(8,87),(8,88),(8,90),(9,17),(9,32),(9,36),(9,45),(9,47),(9,52),(9,87),(9,89),(9,91),(10,18),(10,33),(10,37),(10,44),(10,48),(10,51),(10,88),(10,89),(10,92),(11,15),(11,18),(11,20),(11,38),(11,62),(11,65),(11,84),(11,87),(12,14),(12,17),(12,21),(12,39),(12,62),(12,64),(12,85),(12,88),(13,16),(13,19),(13,22),(13,40),(13,62),(13,63),(13,86),(13,89),(14,67),(14,94),(14,97),(14,112),(14,146),(15,66),(15,93),(15,98),(15,113),(15,146),(16,68),(16,95),(16,96),(16,114),(16,146),(17,70),(17,94),(17,100),(17,116),(17,145),(18,69),(18,93),(18,101),(18,115),(18,145),(19,71),(19,95),(19,99),(19,117),(19,145),(20,59),(20,93),(20,102),(20,111),(20,148),(21,60),(21,94),(21,102),(21,110),(21,149),(22,61),(22,95),(22,102),(22,109),(22,150),(23,59),(23,103),(23,105),(23,109),(23,110),(23,124),(24,60),(24,104),(24,106),(24,109),(24,111),(24,125),(25,61),(25,107),(25,108),(25,110),(25,111),(25,126),(26,53),(26,80),(26,97),(26,103),(26,118),(26,139),(27,54),(27,81),(27,98),(27,104),(27,119),(27,139),(28,55),(28,78),(28,96),(28,105),(28,118),(28,140),(29,56),(29,79),(29,96),(29,106),(29,119),(29,141),(30,57),(30,83),(30,97),(30,107),(30,120),(30,141),(31,58),(31,82),(31,98),(31,108),(31,120),(31,140),(32,55),(32,74),(32,100),(32,103),(32,121),(32,142),(33,56),(33,75),(33,101),(33,104),(33,122),(33,142),(34,53),(34,72),(34,99),(34,105),(34,121),(34,143),(35,54),(35,73),(35,99),(35,106),(35,122),(35,144),(36,58),(36,77),(36,100),(36,107),(36,123),(36,144),(37,57),(37,76),(37,101),(37,108),(37,123),(37,143),(38,59),(38,66),(38,69),(38,118),(38,121),(38,147),(39,60),(39,67),(39,70),(39,119),(39,122),(39,147),(40,61),(40,68),(40,71),(40,120),(40,123),(40,147),(41,66),(41,72),(41,74),(41,124),(41,139),(41,140),(42,67),(42,73),(42,75),(42,125),(42,139),(42,141),(43,68),(43,76),(43,77),(43,126),(43,140),(43,141),(44,69),(44,78),(44,80),(44,124),(44,142),(44,143),(45,70),(45,79),(45,81),(45,125),(45,142),(45,144),(46,71),(46,82),(46,83),(46,126),(46,143),(46,144),(47,55),(47,77),(47,79),(47,114),(47,116),(47,148),(48,56),(48,76),(48,78),(48,114),(48,115),(48,149),(49,53),(49,73),(49,83),(49,112),(49,117),(49,148),(50,54),(50,72),(50,82),(50,113),(50,117),(50,149),(51,57),(51,75),(51,80),(51,112),(51,115),(51,150),(52,58),(52,74),(52,81),(52,113),(52,116),(52,150),(53,152),(53,154),(53,158),(54,153),(54,154),(54,159),(55,151),(55,155),(55,158),(56,151),(56,156),(56,159),(57,152),(57,156),(57,160),(58,153),(58,155),(58,160),(59,127),(59,157),(59,158),(60,128),(60,157),(60,159),(61,129),(61,157),(61,160),(62,102),(62,145),(62,146),(62,147),(63,96),(63,99),(63,109),(63,139),(63,142),(63,147),(64,97),(64,100),(64,110),(64,140),(64,143),(64,147),(65,98),(65,101),(65,111),(65,141),(65,144),(65,147),(66,127),(66,130),(66,164),(67,128),(67,131),(67,164),(68,129),(68,132),(68,164),(69,127),(69,133),(69,165),(70,128),(70,134),(70,165),(71,129),(71,135),(71,165),(72,130),(72,154),(72,162),(73,131),(73,154),(73,163),(74,130),(74,155),(74,161),(75,131),(75,156),(75,161),(76,132),(76,156),(76,162),(77,132),(77,155),(77,163),(78,133),(78,151),(78,162),(79,134),(79,151),(79,163),(80,133),(80,152),(80,161),(81,134),(81,153),(81,161),(82,135),(82,153),(82,162),(83,135),(83,152),(83,163),(84,115),(84,118),(84,141),(84,146),(84,148),(85,116),(85,119),(85,140),(85,146),(85,149),(86,117),(86,120),(86,139),(86,146),(86,150),(87,113),(87,121),(87,144),(87,145),(87,148),(88,112),(88,122),(88,143),(88,145),(88,149),(89,114),(89,123),(89,142),(89,145),(89,150),(90,95),(90,105),(90,106),(90,126),(90,148),(90,149),(91,94),(91,103),(91,107),(91,125),(91,148),(91,150),(92,93),(92,104),(92,108),(92,124),(92,149),(92,150),(93,127),(93,138),(93,166),(94,128),(94,137),(94,166),(95,129),(95,136),(95,166),(96,136),(96,151),(96,164),(97,137),(97,152),(97,164),(98,138),(98,153),(98,164),(99,136),(99,154),(99,165),(100,137),(100,155),(100,165),(101,138),(101,156),(101,165),(102,157),(102,166),(103,137),(103,158),(103,161),(104,138),(104,159),(104,161),(105,136),(105,158),(105,162),(106,136),(106,159),(106,163),(107,137),(107,160),(107,163),(108,138),(108,160),(108,162),(109,136),(109,157),(109,161),(110,137),(110,157),(110,162),(111,138),(111,157),(111,163),(112,131),(112,152),(112,166),(113,130),(113,153),(113,166),(114,132),(114,151),(114,166),(115,133),(115,156),(115,166),(116,134),(116,155),(116,166),(117,135),(117,154),(117,166),(118,133),(118,158),(118,164),(119,134),(119,159),(119,164),(120,135),(120,160),(120,164),(121,130),(121,158),(121,165),(122,131),(122,159),(122,165),(123,132),(123,160),(123,165),(124,127),(124,161),(124,162),(125,128),(125,161),(125,163),(126,129),(126,162),(126,163),(127,167),(128,167),(129,167),(130,167),(131,167),(132,167),(133,167),(134,167),(135,167),(136,167),(137,167),(138,167),(139,154),(139,161),(139,164),(140,155),(140,162),(140,164),(141,156),(141,163),(141,164),(142,151),(142,161),(142,165),(143,152),(143,162),(143,165),(144,153),(144,163),(144,165),(145,165),(145,166),(146,164),(146,166),(147,157),(147,164),(147,165),(148,158),(148,163),(148,166),(149,159),(149,162),(149,166),(150,160),(150,161),(150,166),(151,167),(152,167),(153,167),(154,167),(155,167),(156,167),(157,167),(158,167),(159,167),(160,167),(161,167),(162,167),(163,167),(164,167),(165,167),(166,167)],168)
=> ? = 10
[5,1] => [2,1,1,1,1] => ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(0,9),(0,10),(0,11),(0,12),(0,13),(0,14),(1,16),(1,21),(1,22),(1,28),(1,47),(1,52),(1,53),(1,88),(1,89),(1,91),(2,15),(2,19),(2,20),(2,27),(2,46),(2,50),(2,51),(2,86),(2,87),(2,91),(3,18),(3,24),(3,26),(3,30),(3,49),(3,55),(3,57),(3,87),(3,89),(3,90),(4,17),(4,23),(4,25),(4,29),(4,48),(4,54),(4,56),(4,86),(4,88),(4,90),(5,15),(5,31),(5,32),(5,39),(5,47),(5,54),(5,55),(5,92),(5,93),(5,97),(6,16),(6,33),(6,34),(6,40),(6,46),(6,56),(6,57),(6,94),(6,95),(6,97),(7,17),(7,35),(7,37),(7,41),(7,49),(7,50),(7,52),(7,92),(7,94),(7,96),(8,18),(8,36),(8,38),(8,42),(8,48),(8,51),(8,53),(8,93),(8,95),(8,96),(9,19),(9,23),(9,31),(9,35),(9,44),(9,82),(9,84),(9,89),(9,95),(10,20),(10,24),(10,32),(10,36),(10,45),(10,82),(10,85),(10,88),(10,94),(11,21),(11,25),(11,33),(11,37),(11,45),(11,83),(11,84),(11,87),(11,93),(12,22),(12,26),(12,34),(12,38),(12,44),(12,83),(12,85),(12,86),(12,92),(13,29),(13,30),(13,41),(13,42),(13,43),(13,84),(13,85),(13,91),(13,97),(14,27),(14,28),(14,39),(14,40),(14,43),(14,82),(14,83),(14,90),(14,96),(15,70),(15,71),(15,78),(15,152),(15,153),(15,157),(16,72),(16,73),(16,79),(16,154),(16,155),(16,157),(17,74),(17,76),(17,80),(17,152),(17,154),(17,156),(18,75),(18,77),(18,81),(18,153),(18,155),(18,156),(19,58),(19,70),(19,99),(19,122),(19,134),(19,168),(20,59),(20,71),(20,98),(20,123),(20,134),(20,167),(21,60),(21,72),(21,101),(21,124),(21,135),(21,168),(22,61),(22,73),(22,100),(22,125),(22,135),(22,167),(23,62),(23,74),(23,104),(23,122),(23,136),(23,166),(24,63),(24,75),(24,105),(24,123),(24,137),(24,166),(25,64),(25,76),(25,102),(25,124),(25,136),(25,165),(26,65),(26,77),(26,103),(26,125),(26,137),(26,165),(27,66),(27,78),(27,106),(27,126),(27,134),(27,165),(28,67),(28,79),(28,107),(28,126),(28,135),(28,166),(29,68),(29,80),(29,108),(29,127),(29,136),(29,167),(30,69),(30,81),(30,109),(30,127),(30,137),(30,168),(31,62),(31,70),(31,113),(31,128),(31,138),(31,172),(32,63),(32,71),(32,112),(32,129),(32,138),(32,171),(33,64),(33,72),(33,111),(33,130),(33,139),(33,172),(34,65),(34,73),(34,110),(34,131),(34,139),(34,171),(35,58),(35,74),(35,117),(35,128),(35,140),(35,170),(36,59),(36,75),(36,116),(36,129),(36,141),(36,170),(37,60),(37,76),(37,115),(37,130),(37,140),(37,169),(38,61),(38,77),(38,114),(38,131),(38,141),(38,169),(39,67),(39,78),(39,118),(39,132),(39,138),(39,169),(40,66),(40,79),(40,119),(40,132),(40,139),(40,170),(41,69),(41,80),(41,120),(41,133),(41,140),(41,171),(42,68),(42,81),(42,121),(42,133),(42,141),(42,172),(43,126),(43,127),(43,132),(43,133),(43,158),(44,122),(44,125),(44,128),(44,131),(44,158),(45,123),(45,124),(45,129),(45,130),(45,158),(46,66),(46,98),(46,99),(46,110),(46,111),(46,157),(47,67),(47,100),(47,101),(47,112),(47,113),(47,157),(48,68),(48,102),(48,104),(48,114),(48,116),(48,156),(49,69),(49,103),(49,105),(49,115),(49,117),(49,156),(50,58),(50,98),(50,106),(50,115),(50,120),(50,152),(51,59),(51,99),(51,106),(51,114),(51,121),(51,153),(52,60),(52,100),(52,107),(52,117),(52,120),(52,154),(53,61),(53,101),(53,107),(53,116),(53,121),(53,155),(54,62),(54,102),(54,108),(54,112),(54,118),(54,152),(55,63),(55,103),(55,109),(55,113),(55,118),(55,153),(56,64),(56,104),(56,108),(56,110),(56,119),(56,154),(57,65),(57,105),(57,109),(57,111),(57,119),(57,155),(58,159),(58,173),(58,180),(59,160),(59,173),(59,179),(60,161),(60,174),(60,180),(61,162),(61,174),(61,179),(62,159),(62,175),(62,178),(63,160),(63,176),(63,178),(64,161),(64,175),(64,177),(65,162),(65,176),(65,177),(66,163),(66,173),(66,177),(67,163),(67,174),(67,178),(68,164),(68,175),(68,179),(69,164),(69,176),(69,180),(70,142),(70,159),(70,184),(71,142),(71,160),(71,183),(72,143),(72,161),(72,184),(73,143),(73,162),(73,183),(74,144),(74,159),(74,182),(75,145),(75,160),(75,182),(76,144),(76,161),(76,181),(77,145),(77,162),(77,181),(78,142),(78,163),(78,181),(79,143),(79,163),(79,182),(80,144),(80,164),(80,183),(81,145),(81,164),(81,184),(82,134),(82,138),(82,158),(82,166),(82,170),(83,135),(83,139),(83,158),(83,165),(83,169),(84,136),(84,140),(84,158),(84,168),(84,172),(85,137),(85,141),(85,158),(85,167),(85,171),(86,110),(86,114),(86,122),(86,152),(86,165),(86,167),(87,111),(87,115),(87,123),(87,153),(87,165),(87,168),(88,112),(88,116),(88,124),(88,154),(88,166),(88,167),(89,113),(89,117),(89,125),(89,155),(89,166),(89,168),(90,118),(90,119),(90,127),(90,156),(90,165),(90,166),(91,120),(91,121),(91,126),(91,157),(91,167),(91,168),(92,100),(92,103),(92,128),(92,152),(92,169),(92,171),(93,101),(93,102),(93,129),(93,153),(93,169),(93,172),(94,98),(94,105),(94,130),(94,154),(94,170),(94,171),(95,99),(95,104),(95,131),(95,155),(95,170),(95,172),(96,106),(96,107),(96,133),(96,156),(96,169),(96,170),(97,108),(97,109),(97,132),(97,157),(97,171),(97,172),(98,147),(98,173),(98,183),(99,146),(99,173),(99,184),(100,149),(100,174),(100,183),(101,148),(101,174),(101,184),(102,148),(102,175),(102,181),(103,149),(103,176),(103,181),(104,146),(104,175),(104,182),(105,147),(105,176),(105,182),(106,150),(106,173),(106,181),(107,150),(107,174),(107,182),(108,151),(108,175),(108,183),(109,151),(109,176),(109,184),(110,146),(110,177),(110,183),(111,147),(111,177),(111,184),(112,148),(112,178),(112,183),(113,149),(113,178),(113,184),(114,146),(114,179),(114,181),(115,147),(115,180),(115,181),(116,148),(116,179),(116,182),(117,149),(117,180),(117,182),(118,151),(118,178),(118,181),(119,151),(119,177),(119,182),(120,150),(120,180),(120,183),(121,150),(121,179),(121,184),(122,146),(122,159),(122,186),(123,147),(123,160),(123,186),(124,148),(124,161),(124,186),(125,149),(125,162),(125,186),(126,150),(126,163),(126,186),(127,151),(127,164),(127,186),(128,149),(128,159),(128,185),(129,148),(129,160),(129,185),(130,147),(130,161),(130,185),(131,146),(131,162),(131,185),(132,151),(132,163),(132,185),(133,150),(133,164),(133,185),(134,142),(134,173),(134,186),(135,143),(135,174),(135,186),(136,144),(136,175),(136,186),(137,145),(137,176),(137,186),(138,142),(138,178),(138,185),(139,143),(139,177),(139,185),(140,144),(140,180),(140,185),(141,145),(141,179),(141,185),(142,187),(143,187),(144,187),(145,187),(146,187),(147,187),(148,187),(149,187),(150,187),(151,187),(152,159),(152,181),(152,183),(153,160),(153,181),(153,184),(154,161),(154,182),(154,183),(155,162),(155,182),(155,184),(156,164),(156,181),(156,182),(157,163),(157,183),(157,184),(158,185),(158,186),(159,187),(160,187),(161,187),(162,187),(163,187),(164,187),(165,177),(165,181),(165,186),(166,178),(166,182),(166,186),(167,179),(167,183),(167,186),(168,180),(168,184),(168,186),(169,174),(169,181),(169,185),(170,173),(170,182),(170,185),(171,176),(171,183),(171,185),(172,175),(172,184),(172,185),(173,187),(174,187),(175,187),(176,187),(177,187),(178,187),(179,187),(180,187),(181,187),(182,187),(183,187),(184,187),(185,187),(186,187)],188)
=> ? = 5
[6] => [1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(0,9),(0,10),(0,11),(0,12),(0,13),(0,14),(0,15),(1,40),(1,41),(1,42),(1,43),(1,44),(1,45),(1,82),(1,83),(1,84),(1,85),(2,18),(2,19),(2,25),(2,30),(2,31),(2,37),(2,78),(2,79),(2,81),(2,83),(3,16),(3,17),(3,24),(3,28),(3,29),(3,36),(3,76),(3,77),(3,81),(3,82),(4,21),(4,23),(4,27),(4,33),(4,35),(4,39),(4,77),(4,79),(4,80),(4,85),(5,20),(5,22),(5,26),(5,32),(5,34),(5,38),(5,76),(5,78),(5,80),(5,84),(6,22),(6,23),(6,24),(6,46),(6,47),(6,54),(6,83),(6,86),(6,87),(6,91),(7,20),(7,21),(7,25),(7,48),(7,49),(7,55),(7,82),(7,88),(7,89),(7,91),(8,17),(8,19),(8,26),(8,50),(8,52),(8,56),(8,85),(8,86),(8,88),(8,90),(9,16),(9,18),(9,27),(9,51),(9,53),(9,57),(9,84),(9,87),(9,89),(9,90),(10,28),(10,32),(10,43),(10,48),(10,51),(10,59),(10,79),(10,86),(10,92),(10,94),(11,29),(11,33),(11,42),(11,49),(11,50),(11,60),(11,78),(11,87),(11,92),(11,95),(12,30),(12,34),(12,41),(12,46),(12,53),(12,60),(12,77),(12,88),(12,93),(12,94),(13,31),(13,35),(13,40),(13,47),(13,52),(13,59),(13,76),(13,89),(13,93),(13,95),(14,38),(14,39),(14,45),(14,56),(14,57),(14,58),(14,81),(14,91),(14,94),(14,95),(15,36),(15,37),(15,44),(15,54),(15,55),(15,58),(15,80),(15,90),(15,92),(15,93),(16,61),(16,107),(16,112),(16,126),(16,134),(16,170),(17,62),(17,106),(17,113),(17,127),(17,134),(17,171),(18,63),(18,109),(18,112),(18,129),(18,135),(18,172),(19,64),(19,108),(19,113),(19,128),(19,135),(19,173),(20,65),(20,104),(20,110),(20,132),(20,136),(20,170),(21,66),(21,105),(21,110),(21,133),(21,137),(21,171),(22,67),(22,102),(22,111),(22,130),(22,136),(22,172),(23,68),(23,103),(23,111),(23,131),(23,137),(23,173),(24,69),(24,102),(24,103),(24,126),(24,127),(24,175),(25,70),(25,104),(25,105),(25,128),(25,129),(25,175),(26,71),(26,106),(26,108),(26,130),(26,132),(26,174),(27,72),(27,107),(27,109),(27,131),(27,133),(27,174),(28,61),(28,96),(28,114),(28,127),(28,138),(28,169),(29,62),(29,97),(29,115),(29,126),(29,138),(29,168),(30,63),(30,98),(30,117),(30,128),(30,139),(30,169),(31,64),(31,99),(31,116),(31,129),(31,139),(31,168),(32,65),(32,96),(32,118),(32,130),(32,140),(32,167),(33,66),(33,97),(33,119),(33,131),(33,141),(33,167),(34,67),(34,98),(34,120),(34,132),(34,140),(34,166),(35,68),(35,99),(35,121),(35,133),(35,141),(35,166),(36,69),(36,100),(36,122),(36,134),(36,138),(36,166),(37,70),(37,100),(37,123),(37,135),(37,139),(37,167),(38,71),(38,101),(38,124),(38,136),(38,140),(38,168),(39,72),(39,101),(39,125),(39,137),(39,141),(39,169),(40,73),(40,116),(40,121),(40,142),(40,144),(40,170),(41,74),(41,117),(41,120),(41,142),(41,145),(41,171),(42,74),(42,115),(42,119),(42,143),(42,144),(42,172),(43,73),(43,114),(43,118),(43,143),(43,145),(43,173),(44,75),(44,122),(44,123),(44,142),(44,143),(44,174),(45,75),(45,124),(45,125),(45,144),(45,145),(45,175),(46,67),(46,103),(46,117),(46,148),(46,152),(46,178),(47,68),(47,102),(47,116),(47,149),(47,152),(47,179),(48,65),(48,105),(48,114),(48,146),(48,153),(48,178),(49,66),(49,104),(49,115),(49,147),(49,153),(49,179),(50,62),(50,108),(50,119),(50,147),(50,154),(50,176),(51,61),(51,109),(51,118),(51,146),(51,155),(51,176),(52,64),(52,106),(52,121),(52,149),(52,154),(52,177),(53,63),(53,107),(53,120),(53,148),(53,155),(53,177),(54,69),(54,111),(54,123),(54,150),(54,152),(54,176),(55,70),(55,110),(55,122),(55,150),(55,153),(55,177),(56,71),(56,113),(56,125),(56,151),(56,154),(56,178),(57,72),(57,112),(57,124),(57,151),(57,155),(57,179),(58,75),(58,100),(58,101),(58,150),(58,151),(58,180),(59,73),(59,96),(59,99),(59,146),(59,149),(59,180),(60,74),(60,97),(60,98),(60,147),(60,148),(60,180),(61,181),(61,189),(61,190),(62,181),(62,188),(62,191),(63,182),(63,189),(63,192),(64,182),(64,188),(64,193),(65,183),(65,187),(65,190),(66,184),(66,187),(66,191),(67,183),(67,186),(67,192),(68,184),(68,186),(68,193),(69,181),(69,186),(69,194),(70,182),(70,187),(70,194),(71,183),(71,188),(71,195),(72,184),(72,189),(72,195),(73,185),(73,190),(73,193),(74,185),(74,191),(74,192),(75,185),(75,194),(75,195),(76,96),(76,102),(76,106),(76,166),(76,168),(76,170),(77,97),(77,103),(77,107),(77,166),(77,169),(77,171),(78,98),(78,104),(78,108),(78,167),(78,168),(78,172),(79,99),(79,105),(79,109),(79,167),(79,169),(79,173),(80,101),(80,110),(80,111),(80,166),(80,167),(80,174),(81,100),(81,112),(81,113),(81,168),(81,169),(81,175),(82,114),(82,115),(82,122),(82,170),(82,171),(82,175),(83,116),(83,117),(83,123),(83,172),(83,173),(83,175),(84,118),(84,120),(84,124),(84,170),(84,172),(84,174),(85,119),(85,121),(85,125),(85,171),(85,173),(85,174),(86,127),(86,130),(86,149),(86,173),(86,176),(86,178),(87,126),(87,131),(87,148),(87,172),(87,176),(87,179),(88,128),(88,132),(88,147),(88,171),(88,177),(88,178),(89,129),(89,133),(89,146),(89,170),(89,177),(89,179),(90,134),(90,135),(90,151),(90,174),(90,176),(90,177),(91,136),(91,137),(91,150),(91,175),(91,178),(91,179),(92,138),(92,143),(92,153),(92,167),(92,176),(92,180),(93,139),(93,142),(93,152),(93,166),(93,177),(93,180),(94,140),(94,145),(94,155),(94,169),(94,178),(94,180),(95,141),(95,144),(95,154),(95,168),(95,179),(95,180),(96,156),(96,190),(96,197),(97,157),(97,191),(97,197),(98,158),(98,192),(98,197),(99,159),(99,193),(99,197),(100,160),(100,194),(100,197),(101,161),(101,195),(101,197),(102,156),(102,186),(102,200),(103,157),(103,186),(103,201),(104,158),(104,187),(104,200),(105,159),(105,187),(105,201),(106,156),(106,188),(106,198),(107,157),(107,189),(107,198),(108,158),(108,188),(108,199),(109,159),(109,189),(109,199),(110,161),(110,187),(110,198),(111,161),(111,186),(111,199),(112,160),(112,189),(112,200),(113,160),(113,188),(113,201),(114,162),(114,190),(114,201),(115,162),(115,191),(115,200),(116,163),(116,193),(116,200),(117,163),(117,192),(117,201),(118,164),(118,190),(118,199),(119,165),(119,191),(119,199),(120,164),(120,192),(120,198),(121,165),(121,193),(121,198),(122,162),(122,194),(122,198),(123,163),(123,194),(123,199),(124,164),(124,195),(124,200),(125,165),(125,195),(125,201),(126,157),(126,181),(126,200),(127,156),(127,181),(127,201),(128,158),(128,182),(128,201),(129,159),(129,182),(129,200),(130,156),(130,183),(130,199),(131,157),(131,184),(131,199),(132,158),(132,183),(132,198),(133,159),(133,184),(133,198),(134,160),(134,181),(134,198),(135,160),(135,182),(135,199),(136,161),(136,183),(136,200),(137,161),(137,184),(137,201),(138,162),(138,181),(138,197),(139,163),(139,182),(139,197),(140,164),(140,183),(140,197),(141,165),(141,184),(141,197),(142,163),(142,185),(142,198),(143,162),(143,185),(143,199),(144,165),(144,185),(144,200),(145,164),(145,185),(145,201),(146,159),(146,190),(146,196),(147,158),(147,191),(147,196),(148,157),(148,192),(148,196),(149,156),(149,193),(149,196),(150,161),(150,194),(150,196),(151,160),(151,195),(151,196),(152,163),(152,186),(152,196),(153,162),(153,187),(153,196),(154,165),(154,188),(154,196),(155,164),(155,189),(155,196),(156,202),(157,202),(158,202),(159,202),(160,202),(161,202),(162,202),(163,202),(164,202),(165,202),(166,186),(166,197),(166,198),(167,187),(167,197),(167,199),(168,188),(168,197),(168,200),(169,189),(169,197),(169,201),(170,190),(170,198),(170,200),(171,191),(171,198),(171,201),(172,192),(172,199),(172,200),(173,193),(173,199),(173,201),(174,195),(174,198),(174,199),(175,194),(175,200),(175,201),(176,181),(176,196),(176,199),(177,182),(177,196),(177,198),(178,183),(178,196),(178,201),(179,184),(179,196),(179,200),(180,185),(180,196),(180,197),(181,202),(182,202),(183,202),(184,202),(185,202),(186,202),(187,202),(188,202),(189,202),(190,202),(191,202),(192,202),(193,202),(194,202),(195,202),(196,202),(197,202),(198,202),(199,202),(200,202),(201,202)],203)
=> ? = 1
[1,1,1,1,1,1,1] => [7] => ([],7)
=> ([],1)
=> 1
[1,1,1,1,1,2] => [1,6] => ([(5,6)],7)
=> ([(0,1)],2)
=> 1
[1,1,1,1,2,1] => [2,5] => ([(4,6),(5,6)],7)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
[1,1,1,1,3] => [1,1,5] => ([(4,5),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> 1
[1,1,1,4] => [1,1,1,4] => ([(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,9),(1,11),(1,13),(2,9),(2,10),(2,12),(3,8),(3,10),(3,13),(4,8),(4,11),(4,12),(5,7),(5,12),(5,13),(6,7),(6,10),(6,11),(7,14),(8,14),(9,14),(10,14),(11,14),(12,14),(13,14)],15)
=> ? = 1
[1,1,5] => [1,1,1,1,3] => ([(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(0,9),(0,10),(1,13),(1,14),(1,20),(1,28),(1,29),(1,31),(2,11),(2,12),(2,19),(2,26),(2,27),(2,31),(3,16),(3,18),(3,22),(3,27),(3,29),(3,30),(4,15),(4,17),(4,21),(4,26),(4,28),(4,30),(5,11),(5,15),(5,24),(5,29),(5,32),(5,34),(6,12),(6,16),(6,25),(6,28),(6,32),(6,35),(7,13),(7,17),(7,25),(7,27),(7,33),(7,34),(8,14),(8,18),(8,24),(8,26),(8,33),(8,35),(9,21),(9,22),(9,23),(9,31),(9,34),(9,35),(10,19),(10,20),(10,23),(10,30),(10,32),(10,33),(11,36),(11,40),(11,50),(12,36),(12,41),(12,49),(13,37),(13,42),(13,50),(14,37),(14,43),(14,49),(15,38),(15,40),(15,48),(16,39),(16,41),(16,48),(17,38),(17,42),(17,47),(18,39),(18,43),(18,47),(19,36),(19,44),(19,47),(20,37),(20,44),(20,48),(21,38),(21,45),(21,49),(22,39),(22,45),(22,50),(23,44),(23,45),(23,46),(24,40),(24,43),(24,46),(25,41),(25,42),(25,46),(26,40),(26,47),(26,49),(27,41),(27,47),(27,50),(28,42),(28,48),(28,49),(29,43),(29,48),(29,50),(30,45),(30,47),(30,48),(31,44),(31,49),(31,50),(32,36),(32,46),(32,48),(33,37),(33,46),(33,47),(34,38),(34,46),(34,50),(35,39),(35,46),(35,49),(36,51),(37,51),(38,51),(39,51),(40,51),(41,51),(42,51),(43,51),(44,51),(45,51),(46,51),(47,51),(48,51),(49,51),(50,51)],52)
=> ? = 1
[1,2,1,1,1,1] => [5,2] => ([(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,12),(1,13),(1,14),(1,15),(2,9),(2,10),(2,11),(2,15),(3,7),(3,8),(3,11),(3,14),(4,6),(4,8),(4,10),(4,13),(5,6),(5,7),(5,9),(5,12),(6,16),(6,19),(6,22),(7,16),(7,17),(7,20),(8,16),(8,18),(8,21),(9,17),(9,19),(9,23),(10,18),(10,19),(10,24),(11,17),(11,18),(11,25),(12,20),(12,22),(12,23),(13,21),(13,22),(13,24),(14,20),(14,21),(14,25),(15,23),(15,24),(15,25),(16,29),(16,30),(17,26),(17,30),(18,27),(18,30),(19,28),(19,30),(20,26),(20,29),(21,27),(21,29),(22,28),(22,29),(23,26),(23,28),(24,27),(24,28),(25,26),(25,27),(26,31),(27,31),(28,31),(29,31),(30,31)],32)
=> ? = 5
[1,4,2] => [1,2,1,1,2] => ([(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(0,9),(0,10),(0,11),(0,12),(0,13),(1,25),(1,30),(1,31),(1,36),(1,37),(1,40),(1,43),(1,46),(1,64),(1,65),(2,24),(2,27),(2,29),(2,33),(2,35),(2,39),(2,42),(2,45),(2,63),(2,65),(3,23),(3,26),(3,28),(3,32),(3,34),(3,38),(3,41),(3,44),(3,63),(3,64),(4,20),(4,21),(4,22),(4,23),(4,24),(4,25),(4,90),(4,91),(4,92),(5,16),(5,28),(5,29),(5,43),(5,47),(5,48),(5,84),(5,85),(5,90),(6,14),(6,26),(6,30),(6,42),(6,49),(6,51),(6,84),(6,86),(6,91),(7,15),(7,27),(7,31),(7,41),(7,50),(7,52),(7,85),(7,86),(7,92),(8,19),(8,34),(8,35),(8,46),(8,49),(8,50),(8,87),(8,88),(8,90),(9,17),(9,32),(9,36),(9,45),(9,47),(9,52),(9,87),(9,89),(9,91),(10,18),(10,33),(10,37),(10,44),(10,48),(10,51),(10,88),(10,89),(10,92),(11,15),(11,18),(11,20),(11,38),(11,62),(11,65),(11,84),(11,87),(12,14),(12,17),(12,21),(12,39),(12,62),(12,64),(12,85),(12,88),(13,16),(13,19),(13,22),(13,40),(13,62),(13,63),(13,86),(13,89),(14,67),(14,94),(14,97),(14,112),(14,146),(15,66),(15,93),(15,98),(15,113),(15,146),(16,68),(16,95),(16,96),(16,114),(16,146),(17,70),(17,94),(17,100),(17,116),(17,145),(18,69),(18,93),(18,101),(18,115),(18,145),(19,71),(19,95),(19,99),(19,117),(19,145),(20,59),(20,93),(20,102),(20,111),(20,148),(21,60),(21,94),(21,102),(21,110),(21,149),(22,61),(22,95),(22,102),(22,109),(22,150),(23,59),(23,103),(23,105),(23,109),(23,110),(23,124),(24,60),(24,104),(24,106),(24,109),(24,111),(24,125),(25,61),(25,107),(25,108),(25,110),(25,111),(25,126),(26,53),(26,80),(26,97),(26,103),(26,118),(26,139),(27,54),(27,81),(27,98),(27,104),(27,119),(27,139),(28,55),(28,78),(28,96),(28,105),(28,118),(28,140),(29,56),(29,79),(29,96),(29,106),(29,119),(29,141),(30,57),(30,83),(30,97),(30,107),(30,120),(30,141),(31,58),(31,82),(31,98),(31,108),(31,120),(31,140),(32,55),(32,74),(32,100),(32,103),(32,121),(32,142),(33,56),(33,75),(33,101),(33,104),(33,122),(33,142),(34,53),(34,72),(34,99),(34,105),(34,121),(34,143),(35,54),(35,73),(35,99),(35,106),(35,122),(35,144),(36,58),(36,77),(36,100),(36,107),(36,123),(36,144),(37,57),(37,76),(37,101),(37,108),(37,123),(37,143),(38,59),(38,66),(38,69),(38,118),(38,121),(38,147),(39,60),(39,67),(39,70),(39,119),(39,122),(39,147),(40,61),(40,68),(40,71),(40,120),(40,123),(40,147),(41,66),(41,72),(41,74),(41,124),(41,139),(41,140),(42,67),(42,73),(42,75),(42,125),(42,139),(42,141),(43,68),(43,76),(43,77),(43,126),(43,140),(43,141),(44,69),(44,78),(44,80),(44,124),(44,142),(44,143),(45,70),(45,79),(45,81),(45,125),(45,142),(45,144),(46,71),(46,82),(46,83),(46,126),(46,143),(46,144),(47,55),(47,77),(47,79),(47,114),(47,116),(47,148),(48,56),(48,76),(48,78),(48,114),(48,115),(48,149),(49,53),(49,73),(49,83),(49,112),(49,117),(49,148),(50,54),(50,72),(50,82),(50,113),(50,117),(50,149),(51,57),(51,75),(51,80),(51,112),(51,115),(51,150),(52,58),(52,74),(52,81),(52,113),(52,116),(52,150),(53,152),(53,154),(53,158),(54,153),(54,154),(54,159),(55,151),(55,155),(55,158),(56,151),(56,156),(56,159),(57,152),(57,156),(57,160),(58,153),(58,155),(58,160),(59,127),(59,157),(59,158),(60,128),(60,157),(60,159),(61,129),(61,157),(61,160),(62,102),(62,145),(62,146),(62,147),(63,96),(63,99),(63,109),(63,139),(63,142),(63,147),(64,97),(64,100),(64,110),(64,140),(64,143),(64,147),(65,98),(65,101),(65,111),(65,141),(65,144),(65,147),(66,127),(66,130),(66,164),(67,128),(67,131),(67,164),(68,129),(68,132),(68,164),(69,127),(69,133),(69,165),(70,128),(70,134),(70,165),(71,129),(71,135),(71,165),(72,130),(72,154),(72,162),(73,131),(73,154),(73,163),(74,130),(74,155),(74,161),(75,131),(75,156),(75,161),(76,132),(76,156),(76,162),(77,132),(77,155),(77,163),(78,133),(78,151),(78,162),(79,134),(79,151),(79,163),(80,133),(80,152),(80,161),(81,134),(81,153),(81,161),(82,135),(82,153),(82,162),(83,135),(83,152),(83,163),(84,115),(84,118),(84,141),(84,146),(84,148),(85,116),(85,119),(85,140),(85,146),(85,149),(86,117),(86,120),(86,139),(86,146),(86,150),(87,113),(87,121),(87,144),(87,145),(87,148),(88,112),(88,122),(88,143),(88,145),(88,149),(89,114),(89,123),(89,142),(89,145),(89,150),(90,95),(90,105),(90,106),(90,126),(90,148),(90,149),(91,94),(91,103),(91,107),(91,125),(91,148),(91,150),(92,93),(92,104),(92,108),(92,124),(92,149),(92,150),(93,127),(93,138),(93,166),(94,128),(94,137),(94,166),(95,129),(95,136),(95,166),(96,136),(96,151),(96,164),(97,137),(97,152),(97,164),(98,138),(98,153),(98,164),(99,136),(99,154),(99,165),(100,137),(100,155),(100,165),(101,138),(101,156),(101,165),(102,157),(102,166),(103,137),(103,158),(103,161),(104,138),(104,159),(104,161),(105,136),(105,158),(105,162),(106,136),(106,159),(106,163),(107,137),(107,160),(107,163),(108,138),(108,160),(108,162),(109,136),(109,157),(109,161),(110,137),(110,157),(110,162),(111,138),(111,157),(111,163),(112,131),(112,152),(112,166),(113,130),(113,153),(113,166),(114,132),(114,151),(114,166),(115,133),(115,156),(115,166),(116,134),(116,155),(116,166),(117,135),(117,154),(117,166),(118,133),(118,158),(118,164),(119,134),(119,159),(119,164),(120,135),(120,160),(120,164),(121,130),(121,158),(121,165),(122,131),(122,159),(122,165),(123,132),(123,160),(123,165),(124,127),(124,161),(124,162),(125,128),(125,161),(125,163),(126,129),(126,162),(126,163),(127,167),(128,167),(129,167),(130,167),(131,167),(132,167),(133,167),(134,167),(135,167),(136,167),(137,167),(138,167),(139,154),(139,161),(139,164),(140,155),(140,162),(140,164),(141,156),(141,163),(141,164),(142,151),(142,161),(142,165),(143,152),(143,162),(143,165),(144,153),(144,163),(144,165),(145,165),(145,166),(146,164),(146,166),(147,157),(147,164),(147,165),(148,158),(148,163),(148,166),(149,159),(149,162),(149,166),(150,160),(150,161),(150,166),(151,167),(152,167),(153,167),(154,167),(155,167),(156,167),(157,167),(158,167),(159,167),(160,167),(161,167),(162,167),(163,167),(164,167),(165,167),(166,167)],168)
=> ? = 10
[1,6] => [1,1,1,1,1,2] => ([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(0,9),(0,10),(0,11),(0,12),(0,13),(0,14),(0,15),(1,40),(1,41),(1,42),(1,43),(1,44),(1,45),(1,82),(1,83),(1,84),(1,85),(2,18),(2,19),(2,25),(2,30),(2,31),(2,37),(2,78),(2,79),(2,81),(2,83),(3,16),(3,17),(3,24),(3,28),(3,29),(3,36),(3,76),(3,77),(3,81),(3,82),(4,21),(4,23),(4,27),(4,33),(4,35),(4,39),(4,77),(4,79),(4,80),(4,85),(5,20),(5,22),(5,26),(5,32),(5,34),(5,38),(5,76),(5,78),(5,80),(5,84),(6,22),(6,23),(6,24),(6,46),(6,47),(6,54),(6,83),(6,86),(6,87),(6,91),(7,20),(7,21),(7,25),(7,48),(7,49),(7,55),(7,82),(7,88),(7,89),(7,91),(8,17),(8,19),(8,26),(8,50),(8,52),(8,56),(8,85),(8,86),(8,88),(8,90),(9,16),(9,18),(9,27),(9,51),(9,53),(9,57),(9,84),(9,87),(9,89),(9,90),(10,28),(10,32),(10,43),(10,48),(10,51),(10,59),(10,79),(10,86),(10,92),(10,94),(11,29),(11,33),(11,42),(11,49),(11,50),(11,60),(11,78),(11,87),(11,92),(11,95),(12,30),(12,34),(12,41),(12,46),(12,53),(12,60),(12,77),(12,88),(12,93),(12,94),(13,31),(13,35),(13,40),(13,47),(13,52),(13,59),(13,76),(13,89),(13,93),(13,95),(14,38),(14,39),(14,45),(14,56),(14,57),(14,58),(14,81),(14,91),(14,94),(14,95),(15,36),(15,37),(15,44),(15,54),(15,55),(15,58),(15,80),(15,90),(15,92),(15,93),(16,61),(16,107),(16,112),(16,126),(16,134),(16,170),(17,62),(17,106),(17,113),(17,127),(17,134),(17,171),(18,63),(18,109),(18,112),(18,129),(18,135),(18,172),(19,64),(19,108),(19,113),(19,128),(19,135),(19,173),(20,65),(20,104),(20,110),(20,132),(20,136),(20,170),(21,66),(21,105),(21,110),(21,133),(21,137),(21,171),(22,67),(22,102),(22,111),(22,130),(22,136),(22,172),(23,68),(23,103),(23,111),(23,131),(23,137),(23,173),(24,69),(24,102),(24,103),(24,126),(24,127),(24,175),(25,70),(25,104),(25,105),(25,128),(25,129),(25,175),(26,71),(26,106),(26,108),(26,130),(26,132),(26,174),(27,72),(27,107),(27,109),(27,131),(27,133),(27,174),(28,61),(28,96),(28,114),(28,127),(28,138),(28,169),(29,62),(29,97),(29,115),(29,126),(29,138),(29,168),(30,63),(30,98),(30,117),(30,128),(30,139),(30,169),(31,64),(31,99),(31,116),(31,129),(31,139),(31,168),(32,65),(32,96),(32,118),(32,130),(32,140),(32,167),(33,66),(33,97),(33,119),(33,131),(33,141),(33,167),(34,67),(34,98),(34,120),(34,132),(34,140),(34,166),(35,68),(35,99),(35,121),(35,133),(35,141),(35,166),(36,69),(36,100),(36,122),(36,134),(36,138),(36,166),(37,70),(37,100),(37,123),(37,135),(37,139),(37,167),(38,71),(38,101),(38,124),(38,136),(38,140),(38,168),(39,72),(39,101),(39,125),(39,137),(39,141),(39,169),(40,73),(40,116),(40,121),(40,142),(40,144),(40,170),(41,74),(41,117),(41,120),(41,142),(41,145),(41,171),(42,74),(42,115),(42,119),(42,143),(42,144),(42,172),(43,73),(43,114),(43,118),(43,143),(43,145),(43,173),(44,75),(44,122),(44,123),(44,142),(44,143),(44,174),(45,75),(45,124),(45,125),(45,144),(45,145),(45,175),(46,67),(46,103),(46,117),(46,148),(46,152),(46,178),(47,68),(47,102),(47,116),(47,149),(47,152),(47,179),(48,65),(48,105),(48,114),(48,146),(48,153),(48,178),(49,66),(49,104),(49,115),(49,147),(49,153),(49,179),(50,62),(50,108),(50,119),(50,147),(50,154),(50,176),(51,61),(51,109),(51,118),(51,146),(51,155),(51,176),(52,64),(52,106),(52,121),(52,149),(52,154),(52,177),(53,63),(53,107),(53,120),(53,148),(53,155),(53,177),(54,69),(54,111),(54,123),(54,150),(54,152),(54,176),(55,70),(55,110),(55,122),(55,150),(55,153),(55,177),(56,71),(56,113),(56,125),(56,151),(56,154),(56,178),(57,72),(57,112),(57,124),(57,151),(57,155),(57,179),(58,75),(58,100),(58,101),(58,150),(58,151),(58,180),(59,73),(59,96),(59,99),(59,146),(59,149),(59,180),(60,74),(60,97),(60,98),(60,147),(60,148),(60,180),(61,181),(61,189),(61,190),(62,181),(62,188),(62,191),(63,182),(63,189),(63,192),(64,182),(64,188),(64,193),(65,183),(65,187),(65,190),(66,184),(66,187),(66,191),(67,183),(67,186),(67,192),(68,184),(68,186),(68,193),(69,181),(69,186),(69,194),(70,182),(70,187),(70,194),(71,183),(71,188),(71,195),(72,184),(72,189),(72,195),(73,185),(73,190),(73,193),(74,185),(74,191),(74,192),(75,185),(75,194),(75,195),(76,96),(76,102),(76,106),(76,166),(76,168),(76,170),(77,97),(77,103),(77,107),(77,166),(77,169),(77,171),(78,98),(78,104),(78,108),(78,167),(78,168),(78,172),(79,99),(79,105),(79,109),(79,167),(79,169),(79,173),(80,101),(80,110),(80,111),(80,166),(80,167),(80,174),(81,100),(81,112),(81,113),(81,168),(81,169),(81,175),(82,114),(82,115),(82,122),(82,170),(82,171),(82,175),(83,116),(83,117),(83,123),(83,172),(83,173),(83,175),(84,118),(84,120),(84,124),(84,170),(84,172),(84,174),(85,119),(85,121),(85,125),(85,171),(85,173),(85,174),(86,127),(86,130),(86,149),(86,173),(86,176),(86,178),(87,126),(87,131),(87,148),(87,172),(87,176),(87,179),(88,128),(88,132),(88,147),(88,171),(88,177),(88,178),(89,129),(89,133),(89,146),(89,170),(89,177),(89,179),(90,134),(90,135),(90,151),(90,174),(90,176),(90,177),(91,136),(91,137),(91,150),(91,175),(91,178),(91,179),(92,138),(92,143),(92,153),(92,167),(92,176),(92,180),(93,139),(93,142),(93,152),(93,166),(93,177),(93,180),(94,140),(94,145),(94,155),(94,169),(94,178),(94,180),(95,141),(95,144),(95,154),(95,168),(95,179),(95,180),(96,156),(96,190),(96,197),(97,157),(97,191),(97,197),(98,158),(98,192),(98,197),(99,159),(99,193),(99,197),(100,160),(100,194),(100,197),(101,161),(101,195),(101,197),(102,156),(102,186),(102,200),(103,157),(103,186),(103,201),(104,158),(104,187),(104,200),(105,159),(105,187),(105,201),(106,156),(106,188),(106,198),(107,157),(107,189),(107,198),(108,158),(108,188),(108,199),(109,159),(109,189),(109,199),(110,161),(110,187),(110,198),(111,161),(111,186),(111,199),(112,160),(112,189),(112,200),(113,160),(113,188),(113,201),(114,162),(114,190),(114,201),(115,162),(115,191),(115,200),(116,163),(116,193),(116,200),(117,163),(117,192),(117,201),(118,164),(118,190),(118,199),(119,165),(119,191),(119,199),(120,164),(120,192),(120,198),(121,165),(121,193),(121,198),(122,162),(122,194),(122,198),(123,163),(123,194),(123,199),(124,164),(124,195),(124,200),(125,165),(125,195),(125,201),(126,157),(126,181),(126,200),(127,156),(127,181),(127,201),(128,158),(128,182),(128,201),(129,159),(129,182),(129,200),(130,156),(130,183),(130,199),(131,157),(131,184),(131,199),(132,158),(132,183),(132,198),(133,159),(133,184),(133,198),(134,160),(134,181),(134,198),(135,160),(135,182),(135,199),(136,161),(136,183),(136,200),(137,161),(137,184),(137,201),(138,162),(138,181),(138,197),(139,163),(139,182),(139,197),(140,164),(140,183),(140,197),(141,165),(141,184),(141,197),(142,163),(142,185),(142,198),(143,162),(143,185),(143,199),(144,165),(144,185),(144,200),(145,164),(145,185),(145,201),(146,159),(146,190),(146,196),(147,158),(147,191),(147,196),(148,157),(148,192),(148,196),(149,156),(149,193),(149,196),(150,161),(150,194),(150,196),(151,160),(151,195),(151,196),(152,163),(152,186),(152,196),(153,162),(153,187),(153,196),(154,165),(154,188),(154,196),(155,164),(155,189),(155,196),(156,202),(157,202),(158,202),(159,202),(160,202),(161,202),(162,202),(163,202),(164,202),(165,202),(166,186),(166,197),(166,198),(167,187),(167,197),(167,199),(168,188),(168,197),(168,200),(169,189),(169,197),(169,201),(170,190),(170,198),(170,200),(171,191),(171,198),(171,201),(172,192),(172,199),(172,200),(173,193),(173,199),(173,201),(174,195),(174,198),(174,199),(175,194),(175,200),(175,201),(176,181),(176,196),(176,199),(177,182),(177,196),(177,198),(178,183),(178,196),(178,201),(179,184),(179,196),(179,200),(180,185),(180,196),(180,197),(181,202),(182,202),(183,202),(184,202),(185,202),(186,202),(187,202),(188,202),(189,202),(190,202),(191,202),(192,202),(193,202),(194,202),(195,202),(196,202),(197,202),(198,202),(199,202),(200,202),(201,202)],203)
=> ? = 1
[2,1,1,1,1,1] => [6,1] => ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,17),(1,18),(1,19),(1,20),(1,21),(2,13),(2,14),(2,15),(2,16),(2,21),(3,10),(3,11),(3,12),(3,16),(3,20),(4,8),(4,9),(4,12),(4,15),(4,19),(5,7),(5,9),(5,11),(5,14),(5,18),(6,7),(6,8),(6,10),(6,13),(6,17),(7,22),(7,25),(7,28),(7,34),(8,22),(8,23),(8,26),(8,32),(9,22),(9,24),(9,27),(9,33),(10,23),(10,25),(10,29),(10,35),(11,24),(11,25),(11,30),(11,36),(12,23),(12,24),(12,31),(12,37),(13,26),(13,28),(13,29),(13,38),(14,27),(14,28),(14,30),(14,39),(15,26),(15,27),(15,31),(15,40),(16,29),(16,30),(16,31),(16,41),(17,32),(17,34),(17,35),(17,38),(18,33),(18,34),(18,36),(18,39),(19,32),(19,33),(19,37),(19,40),(20,35),(20,36),(20,37),(20,41),(21,38),(21,39),(21,40),(21,41),(22,45),(22,46),(22,56),(23,42),(23,46),(23,53),(24,43),(24,46),(24,54),(25,44),(25,46),(25,55),(26,42),(26,45),(26,47),(27,43),(27,45),(27,48),(28,44),(28,45),(28,49),(29,42),(29,44),(29,50),(30,43),(30,44),(30,51),(31,42),(31,43),(31,52),(32,47),(32,53),(32,56),(33,48),(33,54),(33,56),(34,49),(34,55),(34,56),(35,50),(35,53),(35,55),(36,51),(36,54),(36,55),(37,52),(37,53),(37,54),(38,47),(38,49),(38,50),(39,48),(39,49),(39,51),(40,47),(40,48),(40,52),(41,50),(41,51),(41,52),(42,57),(42,62),(43,58),(43,62),(44,59),(44,62),(45,60),(45,62),(46,61),(46,62),(47,57),(47,60),(48,58),(48,60),(49,59),(49,60),(50,57),(50,59),(51,58),(51,59),(52,57),(52,58),(53,57),(53,61),(54,58),(54,61),(55,59),(55,61),(56,60),(56,61),(57,63),(58,63),(59,63),(60,63),(61,63),(62,63)],64)
=> ? = 6
[2,1,1,3] => [1,1,4,1] => ([(0,6),(1,6),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(0,9),(1,22),(1,23),(1,24),(1,25),(1,26),(1,27),(1,32),(1,33),(2,16),(2,17),(2,18),(2,19),(2,20),(2,21),(2,31),(2,33),(3,10),(3,11),(3,12),(3,13),(3,14),(3,15),(3,31),(3,32),(4,11),(4,17),(4,23),(4,30),(4,63),(4,65),(5,10),(5,16),(5,22),(5,30),(5,62),(5,64),(6,12),(6,18),(6,24),(6,29),(6,62),(6,65),(7,13),(7,19),(7,25),(7,29),(7,63),(7,64),(8,15),(8,21),(8,27),(8,28),(8,64),(8,65),(9,14),(9,20),(9,26),(9,28),(9,62),(9,63),(10,35),(10,44),(10,50),(10,81),(10,83),(11,35),(11,45),(11,51),(11,82),(11,84),(12,36),(12,46),(12,52),(12,81),(12,84),(13,36),(13,47),(13,53),(13,82),(13,83),(14,37),(14,48),(14,54),(14,81),(14,82),(15,37),(15,49),(15,55),(15,83),(15,84),(16,38),(16,44),(16,56),(16,85),(16,87),(17,38),(17,45),(17,57),(17,86),(17,88),(18,39),(18,46),(18,58),(18,85),(18,88),(19,39),(19,47),(19,59),(19,86),(19,87),(20,40),(20,48),(20,60),(20,85),(20,86),(21,40),(21,49),(21,61),(21,87),(21,88),(22,41),(22,50),(22,56),(22,89),(22,91),(23,41),(23,51),(23,57),(23,90),(23,92),(24,42),(24,52),(24,58),(24,89),(24,92),(25,42),(25,53),(25,59),(25,90),(25,91),(26,43),(26,54),(26,60),(26,89),(26,90),(27,43),(27,55),(27,61),(27,91),(27,92),(28,37),(28,40),(28,43),(28,112),(29,36),(29,39),(29,42),(29,112),(30,35),(30,38),(30,41),(30,112),(31,34),(31,44),(31,45),(31,46),(31,47),(31,48),(31,49),(32,34),(32,50),(32,51),(32,52),(32,53),(32,54),(32,55),(33,34),(33,56),(33,57),(33,58),(33,59),(33,60),(33,61),(34,75),(34,76),(34,77),(34,78),(34,79),(34,80),(35,66),(35,69),(35,113),(36,67),(36,70),(36,113),(37,68),(37,71),(37,113),(38,66),(38,72),(38,114),(39,67),(39,73),(39,114),(40,68),(40,74),(40,114),(41,69),(41,72),(41,115),(42,70),(42,73),(42,115),(43,71),(43,74),(43,115),(44,66),(44,75),(44,101),(44,103),(45,66),(45,76),(45,102),(45,104),(46,67),(46,77),(46,101),(46,104),(47,67),(47,78),(47,102),(47,103),(48,68),(48,79),(48,101),(48,102),(49,68),(49,80),(49,103),(49,104),(50,69),(50,75),(50,93),(50,95),(51,69),(51,76),(51,94),(51,96),(52,70),(52,77),(52,93),(52,96),(53,70),(53,78),(53,94),(53,95),(54,71),(54,79),(54,93),(54,94),(55,71),(55,80),(55,95),(55,96),(56,72),(56,75),(56,97),(56,99),(57,72),(57,76),(57,98),(57,100),(58,73),(58,77),(58,97),(58,100),(59,73),(59,78),(59,98),(59,99),(60,74),(60,79),(60,97),(60,98),(61,74),(61,80),(61,99),(61,100),(62,81),(62,85),(62,89),(62,112),(63,82),(63,86),(63,90),(63,112),(64,83),(64,87),(64,91),(64,112),(65,84),(65,88),(65,92),(65,112),(66,105),(66,118),(67,106),(67,118),(68,107),(68,118),(69,105),(69,116),(70,106),(70,116),(71,107),(71,116),(72,105),(72,117),(73,106),(73,117),(74,107),(74,117),(75,105),(75,108),(75,110),(76,105),(76,109),(76,111),(77,106),(77,108),(77,111),(78,106),(78,109),(78,110),(79,107),(79,108),(79,109),(80,107),(80,110),(80,111),(81,93),(81,101),(81,113),(82,94),(82,102),(82,113),(83,95),(83,103),(83,113),(84,96),(84,104),(84,113),(85,97),(85,101),(85,114),(86,98),(86,102),(86,114),(87,99),(87,103),(87,114),(88,100),(88,104),(88,114),(89,93),(89,97),(89,115),(90,94),(90,98),(90,115),(91,95),(91,99),(91,115),(92,96),(92,100),(92,115),(93,108),(93,116),(94,109),(94,116),(95,110),(95,116),(96,111),(96,116),(97,108),(97,117),(98,109),(98,117),(99,110),(99,117),(100,111),(100,117),(101,108),(101,118),(102,109),(102,118),(103,110),(103,118),(104,111),(104,118),(105,119),(106,119),(107,119),(108,119),(109,119),(110,119),(111,119),(112,113),(112,114),(112,115),(113,116),(113,118),(114,117),(114,118),(115,116),(115,117),(116,119),(117,119),(118,119)],120)
=> ? = 6
[2,1,4] => [1,1,1,3,1] => ([(0,6),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(0,9),(0,10),(0,11),(0,12),(1,38),(1,39),(1,40),(1,41),(1,42),(1,43),(1,44),(1,45),(1,46),(1,47),(1,48),(2,28),(2,29),(2,30),(2,31),(2,32),(2,33),(2,34),(2,35),(2,36),(2,37),(2,48),(3,15),(3,16),(3,22),(3,29),(3,39),(3,91),(3,92),(3,94),(4,13),(4,14),(4,21),(4,28),(4,38),(4,89),(4,90),(4,94),(5,18),(5,20),(5,24),(5,31),(5,41),(5,90),(5,92),(5,93),(6,17),(6,19),(6,23),(6,30),(6,40),(6,89),(6,91),(6,93),(7,13),(7,17),(7,26),(7,32),(7,42),(7,92),(7,95),(7,97),(8,14),(8,18),(8,27),(8,33),(8,43),(8,91),(8,95),(8,98),(9,15),(9,19),(9,27),(9,34),(9,44),(9,90),(9,96),(9,97),(10,16),(10,20),(10,26),(10,35),(10,45),(10,89),(10,96),(10,98),(11,23),(11,24),(11,25),(11,37),(11,47),(11,94),(11,97),(11,98),(12,21),(12,22),(12,25),(12,36),(12,46),(12,93),(12,95),(12,96),(13,49),(13,64),(13,114),(13,118),(13,188),(14,50),(14,65),(14,114),(14,119),(14,187),(15,51),(15,66),(15,115),(15,120),(15,188),(16,52),(16,67),(16,115),(16,121),(16,187),(17,53),(17,68),(17,116),(17,118),(17,186),(18,54),(18,69),(18,117),(18,119),(18,186),(19,55),(19,70),(19,116),(19,120),(19,185),(20,56),(20,71),(20,117),(20,121),(20,185),(21,57),(21,72),(21,114),(21,122),(21,185),(22,58),(22,73),(22,115),(22,122),(22,186),(23,59),(23,74),(23,116),(23,123),(23,187),(24,60),(24,75),(24,117),(24,123),(24,188),(25,63),(25,78),(25,122),(25,123),(25,184),(26,61),(26,76),(26,118),(26,121),(26,184),(27,62),(27,77),(27,119),(27,120),(27,184),(28,49),(28,50),(28,57),(28,79),(28,124),(28,125),(28,129),(29,51),(29,52),(29,58),(29,80),(29,126),(29,127),(29,129),(30,53),(30,55),(30,59),(30,81),(30,124),(30,126),(30,128),(31,54),(31,56),(31,60),(31,82),(31,125),(31,127),(31,128),(32,49),(32,53),(32,61),(32,83),(32,127),(32,130),(32,132),(33,50),(33,54),(33,62),(33,84),(33,126),(33,130),(33,133),(34,51),(34,55),(34,62),(34,85),(34,125),(34,131),(34,132),(35,52),(35,56),(35,61),(35,86),(35,124),(35,131),(35,133),(36,57),(36,58),(36,63),(36,87),(36,128),(36,130),(36,131),(37,59),(37,60),(37,63),(37,88),(37,129),(37,132),(37,133),(38,64),(38,65),(38,72),(38,79),(38,134),(38,135),(38,139),(39,66),(39,67),(39,73),(39,80),(39,136),(39,137),(39,139),(40,68),(40,70),(40,74),(40,81),(40,134),(40,136),(40,138),(41,69),(41,71),(41,75),(41,82),(41,135),(41,137),(41,138),(42,64),(42,68),(42,76),(42,83),(42,137),(42,140),(42,142),(43,65),(43,69),(43,77),(43,84),(43,136),(43,140),(43,143),(44,66),(44,70),(44,77),(44,85),(44,135),(44,141),(44,142),(45,67),(45,71),(45,76),(45,86),(45,134),(45,141),(45,143),(46,72),(46,73),(46,78),(46,87),(46,138),(46,140),(46,141),(47,74),(47,75),(47,78),(47,88),(47,139),(47,142),(47,143),(48,79),(48,80),(48,81),(48,82),(48,83),(48,84),(48,85),(48,86),(48,87),(48,88),(49,99),(49,154),(49,158),(49,192),(50,100),(50,154),(50,159),(50,191),(51,101),(51,155),(51,160),(51,192),(52,102),(52,155),(52,161),(52,191),(53,103),(53,156),(53,158),(53,190),(54,104),(54,157),(54,159),(54,190),(55,105),(55,156),(55,160),(55,189),(56,106),(56,157),(56,161),(56,189),(57,107),(57,154),(57,162),(57,189),(58,108),(58,155),(58,162),(58,190),(59,109),(59,156),(59,163),(59,191),(60,110),(60,157),(60,163),(60,192),(61,111),(61,158),(61,161),(61,193),(62,112),(62,159),(62,160),(62,193),(63,113),(63,162),(63,163),(63,193),(64,99),(64,164),(64,168),(64,197),(65,100),(65,164),(65,169),(65,196),(66,101),(66,165),(66,170),(66,197),(67,102),(67,165),(67,171),(67,196),(68,103),(68,166),(68,168),(68,195),(69,104),(69,167),(69,169),(69,195),(70,105),(70,166),(70,170),(70,194),(71,106),(71,167),(71,171),(71,194),(72,107),(72,164),(72,172),(72,194),(73,108),(73,165),(73,172),(73,195),(74,109),(74,166),(74,173),(74,196),(75,110),(75,167),(75,173),(75,197),(76,111),(76,168),(76,171),(76,198),(77,112),(77,169),(77,170),(77,198),(78,113),(78,172),(78,173),(78,198),(79,99),(79,100),(79,107),(79,144),(79,145),(79,149),(80,101),(80,102),(80,108),(80,146),(80,147),(80,149),(81,103),(81,105),(81,109),(81,144),(81,146),(81,148),(82,104),(82,106),(82,110),(82,145),(82,147),(82,148),(83,99),(83,103),(83,111),(83,147),(83,150),(83,152),(84,100),(84,104),(84,112),(84,146),(84,150),(84,153),(85,101),(85,105),(85,112),(85,145),(85,151),(85,152),(86,102),(86,106),(86,111),(86,144),(86,151),(86,153),(87,107),(87,108),(87,113),(87,148),(87,150),(87,151),(88,109),(88,110),(88,113),(88,149),(88,152),(88,153),(89,118),(89,124),(89,134),(89,185),(89,187),(90,119),(90,125),(90,135),(90,185),(90,188),(91,120),(91,126),(91,136),(91,186),(91,187),(92,121),(92,127),(92,137),(92,186),(92,188),(93,123),(93,128),(93,138),(93,185),(93,186),(94,122),(94,129),(94,139),(94,187),(94,188),(95,114),(95,130),(95,140),(95,184),(95,186),(96,115),(96,131),(96,141),(96,184),(96,185),(97,116),(97,132),(97,142),(97,184),(97,188),(98,117),(98,133),(98,143),(98,184),(98,187),(99,174),(99,178),(99,202),(100,174),(100,179),(100,201),(101,175),(101,180),(101,202),(102,175),(102,181),(102,201),(103,176),(103,178),(103,200),(104,177),(104,179),(104,200),(105,176),(105,180),(105,199),(106,177),(106,181),(106,199),(107,174),(107,182),(107,199),(108,175),(108,182),(108,200),(109,176),(109,183),(109,201),(110,177),(110,183),(110,202),(111,178),(111,181),(111,203),(112,179),(112,180),(112,203),(113,182),(113,183),(113,203),(114,154),(114,164),(114,204),(115,155),(115,165),(115,204),(116,156),(116,166),(116,204),(117,157),(117,167),(117,204),(118,158),(118,168),(118,204),(119,159),(119,169),(119,204),(120,160),(120,170),(120,204),(121,161),(121,171),(121,204),(122,162),(122,172),(122,204),(123,163),(123,173),(123,204),(124,144),(124,158),(124,189),(124,191),(125,145),(125,159),(125,189),(125,192),(126,146),(126,160),(126,190),(126,191),(127,147),(127,161),(127,190),(127,192),(128,148),(128,163),(128,189),(128,190),(129,149),(129,162),(129,191),(129,192),(130,150),(130,154),(130,190),(130,193),(131,151),(131,155),(131,189),(131,193),(132,152),(132,156),(132,192),(132,193),(133,153),(133,157),(133,191),(133,193),(134,144),(134,168),(134,194),(134,196),(135,145),(135,169),(135,194),(135,197),(136,146),(136,170),(136,195),(136,196),(137,147),(137,171),(137,195),(137,197),(138,148),(138,173),(138,194),(138,195),(139,149),(139,172),(139,196),(139,197),(140,150),(140,164),(140,195),(140,198),(141,151),(141,165),(141,194),(141,198),(142,152),(142,166),(142,197),(142,198),(143,153),(143,167),(143,196),(143,198),(144,178),(144,199),(144,201),(145,179),(145,199),(145,202),(146,180),(146,200),(146,201),(147,181),(147,200),(147,202),(148,183),(148,199),(148,200),(149,182),(149,201),(149,202),(150,174),(150,200),(150,203),(151,175),(151,199),(151,203),(152,176),(152,202),(152,203),(153,177),(153,201),(153,203),(154,174),(154,205),(155,175),(155,205),(156,176),(156,205),(157,177),(157,205),(158,178),(158,205),(159,179),(159,205),(160,180),(160,205),(161,181),(161,205),(162,182),(162,205),(163,183),(163,205),(164,174),(164,206),(165,175),(165,206),(166,176),(166,206),(167,177),(167,206),(168,178),(168,206),(169,179),(169,206),(170,180),(170,206),(171,181),(171,206),(172,182),(172,206),(173,183),(173,206),(174,207),(175,207),(176,207),(177,207),(178,207),(179,207),(180,207),(181,207),(182,207),(183,207),(184,193),(184,198),(184,204),(185,189),(185,194),(185,204),(186,190),(186,195),(186,204),(187,191),(187,196),(187,204),(188,192),(188,197),(188,204),(189,199),(189,205),(190,200),(190,205),(191,201),(191,205),(192,202),(192,205),(193,203),(193,205),(194,199),(194,206),(195,200),(195,206),(196,201),(196,206),(197,202),(197,206),(198,203),(198,206),(199,207),(200,207),(201,207),(202,207),(203,207),(204,205),(204,206),(205,207),(206,207)],208)
=> ? = 6
[2,4,1] => [2,1,1,2,1] => ([(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(0,9),(0,10),(0,11),(0,12),(0,13),(0,14),(0,15),(1,21),(1,25),(1,33),(1,37),(1,54),(1,56),(1,140),(1,143),(1,147),(1,153),(2,20),(2,24),(2,32),(2,36),(2,53),(2,55),(2,140),(2,142),(2,146),(2,152),(3,23),(3,27),(3,35),(3,39),(3,53),(3,57),(3,141),(3,143),(3,144),(3,150),(4,22),(4,26),(4,34),(4,38),(4,54),(4,58),(4,141),(4,142),(4,145),(4,151),(5,30),(5,31),(5,42),(5,43),(5,52),(5,60),(5,142),(5,143),(5,149),(5,155),(6,28),(6,29),(6,40),(6,41),(6,52),(6,59),(6,140),(6,141),(6,148),(6,154),(7,17),(7,22),(7,23),(7,29),(7,45),(7,62),(7,67),(7,68),(7,146),(7,147),(7,149),(8,16),(8,20),(8,21),(8,28),(8,44),(8,61),(8,65),(8,66),(8,144),(8,145),(8,149),(9,18),(9,24),(9,26),(9,31),(9,46),(9,63),(9,69),(9,71),(9,144),(9,147),(9,148),(10,19),(10,25),(10,27),(10,30),(10,47),(10,64),(10,70),(10,72),(10,145),(10,146),(10,148),(11,16),(11,32),(11,33),(11,40),(11,48),(11,62),(11,69),(11,70),(11,150),(11,151),(11,155),(12,17),(12,34),(12,35),(12,41),(12,49),(12,61),(12,71),(12,72),(12,152),(12,153),(12,155),(13,18),(13,36),(13,38),(13,43),(13,50),(13,64),(13,65),(13,67),(13,150),(13,153),(13,154),(14,19),(14,37),(14,39),(14,42),(14,51),(14,63),(14,66),(14,68),(14,151),(14,152),(14,154),(15,44),(15,45),(15,46),(15,47),(15,48),(15,49),(15,50),(15,51),(15,55),(15,56),(15,57),(15,58),(15,59),(15,60),(16,88),(16,89),(16,96),(16,136),(16,292),(16,293),(16,297),(17,90),(17,91),(17,97),(17,137),(17,294),(17,295),(17,297),(18,92),(18,94),(18,99),(18,138),(18,292),(18,295),(18,296),(19,93),(19,95),(19,98),(19,139),(19,293),(19,294),(19,296),(20,76),(20,88),(20,112),(20,184),(20,208),(20,232),(20,325),(21,77),(21,89),(21,113),(21,185),(21,209),(21,232),(21,326),(22,78),(22,90),(22,114),(22,186),(22,211),(22,233),(22,325),(23,79),(23,91),(23,115),(23,187),(23,210),(23,233),(23,326),(24,80),(24,92),(24,116),(24,190),(24,208),(24,234),(24,324),(25,81),(25,93),(25,117),(25,191),(25,209),(25,235),(25,324),(26,82),(26,94),(26,118),(26,188),(26,211),(26,234),(26,323),(27,83),(27,95),(27,119),(27,189),(27,210),(27,235),(27,323),(28,84),(28,96),(28,120),(28,192),(28,212),(28,232),(28,323),(29,85),(29,97),(29,121),(29,193),(29,212),(29,233),(29,324),(30,86),(30,98),(30,122),(30,194),(30,213),(30,235),(30,325),(31,87),(31,99),(31,123),(31,195),(31,213),(31,234),(31,326),(32,80),(32,88),(32,124),(32,198),(32,214),(32,236),(32,329),(33,81),(33,89),(33,125),(33,199),(33,215),(33,236),(33,330),(34,82),(34,90),(34,126),(34,196),(34,217),(34,237),(34,329),(35,83),(35,91),(35,127),(35,197),(35,216),(35,237),(35,330),(36,76),(36,92),(36,128),(36,202),(36,214),(36,238),(36,328),(37,77),(37,93),(37,129),(37,203),(37,215),(37,239),(37,328),(38,78),(38,94),(38,130),(38,200),(38,217),(38,238),(38,327),(39,79),(39,95),(39,131),(39,201),(39,216),(39,239),(39,327),(40,85),(40,96),(40,132),(40,204),(40,218),(40,236),(40,327),(41,84),(41,97),(41,133),(41,205),(41,218),(41,237),(41,328),(42,87),(42,98),(42,134),(42,207),(42,219),(42,239),(42,329),(43,86),(43,99),(43,135),(43,206),(43,219),(43,238),(43,330),(44,100),(44,104),(44,105),(44,112),(44,113),(44,120),(44,136),(44,220),(44,221),(44,225),(45,101),(45,106),(45,107),(45,114),(45,115),(45,121),(45,137),(45,222),(45,223),(45,225),(46,102),(46,108),(46,110),(46,116),(46,118),(46,123),(46,138),(46,220),(46,223),(46,224),(47,103),(47,109),(47,111),(47,117),(47,119),(47,122),(47,139),(47,221),(47,222),(47,224),(48,101),(48,108),(48,109),(48,124),(48,125),(48,132),(48,136),(48,226),(48,227),(48,231),(49,100),(49,110),(49,111),(49,126),(49,127),(49,133),(49,137),(49,228),(49,229),(49,231),(50,103),(50,104),(50,106),(50,128),(50,130),(50,135),(50,138),(50,226),(50,229),(50,230),(51,102),(51,105),(51,107),(51,129),(51,131),(51,134),(51,139),(51,227),(51,228),(51,230),(52,75),(52,212),(52,213),(52,218),(52,219),(52,304),(53,73),(53,208),(53,210),(53,214),(53,216),(53,304),(54,74),(54,209),(54,211),(54,215),(54,217),(54,304),(55,73),(55,112),(55,116),(55,124),(55,128),(55,156),(55,158),(55,222),(55,228),(56,74),(56,113),(56,117),(56,125),(56,129),(56,156),(56,159),(56,223),(56,229),(57,73),(57,115),(57,119),(57,127),(57,131),(57,157),(57,159),(57,220),(57,226),(58,74),(58,114),(58,118),(58,126),(58,130),(58,157),(58,158),(58,221),(58,227),(59,75),(59,120),(59,121),(59,132),(59,133),(59,156),(59,157),(59,224),(59,230),(60,75),(60,122),(60,123),(60,134),(60,135),(60,158),(60,159),(60,225),(60,231),(61,84),(61,100),(61,184),(61,185),(61,196),(61,197),(61,297),(62,85),(62,101),(62,186),(62,187),(62,198),(62,199),(62,297),(63,87),(63,102),(63,188),(63,190),(63,201),(63,203),(63,296),(64,86),(64,103),(64,189),(64,191),(64,200),(64,202),(64,296),(65,76),(65,104),(65,185),(65,192),(65,200),(65,206),(65,292),(66,77),(66,105),(66,184),(66,192),(66,201),(66,207),(66,293),(67,78),(67,106),(67,187),(67,193),(67,202),(67,206),(67,295),(68,79),(68,107),(68,186),(68,193),(68,203),(68,207),(68,294),(69,80),(69,108),(69,188),(69,195),(69,199),(69,204),(69,292),(70,81),(70,109),(70,189),(70,194),(70,198),(70,204),(70,293),(71,82),(71,110),(71,190),(71,195),(71,197),(71,205),(71,295),(72,83),(72,111),(72,191),(72,194),(72,196),(72,205),(72,294),(73,240),(73,242),(73,246),(73,248),(73,337),(74,241),(74,243),(74,247),(74,249),(74,337),(75,244),(75,245),(75,250),(75,251),(75,337),(76,172),(76,317),(76,346),(76,352),(77,173),(77,318),(77,346),(77,353),(78,174),(78,320),(78,347),(78,352),(79,175),(79,319),(79,347),(79,353),(80,176),(80,317),(80,348),(80,351),(81,177),(81,318),(81,349),(81,351),(82,178),(82,320),(82,348),(82,350),(83,179),(83,319),(83,349),(83,350),(84,180),(84,321),(84,346),(84,350),(85,181),(85,321),(85,347),(85,351),(86,182),(86,322),(86,349),(86,352),(87,183),(87,322),(87,348),(87,353),(88,160),(88,284),(88,317),(88,364),(89,161),(89,284),(89,318),(89,365),(90,162),(90,285),(90,320),(90,364),(91,163),(91,285),(91,319),(91,365),(92,164),(92,286),(92,317),(92,363),(93,165),(93,287),(93,318),(93,363),(94,166),(94,286),(94,320),(94,362),(95,167),(95,287),(95,319),(95,362),(96,168),(96,284),(96,321),(96,362),(97,169),(97,285),(97,321),(97,363),(98,170),(98,287),(98,322),(98,364),(99,171),(99,286),(99,322),(99,365),(100,180),(100,260),(100,261),(100,272),(100,273),(100,316),(101,181),(101,262),(101,263),(101,274),(101,275),(101,316),(102,183),(102,264),(102,266),(102,277),(102,279),(102,315),(103,182),(103,265),(103,267),(103,276),(103,278),(103,315),(104,172),(104,261),(104,268),(104,276),(104,282),(104,311),(105,173),(105,260),(105,268),(105,277),(105,283),(105,312),(106,174),(106,263),(106,269),(106,278),(106,282),(106,314),(107,175),(107,262),(107,269),(107,279),(107,283),(107,313),(108,176),(108,264),(108,271),(108,275),(108,280),(108,311),(109,177),(109,265),(109,270),(109,274),(109,280),(109,312),(110,178),(110,266),(110,271),(110,273),(110,281),(110,314),(111,179),(111,267),(111,270),(111,272),(111,281),(111,313),(112,160),(112,172),(112,240),(112,252),(112,260),(112,340),(113,161),(113,173),(113,241),(113,252),(113,261),(113,341),(114,162),(114,174),(114,243),(114,253),(114,262),(114,340),(115,163),(115,175),(115,242),(115,253),(115,263),(115,341),(116,164),(116,176),(116,240),(116,254),(116,266),(116,339),(117,165),(117,177),(117,241),(117,255),(117,267),(117,339),(118,166),(118,178),(118,243),(118,254),(118,264),(118,338),(119,167),(119,179),(119,242),(119,255),(119,265),(119,338),(120,168),(120,180),(120,244),(120,252),(120,268),(120,338),(121,169),(121,181),(121,244),(121,253),(121,269),(121,339),(122,170),(122,182),(122,245),(122,255),(122,270),(122,340),(123,171),(123,183),(123,245),(123,254),(123,271),(123,341),(124,160),(124,176),(124,246),(124,256),(124,274),(124,344),(125,161),(125,177),(125,247),(125,256),(125,275),(125,345),(126,162),(126,178),(126,249),(126,257),(126,272),(126,344),(127,163),(127,179),(127,248),(127,257),(127,273),(127,345),(128,164),(128,172),(128,246),(128,258),(128,278),(128,343),(129,165),(129,173),(129,247),(129,259),(129,279),(129,343),(130,166),(130,174),(130,249),(130,258),(130,276),(130,342),(131,167),(131,175),(131,248),(131,259),(131,277),(131,342),(132,168),(132,181),(132,250),(132,256),(132,280),(132,342),(133,169),(133,180),(133,250),(133,257),(133,281),(133,343),(134,170),(134,183),(134,251),(134,259),(134,283),(134,344),(135,171),(135,182),(135,251),(135,258),(135,282),(135,345),(136,160),(136,161),(136,168),(136,311),(136,312),(136,316),(137,162),(137,163),(137,169),(137,313),(137,314),(137,316),(138,164),(138,166),(138,171),(138,311),(138,314),(138,315),(139,165),(139,167),(139,170),(139,312),(139,313),(139,315),(140,156),(140,232),(140,236),(140,304),(140,324),(140,328),(141,157),(141,233),(141,237),(141,304),(141,323),(141,327),(142,158),(142,234),(142,238),(142,304),(142,325),(142,329),(143,159),(143,235),(143,239),(143,304),(143,326),(143,330),(144,197),(144,201),(144,208),(144,220),(144,292),(144,323),(144,326),(145,196),(145,200),(145,209),(145,221),(145,293),(145,323),(145,325),(146,198),(146,202),(146,210),(146,222),(146,294),(146,324),(146,325),(147,199),(147,203),(147,211),(147,223),(147,295),(147,324),(147,326),(148,204),(148,205),(148,213),(148,224),(148,296),(148,323),(148,324),(149,206),(149,207),(149,212),(149,225),(149,297),(149,325),(149,326),(150,187),(150,189),(150,214),(150,226),(150,292),(150,327),(150,330),(151,186),(151,188),(151,215),(151,227),(151,293),(151,327),(151,329),(152,184),(152,190),(152,216),(152,228),(152,294),(152,328),(152,329),(153,185),(153,191),(153,217),(153,229),(153,295),(153,328),(153,330),(154,192),(154,193),(154,219),(154,230),(154,296),(154,327),(154,328),(155,194),(155,195),(155,218),(155,231),(155,297),(155,329),(155,330),(156,252),(156,256),(156,337),(156,339),(156,343),(157,253),(157,257),(157,337),(157,338),(157,342),(158,254),(158,258),(158,337),(158,340),(158,344),(159,255),(159,259),(159,337),(159,341),(159,345),(160,288),(160,331),(160,370),(161,288),(161,332),(161,371),(162,289),(162,334),(162,370),(163,289),(163,333),(163,371),(164,290),(164,331),(164,369),(165,291),(165,332),(165,369),(166,290),(166,334),(166,368),(167,291),(167,333),(167,368),(168,288),(168,335),(168,368),(169,289),(169,335),(169,369),(170,291),(170,336),(170,370),(171,290),(171,336),(171,371),(172,331),(172,354),(172,360),(173,332),(173,354),(173,361),(174,334),(174,355),(174,360),(175,333),(175,355),(175,361),(176,331),(176,356),(176,359),(177,332),(177,357),(177,359),(178,334),(178,356),(178,358),(179,333),(179,357),(179,358),(180,335),(180,354),(180,358),(181,335),(181,355),(181,359),(182,336),(182,357),(182,360),(183,336),(183,356),(183,361),(184,260),(184,298),(184,346),(184,364),(185,261),(185,299),(185,346),(185,365),(186,262),(186,301),(186,347),(186,364),(187,263),(187,300),(187,347),(187,365),(188,264),(188,301),(188,348),(188,362),(189,265),(189,300),(189,349),(189,362),(190,266),(190,298),(190,348),(190,363),(191,267),(191,299),(191,349),(191,363),(192,268),(192,302),(192,346),(192,362),(193,269),(193,302),(193,347),(193,363),(194,270),(194,303),(194,349),(194,364),(195,271),(195,303),(195,348),(195,365),(196,272),(196,299),(196,350),(196,364),(197,273),(197,298),(197,350),(197,365),(198,274),(198,300),(198,351),(198,364),(199,275),(199,301),(199,351),(199,365),(200,276),(200,299),(200,352),(200,362),(201,277),(201,298),(201,353),(201,362),(202,278),(202,300),(202,352),(202,363),(203,279),(203,301),(203,353),(203,363),(204,280),(204,303),(204,351),(204,362),(205,281),(205,303),(205,350),(205,363),(206,282),(206,302),(206,352),(206,365),(207,283),(207,302),(207,353),(207,364),(208,240),(208,298),(208,317),(208,367),(209,241),(209,299),(209,318),(209,367),(210,242),(210,300),(210,319),(210,367),(211,243),(211,301),(211,320),(211,367),(212,244),(212,302),(212,321),(212,367),(213,245),(213,303),(213,322),(213,367),(214,246),(214,300),(214,317),(214,366),(215,247),(215,301),(215,318),(215,366),(216,248),(216,298),(216,319),(216,366),(217,249),(217,299),(217,320),(217,366),(218,250),(218,303),(218,321),(218,366),(219,251),(219,302),(219,322),(219,366),(220,240),(220,273),(220,277),(220,311),(220,338),(220,341),(221,241),(221,272),(221,276),(221,312),(221,338),(221,340),(222,242),(222,274),(222,278),(222,313),(222,339),(222,340),(223,243),(223,275),(223,279),(223,314),(223,339),(223,341),(224,245),(224,280),(224,281),(224,315),(224,338),(224,339),(225,244),(225,282),(225,283),(225,316),(225,340),(225,341),(226,246),(226,263),(226,265),(226,311),(226,342),(226,345),(227,247),(227,262),(227,264),(227,312),(227,342),(227,344),(228,248),(228,260),(228,266),(228,313),(228,343),(228,344),(229,249),(229,261),(229,267),(229,314),(229,343),(229,345),(230,251),(230,268),(230,269),(230,315),(230,342),(230,343),(231,250),(231,270),(231,271),(231,316),(231,344),(231,345),(232,252),(232,284),(232,346),(232,367),(233,253),(233,285),(233,347),(233,367),(234,254),(234,286),(234,348),(234,367),(235,255),(235,287),(235,349),(235,367),(236,256),(236,284),(236,351),(236,366),(237,257),(237,285),(237,350),(237,366),(238,258),(238,286),(238,352),(238,366),(239,259),(239,287),(239,353),(239,366),(240,305),(240,331),(240,372),(241,306),(241,332),(241,372),(242,307),(242,333),(242,372),(243,308),(243,334),(243,372),(244,309),(244,335),(244,372),(245,310),(245,336),(245,372),(246,307),(246,331),(246,373),(247,308),(247,332),(247,373),(248,305),(248,333),(248,373),(249,306),(249,334),(249,373),(250,310),(250,335),(250,373),(251,309),(251,336),(251,373),(252,288),(252,354),(252,372),(253,289),(253,355),(253,372),(254,290),(254,356),(254,372),(255,291),(255,357),(255,372),(256,288),(256,359),(256,373),(257,289),(257,358),(257,373),(258,290),(258,360),(258,373),(259,291),(259,361),(259,373),(260,305),(260,354),(260,370),(261,306),(261,354),(261,371),(262,308),(262,355),(262,370),(263,307),(263,355),(263,371),(264,308),(264,356),(264,368),(265,307),(265,357),(265,368),(266,305),(266,356),(266,369),(267,306),(267,357),(267,369),(268,309),(268,354),(268,368),(269,309),(269,355),(269,369),(270,310),(270,357),(270,370),(271,310),(271,356),(271,371),(272,306),(272,358),(272,370),(273,305),(273,358),(273,371),(274,307),(274,359),(274,370),(275,308),(275,359),(275,371),(276,306),(276,360),(276,368),(277,305),(277,361),(277,368),(278,307),(278,360),(278,369),(279,308),(279,361),(279,369),(280,310),(280,359),(280,368),(281,310),(281,358),(281,369),(282,309),(282,360),(282,371),(283,309),(283,361),(283,370),(284,288),(284,374),(285,289),(285,374),(286,290),(286,374),(287,291),(287,374),(288,375),(289,375),(290,375),(291,375),(292,311),(292,317),(292,362),(292,365),(293,312),(293,318),(293,362),(293,364),(294,313),(294,319),(294,363),(294,364),(295,314),(295,320),(295,363),(295,365),(296,315),(296,322),(296,362),(296,363),(297,316),(297,321),(297,364),(297,365),(298,305),(298,374),(299,306),(299,374),(300,307),(300,374),(301,308),(301,374),(302,309),(302,374),(303,310),(303,374),(304,337),(304,366),(304,367),(305,375),(306,375),(307,375),(308,375),(309,375),(310,375),(311,331),(311,368),(311,371),(312,332),(312,368),(312,370),(313,333),(313,369),(313,370),(314,334),(314,369),(314,371),(315,336),(315,368),(315,369),(316,335),(316,370),(316,371),(317,331),(317,374),(318,332),(318,374),(319,333),(319,374),(320,334),(320,374),(321,335),(321,374),(322,336),(322,374),(323,338),(323,350),(323,362),(323,367),(324,339),(324,351),(324,363),(324,367),(325,340),(325,352),(325,364),(325,367),(326,341),(326,353),(326,365),(326,367),(327,342),(327,347),(327,362),(327,366),(328,343),(328,346),(328,363),(328,366),(329,344),(329,348),(329,364),(329,366),(330,345),(330,349),(330,365),(330,366),(331,375),(332,375),(333,375),(334,375),(335,375),(336,375),(337,372),(337,373),(338,358),(338,368),(338,372),(339,359),(339,369),(339,372),(340,360),(340,370),(340,372),(341,361),(341,371),(341,372),(342,355),(342,368),(342,373),(343,354),(343,369),(343,373),(344,356),(344,370),(344,373),(345,357),(345,371),(345,373),(346,354),(346,374),(347,355),(347,374),(348,356),(348,374),(349,357),(349,374),(350,358),(350,374),(351,359),(351,374),(352,360),(352,374),(353,361),(353,374),(354,375),(355,375),(356,375),(357,375),(358,375),(359,375),(360,375),(361,375),(362,368),(362,374),(363,369),(363,374),(364,370),(364,374),(365,371),(365,374),(366,373),(366,374),(367,372),(367,374),(368,375),(369,375),(370,375),(371,375),(372,375),(373,375),(374,375)],376)
=> ? = 24
Description
The number of factors of a lattice as a Cartesian product of lattices.
Since the cardinality of a lattice is the product of the cardinalities of its factors, this statistic is one whenever the cardinality of the lattice is prime.
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!