Your data matches 3 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
Mp00122: Dyck paths Elizalde-Deutsch bijectionDyck paths
St001032: Dyck paths ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[1,0,1,0]
=> [1,1,0,0]
=> 0
[1,1,0,0]
=> [1,0,1,0]
=> 2
[1,0,1,0,1,0]
=> [1,1,0,0,1,0]
=> 1
[1,0,1,1,0,0]
=> [1,1,0,1,0,0]
=> 1
[1,1,0,0,1,0]
=> [1,1,1,0,0,0]
=> 1
[1,1,0,1,0,0]
=> [1,0,1,1,0,0]
=> 1
[1,1,1,0,0,0]
=> [1,0,1,0,1,0]
=> 3
[1,0,1,0,1,0,1,0]
=> [1,1,0,0,1,1,0,0]
=> 0
[1,0,1,0,1,1,0,0]
=> [1,1,0,1,1,0,0,0]
=> 2
[1,0,1,1,0,0,1,0]
=> [1,1,0,0,1,0,1,0]
=> 2
[1,0,1,1,0,1,0,0]
=> [1,1,0,1,0,0,1,0]
=> 2
[1,0,1,1,1,0,0,0]
=> [1,1,0,1,0,1,0,0]
=> 2
[1,1,0,0,1,0,1,0]
=> [1,1,1,0,0,1,0,0]
=> 2
[1,1,0,0,1,1,0,0]
=> [1,1,1,1,0,0,0,0]
=> 0
[1,1,0,1,0,0,1,0]
=> [1,1,1,0,0,0,1,0]
=> 2
[1,1,0,1,0,1,0,0]
=> [1,0,1,1,0,0,1,0]
=> 2
[1,1,0,1,1,0,0,0]
=> [1,0,1,1,0,1,0,0]
=> 2
[1,1,1,0,0,0,1,0]
=> [1,1,1,0,1,0,0,0]
=> 2
[1,1,1,0,0,1,0,0]
=> [1,0,1,1,1,0,0,0]
=> 2
[1,1,1,0,1,0,0,0]
=> [1,0,1,0,1,1,0,0]
=> 2
[1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> 4
[1,0,1,0,1,0,1,0,1,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> 1
[1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,1,1,0,0,0,1,0]
=> 3
[1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,0,1,1,0,1,0,0]
=> 1
[1,0,1,0,1,1,0,1,0,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> 3
[1,0,1,0,1,1,1,0,0,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> 1
[1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> 1
[1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,1,1,0,1,0,0,0]
=> 3
[1,0,1,1,0,1,0,0,1,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> 1
[1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,1,0,0,1,1,0,0]
=> 1
[1,0,1,1,0,1,1,0,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> 3
[1,0,1,1,1,0,0,0,1,0]
=> [1,1,0,0,1,0,1,0,1,0]
=> 3
[1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,1,0,0,1,0,1,0]
=> 3
[1,0,1,1,1,0,1,0,0,0]
=> [1,1,0,1,0,1,0,0,1,0]
=> 3
[1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> 3
[1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,0,0,1,0,0,1,0]
=> 3
[1,1,0,0,1,0,1,1,0,0]
=> [1,1,1,1,0,0,0,0,1,0]
=> 1
[1,1,0,0,1,1,0,0,1,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> 3
[1,1,0,0,1,1,0,1,0,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> 1
[1,1,0,0,1,1,1,0,0,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> 1
[1,1,0,1,0,0,1,0,1,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> 3
[1,1,0,1,0,0,1,1,0,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> 1
[1,1,0,1,0,1,0,0,1,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> 1
[1,1,0,1,0,1,0,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> 1
[1,1,0,1,0,1,1,0,0,0]
=> [1,0,1,1,0,1,1,0,0,0]
=> 3
[1,1,0,1,1,0,0,0,1,0]
=> [1,1,1,0,0,0,1,0,1,0]
=> 3
[1,1,0,1,1,0,0,1,0,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> 3
[1,1,0,1,1,0,1,0,0,0]
=> [1,0,1,1,0,1,0,0,1,0]
=> 3
[1,1,0,1,1,1,0,0,0,0]
=> [1,0,1,1,0,1,0,1,0,0]
=> 3
[1,1,1,0,0,0,1,0,1,0]
=> [1,1,1,0,1,1,0,0,0,0]
=> 1
Description
The number of horizontal steps in the bicoloured Motzkin path associated with the Dyck path. In other words, this is the number of valleys and peaks whose first step is in odd position, the initial position equal to 1. The generating function is given in [1].
Matching statistic: St000247
Mp00024: Dyck paths to 321-avoiding permutationPermutations
Mp00239: Permutations CorteelPermutations
Mp00240: Permutations weak exceedance partitionSet partitions
St000247: Set partitions ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[1,0,1,0]
=> [2,1] => [2,1] => {{1,2}}
=> 0
[1,1,0,0]
=> [1,2] => [1,2] => {{1},{2}}
=> 2
[1,0,1,0,1,0]
=> [2,1,3] => [2,1,3] => {{1,2},{3}}
=> 1
[1,0,1,1,0,0]
=> [2,3,1] => [3,2,1] => {{1,3},{2}}
=> 1
[1,1,0,0,1,0]
=> [3,1,2] => [3,1,2] => {{1,3},{2}}
=> 1
[1,1,0,1,0,0]
=> [1,3,2] => [1,3,2] => {{1},{2,3}}
=> 1
[1,1,1,0,0,0]
=> [1,2,3] => [1,2,3] => {{1},{2},{3}}
=> 3
[1,0,1,0,1,0,1,0]
=> [2,1,4,3] => [2,1,4,3] => {{1,2},{3,4}}
=> 0
[1,0,1,0,1,1,0,0]
=> [2,4,1,3] => [4,2,1,3] => {{1,4},{2},{3}}
=> 2
[1,0,1,1,0,0,1,0]
=> [2,1,3,4] => [2,1,3,4] => {{1,2},{3},{4}}
=> 2
[1,0,1,1,0,1,0,0]
=> [2,3,1,4] => [3,2,1,4] => {{1,3},{2},{4}}
=> 2
[1,0,1,1,1,0,0,0]
=> [2,3,4,1] => [4,2,3,1] => {{1,4},{2},{3}}
=> 2
[1,1,0,0,1,0,1,0]
=> [3,1,4,2] => [4,1,3,2] => {{1,4},{2},{3}}
=> 2
[1,1,0,0,1,1,0,0]
=> [3,4,1,2] => [4,3,2,1] => {{1,4},{2,3}}
=> 0
[1,1,0,1,0,0,1,0]
=> [3,1,2,4] => [3,1,2,4] => {{1,3},{2},{4}}
=> 2
[1,1,0,1,0,1,0,0]
=> [1,3,2,4] => [1,3,2,4] => {{1},{2,3},{4}}
=> 2
[1,1,0,1,1,0,0,0]
=> [1,3,4,2] => [1,4,3,2] => {{1},{2,4},{3}}
=> 2
[1,1,1,0,0,0,1,0]
=> [4,1,2,3] => [4,1,2,3] => {{1,4},{2},{3}}
=> 2
[1,1,1,0,0,1,0,0]
=> [1,4,2,3] => [1,4,2,3] => {{1},{2,4},{3}}
=> 2
[1,1,1,0,1,0,0,0]
=> [1,2,4,3] => [1,2,4,3] => {{1},{2},{3,4}}
=> 2
[1,1,1,1,0,0,0,0]
=> [1,2,3,4] => [1,2,3,4] => {{1},{2},{3},{4}}
=> 4
[1,0,1,0,1,0,1,0,1,0]
=> [2,1,4,3,5] => [2,1,4,3,5] => {{1,2},{3,4},{5}}
=> 1
[1,0,1,0,1,0,1,1,0,0]
=> [2,4,1,3,5] => [4,2,1,3,5] => {{1,4},{2},{3},{5}}
=> 3
[1,0,1,0,1,1,0,0,1,0]
=> [2,1,4,5,3] => [2,1,5,4,3] => {{1,2},{3,5},{4}}
=> 1
[1,0,1,0,1,1,0,1,0,0]
=> [2,4,1,5,3] => [5,2,1,4,3] => {{1,5},{2},{3},{4}}
=> 3
[1,0,1,0,1,1,1,0,0,0]
=> [2,4,5,1,3] => [5,2,4,3,1] => {{1,5},{2},{3,4}}
=> 1
[1,0,1,1,0,0,1,0,1,0]
=> [2,1,5,3,4] => [2,1,5,3,4] => {{1,2},{3,5},{4}}
=> 1
[1,0,1,1,0,0,1,1,0,0]
=> [2,5,1,3,4] => [5,2,1,3,4] => {{1,5},{2},{3},{4}}
=> 3
[1,0,1,1,0,1,0,0,1,0]
=> [2,1,3,5,4] => [2,1,3,5,4] => {{1,2},{3},{4,5}}
=> 1
[1,0,1,1,0,1,0,1,0,0]
=> [2,3,1,5,4] => [3,2,1,5,4] => {{1,3},{2},{4,5}}
=> 1
[1,0,1,1,0,1,1,0,0,0]
=> [2,3,5,1,4] => [5,2,3,1,4] => {{1,5},{2},{3},{4}}
=> 3
[1,0,1,1,1,0,0,0,1,0]
=> [2,1,3,4,5] => [2,1,3,4,5] => {{1,2},{3},{4},{5}}
=> 3
[1,0,1,1,1,0,0,1,0,0]
=> [2,3,1,4,5] => [3,2,1,4,5] => {{1,3},{2},{4},{5}}
=> 3
[1,0,1,1,1,0,1,0,0,0]
=> [2,3,4,1,5] => [4,2,3,1,5] => {{1,4},{2},{3},{5}}
=> 3
[1,0,1,1,1,1,0,0,0,0]
=> [2,3,4,5,1] => [5,2,3,4,1] => {{1,5},{2},{3},{4}}
=> 3
[1,1,0,0,1,0,1,0,1,0]
=> [3,1,4,2,5] => [4,1,3,2,5] => {{1,4},{2},{3},{5}}
=> 3
[1,1,0,0,1,0,1,1,0,0]
=> [3,4,1,2,5] => [4,3,2,1,5] => {{1,4},{2,3},{5}}
=> 1
[1,1,0,0,1,1,0,0,1,0]
=> [3,1,4,5,2] => [5,1,3,4,2] => {{1,5},{2},{3},{4}}
=> 3
[1,1,0,0,1,1,0,1,0,0]
=> [3,4,1,5,2] => [5,3,2,4,1] => {{1,5},{2,3},{4}}
=> 1
[1,1,0,0,1,1,1,0,0,0]
=> [3,4,5,1,2] => [5,4,3,2,1] => {{1,5},{2,4},{3}}
=> 1
[1,1,0,1,0,0,1,0,1,0]
=> [3,1,5,2,4] => [5,1,3,2,4] => {{1,5},{2},{3},{4}}
=> 3
[1,1,0,1,0,0,1,1,0,0]
=> [3,5,1,2,4] => [5,3,2,1,4] => {{1,5},{2,3},{4}}
=> 1
[1,1,0,1,0,1,0,0,1,0]
=> [3,1,2,5,4] => [3,1,2,5,4] => {{1,3},{2},{4,5}}
=> 1
[1,1,0,1,0,1,0,1,0,0]
=> [1,3,2,5,4] => [1,3,2,5,4] => {{1},{2,3},{4,5}}
=> 1
[1,1,0,1,0,1,1,0,0,0]
=> [1,3,5,2,4] => [1,5,3,2,4] => {{1},{2,5},{3},{4}}
=> 3
[1,1,0,1,1,0,0,0,1,0]
=> [3,1,2,4,5] => [3,1,2,4,5] => {{1,3},{2},{4},{5}}
=> 3
[1,1,0,1,1,0,0,1,0,0]
=> [1,3,2,4,5] => [1,3,2,4,5] => {{1},{2,3},{4},{5}}
=> 3
[1,1,0,1,1,0,1,0,0,0]
=> [1,3,4,2,5] => [1,4,3,2,5] => {{1},{2,4},{3},{5}}
=> 3
[1,1,0,1,1,1,0,0,0,0]
=> [1,3,4,5,2] => [1,5,3,4,2] => {{1},{2,5},{3},{4}}
=> 3
[1,1,1,0,0,0,1,0,1,0]
=> [4,1,5,2,3] => [5,1,4,3,2] => {{1,5},{2},{3,4}}
=> 1
Description
The number of singleton blocks of a set partition.
Matching statistic: St000385
Mp00122: Dyck paths Elizalde-Deutsch bijectionDyck paths
Mp00199: Dyck paths prime Dyck pathDyck paths
Mp00140: Dyck paths logarithmic height to pruning numberBinary trees
St000385: Binary trees ⟶ ℤResult quality: 38% values known / values provided: 38%distinct values known / distinct values provided: 88%
Values
[1,0,1,0]
=> [1,1,0,0]
=> [1,1,1,0,0,0]
=> [[.,.],[.,.]]
=> 0
[1,1,0,0]
=> [1,0,1,0]
=> [1,1,0,1,0,0]
=> [[[.,.],.],.]
=> 2
[1,0,1,0,1,0]
=> [1,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0]
=> [[.,.],[[.,.],.]]
=> 1
[1,0,1,1,0,0]
=> [1,1,0,1,0,0]
=> [1,1,1,0,1,0,0,0]
=> [[.,[.,.]],[.,.]]
=> 1
[1,1,0,0,1,0]
=> [1,1,1,0,0,0]
=> [1,1,1,1,0,0,0,0]
=> [[[.,.],.],[.,.]]
=> 1
[1,1,0,1,0,0]
=> [1,0,1,1,0,0]
=> [1,1,0,1,1,0,0,0]
=> [[[.,.],[.,.]],.]
=> 1
[1,1,1,0,0,0]
=> [1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,0]
=> [[[[.,.],.],.],.]
=> 3
[1,0,1,0,1,0,1,0]
=> [1,1,0,0,1,1,0,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> [[.,.],[[.,.],[.,.]]]
=> 0
[1,0,1,0,1,1,0,0]
=> [1,1,0,1,1,0,0,0]
=> [1,1,1,0,1,1,0,0,0,0]
=> [[.,[[.,.],.]],[.,.]]
=> 2
[1,0,1,1,0,0,1,0]
=> [1,1,0,0,1,0,1,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> [[.,.],[[[.,.],.],.]]
=> 2
[1,0,1,1,0,1,0,0]
=> [1,1,0,1,0,0,1,0]
=> [1,1,1,0,1,0,0,1,0,0]
=> [[.,[.,.]],[[.,.],.]]
=> 2
[1,0,1,1,1,0,0,0]
=> [1,1,0,1,0,1,0,0]
=> [1,1,1,0,1,0,1,0,0,0]
=> [[.,[.,[.,.]]],[.,.]]
=> 2
[1,1,0,0,1,0,1,0]
=> [1,1,1,0,0,1,0,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> [[[.,[.,.]],.],[.,.]]
=> 2
[1,1,0,0,1,1,0,0]
=> [1,1,1,1,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [[[.,.],[.,.]],[.,.]]
=> 0
[1,1,0,1,0,0,1,0]
=> [1,1,1,0,0,0,1,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> [[[.,.],.],[[.,.],.]]
=> 2
[1,1,0,1,0,1,0,0]
=> [1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> [[[.,.],[[.,.],.]],.]
=> 2
[1,1,0,1,1,0,0,0]
=> [1,0,1,1,0,1,0,0]
=> [1,1,0,1,1,0,1,0,0,0]
=> [[[.,[.,.]],[.,.]],.]
=> 2
[1,1,1,0,0,0,1,0]
=> [1,1,1,0,1,0,0,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> [[[[.,.],.],.],[.,.]]
=> 2
[1,1,1,0,0,1,0,0]
=> [1,0,1,1,1,0,0,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> [[[[.,.],.],[.,.]],.]
=> 2
[1,1,1,0,1,0,0,0]
=> [1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> [[[[.,.],[.,.]],.],.]
=> 2
[1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> [[[[[.,.],.],.],.],.]
=> 4
[1,0,1,0,1,0,1,0,1,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,1,0,0]
=> [[.,.],[[.,.],[[.,.],.]]]
=> 1
[1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,1,1,0,0,0,1,0]
=> [1,1,1,0,1,1,0,0,0,1,0,0]
=> [[.,[[.,.],.]],[[.,.],.]]
=> 3
[1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,0,1,1,0,1,0,0]
=> [1,1,1,0,0,1,1,0,1,0,0,0]
=> [[.,.],[[.,[.,.]],[.,.]]]
=> 1
[1,0,1,0,1,1,0,1,0,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> [1,1,1,0,1,1,0,0,1,0,0,0]
=> [[.,[[.,[.,.]],.]],[.,.]]
=> 3
[1,0,1,0,1,1,1,0,0,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> [1,1,1,0,1,1,1,0,0,0,0,0]
=> [[.,[[.,.],[.,.]]],[.,.]]
=> 1
[1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> [1,1,1,0,0,1,1,1,0,0,0,0]
=> [[.,.],[[[.,.],.],[.,.]]]
=> 1
[1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,1,1,0,1,0,0,0]
=> [1,1,1,0,1,1,0,1,0,0,0,0]
=> [[.,[[[.,.],.],.]],[.,.]]
=> 3
[1,0,1,1,0,1,0,0,1,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> [1,1,1,0,0,1,0,1,1,0,0,0]
=> [[.,.],[[[.,.],[.,.]],.]]
=> 1
[1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,1,0,0,1,1,0,0]
=> [1,1,1,0,1,0,0,1,1,0,0,0]
=> [[.,[.,.]],[[.,.],[.,.]]]
=> 1
[1,0,1,1,0,1,1,0,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> [1,1,1,0,1,0,1,1,0,0,0,0]
=> [[.,[.,[[.,.],.]]],[.,.]]
=> 3
[1,0,1,1,1,0,0,0,1,0]
=> [1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,0,0,1,0,1,0,1,0,0]
=> [[.,.],[[[[.,.],.],.],.]]
=> 3
[1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,1,0,0,1,0,1,0]
=> [1,1,1,0,1,0,0,1,0,1,0,0]
=> [[.,[.,.]],[[[.,.],.],.]]
=> 3
[1,0,1,1,1,0,1,0,0,0]
=> [1,1,0,1,0,1,0,0,1,0]
=> [1,1,1,0,1,0,1,0,0,1,0,0]
=> [[.,[.,[.,.]]],[[.,.],.]]
=> 3
[1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> [1,1,1,0,1,0,1,0,1,0,0,0]
=> [[.,[.,[.,[.,.]]]],[.,.]]
=> 3
[1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,0,0,1,0,0,1,0]
=> [1,1,1,1,0,0,1,0,0,1,0,0]
=> [[[.,[.,.]],.],[[.,.],.]]
=> 3
[1,1,0,0,1,0,1,1,0,0]
=> [1,1,1,1,0,0,0,0,1,0]
=> [1,1,1,1,1,0,0,0,0,1,0,0]
=> [[[.,.],[[.,.],.]],[.,.]]
=> 1
[1,1,0,0,1,1,0,0,1,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> [1,1,1,1,0,0,1,0,1,0,0,0]
=> [[[.,[.,[.,.]]],.],[.,.]]
=> 3
[1,1,0,0,1,1,0,1,0,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> [1,1,1,1,1,0,0,0,1,0,0,0]
=> [[[.,[.,.]],[.,.]],[.,.]]
=> 1
[1,1,0,0,1,1,1,0,0,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> [1,1,1,1,1,0,1,0,0,0,0,0]
=> [[[.,.],[.,.]],[.,[.,.]]]
=> 1
[1,1,0,1,0,0,1,0,1,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> [1,1,1,1,0,0,1,1,0,0,0,0]
=> [[[.,[[.,.],.]],.],[.,.]]
=> 3
[1,1,0,1,0,0,1,1,0,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> [1,1,1,1,1,0,0,1,0,0,0,0]
=> [[[[.,.],.],[.,.]],[.,.]]
=> 1
[1,1,0,1,0,1,0,0,1,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> [1,1,1,1,0,0,0,1,1,0,0,0]
=> [[[.,.],.],[[.,.],[.,.]]]
=> 1
[1,1,0,1,0,1,0,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,1,1,0,0,1,1,0,0,0]
=> [[[.,.],[[.,.],[.,.]]],.]
=> 1
[1,1,0,1,0,1,1,0,0,0]
=> [1,0,1,1,0,1,1,0,0,0]
=> [1,1,0,1,1,0,1,1,0,0,0,0]
=> [[[.,[[.,.],.]],[.,.]],.]
=> 3
[1,1,0,1,1,0,0,0,1,0]
=> [1,1,1,0,0,0,1,0,1,0]
=> [1,1,1,1,0,0,0,1,0,1,0,0]
=> [[[.,.],.],[[[.,.],.],.]]
=> 3
[1,1,0,1,1,0,0,1,0,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,1,1,0,0,1,0,1,0,0]
=> [[[.,.],[[[.,.],.],.]],.]
=> 3
[1,1,0,1,1,0,1,0,0,0]
=> [1,0,1,1,0,1,0,0,1,0]
=> [1,1,0,1,1,0,1,0,0,1,0,0]
=> [[[.,[.,.]],[[.,.],.]],.]
=> 3
[1,1,0,1,1,1,0,0,0,0]
=> [1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,1,1,0,1,0,1,0,0,0]
=> [[[.,[.,[.,.]]],[.,.]],.]
=> 3
[1,1,1,0,0,0,1,0,1,0]
=> [1,1,1,0,1,1,0,0,0,0]
=> [1,1,1,1,0,1,1,0,0,0,0,0]
=> [[[[.,.],[.,.]],.],[.,.]]
=> 1
[1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,1,1,0,0,0,1,1,0,0,1,0]
=> [1,1,1,0,1,1,0,0,0,1,1,0,0,1,0,0]
=> [[.,[[.,.],.]],[[.,.],[[.,.],.]]]
=> ? = 3
[1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,1,0,1,1,0,0,1,1,0,0,0,1,0]
=> [1,1,1,0,1,1,0,0,1,1,0,0,0,1,0,0]
=> [[.,[[.,[[.,.],.]],.]],[[.,.],.]]
=> ? = 5
[1,0,1,0,1,0,1,0,1,1,1,0,0,0]
=> [1,1,0,1,1,1,0,0,1,0,0,0,1,0]
=> [1,1,1,0,1,1,1,0,0,1,0,0,0,1,0,0]
=> [[.,[[[.,.],.],[[.,.],.]]],[.,.]]
=> ? = 3
[1,0,1,0,1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,1,1,0,0,0,1,1,0,1,0,0]
=> [1,1,1,0,1,1,0,0,0,1,1,0,1,0,0,0]
=> [[.,[[.,.],.]],[[.,[.,.]],[.,.]]]
=> ? = 3
[1,0,1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,1,1,0,0,1,1,0,0,1,0,0]
=> [1,1,1,0,1,1,0,0,1,1,0,0,1,0,0,0]
=> [[.,[[.,[[.,[.,.]],.]],.]],[.,.]]
=> ? = 5
[1,0,1,0,1,0,1,1,0,1,1,0,0,0]
=> [1,1,0,1,1,1,0,0,1,0,0,1,0,0]
=> [1,1,1,0,1,1,1,0,0,1,0,0,1,0,0,0]
=> [[.,[[[.,[.,.]],.],[.,.]]],[.,.]]
=> ? = 3
[1,0,1,0,1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,1,1,0,0,1,1,1,0,0,0,0]
=> [1,1,1,0,1,1,0,0,1,1,1,0,0,0,0,0]
=> [[.,[[.,[[.,.],[.,.]]],.]],[.,.]]
=> ? = 3
[1,0,1,0,1,0,1,1,1,0,1,0,0,0]
=> [1,1,0,1,1,1,0,0,1,1,0,0,0,0]
=> [1,1,1,0,1,1,1,0,0,1,1,0,0,0,0,0]
=> [[.,[[[.,.],[.,.]],[.,.]]],[.,.]]
=> ? = 1
[1,0,1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,1,1,1,0,1,1,0,0,0,0,0]
=> [1,1,1,0,1,1,1,0,1,1,0,0,0,0,0,0]
=> [[.,[[.,.],[.,.]]],[.,[[.,.],.]]]
=> ? = 3
[1,0,1,0,1,1,0,0,1,0,1,1,0,0]
=> [1,1,0,1,1,0,0,0,1,1,1,0,0,0]
=> [1,1,1,0,1,1,0,0,0,1,1,1,0,0,0,0]
=> [[.,[[.,.],.]],[[[.,.],.],[.,.]]]
=> ? = 3
[1,0,1,0,1,1,0,0,1,1,0,1,0,0]
=> [1,1,0,1,1,0,0,1,1,0,1,0,0,0]
=> [1,1,1,0,1,1,0,0,1,1,0,1,0,0,0,0]
=> [[.,[[.,[[[.,.],.],.]],.]],[.,.]]
=> ? = 5
[1,0,1,0,1,1,0,0,1,1,1,0,0,0]
=> [1,1,0,1,1,1,0,0,1,0,1,0,0,0]
=> [1,1,1,0,1,1,1,0,0,1,0,1,0,0,0,0]
=> [[.,[[[[.,.],.],.],[.,.]]],[.,.]]
=> ? = 3
[1,0,1,0,1,1,0,1,0,0,1,1,0,0]
=> [1,1,0,1,1,0,0,0,1,0,1,1,0,0]
=> [1,1,1,0,1,1,0,0,0,1,0,1,1,0,0,0]
=> [[.,[[.,.],.]],[[[.,.],[.,.]],.]]
=> ? = 3
[1,0,1,0,1,1,0,1,0,1,0,1,0,0]
=> [1,1,0,1,1,0,0,1,0,0,1,1,0,0]
=> [1,1,1,0,1,1,0,0,1,0,0,1,1,0,0,0]
=> [[.,[[.,[.,.]],.]],[[.,.],[.,.]]]
=> ? = 3
[1,0,1,0,1,1,0,1,0,1,1,0,0,0]
=> [1,1,0,1,1,1,0,0,0,0,1,1,0,0]
=> [1,1,1,0,1,1,1,0,0,0,0,1,1,0,0,0]
=> [[.,[[.,.],[[.,.],[.,.]]]],[.,.]]
=> ? = 1
[1,0,1,0,1,1,0,1,1,0,0,1,0,0]
=> [1,1,0,1,1,0,0,1,0,1,1,0,0,0]
=> [1,1,1,0,1,1,0,0,1,0,1,1,0,0,0,0]
=> [[.,[[.,[.,[[.,.],.]]],.]],[.,.]]
=> ? = 5
[1,0,1,0,1,1,0,1,1,0,1,0,0,0]
=> [1,1,0,1,1,1,0,0,0,1,1,0,0,0]
=> [1,1,1,0,1,1,1,0,0,0,1,1,0,0,0,0]
=> [[.,[[.,[[.,.],.]],[.,.]]],[.,.]]
=> ? = 3
[1,0,1,0,1,1,0,1,1,1,0,0,0,0]
=> [1,1,0,1,1,1,0,1,0,0,1,0,0,0]
=> [1,1,1,0,1,1,1,0,1,0,0,1,0,0,0,0]
=> [[.,[[[.,.],.],[.,.]]],[.,[.,.]]]
=> ? = 3
[1,0,1,0,1,1,1,0,0,0,1,1,0,0]
=> [1,1,0,1,1,0,0,0,1,0,1,0,1,0]
=> [1,1,1,0,1,1,0,0,0,1,0,1,0,1,0,0]
=> [[.,[[.,.],.]],[[[[.,.],.],.],.]]
=> ? = 5
[1,0,1,0,1,1,1,0,0,1,0,1,0,0]
=> [1,1,0,1,1,0,0,1,0,0,1,0,1,0]
=> [1,1,1,0,1,1,0,0,1,0,0,1,0,1,0,0]
=> [[.,[[.,[.,.]],.]],[[[.,.],.],.]]
=> ? = 5
[1,0,1,0,1,1,1,0,0,1,1,0,0,0]
=> [1,1,0,1,1,1,0,0,0,0,1,0,1,0]
=> [1,1,1,0,1,1,1,0,0,0,0,1,0,1,0,0]
=> [[.,[[.,.],[[[.,.],.],.]]],[.,.]]
=> ? = 3
[1,0,1,0,1,1,1,0,1,0,0,1,0,0]
=> [1,1,0,1,1,0,0,1,0,1,0,0,1,0]
=> [1,1,1,0,1,1,0,0,1,0,1,0,0,1,0,0]
=> [[.,[[.,[.,[.,.]]],.]],[[.,.],.]]
=> ? = 5
[1,0,1,0,1,1,1,0,1,0,1,0,0,0]
=> [1,1,0,1,1,1,0,0,0,1,0,0,1,0]
=> [1,1,1,0,1,1,1,0,0,0,1,0,0,1,0,0]
=> [[.,[[.,[.,.]],[[.,.],.]]],[.,.]]
=> ? = 3
[1,0,1,0,1,1,1,0,1,1,0,0,0,0]
=> [1,1,0,1,1,1,0,1,0,0,0,0,1,0]
=> [1,1,1,0,1,1,1,0,1,0,0,0,0,1,0,0]
=> [[.,[[.,.],[[.,.],.]]],[.,[.,.]]]
=> ? = 3
[1,0,1,0,1,1,1,1,0,0,0,1,0,0]
=> [1,1,0,1,1,0,0,1,0,1,0,1,0,0]
=> [1,1,1,0,1,1,0,0,1,0,1,0,1,0,0,0]
=> [[.,[[.,[.,[.,[.,.]]]],.]],[.,.]]
=> ? = 5
[1,0,1,0,1,1,1,1,0,0,1,0,0,0]
=> [1,1,0,1,1,1,0,0,0,1,0,1,0,0]
=> [1,1,1,0,1,1,1,0,0,0,1,0,1,0,0,0]
=> [[.,[[.,[.,[.,.]]],[.,.]]],[.,.]]
=> ? = 3
[1,0,1,0,1,1,1,1,0,1,0,0,0,0]
=> [1,1,0,1,1,1,0,1,0,0,0,1,0,0]
=> [1,1,1,0,1,1,1,0,1,0,0,0,1,0,0,0]
=> [[.,[[.,[.,.]],[.,.]]],[.,[.,.]]]
=> ? = 3
[1,0,1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,1,0,1,1,1,0,1,0,1,0,0,0,0]
=> [1,1,1,0,1,1,1,0,1,0,1,0,0,0,0,0]
=> [[.,[[.,.],[.,.]]],[.,[.,[.,.]]]]
=> ? = 3
[1,0,1,1,0,0,1,0,1,0,1,1,0,0]
=> [1,1,0,1,1,0,1,0,0,1,0,0,1,0]
=> [1,1,1,0,1,1,0,1,0,0,1,0,0,1,0,0]
=> [[.,[[[.,[.,.]],.],.]],[[.,.],.]]
=> ? = 5
[1,0,1,1,0,0,1,0,1,1,0,1,0,0]
=> [1,1,0,1,1,0,1,1,0,0,0,0,1,0]
=> [1,1,1,0,1,1,0,1,1,0,0,0,0,1,0,0]
=> [[.,[[[.,.],[[.,.],.]],.]],[.,.]]
=> ? = 3
[1,0,1,1,0,0,1,0,1,1,1,0,0,0]
=> [1,1,0,1,1,1,1,0,0,0,0,0,1,0]
=> [1,1,1,0,1,1,1,1,0,0,0,0,0,1,0,0]
=> [[.,[[.,.],[[.,.],.]]],[[.,.],.]]
=> ? = 3
[1,0,1,1,0,0,1,1,0,0,1,1,0,0]
=> [1,1,0,1,1,0,1,0,0,1,0,1,0,0]
=> [1,1,1,0,1,1,0,1,0,0,1,0,1,0,0,0]
=> [[.,[[[.,[.,[.,.]]],.],.]],[.,.]]
=> ? = 5
[1,0,1,1,0,0,1,1,0,1,0,1,0,0]
=> [1,1,0,1,1,0,1,1,0,0,0,1,0,0]
=> [1,1,1,0,1,1,0,1,1,0,0,0,1,0,0,0]
=> [[.,[[[.,[.,.]],[.,.]],.]],[.,.]]
=> ? = 3
[1,0,1,1,0,0,1,1,0,1,1,0,0,0]
=> [1,1,0,1,1,1,1,0,0,0,0,1,0,0]
=> [1,1,1,0,1,1,1,1,0,0,0,0,1,0,0,0]
=> [[.,[[.,[.,.]],[.,.]]],[[.,.],.]]
=> ? = 3
[1,0,1,1,0,0,1,1,1,0,0,1,0,0]
=> [1,1,0,1,1,0,1,1,0,1,0,0,0,0]
=> [1,1,1,0,1,1,0,1,1,0,1,0,0,0,0,0]
=> [[.,[[[.,.],[.,.]],.]],[.,[.,.]]]
=> ? = 3
[1,0,1,1,0,0,1,1,1,0,1,0,0,0]
=> [1,1,0,1,1,1,1,0,0,1,0,0,0,0]
=> [1,1,1,0,1,1,1,1,0,0,1,0,0,0,0,0]
=> [[.,[[.,.],[.,.]]],[[.,[.,.]],.]]
=> ? = 3
[1,0,1,1,0,0,1,1,1,1,0,0,0,0]
=> [1,1,0,1,1,1,1,1,0,0,0,0,0,0]
=> [1,1,1,0,1,1,1,1,1,0,0,0,0,0,0,0]
=> [[.,[[.,.],[.,.]]],[[.,.],[.,.]]]
=> ? = 1
[1,0,1,1,0,1,0,0,1,0,1,1,0,0]
=> [1,1,0,1,1,0,1,0,0,1,1,0,0,0]
=> [1,1,1,0,1,1,0,1,0,0,1,1,0,0,0,0]
=> [[.,[[[.,[[.,.],.]],.],.]],[.,.]]
=> ? = 5
[1,0,1,1,0,1,0,0,1,1,0,1,0,0]
=> [1,1,0,1,1,0,1,1,0,0,1,0,0,0]
=> [1,1,1,0,1,1,0,1,1,0,0,1,0,0,0,0]
=> [[.,[[[[.,.],.],[.,.]],.]],[.,.]]
=> ? = 3
[1,0,1,1,0,1,0,0,1,1,1,0,0,0]
=> [1,1,0,1,1,1,1,0,0,0,1,0,0,0]
=> [1,1,1,0,1,1,1,1,0,0,0,1,0,0,0,0]
=> [[.,[[[.,.],.],[.,.]]],[[.,.],.]]
=> ? = 3
[1,0,1,1,0,1,0,1,0,0,1,1,0,0]
=> [1,1,0,1,1,0,1,0,0,0,1,1,0,0]
=> [1,1,1,0,1,1,0,1,0,0,0,1,1,0,0,0]
=> [[.,[[[.,.],.],.]],[[.,.],[.,.]]]
=> ? = 3
[1,0,1,1,0,1,0,1,0,1,0,1,0,0]
=> [1,1,0,1,0,0,1,1,0,0,1,1,0,0]
=> [1,1,1,0,1,0,0,1,1,0,0,1,1,0,0,0]
=> [[.,[.,.]],[[.,.],[[.,.],[.,.]]]]
=> ? = 1
[1,0,1,1,0,1,0,1,0,1,1,0,0,0]
=> [1,1,0,1,0,1,1,0,0,0,1,1,0,0]
=> [1,1,1,0,1,0,1,1,0,0,0,1,1,0,0,0]
=> [[.,[.,[[.,.],.]]],[[.,.],[.,.]]]
=> ? = 3
[1,0,1,1,0,1,0,1,1,0,0,1,0,0]
=> [1,1,0,1,0,0,1,1,0,1,1,0,0,0]
=> [1,1,1,0,1,0,0,1,1,0,1,1,0,0,0,0]
=> [[.,[.,.]],[[.,[[.,.],.]],[.,.]]]
=> ? = 3
[1,0,1,1,0,1,0,1,1,0,1,0,0,0]
=> [1,1,0,1,0,1,1,0,0,1,1,0,0,0]
=> [1,1,1,0,1,0,1,1,0,0,1,1,0,0,0,0]
=> [[.,[.,[[.,[[.,.],.]],.]]],[.,.]]
=> ? = 5
[1,0,1,1,0,1,0,1,1,1,0,0,0,0]
=> [1,1,0,1,0,1,1,1,0,0,1,0,0,0]
=> [1,1,1,0,1,0,1,1,1,0,0,1,0,0,0,0]
=> [[.,[.,[[[.,.],.],[.,.]]]],[.,.]]
=> ? = 3
[1,0,1,1,0,1,1,0,0,0,1,1,0,0]
=> [1,1,0,1,1,0,1,0,0,0,1,0,1,0]
=> [1,1,1,0,1,1,0,1,0,0,0,1,0,1,0,0]
=> [[.,[[[.,.],.],.]],[[[.,.],.],.]]
=> ? = 5
[1,0,1,1,0,1,1,0,0,1,0,1,0,0]
=> [1,1,0,1,0,0,1,1,0,0,1,0,1,0]
=> [1,1,1,0,1,0,0,1,1,0,0,1,0,1,0,0]
=> [[.,[.,.]],[[.,.],[[[.,.],.],.]]]
=> ? = 3
[1,0,1,1,0,1,1,0,0,1,1,0,0,0]
=> [1,1,0,1,0,1,1,0,0,0,1,0,1,0]
=> [1,1,1,0,1,0,1,1,0,0,0,1,0,1,0,0]
=> [[.,[.,[[.,.],.]]],[[[.,.],.],.]]
=> ? = 5
[1,0,1,1,0,1,1,0,1,0,0,1,0,0]
=> [1,1,0,1,0,0,1,1,0,1,0,0,1,0]
=> [1,1,1,0,1,0,0,1,1,0,1,0,0,1,0,0]
=> [[.,[.,.]],[[.,[.,.]],[[.,.],.]]]
=> ? = 3
Description
The number of vertices with out-degree 1 in a binary tree. See the references for several connections of this statistic. In particular, the number $T(n,k)$ of binary trees with $n$ vertices and $k$ out-degree $1$ vertices is given by $T(n,k) = 0$ for $n-k$ odd and $$T(n,k)=\frac{2^k}{n+1}\binom{n+1}{k}\binom{n+1-k}{(n-k)/2}$$ for $n-k$ is even.