searching the database
Your data matches 11 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
(click to perform a complete search on your data)
Matching statistic: St000189
(load all 2 compositions to match this statistic)
(load all 2 compositions to match this statistic)
Values
([],1)
=> ([],1)
=> ([],1)
=> 1
([],2)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 4
([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 2
([],3)
=> ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> 5
([(1,2)],3)
=> ([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
=> ([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
=> 5
([(0,1),(0,2)],3)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 4
([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 3
([(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 4
([],4)
=> ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6)
=> 6
([(2,3)],4)
=> ([(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,1)],6)
=> ([(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,1)],6)
=> 6
([(1,2),(1,3)],4)
=> ([(0,3),(0,4),(1,5),(2,5),(3,5),(4,1),(4,2)],6)
=> ([(0,3),(0,4),(1,5),(2,5),(3,5),(4,1),(4,2)],6)
=> 6
([(0,1),(0,2),(0,3)],4)
=> ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> 5
([(0,2),(0,3),(3,1)],4)
=> ([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
=> ([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
=> 5
([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 4
([(1,2),(2,3)],4)
=> ([(0,2),(0,4),(1,5),(2,5),(3,1),(4,3)],6)
=> ([(0,2),(0,4),(1,5),(2,5),(3,1),(4,3)],6)
=> 6
([(0,3),(3,1),(3,2)],4)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> 5
([(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6)
=> 6
([(0,3),(1,3),(3,2)],4)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> 5
([(0,3),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> 5
([(0,3),(1,2)],4)
=> ([(0,3),(0,4),(1,5),(2,5),(3,2),(4,1)],6)
=> ([(0,3),(0,4),(1,5),(2,5),(3,2),(4,1)],6)
=> 6
([(0,3),(1,2),(1,3)],4)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 6
([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> 4
([(0,3),(1,2),(2,3)],4)
=> ([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
=> ([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
=> 5
([(0,1),(0,2),(0,3),(0,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6)
=> 6
([(0,2),(0,3),(0,4),(4,1)],5)
=> ([(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,1)],6)
=> ([(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,1)],6)
=> 6
([(0,1),(0,2),(0,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6)
=> 6
([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> 5
([(0,3),(0,4),(4,1),(4,2)],5)
=> ([(0,3),(0,4),(1,5),(2,5),(3,5),(4,1),(4,2)],6)
=> ([(0,3),(0,4),(1,5),(2,5),(3,5),(4,1),(4,2)],6)
=> 6
([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> 5
([(0,3),(0,4),(3,2),(4,1)],5)
=> ([(0,3),(0,4),(1,5),(2,5),(3,2),(4,1)],6)
=> ([(0,3),(0,4),(1,5),(2,5),(3,2),(4,1)],6)
=> 6
([(0,2),(0,3),(2,4),(3,1),(3,4)],5)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 6
([(0,4),(4,1),(4,2),(4,3)],5)
=> ([(0,4),(1,5),(2,5),(3,5),(4,1),(4,2),(4,3)],6)
=> ([(0,4),(1,5),(2,5),(3,5),(4,1),(4,2),(4,3)],6)
=> 6
([(0,4),(1,4),(2,4),(4,3)],5)
=> ([(0,2),(0,3),(0,4),(2,5),(3,5),(4,5),(5,1)],6)
=> ([(0,2),(0,3),(0,4),(2,5),(3,5),(4,5),(5,1)],6)
=> 6
([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6)
=> 6
([(0,4),(1,4),(2,3),(4,2)],5)
=> ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
=> ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
=> 6
([(0,4),(1,3),(2,3),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6)
=> 6
([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,1)],6)
=> ([(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,1)],6)
=> 6
([(0,3),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 6
([(0,2),(0,4),(3,1),(4,3)],5)
=> ([(0,2),(0,4),(1,5),(2,5),(3,1),(4,3)],6)
=> ([(0,2),(0,4),(1,5),(2,5),(3,1),(4,3)],6)
=> 6
([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
=> ([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
=> ([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
=> 5
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,5),(2,5),(3,5),(4,1),(4,2)],6)
=> ([(0,3),(0,4),(1,5),(2,5),(3,5),(4,1),(4,2)],6)
=> 6
([(0,3),(3,4),(4,1),(4,2)],5)
=> ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6)
=> ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6)
=> 6
([(0,4),(1,2),(2,4),(4,3)],5)
=> ([(0,3),(0,4),(1,5),(3,5),(4,1),(5,2)],6)
=> ([(0,3),(0,4),(1,5),(3,5),(4,1),(5,2)],6)
=> 6
([(0,4),(3,2),(4,1),(4,3)],5)
=> ([(0,4),(1,5),(2,5),(3,2),(4,1),(4,3)],6)
=> ([(0,4),(1,5),(2,5),(3,2),(4,1),(4,3)],6)
=> 6
([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 5
([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,5),(2,5),(3,2),(4,1)],6)
=> ([(0,3),(0,4),(1,5),(2,5),(3,2),(4,1)],6)
=> 6
([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(0,2),(0,4),(1,5),(2,5),(3,1),(4,3)],6)
=> ([(0,2),(0,4),(1,5),(2,5),(3,1),(4,3)],6)
=> 6
([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> 5
([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6)
=> 6
([(0,2),(0,3),(0,4),(2,5),(3,5),(4,5),(5,1)],6)
=> ([(0,2),(0,3),(0,4),(2,5),(3,5),(4,5),(5,1)],6)
=> ([(0,2),(0,3),(0,4),(2,5),(3,5),(4,5),(5,1)],6)
=> 6
Description
The number of elements in the poset.
Matching statistic: St001717
(load all 2 compositions to match this statistic)
(load all 2 compositions to match this statistic)
Values
([],1)
=> ([],1)
=> ([],1)
=> 1
([],2)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 4
([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 2
([],3)
=> ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> 5
([(1,2)],3)
=> ([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
=> ([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
=> 5
([(0,1),(0,2)],3)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 4
([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 3
([(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 4
([],4)
=> ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6)
=> 6
([(2,3)],4)
=> ([(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,1)],6)
=> ([(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,1)],6)
=> 6
([(1,2),(1,3)],4)
=> ([(0,3),(0,4),(1,5),(2,5),(3,5),(4,1),(4,2)],6)
=> ([(0,3),(0,4),(1,5),(2,5),(3,5),(4,1),(4,2)],6)
=> 6
([(0,1),(0,2),(0,3)],4)
=> ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> 5
([(0,2),(0,3),(3,1)],4)
=> ([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
=> ([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
=> 5
([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 4
([(1,2),(2,3)],4)
=> ([(0,2),(0,4),(1,5),(2,5),(3,1),(4,3)],6)
=> ([(0,2),(0,4),(1,5),(2,5),(3,1),(4,3)],6)
=> 6
([(0,3),(3,1),(3,2)],4)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> 5
([(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6)
=> 6
([(0,3),(1,3),(3,2)],4)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> 5
([(0,3),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> 5
([(0,3),(1,2)],4)
=> ([(0,3),(0,4),(1,5),(2,5),(3,2),(4,1)],6)
=> ([(0,3),(0,4),(1,5),(2,5),(3,2),(4,1)],6)
=> 6
([(0,3),(1,2),(1,3)],4)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 6
([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> 4
([(0,3),(1,2),(2,3)],4)
=> ([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
=> ([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
=> 5
([(0,1),(0,2),(0,3),(0,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6)
=> 6
([(0,2),(0,3),(0,4),(4,1)],5)
=> ([(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,1)],6)
=> ([(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,1)],6)
=> 6
([(0,1),(0,2),(0,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6)
=> 6
([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> 5
([(0,3),(0,4),(4,1),(4,2)],5)
=> ([(0,3),(0,4),(1,5),(2,5),(3,5),(4,1),(4,2)],6)
=> ([(0,3),(0,4),(1,5),(2,5),(3,5),(4,1),(4,2)],6)
=> 6
([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> 5
([(0,3),(0,4),(3,2),(4,1)],5)
=> ([(0,3),(0,4),(1,5),(2,5),(3,2),(4,1)],6)
=> ([(0,3),(0,4),(1,5),(2,5),(3,2),(4,1)],6)
=> 6
([(0,2),(0,3),(2,4),(3,1),(3,4)],5)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 6
([(0,4),(4,1),(4,2),(4,3)],5)
=> ([(0,4),(1,5),(2,5),(3,5),(4,1),(4,2),(4,3)],6)
=> ([(0,4),(1,5),(2,5),(3,5),(4,1),(4,2),(4,3)],6)
=> 6
([(0,4),(1,4),(2,4),(4,3)],5)
=> ([(0,2),(0,3),(0,4),(2,5),(3,5),(4,5),(5,1)],6)
=> ([(0,2),(0,3),(0,4),(2,5),(3,5),(4,5),(5,1)],6)
=> 6
([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6)
=> 6
([(0,4),(1,4),(2,3),(4,2)],5)
=> ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
=> ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
=> 6
([(0,4),(1,3),(2,3),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6)
=> 6
([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,1)],6)
=> ([(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,1)],6)
=> 6
([(0,3),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 6
([(0,2),(0,4),(3,1),(4,3)],5)
=> ([(0,2),(0,4),(1,5),(2,5),(3,1),(4,3)],6)
=> ([(0,2),(0,4),(1,5),(2,5),(3,1),(4,3)],6)
=> 6
([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
=> ([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
=> ([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
=> 5
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,5),(2,5),(3,5),(4,1),(4,2)],6)
=> ([(0,3),(0,4),(1,5),(2,5),(3,5),(4,1),(4,2)],6)
=> 6
([(0,3),(3,4),(4,1),(4,2)],5)
=> ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6)
=> ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6)
=> 6
([(0,4),(1,2),(2,4),(4,3)],5)
=> ([(0,3),(0,4),(1,5),(3,5),(4,1),(5,2)],6)
=> ([(0,3),(0,4),(1,5),(3,5),(4,1),(5,2)],6)
=> 6
([(0,4),(3,2),(4,1),(4,3)],5)
=> ([(0,4),(1,5),(2,5),(3,2),(4,1),(4,3)],6)
=> ([(0,4),(1,5),(2,5),(3,2),(4,1),(4,3)],6)
=> 6
([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 5
([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,5),(2,5),(3,2),(4,1)],6)
=> ([(0,3),(0,4),(1,5),(2,5),(3,2),(4,1)],6)
=> 6
([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(0,2),(0,4),(1,5),(2,5),(3,1),(4,3)],6)
=> ([(0,2),(0,4),(1,5),(2,5),(3,1),(4,3)],6)
=> 6
([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> 5
([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6)
=> 6
([(0,2),(0,3),(0,4),(2,5),(3,5),(4,5),(5,1)],6)
=> ([(0,2),(0,3),(0,4),(2,5),(3,5),(4,5),(5,1)],6)
=> ([(0,2),(0,3),(0,4),(2,5),(3,5),(4,5),(5,1)],6)
=> 6
Description
The largest size of an interval in a poset.
Matching statistic: St001300
(load all 2 compositions to match this statistic)
(load all 2 compositions to match this statistic)
Values
([],1)
=> ([],1)
=> ([],1)
=> 0 = 1 - 1
([],2)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 3 = 4 - 1
([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1 = 2 - 1
([],3)
=> ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> 4 = 5 - 1
([(1,2)],3)
=> ([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
=> ([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
=> 4 = 5 - 1
([(0,1),(0,2)],3)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 3 = 4 - 1
([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 2 = 3 - 1
([(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 3 = 4 - 1
([],4)
=> ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6)
=> 5 = 6 - 1
([(2,3)],4)
=> ([(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,1)],6)
=> ([(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,1)],6)
=> 5 = 6 - 1
([(1,2),(1,3)],4)
=> ([(0,3),(0,4),(1,5),(2,5),(3,5),(4,1),(4,2)],6)
=> ([(0,3),(0,4),(1,5),(2,5),(3,5),(4,1),(4,2)],6)
=> 5 = 6 - 1
([(0,1),(0,2),(0,3)],4)
=> ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> 4 = 5 - 1
([(0,2),(0,3),(3,1)],4)
=> ([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
=> ([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
=> 4 = 5 - 1
([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 3 = 4 - 1
([(1,2),(2,3)],4)
=> ([(0,2),(0,4),(1,5),(2,5),(3,1),(4,3)],6)
=> ([(0,2),(0,4),(1,5),(2,5),(3,1),(4,3)],6)
=> 5 = 6 - 1
([(0,3),(3,1),(3,2)],4)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> 4 = 5 - 1
([(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6)
=> 5 = 6 - 1
([(0,3),(1,3),(3,2)],4)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> 4 = 5 - 1
([(0,3),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> 4 = 5 - 1
([(0,3),(1,2)],4)
=> ([(0,3),(0,4),(1,5),(2,5),(3,2),(4,1)],6)
=> ([(0,3),(0,4),(1,5),(2,5),(3,2),(4,1)],6)
=> 5 = 6 - 1
([(0,3),(1,2),(1,3)],4)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 5 = 6 - 1
([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> 3 = 4 - 1
([(0,3),(1,2),(2,3)],4)
=> ([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
=> ([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
=> 4 = 5 - 1
([(0,1),(0,2),(0,3),(0,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6)
=> 5 = 6 - 1
([(0,2),(0,3),(0,4),(4,1)],5)
=> ([(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,1)],6)
=> ([(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,1)],6)
=> 5 = 6 - 1
([(0,1),(0,2),(0,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6)
=> 5 = 6 - 1
([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> 4 = 5 - 1
([(0,3),(0,4),(4,1),(4,2)],5)
=> ([(0,3),(0,4),(1,5),(2,5),(3,5),(4,1),(4,2)],6)
=> ([(0,3),(0,4),(1,5),(2,5),(3,5),(4,1),(4,2)],6)
=> 5 = 6 - 1
([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> 4 = 5 - 1
([(0,3),(0,4),(3,2),(4,1)],5)
=> ([(0,3),(0,4),(1,5),(2,5),(3,2),(4,1)],6)
=> ([(0,3),(0,4),(1,5),(2,5),(3,2),(4,1)],6)
=> 5 = 6 - 1
([(0,2),(0,3),(2,4),(3,1),(3,4)],5)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 5 = 6 - 1
([(0,4),(4,1),(4,2),(4,3)],5)
=> ([(0,4),(1,5),(2,5),(3,5),(4,1),(4,2),(4,3)],6)
=> ([(0,4),(1,5),(2,5),(3,5),(4,1),(4,2),(4,3)],6)
=> 5 = 6 - 1
([(0,4),(1,4),(2,4),(4,3)],5)
=> ([(0,2),(0,3),(0,4),(2,5),(3,5),(4,5),(5,1)],6)
=> ([(0,2),(0,3),(0,4),(2,5),(3,5),(4,5),(5,1)],6)
=> 5 = 6 - 1
([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6)
=> 5 = 6 - 1
([(0,4),(1,4),(2,3),(4,2)],5)
=> ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
=> ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
=> 5 = 6 - 1
([(0,4),(1,3),(2,3),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6)
=> 5 = 6 - 1
([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,1)],6)
=> ([(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,1)],6)
=> 5 = 6 - 1
([(0,3),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 5 = 6 - 1
([(0,2),(0,4),(3,1),(4,3)],5)
=> ([(0,2),(0,4),(1,5),(2,5),(3,1),(4,3)],6)
=> ([(0,2),(0,4),(1,5),(2,5),(3,1),(4,3)],6)
=> 5 = 6 - 1
([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
=> ([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
=> ([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
=> 4 = 5 - 1
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,5),(2,5),(3,5),(4,1),(4,2)],6)
=> ([(0,3),(0,4),(1,5),(2,5),(3,5),(4,1),(4,2)],6)
=> 5 = 6 - 1
([(0,3),(3,4),(4,1),(4,2)],5)
=> ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6)
=> ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6)
=> 5 = 6 - 1
([(0,4),(1,2),(2,4),(4,3)],5)
=> ([(0,3),(0,4),(1,5),(3,5),(4,1),(5,2)],6)
=> ([(0,3),(0,4),(1,5),(3,5),(4,1),(5,2)],6)
=> 5 = 6 - 1
([(0,4),(3,2),(4,1),(4,3)],5)
=> ([(0,4),(1,5),(2,5),(3,2),(4,1),(4,3)],6)
=> ([(0,4),(1,5),(2,5),(3,2),(4,1),(4,3)],6)
=> 5 = 6 - 1
([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 4 = 5 - 1
([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,5),(2,5),(3,2),(4,1)],6)
=> ([(0,3),(0,4),(1,5),(2,5),(3,2),(4,1)],6)
=> 5 = 6 - 1
([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(0,2),(0,4),(1,5),(2,5),(3,1),(4,3)],6)
=> ([(0,2),(0,4),(1,5),(2,5),(3,1),(4,3)],6)
=> 5 = 6 - 1
([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> 4 = 5 - 1
([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6)
=> 5 = 6 - 1
([(0,2),(0,3),(0,4),(2,5),(3,5),(4,5),(5,1)],6)
=> ([(0,2),(0,3),(0,4),(2,5),(3,5),(4,5),(5,1)],6)
=> ([(0,2),(0,3),(0,4),(2,5),(3,5),(4,5),(5,1)],6)
=> 5 = 6 - 1
Description
The rank of the boundary operator in degree 1 of the chain complex of the order complex of the poset.
Matching statistic: St000656
(load all 4 compositions to match this statistic)
(load all 4 compositions to match this statistic)
Values
([],1)
=> ? = 1
([],2)
=> 4
([(0,1)],2)
=> 2
([],3)
=> 5
([(1,2)],3)
=> 5
([(0,1),(0,2)],3)
=> 4
([(0,2),(2,1)],3)
=> 3
([(0,2),(1,2)],3)
=> 4
([],4)
=> 6
([(2,3)],4)
=> 6
([(1,2),(1,3)],4)
=> 6
([(0,1),(0,2),(0,3)],4)
=> 5
([(0,2),(0,3),(3,1)],4)
=> 5
([(0,1),(0,2),(1,3),(2,3)],4)
=> 4
([(1,2),(2,3)],4)
=> 6
([(0,3),(3,1),(3,2)],4)
=> 5
([(1,3),(2,3)],4)
=> 6
([(0,3),(1,3),(3,2)],4)
=> 5
([(0,3),(1,3),(2,3)],4)
=> 5
([(0,3),(1,2)],4)
=> 6
([(0,3),(1,2),(1,3)],4)
=> 6
([(0,3),(2,1),(3,2)],4)
=> 4
([(0,3),(1,2),(2,3)],4)
=> 5
([(0,1),(0,2),(0,3),(0,4)],5)
=> 6
([(0,2),(0,3),(0,4),(4,1)],5)
=> 6
([(0,1),(0,2),(0,3),(2,4),(3,4)],5)
=> 6
([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> 5
([(0,3),(0,4),(4,1),(4,2)],5)
=> 6
([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> 5
([(0,3),(0,4),(3,2),(4,1)],5)
=> 6
([(0,2),(0,3),(2,4),(3,1),(3,4)],5)
=> 6
([(0,4),(4,1),(4,2),(4,3)],5)
=> 6
([(0,4),(1,4),(2,4),(4,3)],5)
=> 6
([(0,4),(1,4),(2,4),(3,4)],5)
=> 6
([(0,4),(1,4),(2,3),(4,2)],5)
=> 6
([(0,4),(1,3),(2,3),(3,4)],5)
=> 6
([(0,4),(1,4),(2,3),(3,4)],5)
=> 6
([(0,3),(1,2),(1,3),(2,4),(3,4)],5)
=> 6
([(0,2),(0,4),(3,1),(4,3)],5)
=> 6
([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
=> 5
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> 6
([(0,3),(3,4),(4,1),(4,2)],5)
=> 6
([(0,4),(1,2),(2,4),(4,3)],5)
=> 6
([(0,4),(3,2),(4,1),(4,3)],5)
=> 6
([(0,4),(2,3),(3,1),(4,2)],5)
=> 5
([(0,3),(1,2),(2,4),(3,4)],5)
=> 6
([(0,4),(1,2),(2,3),(3,4)],5)
=> 6
([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> 5
([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6)
=> 6
([(0,2),(0,3),(0,4),(2,5),(3,5),(4,5),(5,1)],6)
=> 6
([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6)
=> 6
Description
The number of cuts of a poset.
A cut is a subset $A$ of the poset such that the set of lower bounds of the set of upper bounds of $A$ is exactly $A$.
Matching statistic: St001118
Values
([],1)
=> ([],1)
=> ([],0)
=> ([],0)
=> ? = 1 - 5
([],2)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> ? = 4 - 5
([(0,1)],2)
=> ([],2)
=> ([],0)
=> ([],0)
=> ? = 2 - 5
([],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 5 - 5
([(1,2)],3)
=> ([(0,2),(1,2)],3)
=> ([(0,1)],2)
=> ([],2)
=> ? = 5 - 5
([(0,1),(0,2)],3)
=> ([(1,2)],3)
=> ([],1)
=> ([],1)
=> ? = 4 - 5
([(0,2),(2,1)],3)
=> ([],3)
=> ([],0)
=> ([],0)
=> ? = 3 - 5
([(0,2),(1,2)],3)
=> ([(1,2)],3)
=> ([],1)
=> ([],1)
=> ? = 4 - 5
([],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,5),(1,4),(2,3)],6)
=> 1 = 6 - 5
([(2,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> ([(1,4),(2,3)],5)
=> 1 = 6 - 5
([(1,2),(1,3)],4)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(2,3)],4)
=> 1 = 6 - 5
([(0,1),(0,2),(0,3)],4)
=> ([(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 5 - 5
([(0,2),(0,3),(3,1)],4)
=> ([(1,3),(2,3)],4)
=> ([(0,1)],2)
=> ([],2)
=> ? = 5 - 5
([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(2,3)],4)
=> ([],1)
=> ([],1)
=> ? = 4 - 5
([(1,2),(2,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 6 - 5
([(0,3),(3,1),(3,2)],4)
=> ([(2,3)],4)
=> ([],1)
=> ([],1)
=> ? = 5 - 5
([(1,3),(2,3)],4)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(2,3)],4)
=> 1 = 6 - 5
([(0,3),(1,3),(3,2)],4)
=> ([(2,3)],4)
=> ([],1)
=> ([],1)
=> ? = 5 - 5
([(0,3),(1,3),(2,3)],4)
=> ([(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 5 - 5
([(0,3),(1,2)],4)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,3),(1,2)],4)
=> 1 = 6 - 5
([(0,3),(1,2),(1,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,2),(1,2)],3)
=> ([(1,2)],3)
=> 1 = 6 - 5
([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> ([],0)
=> ([],0)
=> ? = 4 - 5
([(0,3),(1,2),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> ([(0,1)],2)
=> ([],2)
=> ? = 5 - 5
([(0,1),(0,2),(0,3),(0,4)],5)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,5),(1,4),(2,3)],6)
=> 1 = 6 - 5
([(0,2),(0,3),(0,4),(4,1)],5)
=> ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> ([(1,4),(2,3)],5)
=> 1 = 6 - 5
([(0,1),(0,2),(0,3),(2,4),(3,4)],5)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(2,3)],4)
=> 1 = 6 - 5
([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> ([(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 5 - 5
([(0,3),(0,4),(4,1),(4,2)],5)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(2,3)],4)
=> 1 = 6 - 5
([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(3,4)],5)
=> ([],1)
=> ([],1)
=> ? = 5 - 5
([(0,3),(0,4),(3,2),(4,1)],5)
=> ([(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,3),(1,2)],4)
=> 1 = 6 - 5
([(0,2),(0,3),(2,4),(3,1),(3,4)],5)
=> ([(1,4),(2,3),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> ([(1,2)],3)
=> 1 = 6 - 5
([(0,4),(4,1),(4,2),(4,3)],5)
=> ([(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 6 - 5
([(0,4),(1,4),(2,4),(4,3)],5)
=> ([(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 6 - 5
([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,5),(1,4),(2,3)],6)
=> 1 = 6 - 5
([(0,4),(1,4),(2,3),(4,2)],5)
=> ([(3,4)],5)
=> ([],1)
=> ([],1)
=> ? = 6 - 5
([(0,4),(1,3),(2,3),(3,4)],5)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(2,3)],4)
=> 1 = 6 - 5
([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> ([(1,4),(2,3)],5)
=> 1 = 6 - 5
([(0,3),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(1,4),(2,3),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> ([(1,2)],3)
=> 1 = 6 - 5
([(0,2),(0,4),(3,1),(4,3)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 6 - 5
([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
=> ([(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ([],2)
=> ? = 5 - 5
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(2,3)],4)
=> 1 = 6 - 5
([(0,3),(3,4),(4,1),(4,2)],5)
=> ([(3,4)],5)
=> ([],1)
=> ([],1)
=> ? = 6 - 5
([(0,4),(1,2),(2,4),(4,3)],5)
=> ([(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ([],2)
=> ? = 6 - 5
([(0,4),(3,2),(4,1),(4,3)],5)
=> ([(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ([],2)
=> ? = 6 - 5
([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> ([],0)
=> ([],0)
=> ? = 5 - 5
([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,3),(1,2)],4)
=> 1 = 6 - 5
([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 6 - 5
([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(3,4)],5)
=> ([],1)
=> ([],1)
=> ? = 5 - 5
([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6)
=> ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,5),(1,4),(2,3)],6)
=> 1 = 6 - 5
([(0,2),(0,3),(0,4),(2,5),(3,5),(4,5),(5,1)],6)
=> ([(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 6 - 5
([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6)
=> ([(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(2,3)],4)
=> 1 = 6 - 5
([(0,3),(0,4),(1,5),(2,5),(3,2),(4,1)],6)
=> ([(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,3),(1,2)],4)
=> 1 = 6 - 5
([(0,3),(0,4),(1,5),(2,5),(3,5),(4,1),(4,2)],6)
=> ([(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(2,3)],4)
=> 1 = 6 - 5
([(0,4),(1,5),(2,5),(3,5),(4,1),(4,2),(4,3)],6)
=> ([(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 6 - 5
([(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,1)],6)
=> ([(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> ([(1,4),(2,3)],5)
=> 1 = 6 - 5
([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(2,5),(3,4),(4,5)],6)
=> ([(0,2),(1,2)],3)
=> ([(1,2)],3)
=> 1 = 6 - 5
([(0,3),(0,4),(1,5),(3,5),(4,1),(5,2)],6)
=> ([(3,5),(4,5)],6)
=> ([(0,1)],2)
=> ([],2)
=> ? = 6 - 5
([(0,2),(0,4),(1,5),(2,5),(3,1),(4,3)],6)
=> ([(2,5),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 6 - 5
([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
=> ([(4,5)],6)
=> ([],1)
=> ([],1)
=> ? = 6 - 5
([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> ([(4,5)],6)
=> ([],1)
=> ([],1)
=> ? = 6 - 5
([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([],6)
=> ([],0)
=> ([],0)
=> ? = 6 - 5
([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6)
=> ([(4,5)],6)
=> ([],1)
=> ([],1)
=> ? = 6 - 5
([(0,4),(1,5),(2,5),(3,2),(4,1),(4,3)],6)
=> ([(3,5),(4,5)],6)
=> ([(0,1)],2)
=> ([],2)
=> ? = 6 - 5
Description
The acyclic chromatic index of a graph.
An acyclic edge coloring of a graph is a proper colouring of the edges of a graph such that the union of the edges colored with any two given colours is a forest.
The smallest number of colours such that such a colouring exists is the acyclic chromatic index.
Matching statistic: St001198
Mp00110: Posets —Greene-Kleitman invariant⟶ Integer partitions
Mp00202: Integer partitions —first row removal⟶ Integer partitions
Mp00230: Integer partitions —parallelogram polyomino⟶ Dyck paths
St001198: Dyck paths ⟶ ℤResult quality: 17% ●values known / values provided: 19%●distinct values known / distinct values provided: 17%
Mp00202: Integer partitions —first row removal⟶ Integer partitions
Mp00230: Integer partitions —parallelogram polyomino⟶ Dyck paths
St001198: Dyck paths ⟶ ℤResult quality: 17% ●values known / values provided: 19%●distinct values known / distinct values provided: 17%
Values
([],1)
=> [1]
=> []
=> []
=> ? = 1 - 4
([],2)
=> [1,1]
=> [1]
=> [1,0]
=> ? = 4 - 4
([(0,1)],2)
=> [2]
=> []
=> []
=> ? = 2 - 4
([],3)
=> [1,1,1]
=> [1,1]
=> [1,1,0,0]
=> ? = 5 - 4
([(1,2)],3)
=> [2,1]
=> [1]
=> [1,0]
=> ? = 5 - 4
([(0,1),(0,2)],3)
=> [2,1]
=> [1]
=> [1,0]
=> ? = 4 - 4
([(0,2),(2,1)],3)
=> [3]
=> []
=> []
=> ? = 3 - 4
([(0,2),(1,2)],3)
=> [2,1]
=> [1]
=> [1,0]
=> ? = 4 - 4
([],4)
=> [1,1,1,1]
=> [1,1,1]
=> [1,1,0,1,0,0]
=> 2 = 6 - 4
([(2,3)],4)
=> [2,1,1]
=> [1,1]
=> [1,1,0,0]
=> ? = 6 - 4
([(1,2),(1,3)],4)
=> [2,1,1]
=> [1,1]
=> [1,1,0,0]
=> ? = 6 - 4
([(0,1),(0,2),(0,3)],4)
=> [2,1,1]
=> [1,1]
=> [1,1,0,0]
=> ? = 5 - 4
([(0,2),(0,3),(3,1)],4)
=> [3,1]
=> [1]
=> [1,0]
=> ? = 5 - 4
([(0,1),(0,2),(1,3),(2,3)],4)
=> [3,1]
=> [1]
=> [1,0]
=> ? = 4 - 4
([(1,2),(2,3)],4)
=> [3,1]
=> [1]
=> [1,0]
=> ? = 6 - 4
([(0,3),(3,1),(3,2)],4)
=> [3,1]
=> [1]
=> [1,0]
=> ? = 5 - 4
([(1,3),(2,3)],4)
=> [2,1,1]
=> [1,1]
=> [1,1,0,0]
=> ? = 6 - 4
([(0,3),(1,3),(3,2)],4)
=> [3,1]
=> [1]
=> [1,0]
=> ? = 5 - 4
([(0,3),(1,3),(2,3)],4)
=> [2,1,1]
=> [1,1]
=> [1,1,0,0]
=> ? = 5 - 4
([(0,3),(1,2)],4)
=> [2,2]
=> [2]
=> [1,0,1,0]
=> 2 = 6 - 4
([(0,3),(1,2),(1,3)],4)
=> [2,2]
=> [2]
=> [1,0,1,0]
=> 2 = 6 - 4
([(0,3),(2,1),(3,2)],4)
=> [4]
=> []
=> []
=> ? = 4 - 4
([(0,3),(1,2),(2,3)],4)
=> [3,1]
=> [1]
=> [1,0]
=> ? = 5 - 4
([(0,1),(0,2),(0,3),(0,4)],5)
=> [2,1,1,1]
=> [1,1,1]
=> [1,1,0,1,0,0]
=> 2 = 6 - 4
([(0,2),(0,3),(0,4),(4,1)],5)
=> [3,1,1]
=> [1,1]
=> [1,1,0,0]
=> ? = 6 - 4
([(0,1),(0,2),(0,3),(2,4),(3,4)],5)
=> [3,1,1]
=> [1,1]
=> [1,1,0,0]
=> ? = 6 - 4
([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> [3,1,1]
=> [1,1]
=> [1,1,0,0]
=> ? = 5 - 4
([(0,3),(0,4),(4,1),(4,2)],5)
=> [3,1,1]
=> [1,1]
=> [1,1,0,0]
=> ? = 6 - 4
([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> [4,1]
=> [1]
=> [1,0]
=> ? = 5 - 4
([(0,3),(0,4),(3,2),(4,1)],5)
=> [3,2]
=> [2]
=> [1,0,1,0]
=> 2 = 6 - 4
([(0,2),(0,3),(2,4),(3,1),(3,4)],5)
=> [3,2]
=> [2]
=> [1,0,1,0]
=> 2 = 6 - 4
([(0,4),(4,1),(4,2),(4,3)],5)
=> [3,1,1]
=> [1,1]
=> [1,1,0,0]
=> ? = 6 - 4
([(0,4),(1,4),(2,4),(4,3)],5)
=> [3,1,1]
=> [1,1]
=> [1,1,0,0]
=> ? = 6 - 4
([(0,4),(1,4),(2,4),(3,4)],5)
=> [2,1,1,1]
=> [1,1,1]
=> [1,1,0,1,0,0]
=> 2 = 6 - 4
([(0,4),(1,4),(2,3),(4,2)],5)
=> [4,1]
=> [1]
=> [1,0]
=> ? = 6 - 4
([(0,4),(1,3),(2,3),(3,4)],5)
=> [3,1,1]
=> [1,1]
=> [1,1,0,0]
=> ? = 6 - 4
([(0,4),(1,4),(2,3),(3,4)],5)
=> [3,1,1]
=> [1,1]
=> [1,1,0,0]
=> ? = 6 - 4
([(0,3),(1,2),(1,3),(2,4),(3,4)],5)
=> [3,2]
=> [2]
=> [1,0,1,0]
=> 2 = 6 - 4
([(0,2),(0,4),(3,1),(4,3)],5)
=> [4,1]
=> [1]
=> [1,0]
=> ? = 6 - 4
([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
=> [4,1]
=> [1]
=> [1,0]
=> ? = 5 - 4
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> [3,1,1]
=> [1,1]
=> [1,1,0,0]
=> ? = 6 - 4
([(0,3),(3,4),(4,1),(4,2)],5)
=> [4,1]
=> [1]
=> [1,0]
=> ? = 6 - 4
([(0,4),(1,2),(2,4),(4,3)],5)
=> [4,1]
=> [1]
=> [1,0]
=> ? = 6 - 4
([(0,4),(3,2),(4,1),(4,3)],5)
=> [4,1]
=> [1]
=> [1,0]
=> ? = 6 - 4
([(0,4),(2,3),(3,1),(4,2)],5)
=> [5]
=> []
=> []
=> ? = 5 - 4
([(0,3),(1,2),(2,4),(3,4)],5)
=> [3,2]
=> [2]
=> [1,0,1,0]
=> 2 = 6 - 4
([(0,4),(1,2),(2,3),(3,4)],5)
=> [4,1]
=> [1]
=> [1,0]
=> ? = 6 - 4
([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> [4,1]
=> [1]
=> [1,0]
=> ? = 5 - 4
([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6)
=> [3,1,1,1]
=> [1,1,1]
=> [1,1,0,1,0,0]
=> 2 = 6 - 4
([(0,2),(0,3),(0,4),(2,5),(3,5),(4,5),(5,1)],6)
=> [4,1,1]
=> [1,1]
=> [1,1,0,0]
=> ? = 6 - 4
([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6)
=> [4,1,1]
=> [1,1]
=> [1,1,0,0]
=> ? = 6 - 4
([(0,3),(0,4),(1,5),(2,5),(3,2),(4,1)],6)
=> [4,2]
=> [2]
=> [1,0,1,0]
=> 2 = 6 - 4
([(0,3),(0,4),(1,5),(2,5),(3,5),(4,1),(4,2)],6)
=> [4,1,1]
=> [1,1]
=> [1,1,0,0]
=> ? = 6 - 4
([(0,4),(1,5),(2,5),(3,5),(4,1),(4,2),(4,3)],6)
=> [4,1,1]
=> [1,1]
=> [1,1,0,0]
=> ? = 6 - 4
([(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,1)],6)
=> [4,1,1]
=> [1,1]
=> [1,1,0,0]
=> ? = 6 - 4
([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> [4,2]
=> [2]
=> [1,0,1,0]
=> 2 = 6 - 4
([(0,3),(0,4),(1,5),(3,5),(4,1),(5,2)],6)
=> [5,1]
=> [1]
=> [1,0]
=> ? = 6 - 4
([(0,2),(0,4),(1,5),(2,5),(3,1),(4,3)],6)
=> [5,1]
=> [1]
=> [1,0]
=> ? = 6 - 4
([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
=> [5,1]
=> [1]
=> [1,0]
=> ? = 6 - 4
([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> [5,1]
=> [1]
=> [1,0]
=> ? = 6 - 4
([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> [6]
=> []
=> []
=> ? = 6 - 4
([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6)
=> [5,1]
=> [1]
=> [1,0]
=> ? = 6 - 4
Description
The number of simple modules in the algebra $eAe$ with projective dimension at most 1 in the corresponding Nakayama algebra $A$ with minimal faithful projective-injective module $eA$.
Matching statistic: St001200
Mp00110: Posets —Greene-Kleitman invariant⟶ Integer partitions
Mp00202: Integer partitions —first row removal⟶ Integer partitions
Mp00230: Integer partitions —parallelogram polyomino⟶ Dyck paths
St001200: Dyck paths ⟶ ℤResult quality: 17% ●values known / values provided: 19%●distinct values known / distinct values provided: 17%
Mp00202: Integer partitions —first row removal⟶ Integer partitions
Mp00230: Integer partitions —parallelogram polyomino⟶ Dyck paths
St001200: Dyck paths ⟶ ℤResult quality: 17% ●values known / values provided: 19%●distinct values known / distinct values provided: 17%
Values
([],1)
=> [1]
=> []
=> []
=> ? = 1 - 4
([],2)
=> [1,1]
=> [1]
=> [1,0]
=> ? = 4 - 4
([(0,1)],2)
=> [2]
=> []
=> []
=> ? = 2 - 4
([],3)
=> [1,1,1]
=> [1,1]
=> [1,1,0,0]
=> ? = 5 - 4
([(1,2)],3)
=> [2,1]
=> [1]
=> [1,0]
=> ? = 5 - 4
([(0,1),(0,2)],3)
=> [2,1]
=> [1]
=> [1,0]
=> ? = 4 - 4
([(0,2),(2,1)],3)
=> [3]
=> []
=> []
=> ? = 3 - 4
([(0,2),(1,2)],3)
=> [2,1]
=> [1]
=> [1,0]
=> ? = 4 - 4
([],4)
=> [1,1,1,1]
=> [1,1,1]
=> [1,1,0,1,0,0]
=> 2 = 6 - 4
([(2,3)],4)
=> [2,1,1]
=> [1,1]
=> [1,1,0,0]
=> ? = 6 - 4
([(1,2),(1,3)],4)
=> [2,1,1]
=> [1,1]
=> [1,1,0,0]
=> ? = 6 - 4
([(0,1),(0,2),(0,3)],4)
=> [2,1,1]
=> [1,1]
=> [1,1,0,0]
=> ? = 5 - 4
([(0,2),(0,3),(3,1)],4)
=> [3,1]
=> [1]
=> [1,0]
=> ? = 5 - 4
([(0,1),(0,2),(1,3),(2,3)],4)
=> [3,1]
=> [1]
=> [1,0]
=> ? = 4 - 4
([(1,2),(2,3)],4)
=> [3,1]
=> [1]
=> [1,0]
=> ? = 6 - 4
([(0,3),(3,1),(3,2)],4)
=> [3,1]
=> [1]
=> [1,0]
=> ? = 5 - 4
([(1,3),(2,3)],4)
=> [2,1,1]
=> [1,1]
=> [1,1,0,0]
=> ? = 6 - 4
([(0,3),(1,3),(3,2)],4)
=> [3,1]
=> [1]
=> [1,0]
=> ? = 5 - 4
([(0,3),(1,3),(2,3)],4)
=> [2,1,1]
=> [1,1]
=> [1,1,0,0]
=> ? = 5 - 4
([(0,3),(1,2)],4)
=> [2,2]
=> [2]
=> [1,0,1,0]
=> 2 = 6 - 4
([(0,3),(1,2),(1,3)],4)
=> [2,2]
=> [2]
=> [1,0,1,0]
=> 2 = 6 - 4
([(0,3),(2,1),(3,2)],4)
=> [4]
=> []
=> []
=> ? = 4 - 4
([(0,3),(1,2),(2,3)],4)
=> [3,1]
=> [1]
=> [1,0]
=> ? = 5 - 4
([(0,1),(0,2),(0,3),(0,4)],5)
=> [2,1,1,1]
=> [1,1,1]
=> [1,1,0,1,0,0]
=> 2 = 6 - 4
([(0,2),(0,3),(0,4),(4,1)],5)
=> [3,1,1]
=> [1,1]
=> [1,1,0,0]
=> ? = 6 - 4
([(0,1),(0,2),(0,3),(2,4),(3,4)],5)
=> [3,1,1]
=> [1,1]
=> [1,1,0,0]
=> ? = 6 - 4
([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> [3,1,1]
=> [1,1]
=> [1,1,0,0]
=> ? = 5 - 4
([(0,3),(0,4),(4,1),(4,2)],5)
=> [3,1,1]
=> [1,1]
=> [1,1,0,0]
=> ? = 6 - 4
([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> [4,1]
=> [1]
=> [1,0]
=> ? = 5 - 4
([(0,3),(0,4),(3,2),(4,1)],5)
=> [3,2]
=> [2]
=> [1,0,1,0]
=> 2 = 6 - 4
([(0,2),(0,3),(2,4),(3,1),(3,4)],5)
=> [3,2]
=> [2]
=> [1,0,1,0]
=> 2 = 6 - 4
([(0,4),(4,1),(4,2),(4,3)],5)
=> [3,1,1]
=> [1,1]
=> [1,1,0,0]
=> ? = 6 - 4
([(0,4),(1,4),(2,4),(4,3)],5)
=> [3,1,1]
=> [1,1]
=> [1,1,0,0]
=> ? = 6 - 4
([(0,4),(1,4),(2,4),(3,4)],5)
=> [2,1,1,1]
=> [1,1,1]
=> [1,1,0,1,0,0]
=> 2 = 6 - 4
([(0,4),(1,4),(2,3),(4,2)],5)
=> [4,1]
=> [1]
=> [1,0]
=> ? = 6 - 4
([(0,4),(1,3),(2,3),(3,4)],5)
=> [3,1,1]
=> [1,1]
=> [1,1,0,0]
=> ? = 6 - 4
([(0,4),(1,4),(2,3),(3,4)],5)
=> [3,1,1]
=> [1,1]
=> [1,1,0,0]
=> ? = 6 - 4
([(0,3),(1,2),(1,3),(2,4),(3,4)],5)
=> [3,2]
=> [2]
=> [1,0,1,0]
=> 2 = 6 - 4
([(0,2),(0,4),(3,1),(4,3)],5)
=> [4,1]
=> [1]
=> [1,0]
=> ? = 6 - 4
([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
=> [4,1]
=> [1]
=> [1,0]
=> ? = 5 - 4
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> [3,1,1]
=> [1,1]
=> [1,1,0,0]
=> ? = 6 - 4
([(0,3),(3,4),(4,1),(4,2)],5)
=> [4,1]
=> [1]
=> [1,0]
=> ? = 6 - 4
([(0,4),(1,2),(2,4),(4,3)],5)
=> [4,1]
=> [1]
=> [1,0]
=> ? = 6 - 4
([(0,4),(3,2),(4,1),(4,3)],5)
=> [4,1]
=> [1]
=> [1,0]
=> ? = 6 - 4
([(0,4),(2,3),(3,1),(4,2)],5)
=> [5]
=> []
=> []
=> ? = 5 - 4
([(0,3),(1,2),(2,4),(3,4)],5)
=> [3,2]
=> [2]
=> [1,0,1,0]
=> 2 = 6 - 4
([(0,4),(1,2),(2,3),(3,4)],5)
=> [4,1]
=> [1]
=> [1,0]
=> ? = 6 - 4
([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> [4,1]
=> [1]
=> [1,0]
=> ? = 5 - 4
([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6)
=> [3,1,1,1]
=> [1,1,1]
=> [1,1,0,1,0,0]
=> 2 = 6 - 4
([(0,2),(0,3),(0,4),(2,5),(3,5),(4,5),(5,1)],6)
=> [4,1,1]
=> [1,1]
=> [1,1,0,0]
=> ? = 6 - 4
([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6)
=> [4,1,1]
=> [1,1]
=> [1,1,0,0]
=> ? = 6 - 4
([(0,3),(0,4),(1,5),(2,5),(3,2),(4,1)],6)
=> [4,2]
=> [2]
=> [1,0,1,0]
=> 2 = 6 - 4
([(0,3),(0,4),(1,5),(2,5),(3,5),(4,1),(4,2)],6)
=> [4,1,1]
=> [1,1]
=> [1,1,0,0]
=> ? = 6 - 4
([(0,4),(1,5),(2,5),(3,5),(4,1),(4,2),(4,3)],6)
=> [4,1,1]
=> [1,1]
=> [1,1,0,0]
=> ? = 6 - 4
([(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,1)],6)
=> [4,1,1]
=> [1,1]
=> [1,1,0,0]
=> ? = 6 - 4
([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> [4,2]
=> [2]
=> [1,0,1,0]
=> 2 = 6 - 4
([(0,3),(0,4),(1,5),(3,5),(4,1),(5,2)],6)
=> [5,1]
=> [1]
=> [1,0]
=> ? = 6 - 4
([(0,2),(0,4),(1,5),(2,5),(3,1),(4,3)],6)
=> [5,1]
=> [1]
=> [1,0]
=> ? = 6 - 4
([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
=> [5,1]
=> [1]
=> [1,0]
=> ? = 6 - 4
([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> [5,1]
=> [1]
=> [1,0]
=> ? = 6 - 4
([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> [6]
=> []
=> []
=> ? = 6 - 4
([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6)
=> [5,1]
=> [1]
=> [1,0]
=> ? = 6 - 4
Description
The number of simple modules in $eAe$ with projective dimension at most 2 in the corresponding Nakayama algebra $A$ with minimal faithful projective-injective module $eA$.
Matching statistic: St001206
Mp00110: Posets —Greene-Kleitman invariant⟶ Integer partitions
Mp00202: Integer partitions —first row removal⟶ Integer partitions
Mp00230: Integer partitions —parallelogram polyomino⟶ Dyck paths
St001206: Dyck paths ⟶ ℤResult quality: 17% ●values known / values provided: 19%●distinct values known / distinct values provided: 17%
Mp00202: Integer partitions —first row removal⟶ Integer partitions
Mp00230: Integer partitions —parallelogram polyomino⟶ Dyck paths
St001206: Dyck paths ⟶ ℤResult quality: 17% ●values known / values provided: 19%●distinct values known / distinct values provided: 17%
Values
([],1)
=> [1]
=> []
=> []
=> ? = 1 - 4
([],2)
=> [1,1]
=> [1]
=> [1,0]
=> ? = 4 - 4
([(0,1)],2)
=> [2]
=> []
=> []
=> ? = 2 - 4
([],3)
=> [1,1,1]
=> [1,1]
=> [1,1,0,0]
=> ? = 5 - 4
([(1,2)],3)
=> [2,1]
=> [1]
=> [1,0]
=> ? = 5 - 4
([(0,1),(0,2)],3)
=> [2,1]
=> [1]
=> [1,0]
=> ? = 4 - 4
([(0,2),(2,1)],3)
=> [3]
=> []
=> []
=> ? = 3 - 4
([(0,2),(1,2)],3)
=> [2,1]
=> [1]
=> [1,0]
=> ? = 4 - 4
([],4)
=> [1,1,1,1]
=> [1,1,1]
=> [1,1,0,1,0,0]
=> 2 = 6 - 4
([(2,3)],4)
=> [2,1,1]
=> [1,1]
=> [1,1,0,0]
=> ? = 6 - 4
([(1,2),(1,3)],4)
=> [2,1,1]
=> [1,1]
=> [1,1,0,0]
=> ? = 6 - 4
([(0,1),(0,2),(0,3)],4)
=> [2,1,1]
=> [1,1]
=> [1,1,0,0]
=> ? = 5 - 4
([(0,2),(0,3),(3,1)],4)
=> [3,1]
=> [1]
=> [1,0]
=> ? = 5 - 4
([(0,1),(0,2),(1,3),(2,3)],4)
=> [3,1]
=> [1]
=> [1,0]
=> ? = 4 - 4
([(1,2),(2,3)],4)
=> [3,1]
=> [1]
=> [1,0]
=> ? = 6 - 4
([(0,3),(3,1),(3,2)],4)
=> [3,1]
=> [1]
=> [1,0]
=> ? = 5 - 4
([(1,3),(2,3)],4)
=> [2,1,1]
=> [1,1]
=> [1,1,0,0]
=> ? = 6 - 4
([(0,3),(1,3),(3,2)],4)
=> [3,1]
=> [1]
=> [1,0]
=> ? = 5 - 4
([(0,3),(1,3),(2,3)],4)
=> [2,1,1]
=> [1,1]
=> [1,1,0,0]
=> ? = 5 - 4
([(0,3),(1,2)],4)
=> [2,2]
=> [2]
=> [1,0,1,0]
=> 2 = 6 - 4
([(0,3),(1,2),(1,3)],4)
=> [2,2]
=> [2]
=> [1,0,1,0]
=> 2 = 6 - 4
([(0,3),(2,1),(3,2)],4)
=> [4]
=> []
=> []
=> ? = 4 - 4
([(0,3),(1,2),(2,3)],4)
=> [3,1]
=> [1]
=> [1,0]
=> ? = 5 - 4
([(0,1),(0,2),(0,3),(0,4)],5)
=> [2,1,1,1]
=> [1,1,1]
=> [1,1,0,1,0,0]
=> 2 = 6 - 4
([(0,2),(0,3),(0,4),(4,1)],5)
=> [3,1,1]
=> [1,1]
=> [1,1,0,0]
=> ? = 6 - 4
([(0,1),(0,2),(0,3),(2,4),(3,4)],5)
=> [3,1,1]
=> [1,1]
=> [1,1,0,0]
=> ? = 6 - 4
([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> [3,1,1]
=> [1,1]
=> [1,1,0,0]
=> ? = 5 - 4
([(0,3),(0,4),(4,1),(4,2)],5)
=> [3,1,1]
=> [1,1]
=> [1,1,0,0]
=> ? = 6 - 4
([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> [4,1]
=> [1]
=> [1,0]
=> ? = 5 - 4
([(0,3),(0,4),(3,2),(4,1)],5)
=> [3,2]
=> [2]
=> [1,0,1,0]
=> 2 = 6 - 4
([(0,2),(0,3),(2,4),(3,1),(3,4)],5)
=> [3,2]
=> [2]
=> [1,0,1,0]
=> 2 = 6 - 4
([(0,4),(4,1),(4,2),(4,3)],5)
=> [3,1,1]
=> [1,1]
=> [1,1,0,0]
=> ? = 6 - 4
([(0,4),(1,4),(2,4),(4,3)],5)
=> [3,1,1]
=> [1,1]
=> [1,1,0,0]
=> ? = 6 - 4
([(0,4),(1,4),(2,4),(3,4)],5)
=> [2,1,1,1]
=> [1,1,1]
=> [1,1,0,1,0,0]
=> 2 = 6 - 4
([(0,4),(1,4),(2,3),(4,2)],5)
=> [4,1]
=> [1]
=> [1,0]
=> ? = 6 - 4
([(0,4),(1,3),(2,3),(3,4)],5)
=> [3,1,1]
=> [1,1]
=> [1,1,0,0]
=> ? = 6 - 4
([(0,4),(1,4),(2,3),(3,4)],5)
=> [3,1,1]
=> [1,1]
=> [1,1,0,0]
=> ? = 6 - 4
([(0,3),(1,2),(1,3),(2,4),(3,4)],5)
=> [3,2]
=> [2]
=> [1,0,1,0]
=> 2 = 6 - 4
([(0,2),(0,4),(3,1),(4,3)],5)
=> [4,1]
=> [1]
=> [1,0]
=> ? = 6 - 4
([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
=> [4,1]
=> [1]
=> [1,0]
=> ? = 5 - 4
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> [3,1,1]
=> [1,1]
=> [1,1,0,0]
=> ? = 6 - 4
([(0,3),(3,4),(4,1),(4,2)],5)
=> [4,1]
=> [1]
=> [1,0]
=> ? = 6 - 4
([(0,4),(1,2),(2,4),(4,3)],5)
=> [4,1]
=> [1]
=> [1,0]
=> ? = 6 - 4
([(0,4),(3,2),(4,1),(4,3)],5)
=> [4,1]
=> [1]
=> [1,0]
=> ? = 6 - 4
([(0,4),(2,3),(3,1),(4,2)],5)
=> [5]
=> []
=> []
=> ? = 5 - 4
([(0,3),(1,2),(2,4),(3,4)],5)
=> [3,2]
=> [2]
=> [1,0,1,0]
=> 2 = 6 - 4
([(0,4),(1,2),(2,3),(3,4)],5)
=> [4,1]
=> [1]
=> [1,0]
=> ? = 6 - 4
([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> [4,1]
=> [1]
=> [1,0]
=> ? = 5 - 4
([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6)
=> [3,1,1,1]
=> [1,1,1]
=> [1,1,0,1,0,0]
=> 2 = 6 - 4
([(0,2),(0,3),(0,4),(2,5),(3,5),(4,5),(5,1)],6)
=> [4,1,1]
=> [1,1]
=> [1,1,0,0]
=> ? = 6 - 4
([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6)
=> [4,1,1]
=> [1,1]
=> [1,1,0,0]
=> ? = 6 - 4
([(0,3),(0,4),(1,5),(2,5),(3,2),(4,1)],6)
=> [4,2]
=> [2]
=> [1,0,1,0]
=> 2 = 6 - 4
([(0,3),(0,4),(1,5),(2,5),(3,5),(4,1),(4,2)],6)
=> [4,1,1]
=> [1,1]
=> [1,1,0,0]
=> ? = 6 - 4
([(0,4),(1,5),(2,5),(3,5),(4,1),(4,2),(4,3)],6)
=> [4,1,1]
=> [1,1]
=> [1,1,0,0]
=> ? = 6 - 4
([(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,1)],6)
=> [4,1,1]
=> [1,1]
=> [1,1,0,0]
=> ? = 6 - 4
([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> [4,2]
=> [2]
=> [1,0,1,0]
=> 2 = 6 - 4
([(0,3),(0,4),(1,5),(3,5),(4,1),(5,2)],6)
=> [5,1]
=> [1]
=> [1,0]
=> ? = 6 - 4
([(0,2),(0,4),(1,5),(2,5),(3,1),(4,3)],6)
=> [5,1]
=> [1]
=> [1,0]
=> ? = 6 - 4
([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
=> [5,1]
=> [1]
=> [1,0]
=> ? = 6 - 4
([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> [5,1]
=> [1]
=> [1,0]
=> ? = 6 - 4
([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> [6]
=> []
=> []
=> ? = 6 - 4
([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6)
=> [5,1]
=> [1]
=> [1,0]
=> ? = 6 - 4
Description
The maximal dimension of an indecomposable projective $eAe$-module (that is the height of the corresponding Dyck path) of the corresponding Nakayama algebra with minimal faithful projective-injective module $eA$.
Matching statistic: St001199
Mp00110: Posets —Greene-Kleitman invariant⟶ Integer partitions
Mp00202: Integer partitions —first row removal⟶ Integer partitions
Mp00230: Integer partitions —parallelogram polyomino⟶ Dyck paths
St001199: Dyck paths ⟶ ℤResult quality: 17% ●values known / values provided: 19%●distinct values known / distinct values provided: 17%
Mp00202: Integer partitions —first row removal⟶ Integer partitions
Mp00230: Integer partitions —parallelogram polyomino⟶ Dyck paths
St001199: Dyck paths ⟶ ℤResult quality: 17% ●values known / values provided: 19%●distinct values known / distinct values provided: 17%
Values
([],1)
=> [1]
=> []
=> []
=> ? = 1 - 5
([],2)
=> [1,1]
=> [1]
=> [1,0]
=> ? = 4 - 5
([(0,1)],2)
=> [2]
=> []
=> []
=> ? = 2 - 5
([],3)
=> [1,1,1]
=> [1,1]
=> [1,1,0,0]
=> ? = 5 - 5
([(1,2)],3)
=> [2,1]
=> [1]
=> [1,0]
=> ? = 5 - 5
([(0,1),(0,2)],3)
=> [2,1]
=> [1]
=> [1,0]
=> ? = 4 - 5
([(0,2),(2,1)],3)
=> [3]
=> []
=> []
=> ? = 3 - 5
([(0,2),(1,2)],3)
=> [2,1]
=> [1]
=> [1,0]
=> ? = 4 - 5
([],4)
=> [1,1,1,1]
=> [1,1,1]
=> [1,1,0,1,0,0]
=> 1 = 6 - 5
([(2,3)],4)
=> [2,1,1]
=> [1,1]
=> [1,1,0,0]
=> ? = 6 - 5
([(1,2),(1,3)],4)
=> [2,1,1]
=> [1,1]
=> [1,1,0,0]
=> ? = 6 - 5
([(0,1),(0,2),(0,3)],4)
=> [2,1,1]
=> [1,1]
=> [1,1,0,0]
=> ? = 5 - 5
([(0,2),(0,3),(3,1)],4)
=> [3,1]
=> [1]
=> [1,0]
=> ? = 5 - 5
([(0,1),(0,2),(1,3),(2,3)],4)
=> [3,1]
=> [1]
=> [1,0]
=> ? = 4 - 5
([(1,2),(2,3)],4)
=> [3,1]
=> [1]
=> [1,0]
=> ? = 6 - 5
([(0,3),(3,1),(3,2)],4)
=> [3,1]
=> [1]
=> [1,0]
=> ? = 5 - 5
([(1,3),(2,3)],4)
=> [2,1,1]
=> [1,1]
=> [1,1,0,0]
=> ? = 6 - 5
([(0,3),(1,3),(3,2)],4)
=> [3,1]
=> [1]
=> [1,0]
=> ? = 5 - 5
([(0,3),(1,3),(2,3)],4)
=> [2,1,1]
=> [1,1]
=> [1,1,0,0]
=> ? = 5 - 5
([(0,3),(1,2)],4)
=> [2,2]
=> [2]
=> [1,0,1,0]
=> 1 = 6 - 5
([(0,3),(1,2),(1,3)],4)
=> [2,2]
=> [2]
=> [1,0,1,0]
=> 1 = 6 - 5
([(0,3),(2,1),(3,2)],4)
=> [4]
=> []
=> []
=> ? = 4 - 5
([(0,3),(1,2),(2,3)],4)
=> [3,1]
=> [1]
=> [1,0]
=> ? = 5 - 5
([(0,1),(0,2),(0,3),(0,4)],5)
=> [2,1,1,1]
=> [1,1,1]
=> [1,1,0,1,0,0]
=> 1 = 6 - 5
([(0,2),(0,3),(0,4),(4,1)],5)
=> [3,1,1]
=> [1,1]
=> [1,1,0,0]
=> ? = 6 - 5
([(0,1),(0,2),(0,3),(2,4),(3,4)],5)
=> [3,1,1]
=> [1,1]
=> [1,1,0,0]
=> ? = 6 - 5
([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> [3,1,1]
=> [1,1]
=> [1,1,0,0]
=> ? = 5 - 5
([(0,3),(0,4),(4,1),(4,2)],5)
=> [3,1,1]
=> [1,1]
=> [1,1,0,0]
=> ? = 6 - 5
([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> [4,1]
=> [1]
=> [1,0]
=> ? = 5 - 5
([(0,3),(0,4),(3,2),(4,1)],5)
=> [3,2]
=> [2]
=> [1,0,1,0]
=> 1 = 6 - 5
([(0,2),(0,3),(2,4),(3,1),(3,4)],5)
=> [3,2]
=> [2]
=> [1,0,1,0]
=> 1 = 6 - 5
([(0,4),(4,1),(4,2),(4,3)],5)
=> [3,1,1]
=> [1,1]
=> [1,1,0,0]
=> ? = 6 - 5
([(0,4),(1,4),(2,4),(4,3)],5)
=> [3,1,1]
=> [1,1]
=> [1,1,0,0]
=> ? = 6 - 5
([(0,4),(1,4),(2,4),(3,4)],5)
=> [2,1,1,1]
=> [1,1,1]
=> [1,1,0,1,0,0]
=> 1 = 6 - 5
([(0,4),(1,4),(2,3),(4,2)],5)
=> [4,1]
=> [1]
=> [1,0]
=> ? = 6 - 5
([(0,4),(1,3),(2,3),(3,4)],5)
=> [3,1,1]
=> [1,1]
=> [1,1,0,0]
=> ? = 6 - 5
([(0,4),(1,4),(2,3),(3,4)],5)
=> [3,1,1]
=> [1,1]
=> [1,1,0,0]
=> ? = 6 - 5
([(0,3),(1,2),(1,3),(2,4),(3,4)],5)
=> [3,2]
=> [2]
=> [1,0,1,0]
=> 1 = 6 - 5
([(0,2),(0,4),(3,1),(4,3)],5)
=> [4,1]
=> [1]
=> [1,0]
=> ? = 6 - 5
([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
=> [4,1]
=> [1]
=> [1,0]
=> ? = 5 - 5
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> [3,1,1]
=> [1,1]
=> [1,1,0,0]
=> ? = 6 - 5
([(0,3),(3,4),(4,1),(4,2)],5)
=> [4,1]
=> [1]
=> [1,0]
=> ? = 6 - 5
([(0,4),(1,2),(2,4),(4,3)],5)
=> [4,1]
=> [1]
=> [1,0]
=> ? = 6 - 5
([(0,4),(3,2),(4,1),(4,3)],5)
=> [4,1]
=> [1]
=> [1,0]
=> ? = 6 - 5
([(0,4),(2,3),(3,1),(4,2)],5)
=> [5]
=> []
=> []
=> ? = 5 - 5
([(0,3),(1,2),(2,4),(3,4)],5)
=> [3,2]
=> [2]
=> [1,0,1,0]
=> 1 = 6 - 5
([(0,4),(1,2),(2,3),(3,4)],5)
=> [4,1]
=> [1]
=> [1,0]
=> ? = 6 - 5
([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> [4,1]
=> [1]
=> [1,0]
=> ? = 5 - 5
([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6)
=> [3,1,1,1]
=> [1,1,1]
=> [1,1,0,1,0,0]
=> 1 = 6 - 5
([(0,2),(0,3),(0,4),(2,5),(3,5),(4,5),(5,1)],6)
=> [4,1,1]
=> [1,1]
=> [1,1,0,0]
=> ? = 6 - 5
([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6)
=> [4,1,1]
=> [1,1]
=> [1,1,0,0]
=> ? = 6 - 5
([(0,3),(0,4),(1,5),(2,5),(3,2),(4,1)],6)
=> [4,2]
=> [2]
=> [1,0,1,0]
=> 1 = 6 - 5
([(0,3),(0,4),(1,5),(2,5),(3,5),(4,1),(4,2)],6)
=> [4,1,1]
=> [1,1]
=> [1,1,0,0]
=> ? = 6 - 5
([(0,4),(1,5),(2,5),(3,5),(4,1),(4,2),(4,3)],6)
=> [4,1,1]
=> [1,1]
=> [1,1,0,0]
=> ? = 6 - 5
([(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,1)],6)
=> [4,1,1]
=> [1,1]
=> [1,1,0,0]
=> ? = 6 - 5
([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> [4,2]
=> [2]
=> [1,0,1,0]
=> 1 = 6 - 5
([(0,3),(0,4),(1,5),(3,5),(4,1),(5,2)],6)
=> [5,1]
=> [1]
=> [1,0]
=> ? = 6 - 5
([(0,2),(0,4),(1,5),(2,5),(3,1),(4,3)],6)
=> [5,1]
=> [1]
=> [1,0]
=> ? = 6 - 5
([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
=> [5,1]
=> [1]
=> [1,0]
=> ? = 6 - 5
([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> [5,1]
=> [1]
=> [1,0]
=> ? = 6 - 5
([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> [6]
=> []
=> []
=> ? = 6 - 5
([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6)
=> [5,1]
=> [1]
=> [1,0]
=> ? = 6 - 5
Description
The dominant dimension of $eAe$ for the corresponding Nakayama algebra $A$ with minimal faithful projective-injective module $eA$.
Matching statistic: St000264
Values
([],1)
=> ([],1)
=> ([],1)
=> ([],1)
=> ? = 1 - 3
([],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([],2)
=> ? = 4 - 3
([(0,1)],2)
=> ([],2)
=> ([],1)
=> ([],1)
=> ? = 2 - 3
([],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 5 - 3
([(1,2)],3)
=> ([(0,2),(1,2)],3)
=> ([(0,1)],2)
=> ([],2)
=> ? = 5 - 3
([(0,1),(0,2)],3)
=> ([(1,2)],3)
=> ([(1,2)],3)
=> ([(0,2),(1,2)],3)
=> ? = 4 - 3
([(0,2),(2,1)],3)
=> ([],3)
=> ([],1)
=> ([],1)
=> ? = 3 - 3
([(0,2),(1,2)],3)
=> ([(1,2)],3)
=> ([(1,2)],3)
=> ([(0,2),(1,2)],3)
=> ? = 4 - 3
([],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([],4)
=> ? = 6 - 3
([(2,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 6 - 3
([(1,2),(1,3)],4)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> ? = 6 - 3
([(0,1),(0,2),(0,3)],4)
=> ([(1,2),(1,3),(2,3)],4)
=> ([(1,2),(1,3),(2,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> ? = 5 - 3
([(0,2),(0,3),(3,1)],4)
=> ([(1,3),(2,3)],4)
=> ([(1,2)],3)
=> ([(0,2),(1,2)],3)
=> ? = 5 - 3
([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(2,3)],4)
=> ([(1,2)],3)
=> ([(0,2),(1,2)],3)
=> ? = 4 - 3
([(1,2),(2,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> ([(0,1)],2)
=> ([],2)
=> ? = 6 - 3
([(0,3),(3,1),(3,2)],4)
=> ([(2,3)],4)
=> ([(1,2)],3)
=> ([(0,2),(1,2)],3)
=> ? = 5 - 3
([(1,3),(2,3)],4)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> ? = 6 - 3
([(0,3),(1,3),(3,2)],4)
=> ([(2,3)],4)
=> ([(1,2)],3)
=> ([(0,2),(1,2)],3)
=> ? = 5 - 3
([(0,3),(1,3),(2,3)],4)
=> ([(1,2),(1,3),(2,3)],4)
=> ([(1,2),(1,3),(2,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> ? = 5 - 3
([(0,3),(1,2)],4)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,1)],2)
=> ([],2)
=> ? = 6 - 3
([(0,3),(1,2),(1,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> ? = 6 - 3
([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> ([],1)
=> ([],1)
=> ? = 4 - 3
([(0,3),(1,2),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> ([(1,2)],3)
=> ([(0,2),(1,2)],3)
=> ? = 5 - 3
([(0,1),(0,2),(0,3),(0,4)],5)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> ? = 6 - 3
([(0,2),(0,3),(0,4),(4,1)],5)
=> ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(2,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> ? = 6 - 3
([(0,1),(0,2),(0,3),(2,4),(3,4)],5)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3 = 6 - 3
([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> ([(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(2,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> ? = 5 - 3
([(0,3),(0,4),(4,1),(4,2)],5)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3 = 6 - 3
([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(3,4)],5)
=> ([(1,2)],3)
=> ([(0,2),(1,2)],3)
=> ? = 5 - 3
([(0,3),(0,4),(3,2),(4,1)],5)
=> ([(1,3),(1,4),(2,3),(2,4)],5)
=> ([(1,2)],3)
=> ([(0,2),(1,2)],3)
=> ? = 6 - 3
([(0,2),(0,3),(2,4),(3,1),(3,4)],5)
=> ([(1,4),(2,3),(3,4)],5)
=> ([(1,4),(2,3),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> 3 = 6 - 3
([(0,4),(4,1),(4,2),(4,3)],5)
=> ([(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(2,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> ? = 6 - 3
([(0,4),(1,4),(2,4),(4,3)],5)
=> ([(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(2,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> ? = 6 - 3
([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> ? = 6 - 3
([(0,4),(1,4),(2,3),(4,2)],5)
=> ([(3,4)],5)
=> ([(1,2)],3)
=> ([(0,2),(1,2)],3)
=> ? = 6 - 3
([(0,4),(1,3),(2,3),(3,4)],5)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3 = 6 - 3
([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(2,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> ? = 6 - 3
([(0,3),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(1,4),(2,3),(3,4)],5)
=> ([(1,4),(2,3),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> 3 = 6 - 3
([(0,2),(0,4),(3,1),(4,3)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ([(0,2),(1,2)],3)
=> ? = 6 - 3
([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
=> ([(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ([(0,2),(1,2)],3)
=> ? = 5 - 3
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3 = 6 - 3
([(0,3),(3,4),(4,1),(4,2)],5)
=> ([(3,4)],5)
=> ([(1,2)],3)
=> ([(0,2),(1,2)],3)
=> ? = 6 - 3
([(0,4),(1,2),(2,4),(4,3)],5)
=> ([(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ([(0,2),(1,2)],3)
=> ? = 6 - 3
([(0,4),(3,2),(4,1),(4,3)],5)
=> ([(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ([(0,2),(1,2)],3)
=> ? = 6 - 3
([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> ([],1)
=> ([],1)
=> ? = 5 - 3
([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4)],5)
=> ([(1,2)],3)
=> ([(0,2),(1,2)],3)
=> ? = 6 - 3
([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ([(0,2),(1,2)],3)
=> ? = 6 - 3
([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(3,4)],5)
=> ([(1,2)],3)
=> ([(0,2),(1,2)],3)
=> ? = 5 - 3
([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6)
=> ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> ? = 6 - 3
([(0,2),(0,3),(0,4),(2,5),(3,5),(4,5),(5,1)],6)
=> ([(3,4),(3,5),(4,5)],6)
=> ([(1,2),(1,3),(2,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> ? = 6 - 3
([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6)
=> ([(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3 = 6 - 3
([(0,3),(0,4),(1,5),(2,5),(3,2),(4,1)],6)
=> ([(2,4),(2,5),(3,4),(3,5)],6)
=> ([(1,2)],3)
=> ([(0,2),(1,2)],3)
=> ? = 6 - 3
([(0,3),(0,4),(1,5),(2,5),(3,5),(4,1),(4,2)],6)
=> ([(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3 = 6 - 3
([(0,4),(1,5),(2,5),(3,5),(4,1),(4,2),(4,3)],6)
=> ([(3,4),(3,5),(4,5)],6)
=> ([(1,2),(1,3),(2,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> ? = 6 - 3
([(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,1)],6)
=> ([(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,2),(1,3),(2,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> ? = 6 - 3
([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(2,5),(3,4),(4,5)],6)
=> ([(1,4),(2,3),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> 3 = 6 - 3
([(0,3),(0,4),(1,5),(3,5),(4,1),(5,2)],6)
=> ([(3,5),(4,5)],6)
=> ([(1,2)],3)
=> ([(0,2),(1,2)],3)
=> ? = 6 - 3
([(0,2),(0,4),(1,5),(2,5),(3,1),(4,3)],6)
=> ([(2,5),(3,5),(4,5)],6)
=> ([(1,2)],3)
=> ([(0,2),(1,2)],3)
=> ? = 6 - 3
([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
=> ([(4,5)],6)
=> ([(1,2)],3)
=> ([(0,2),(1,2)],3)
=> ? = 6 - 3
Description
The girth of a graph, which is not a tree.
This is the length of the shortest cycle in the graph.
The following 1 statistic also match your data. Click on any of them to see the details.
St001629The coefficient of the integer composition in the quasisymmetric expansion of the relabelling action of the symmetric group on cycles.
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!