Your data matches 8 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
Matching statistic: St000145
Mp00007: Alternating sign matrices to Dyck pathDyck paths
Mp00233: Dyck paths skew partitionSkew partitions
Mp00183: Skew partitions inner shapeInteger partitions
St000145: Integer partitions ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[[0,1,0],[1,0,0],[0,0,1]]
=> [1,1,0,0,1,0]
=> [[2,2],[1]]
=> [1]
=> 0
[[0,1,0,0],[1,0,0,0],[0,0,1,0],[0,0,0,1]]
=> [1,1,0,0,1,0,1,0]
=> [[2,2,2],[1,1]]
=> [1,1]
=> -1
[[1,0,0,0],[0,0,1,0],[0,1,0,0],[0,0,0,1]]
=> [1,0,1,1,0,0,1,0]
=> [[2,2,1],[1]]
=> [1]
=> 0
[[0,1,0,0],[1,-1,1,0],[0,1,0,0],[0,0,0,1]]
=> [1,1,0,1,0,0,1,0]
=> [[3,3],[2]]
=> [2]
=> 1
[[0,0,1,0],[1,0,0,0],[0,1,0,0],[0,0,0,1]]
=> [1,1,1,0,0,0,1,0]
=> [[2,2,2],[1]]
=> [1]
=> 0
[[0,1,0,0],[0,0,1,0],[1,0,0,0],[0,0,0,1]]
=> [1,1,0,1,0,0,1,0]
=> [[3,3],[2]]
=> [2]
=> 1
[[0,0,1,0],[0,1,0,0],[1,0,0,0],[0,0,0,1]]
=> [1,1,1,0,0,0,1,0]
=> [[2,2,2],[1]]
=> [1]
=> 0
[[0,1,0,0],[1,0,0,0],[0,0,0,1],[0,0,1,0]]
=> [1,1,0,0,1,1,0,0]
=> [[3,2],[1]]
=> [1]
=> 0
[[0,1,0,0],[1,-1,0,1],[0,1,0,0],[0,0,1,0]]
=> [1,1,0,1,1,0,0,0]
=> [[3,3],[1]]
=> [1]
=> 0
[[0,1,0,0],[0,0,0,1],[1,0,0,0],[0,0,1,0]]
=> [1,1,0,1,1,0,0,0]
=> [[3,3],[1]]
=> [1]
=> 0
[[0,1,0,0],[1,-1,0,1],[0,0,1,0],[0,1,0,0]]
=> [1,1,0,1,1,0,0,0]
=> [[3,3],[1]]
=> [1]
=> 0
[[0,1,0,0],[0,0,0,1],[1,-1,1,0],[0,1,0,0]]
=> [1,1,0,1,1,0,0,0]
=> [[3,3],[1]]
=> [1]
=> 0
[[0,1,0,0],[0,0,0,1],[0,0,1,0],[1,0,0,0]]
=> [1,1,0,1,1,0,0,0]
=> [[3,3],[1]]
=> [1]
=> 0
[[0,1,0,0,0],[1,0,0,0,0],[0,0,1,0,0],[0,0,0,1,0],[0,0,0,0,1]]
=> [1,1,0,0,1,0,1,0,1,0]
=> [[2,2,2,2],[1,1,1]]
=> [1,1,1]
=> -2
[[1,0,0,0,0],[0,0,1,0,0],[0,1,0,0,0],[0,0,0,1,0],[0,0,0,0,1]]
=> [1,0,1,1,0,0,1,0,1,0]
=> [[2,2,2,1],[1,1]]
=> [1,1]
=> -1
[[0,1,0,0,0],[1,-1,1,0,0],[0,1,0,0,0],[0,0,0,1,0],[0,0,0,0,1]]
=> [1,1,0,1,0,0,1,0,1,0]
=> [[3,3,3],[2,2]]
=> [2,2]
=> 0
[[0,0,1,0,0],[1,0,0,0,0],[0,1,0,0,0],[0,0,0,1,0],[0,0,0,0,1]]
=> [1,1,1,0,0,0,1,0,1,0]
=> [[2,2,2,2],[1,1]]
=> [1,1]
=> -1
[[0,1,0,0,0],[0,0,1,0,0],[1,0,0,0,0],[0,0,0,1,0],[0,0,0,0,1]]
=> [1,1,0,1,0,0,1,0,1,0]
=> [[3,3,3],[2,2]]
=> [2,2]
=> 0
[[0,0,1,0,0],[0,1,0,0,0],[1,0,0,0,0],[0,0,0,1,0],[0,0,0,0,1]]
=> [1,1,1,0,0,0,1,0,1,0]
=> [[2,2,2,2],[1,1]]
=> [1,1]
=> -1
[[1,0,0,0,0],[0,1,0,0,0],[0,0,0,1,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [1,0,1,0,1,1,0,0,1,0]
=> [[2,2,1,1],[1]]
=> [1]
=> 0
[[0,1,0,0,0],[1,0,0,0,0],[0,0,0,1,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [1,1,0,0,1,1,0,0,1,0]
=> [[3,3,2],[2,1]]
=> [2,1]
=> 0
[[1,0,0,0,0],[0,0,1,0,0],[0,1,-1,1,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [1,0,1,1,0,1,0,0,1,0]
=> [[3,3,1],[2]]
=> [2]
=> 1
[[0,1,0,0,0],[1,-1,1,0,0],[0,1,-1,1,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [1,1,0,1,0,1,0,0,1,0]
=> [[4,4],[3]]
=> [3]
=> 2
[[0,0,1,0,0],[1,0,0,0,0],[0,1,-1,1,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [1,1,1,0,0,1,0,0,1,0]
=> [[3,3,2],[2]]
=> [2]
=> 1
[[0,1,0,0,0],[0,0,1,0,0],[1,0,-1,1,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [1,1,0,1,0,1,0,0,1,0]
=> [[4,4],[3]]
=> [3]
=> 2
[[0,0,1,0,0],[0,1,0,0,0],[1,0,-1,1,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [1,1,1,0,0,1,0,0,1,0]
=> [[3,3,2],[2]]
=> [2]
=> 1
[[1,0,0,0,0],[0,0,0,1,0],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [1,0,1,1,1,0,0,0,1,0]
=> [[2,2,2,1],[1]]
=> [1]
=> 0
[[0,1,0,0,0],[1,-1,0,1,0],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [1,1,0,1,1,0,0,0,1,0]
=> [[3,3,3],[2,1]]
=> [2,1]
=> 0
[[0,0,1,0,0],[1,0,-1,1,0],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [1,1,1,0,1,0,0,0,1,0]
=> [[2,2,2,2],[1]]
=> [1]
=> 0
[[0,0,0,1,0],[1,0,0,0,0],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [1,1,1,1,0,0,0,0,1,0]
=> [[3,3,3],[2]]
=> [2]
=> 1
[[0,1,0,0,0],[0,0,0,1,0],[1,0,0,0,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [1,1,0,1,1,0,0,0,1,0]
=> [[3,3,3],[2,1]]
=> [2,1]
=> 0
[[0,0,1,0,0],[0,1,-1,1,0],[1,0,0,0,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [1,1,1,0,1,0,0,0,1,0]
=> [[2,2,2,2],[1]]
=> [1]
=> 0
[[0,0,0,1,0],[0,1,0,0,0],[1,0,0,0,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [1,1,1,1,0,0,0,0,1,0]
=> [[3,3,3],[2]]
=> [2]
=> 1
[[1,0,0,0,0],[0,0,1,0,0],[0,0,0,1,0],[0,1,0,0,0],[0,0,0,0,1]]
=> [1,0,1,1,0,1,0,0,1,0]
=> [[3,3,1],[2]]
=> [2]
=> 1
[[0,1,0,0,0],[1,-1,1,0,0],[0,0,0,1,0],[0,1,0,0,0],[0,0,0,0,1]]
=> [1,1,0,1,0,1,0,0,1,0]
=> [[4,4],[3]]
=> [3]
=> 2
[[0,0,1,0,0],[1,0,0,0,0],[0,0,0,1,0],[0,1,0,0,0],[0,0,0,0,1]]
=> [1,1,1,0,0,1,0,0,1,0]
=> [[3,3,2],[2]]
=> [2]
=> 1
[[0,1,0,0,0],[0,0,1,0,0],[1,-1,0,1,0],[0,1,0,0,0],[0,0,0,0,1]]
=> [1,1,0,1,0,1,0,0,1,0]
=> [[4,4],[3]]
=> [3]
=> 2
[[0,0,1,0,0],[0,1,0,0,0],[1,-1,0,1,0],[0,1,0,0,0],[0,0,0,0,1]]
=> [1,1,1,0,0,1,0,0,1,0]
=> [[3,3,2],[2]]
=> [2]
=> 1
[[1,0,0,0,0],[0,0,0,1,0],[0,0,1,0,0],[0,1,0,0,0],[0,0,0,0,1]]
=> [1,0,1,1,1,0,0,0,1,0]
=> [[2,2,2,1],[1]]
=> [1]
=> 0
[[0,1,0,0,0],[1,-1,0,1,0],[0,0,1,0,0],[0,1,0,0,0],[0,0,0,0,1]]
=> [1,1,0,1,1,0,0,0,1,0]
=> [[3,3,3],[2,1]]
=> [2,1]
=> 0
[[0,0,1,0,0],[1,0,-1,1,0],[0,0,1,0,0],[0,1,0,0,0],[0,0,0,0,1]]
=> [1,1,1,0,1,0,0,0,1,0]
=> [[2,2,2,2],[1]]
=> [1]
=> 0
[[0,0,0,1,0],[1,0,0,0,0],[0,0,1,0,0],[0,1,0,0,0],[0,0,0,0,1]]
=> [1,1,1,1,0,0,0,0,1,0]
=> [[3,3,3],[2]]
=> [2]
=> 1
[[0,1,0,0,0],[0,0,0,1,0],[1,-1,1,0,0],[0,1,0,0,0],[0,0,0,0,1]]
=> [1,1,0,1,1,0,0,0,1,0]
=> [[3,3,3],[2,1]]
=> [2,1]
=> 0
[[0,0,1,0,0],[0,1,-1,1,0],[1,-1,1,0,0],[0,1,0,0,0],[0,0,0,0,1]]
=> [1,1,1,0,1,0,0,0,1,0]
=> [[2,2,2,2],[1]]
=> [1]
=> 0
[[0,0,0,1,0],[0,1,0,0,0],[1,-1,1,0,0],[0,1,0,0,0],[0,0,0,0,1]]
=> [1,1,1,1,0,0,0,0,1,0]
=> [[3,3,3],[2]]
=> [2]
=> 1
[[0,0,1,0,0],[0,0,0,1,0],[1,0,0,0,0],[0,1,0,0,0],[0,0,0,0,1]]
=> [1,1,1,0,1,0,0,0,1,0]
=> [[2,2,2,2],[1]]
=> [1]
=> 0
[[0,0,0,1,0],[0,0,1,0,0],[1,0,0,0,0],[0,1,0,0,0],[0,0,0,0,1]]
=> [1,1,1,1,0,0,0,0,1,0]
=> [[3,3,3],[2]]
=> [2]
=> 1
[[0,1,0,0,0],[0,0,1,0,0],[0,0,0,1,0],[1,0,0,0,0],[0,0,0,0,1]]
=> [1,1,0,1,0,1,0,0,1,0]
=> [[4,4],[3]]
=> [3]
=> 2
[[0,0,1,0,0],[0,1,0,0,0],[0,0,0,1,0],[1,0,0,0,0],[0,0,0,0,1]]
=> [1,1,1,0,0,1,0,0,1,0]
=> [[3,3,2],[2]]
=> [2]
=> 1
[[0,1,0,0,0],[0,0,0,1,0],[0,0,1,0,0],[1,0,0,0,0],[0,0,0,0,1]]
=> [1,1,0,1,1,0,0,0,1,0]
=> [[3,3,3],[2,1]]
=> [2,1]
=> 0
Description
The Dyson rank of a partition. This rank is defined as the largest part minus the number of parts. It was introduced by Dyson [1] in connection to Ramanujan's partition congruences $$p(5n+4) \equiv 0 \pmod 5$$ and $$p(7n+6) \equiv 0 \pmod 7.$$
Mp00007: Alternating sign matrices to Dyck pathDyck paths
Mp00103: Dyck paths peeling mapDyck paths
St001232: Dyck paths ⟶ ℤResult quality: 5% values known / values provided: 5%distinct values known / distinct values provided: 7%
Values
[[0,1,0],[1,0,0],[0,0,1]]
=> [1,1,0,0,1,0]
=> [1,0,1,0,1,0]
=> ? = 0 + 5
[[0,1,0,0],[1,0,0,0],[0,0,1,0],[0,0,0,1]]
=> [1,1,0,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0]
=> ? = -1 + 5
[[1,0,0,0],[0,0,1,0],[0,1,0,0],[0,0,0,1]]
=> [1,0,1,1,0,0,1,0]
=> [1,0,1,0,1,0,1,0]
=> ? = 0 + 5
[[0,1,0,0],[1,-1,1,0],[0,1,0,0],[0,0,0,1]]
=> [1,1,0,1,0,0,1,0]
=> [1,0,1,0,1,0,1,0]
=> ? = 1 + 5
[[0,0,1,0],[1,0,0,0],[0,1,0,0],[0,0,0,1]]
=> [1,1,1,0,0,0,1,0]
=> [1,0,1,0,1,0,1,0]
=> ? = 0 + 5
[[0,1,0,0],[0,0,1,0],[1,0,0,0],[0,0,0,1]]
=> [1,1,0,1,0,0,1,0]
=> [1,0,1,0,1,0,1,0]
=> ? = 1 + 5
[[0,0,1,0],[0,1,0,0],[1,0,0,0],[0,0,0,1]]
=> [1,1,1,0,0,0,1,0]
=> [1,0,1,0,1,0,1,0]
=> ? = 0 + 5
[[0,1,0,0],[1,0,0,0],[0,0,0,1],[0,0,1,0]]
=> [1,1,0,0,1,1,0,0]
=> [1,0,1,0,1,0,1,0]
=> ? = 0 + 5
[[0,1,0,0],[1,-1,0,1],[0,1,0,0],[0,0,1,0]]
=> [1,1,0,1,1,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> ? = 0 + 5
[[0,1,0,0],[0,0,0,1],[1,0,0,0],[0,0,1,0]]
=> [1,1,0,1,1,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> ? = 0 + 5
[[0,1,0,0],[1,-1,0,1],[0,0,1,0],[0,1,0,0]]
=> [1,1,0,1,1,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> ? = 0 + 5
[[0,1,0,0],[0,0,0,1],[1,-1,1,0],[0,1,0,0]]
=> [1,1,0,1,1,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> ? = 0 + 5
[[0,1,0,0],[0,0,0,1],[0,0,1,0],[1,0,0,0]]
=> [1,1,0,1,1,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> ? = 0 + 5
[[0,1,0,0,0],[1,0,0,0,0],[0,0,1,0,0],[0,0,0,1,0],[0,0,0,0,1]]
=> [1,1,0,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> ? = -2 + 5
[[1,0,0,0,0],[0,0,1,0,0],[0,1,0,0,0],[0,0,0,1,0],[0,0,0,0,1]]
=> [1,0,1,1,0,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> ? = -1 + 5
[[0,1,0,0,0],[1,-1,1,0,0],[0,1,0,0,0],[0,0,0,1,0],[0,0,0,0,1]]
=> [1,1,0,1,0,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> ? = 0 + 5
[[0,0,1,0,0],[1,0,0,0,0],[0,1,0,0,0],[0,0,0,1,0],[0,0,0,0,1]]
=> [1,1,1,0,0,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> ? = -1 + 5
[[0,1,0,0,0],[0,0,1,0,0],[1,0,0,0,0],[0,0,0,1,0],[0,0,0,0,1]]
=> [1,1,0,1,0,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> ? = 0 + 5
[[0,0,1,0,0],[0,1,0,0,0],[1,0,0,0,0],[0,0,0,1,0],[0,0,0,0,1]]
=> [1,1,1,0,0,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> ? = -1 + 5
[[1,0,0,0,0],[0,1,0,0,0],[0,0,0,1,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [1,0,1,0,1,1,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> ? = 0 + 5
[[0,1,0,0,0],[1,0,0,0,0],[0,0,0,1,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [1,1,0,0,1,1,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> ? = 0 + 5
[[1,0,0,0,0],[0,0,1,0,0],[0,1,-1,1,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [1,0,1,1,0,1,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> ? = 1 + 5
[[0,1,0,0,0],[1,-1,1,0,0],[0,1,-1,1,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [1,1,0,1,0,1,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> ? = 2 + 5
[[0,0,1,0,0],[1,0,0,0,0],[0,1,-1,1,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [1,1,1,0,0,1,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> ? = 1 + 5
[[0,1,0,0,0],[0,0,1,0,0],[1,0,-1,1,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [1,1,0,1,0,1,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> ? = 2 + 5
[[0,0,1,0,0],[0,1,0,0,0],[1,0,-1,1,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [1,1,1,0,0,1,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> ? = 1 + 5
[[1,0,0,0,0],[0,0,0,1,0],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [1,0,1,1,1,0,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> ? = 0 + 5
[[0,1,0,0,0],[1,-1,0,1,0],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [1,1,0,1,1,0,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> ? = 0 + 5
[[0,0,1,0,0],[1,0,-1,1,0],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [1,1,1,0,1,0,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> ? = 0 + 5
[[0,0,0,1,0],[1,0,0,0,0],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [1,1,1,1,0,0,0,0,1,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> ? = 1 + 5
[[0,1,0,0,0],[0,0,0,1,0],[1,0,0,0,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [1,1,0,1,1,0,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> ? = 0 + 5
[[0,0,1,0,0],[0,1,-1,1,0],[1,0,0,0,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [1,1,1,0,1,0,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> ? = 0 + 5
[[0,0,0,1,0],[0,1,0,0,0],[1,0,0,0,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [1,1,1,1,0,0,0,0,1,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> ? = 1 + 5
[[1,0,0,0,0],[0,0,1,0,0],[0,0,0,1,0],[0,1,0,0,0],[0,0,0,0,1]]
=> [1,0,1,1,0,1,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> ? = 1 + 5
[[0,1,0,0,0],[1,-1,1,0,0],[0,0,0,1,0],[0,1,0,0,0],[0,0,0,0,1]]
=> [1,1,0,1,0,1,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> ? = 2 + 5
[[0,0,1,0,0],[1,0,0,0,0],[0,0,0,1,0],[0,1,0,0,0],[0,0,0,0,1]]
=> [1,1,1,0,0,1,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> ? = 1 + 5
[[0,1,0,0,0],[0,0,1,0,0],[1,-1,0,1,0],[0,1,0,0,0],[0,0,0,0,1]]
=> [1,1,0,1,0,1,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> ? = 2 + 5
[[0,0,1,0,0],[0,1,0,0,0],[1,-1,0,1,0],[0,1,0,0,0],[0,0,0,0,1]]
=> [1,1,1,0,0,1,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> ? = 1 + 5
[[1,0,0,0,0],[0,0,0,1,0],[0,0,1,0,0],[0,1,0,0,0],[0,0,0,0,1]]
=> [1,0,1,1,1,0,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> ? = 0 + 5
[[0,1,0,0,0],[1,-1,0,1,0],[0,0,1,0,0],[0,1,0,0,0],[0,0,0,0,1]]
=> [1,1,0,1,1,0,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> ? = 0 + 5
[[0,0,1,0,0],[1,0,-1,1,0],[0,0,1,0,0],[0,1,0,0,0],[0,0,0,0,1]]
=> [1,1,1,0,1,0,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> ? = 0 + 5
[[0,0,0,1,0],[1,0,0,0,0],[0,0,1,0,0],[0,1,0,0,0],[0,0,0,0,1]]
=> [1,1,1,1,0,0,0,0,1,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> ? = 1 + 5
[[0,1,0,0,0],[0,0,0,1,0],[1,-1,1,0,0],[0,1,0,0,0],[0,0,0,0,1]]
=> [1,1,0,1,1,0,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> ? = 0 + 5
[[0,0,1,0,0],[0,1,-1,1,0],[1,-1,1,0,0],[0,1,0,0,0],[0,0,0,0,1]]
=> [1,1,1,0,1,0,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> ? = 0 + 5
[[0,0,0,1,0],[0,1,0,0,0],[1,-1,1,0,0],[0,1,0,0,0],[0,0,0,0,1]]
=> [1,1,1,1,0,0,0,0,1,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> ? = 1 + 5
[[0,0,1,0,0],[0,0,0,1,0],[1,0,0,0,0],[0,1,0,0,0],[0,0,0,0,1]]
=> [1,1,1,0,1,0,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> ? = 0 + 5
[[0,0,0,1,0],[0,0,1,0,0],[1,0,0,0,0],[0,1,0,0,0],[0,0,0,0,1]]
=> [1,1,1,1,0,0,0,0,1,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> ? = 1 + 5
[[0,1,0,0,0],[0,0,1,0,0],[0,0,0,1,0],[1,0,0,0,0],[0,0,0,0,1]]
=> [1,1,0,1,0,1,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> ? = 2 + 5
[[0,0,1,0,0],[0,1,0,0,0],[0,0,0,1,0],[1,0,0,0,0],[0,0,0,0,1]]
=> [1,1,1,0,0,1,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> ? = 1 + 5
[[0,1,0,0,0],[0,0,0,1,0],[0,0,1,0,0],[1,0,0,0,0],[0,0,0,0,1]]
=> [1,1,0,1,1,0,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> ? = 0 + 5
[[0,0,0,1,0,0],[1,0,0,0,0,0],[0,1,0,-1,0,1],[0,0,1,0,0,0],[0,0,0,1,0,0],[0,0,0,0,1,0]]
=> [1,1,1,1,0,0,1,1,0,0,0,0]
=> [1,0,1,1,0,0,1,1,0,0,1,0]
=> 5 = 0 + 5
[[0,0,0,1,0,0],[0,1,0,0,0,0],[1,0,0,-1,0,1],[0,0,1,0,0,0],[0,0,0,1,0,0],[0,0,0,0,1,0]]
=> [1,1,1,1,0,0,1,1,0,0,0,0]
=> [1,0,1,1,0,0,1,1,0,0,1,0]
=> 5 = 0 + 5
[[0,0,0,1,0,0],[1,0,0,0,0,0],[0,0,1,-1,0,1],[0,1,0,0,0,0],[0,0,0,1,0,0],[0,0,0,0,1,0]]
=> [1,1,1,1,0,0,1,1,0,0,0,0]
=> [1,0,1,1,0,0,1,1,0,0,1,0]
=> 5 = 0 + 5
[[0,0,0,1,0,0],[0,1,0,0,0,0],[1,-1,1,-1,0,1],[0,1,0,0,0,0],[0,0,0,1,0,0],[0,0,0,0,1,0]]
=> [1,1,1,1,0,0,1,1,0,0,0,0]
=> [1,0,1,1,0,0,1,1,0,0,1,0]
=> 5 = 0 + 5
[[0,0,0,1,0,0],[0,0,1,0,0,0],[1,0,0,-1,0,1],[0,1,0,0,0,0],[0,0,0,1,0,0],[0,0,0,0,1,0]]
=> [1,1,1,1,0,0,1,1,0,0,0,0]
=> [1,0,1,1,0,0,1,1,0,0,1,0]
=> 5 = 0 + 5
[[0,0,0,1,0,0],[0,1,0,0,0,0],[0,0,1,-1,0,1],[1,0,0,0,0,0],[0,0,0,1,0,0],[0,0,0,0,1,0]]
=> [1,1,1,1,0,0,1,1,0,0,0,0]
=> [1,0,1,1,0,0,1,1,0,0,1,0]
=> 5 = 0 + 5
[[0,0,0,1,0,0],[0,0,1,0,0,0],[0,1,0,-1,0,1],[1,0,0,0,0,0],[0,0,0,1,0,0],[0,0,0,0,1,0]]
=> [1,1,1,1,0,0,1,1,0,0,0,0]
=> [1,0,1,1,0,0,1,1,0,0,1,0]
=> 5 = 0 + 5
[[0,0,0,1,0,0],[1,0,0,0,0,0],[0,1,0,-1,0,1],[0,0,0,1,0,0],[0,0,1,0,0,0],[0,0,0,0,1,0]]
=> [1,1,1,1,0,0,1,1,0,0,0,0]
=> [1,0,1,1,0,0,1,1,0,0,1,0]
=> 5 = 0 + 5
[[0,0,0,1,0,0],[0,1,0,0,0,0],[1,0,0,-1,0,1],[0,0,0,1,0,0],[0,0,1,0,0,0],[0,0,0,0,1,0]]
=> [1,1,1,1,0,0,1,1,0,0,0,0]
=> [1,0,1,1,0,0,1,1,0,0,1,0]
=> 5 = 0 + 5
[[0,0,0,1,0,0],[1,0,0,0,0,0],[0,0,1,-1,0,1],[0,1,-1,1,0,0],[0,0,1,0,0,0],[0,0,0,0,1,0]]
=> [1,1,1,1,0,0,1,1,0,0,0,0]
=> [1,0,1,1,0,0,1,1,0,0,1,0]
=> 5 = 0 + 5
[[0,0,0,1,0,0],[0,1,0,0,0,0],[1,-1,1,-1,0,1],[0,1,-1,1,0,0],[0,0,1,0,0,0],[0,0,0,0,1,0]]
=> [1,1,1,1,0,0,1,1,0,0,0,0]
=> [1,0,1,1,0,0,1,1,0,0,1,0]
=> 5 = 0 + 5
[[0,0,0,1,0,0],[0,0,1,0,0,0],[1,0,0,-1,0,1],[0,1,-1,1,0,0],[0,0,1,0,0,0],[0,0,0,0,1,0]]
=> [1,1,1,1,0,0,1,1,0,0,0,0]
=> [1,0,1,1,0,0,1,1,0,0,1,0]
=> 5 = 0 + 5
[[0,0,0,1,0,0],[0,1,0,0,0,0],[0,0,1,-1,0,1],[1,0,-1,1,0,0],[0,0,1,0,0,0],[0,0,0,0,1,0]]
=> [1,1,1,1,0,0,1,1,0,0,0,0]
=> [1,0,1,1,0,0,1,1,0,0,1,0]
=> 5 = 0 + 5
[[0,0,0,1,0,0],[0,0,1,0,0,0],[0,1,0,-1,0,1],[1,0,-1,1,0,0],[0,0,1,0,0,0],[0,0,0,0,1,0]]
=> [1,1,1,1,0,0,1,1,0,0,0,0]
=> [1,0,1,1,0,0,1,1,0,0,1,0]
=> 5 = 0 + 5
[[0,0,0,1,0,0],[1,0,0,0,0,0],[0,0,0,0,0,1],[0,1,0,0,0,0],[0,0,1,0,0,0],[0,0,0,0,1,0]]
=> [1,1,1,1,0,0,1,1,0,0,0,0]
=> [1,0,1,1,0,0,1,1,0,0,1,0]
=> 5 = 0 + 5
[[0,0,0,1,0,0],[0,1,0,0,0,0],[1,-1,0,0,0,1],[0,1,0,0,0,0],[0,0,1,0,0,0],[0,0,0,0,1,0]]
=> [1,1,1,1,0,0,1,1,0,0,0,0]
=> [1,0,1,1,0,0,1,1,0,0,1,0]
=> 5 = 0 + 5
[[0,0,0,1,0,0],[0,0,1,0,0,0],[1,0,-1,0,0,1],[0,1,0,0,0,0],[0,0,1,0,0,0],[0,0,0,0,1,0]]
=> [1,1,1,1,0,0,1,1,0,0,0,0]
=> [1,0,1,1,0,0,1,1,0,0,1,0]
=> 5 = 0 + 5
[[0,0,0,1,0,0],[0,1,0,0,0,0],[0,0,0,0,0,1],[1,0,0,0,0,0],[0,0,1,0,0,0],[0,0,0,0,1,0]]
=> [1,1,1,1,0,0,1,1,0,0,0,0]
=> [1,0,1,1,0,0,1,1,0,0,1,0]
=> 5 = 0 + 5
[[0,0,0,1,0,0],[0,0,1,0,0,0],[0,1,-1,0,0,1],[1,0,0,0,0,0],[0,0,1,0,0,0],[0,0,0,0,1,0]]
=> [1,1,1,1,0,0,1,1,0,0,0,0]
=> [1,0,1,1,0,0,1,1,0,0,1,0]
=> 5 = 0 + 5
[[0,0,0,1,0,0],[1,0,0,0,0,0],[0,0,1,-1,0,1],[0,0,0,1,0,0],[0,1,0,0,0,0],[0,0,0,0,1,0]]
=> [1,1,1,1,0,0,1,1,0,0,0,0]
=> [1,0,1,1,0,0,1,1,0,0,1,0]
=> 5 = 0 + 5
[[0,0,0,1,0,0],[0,1,0,0,0,0],[1,-1,1,-1,0,1],[0,0,0,1,0,0],[0,1,0,0,0,0],[0,0,0,0,1,0]]
=> [1,1,1,1,0,0,1,1,0,0,0,0]
=> [1,0,1,1,0,0,1,1,0,0,1,0]
=> 5 = 0 + 5
[[0,0,0,1,0,0],[0,0,1,0,0,0],[1,0,0,-1,0,1],[0,0,0,1,0,0],[0,1,0,0,0,0],[0,0,0,0,1,0]]
=> [1,1,1,1,0,0,1,1,0,0,0,0]
=> [1,0,1,1,0,0,1,1,0,0,1,0]
=> 5 = 0 + 5
[[0,0,0,1,0,0],[0,1,0,0,0,0],[0,0,1,-1,0,1],[1,-1,0,1,0,0],[0,1,0,0,0,0],[0,0,0,0,1,0]]
=> [1,1,1,1,0,0,1,1,0,0,0,0]
=> [1,0,1,1,0,0,1,1,0,0,1,0]
=> 5 = 0 + 5
[[0,0,0,1,0,0],[0,0,1,0,0,0],[0,1,0,-1,0,1],[1,-1,0,1,0,0],[0,1,0,0,0,0],[0,0,0,0,1,0]]
=> [1,1,1,1,0,0,1,1,0,0,0,0]
=> [1,0,1,1,0,0,1,1,0,0,1,0]
=> 5 = 0 + 5
[[0,0,0,1,0,0],[1,0,0,0,0,0],[0,0,0,0,0,1],[0,0,1,0,0,0],[0,1,0,0,0,0],[0,0,0,0,1,0]]
=> [1,1,1,1,0,0,1,1,0,0,0,0]
=> [1,0,1,1,0,0,1,1,0,0,1,0]
=> 5 = 0 + 5
[[0,0,0,1,0,0],[0,1,0,0,0,0],[1,-1,0,0,0,1],[0,0,1,0,0,0],[0,1,0,0,0,0],[0,0,0,0,1,0]]
=> [1,1,1,1,0,0,1,1,0,0,0,0]
=> [1,0,1,1,0,0,1,1,0,0,1,0]
=> 5 = 0 + 5
[[0,0,0,1,0,0],[0,0,1,0,0,0],[1,0,-1,0,0,1],[0,0,1,0,0,0],[0,1,0,0,0,0],[0,0,0,0,1,0]]
=> [1,1,1,1,0,0,1,1,0,0,0,0]
=> [1,0,1,1,0,0,1,1,0,0,1,0]
=> 5 = 0 + 5
[[0,0,0,1,0,0],[0,1,0,0,0,0],[0,0,0,0,0,1],[1,-1,1,0,0,0],[0,1,0,0,0,0],[0,0,0,0,1,0]]
=> [1,1,1,1,0,0,1,1,0,0,0,0]
=> [1,0,1,1,0,0,1,1,0,0,1,0]
=> 5 = 0 + 5
[[0,0,0,1,0,0],[0,0,1,0,0,0],[0,1,-1,0,0,1],[1,-1,1,0,0,0],[0,1,0,0,0,0],[0,0,0,0,1,0]]
=> [1,1,1,1,0,0,1,1,0,0,0,0]
=> [1,0,1,1,0,0,1,1,0,0,1,0]
=> 5 = 0 + 5
[[0,0,0,1,0,0],[0,0,1,0,0,0],[0,0,0,0,0,1],[1,0,0,0,0,0],[0,1,0,0,0,0],[0,0,0,0,1,0]]
=> [1,1,1,1,0,0,1,1,0,0,0,0]
=> [1,0,1,1,0,0,1,1,0,0,1,0]
=> 5 = 0 + 5
[[0,0,0,1,0,0],[0,1,0,0,0,0],[0,0,1,-1,0,1],[0,0,0,1,0,0],[1,0,0,0,0,0],[0,0,0,0,1,0]]
=> [1,1,1,1,0,0,1,1,0,0,0,0]
=> [1,0,1,1,0,0,1,1,0,0,1,0]
=> 5 = 0 + 5
[[0,0,0,1,0,0],[0,0,1,0,0,0],[0,1,0,-1,0,1],[0,0,0,1,0,0],[1,0,0,0,0,0],[0,0,0,0,1,0]]
=> [1,1,1,1,0,0,1,1,0,0,0,0]
=> [1,0,1,1,0,0,1,1,0,0,1,0]
=> 5 = 0 + 5
[[0,0,0,1,0,0],[0,1,0,0,0,0],[0,0,0,0,0,1],[0,0,1,0,0,0],[1,0,0,0,0,0],[0,0,0,0,1,0]]
=> [1,1,1,1,0,0,1,1,0,0,0,0]
=> [1,0,1,1,0,0,1,1,0,0,1,0]
=> 5 = 0 + 5
[[0,0,0,1,0,0],[0,0,1,0,0,0],[0,1,-1,0,0,1],[0,0,1,0,0,0],[1,0,0,0,0,0],[0,0,0,0,1,0]]
=> [1,1,1,1,0,0,1,1,0,0,0,0]
=> [1,0,1,1,0,0,1,1,0,0,1,0]
=> 5 = 0 + 5
[[0,0,0,1,0,0],[0,0,1,0,0,0],[0,0,0,0,0,1],[0,1,0,0,0,0],[1,0,0,0,0,0],[0,0,0,0,1,0]]
=> [1,1,1,1,0,0,1,1,0,0,0,0]
=> [1,0,1,1,0,0,1,1,0,0,1,0]
=> 5 = 0 + 5
[[0,0,0,1,0,0],[1,0,0,0,0,0],[0,1,0,-1,0,1],[0,0,1,0,0,0],[0,0,0,0,1,0],[0,0,0,1,0,0]]
=> [1,1,1,1,0,0,1,1,0,0,0,0]
=> [1,0,1,1,0,0,1,1,0,0,1,0]
=> 5 = 0 + 5
[[0,0,0,1,0,0],[0,1,0,0,0,0],[1,0,0,-1,0,1],[0,0,1,0,0,0],[0,0,0,0,1,0],[0,0,0,1,0,0]]
=> [1,1,1,1,0,0,1,1,0,0,0,0]
=> [1,0,1,1,0,0,1,1,0,0,1,0]
=> 5 = 0 + 5
[[0,0,0,1,0,0],[1,0,0,0,0,0],[0,0,1,-1,0,1],[0,1,0,0,0,0],[0,0,0,0,1,0],[0,0,0,1,0,0]]
=> [1,1,1,1,0,0,1,1,0,0,0,0]
=> [1,0,1,1,0,0,1,1,0,0,1,0]
=> 5 = 0 + 5
[[0,0,0,1,0,0],[0,1,0,0,0,0],[1,-1,1,-1,0,1],[0,1,0,0,0,0],[0,0,0,0,1,0],[0,0,0,1,0,0]]
=> [1,1,1,1,0,0,1,1,0,0,0,0]
=> [1,0,1,1,0,0,1,1,0,0,1,0]
=> 5 = 0 + 5
[[0,0,0,1,0,0],[0,0,1,0,0,0],[1,0,0,-1,0,1],[0,1,0,0,0,0],[0,0,0,0,1,0],[0,0,0,1,0,0]]
=> [1,1,1,1,0,0,1,1,0,0,0,0]
=> [1,0,1,1,0,0,1,1,0,0,1,0]
=> 5 = 0 + 5
[[0,0,0,1,0,0],[0,1,0,0,0,0],[0,0,1,-1,0,1],[1,0,0,0,0,0],[0,0,0,0,1,0],[0,0,0,1,0,0]]
=> [1,1,1,1,0,0,1,1,0,0,0,0]
=> [1,0,1,1,0,0,1,1,0,0,1,0]
=> 5 = 0 + 5
[[0,0,0,1,0,0],[0,0,1,0,0,0],[0,1,0,-1,0,1],[1,0,0,0,0,0],[0,0,0,0,1,0],[0,0,0,1,0,0]]
=> [1,1,1,1,0,0,1,1,0,0,0,0]
=> [1,0,1,1,0,0,1,1,0,0,1,0]
=> 5 = 0 + 5
[[0,0,0,1,0,0],[1,0,0,0,0,0],[0,1,0,-1,0,1],[0,0,0,1,0,0],[0,0,1,-1,1,0],[0,0,0,1,0,0]]
=> [1,1,1,1,0,0,1,1,0,0,0,0]
=> [1,0,1,1,0,0,1,1,0,0,1,0]
=> 5 = 0 + 5
[[0,0,0,1,0,0],[0,1,0,0,0,0],[1,0,0,-1,0,1],[0,0,0,1,0,0],[0,0,1,-1,1,0],[0,0,0,1,0,0]]
=> [1,1,1,1,0,0,1,1,0,0,0,0]
=> [1,0,1,1,0,0,1,1,0,0,1,0]
=> 5 = 0 + 5
[[0,0,0,1,0,0],[1,0,0,0,0,0],[0,0,1,-1,0,1],[0,1,-1,1,0,0],[0,0,1,-1,1,0],[0,0,0,1,0,0]]
=> [1,1,1,1,0,0,1,1,0,0,0,0]
=> [1,0,1,1,0,0,1,1,0,0,1,0]
=> 5 = 0 + 5
[[0,0,0,1,0,0],[0,1,0,0,0,0],[1,-1,1,-1,0,1],[0,1,-1,1,0,0],[0,0,1,-1,1,0],[0,0,0,1,0,0]]
=> [1,1,1,1,0,0,1,1,0,0,0,0]
=> [1,0,1,1,0,0,1,1,0,0,1,0]
=> 5 = 0 + 5
[[0,0,0,1,0,0],[0,0,1,0,0,0],[1,0,0,-1,0,1],[0,1,-1,1,0,0],[0,0,1,-1,1,0],[0,0,0,1,0,0]]
=> [1,1,1,1,0,0,1,1,0,0,0,0]
=> [1,0,1,1,0,0,1,1,0,0,1,0]
=> 5 = 0 + 5
[[0,0,0,1,0,0],[0,1,0,0,0,0],[0,0,1,-1,0,1],[1,0,-1,1,0,0],[0,0,1,-1,1,0],[0,0,0,1,0,0]]
=> [1,1,1,1,0,0,1,1,0,0,0,0]
=> [1,0,1,1,0,0,1,1,0,0,1,0]
=> 5 = 0 + 5
[[0,0,0,1,0,0],[0,0,1,0,0,0],[0,1,0,-1,0,1],[1,0,-1,1,0,0],[0,0,1,-1,1,0],[0,0,0,1,0,0]]
=> [1,1,1,1,0,0,1,1,0,0,0,0]
=> [1,0,1,1,0,0,1,1,0,0,1,0]
=> 5 = 0 + 5
[[0,0,0,1,0,0],[1,0,0,0,0,0],[0,0,0,0,0,1],[0,1,0,0,0,0],[0,0,1,-1,1,0],[0,0,0,1,0,0]]
=> [1,1,1,1,0,0,1,1,0,0,0,0]
=> [1,0,1,1,0,0,1,1,0,0,1,0]
=> 5 = 0 + 5
Description
The number of indecomposable modules with projective dimension 2 for Nakayama algebras with global dimension at most 2.
Matching statistic: St000454
Mp00007: Alternating sign matrices to Dyck pathDyck paths
Mp00201: Dyck paths RingelPermutations
Mp00160: Permutations graph of inversionsGraphs
St000454: Graphs ⟶ ℤResult quality: 2% values known / values provided: 2%distinct values known / distinct values provided: 13%
Values
[[0,1,0],[1,0,0],[0,0,1]]
=> [1,1,0,0,1,0]
=> [2,4,1,3] => ([(0,3),(1,2),(2,3)],4)
=> ? = 0 + 3
[[0,1,0,0],[1,0,0,0],[0,0,1,0],[0,0,0,1]]
=> [1,1,0,0,1,0,1,0]
=> [2,5,1,3,4] => ([(0,4),(1,4),(2,3),(3,4)],5)
=> ? = -1 + 3
[[1,0,0,0],[0,0,1,0],[0,1,0,0],[0,0,0,1]]
=> [1,0,1,1,0,0,1,0]
=> [3,1,5,2,4] => ([(0,4),(1,3),(2,3),(2,4)],5)
=> ? = 0 + 3
[[0,1,0,0],[1,-1,1,0],[0,1,0,0],[0,0,0,1]]
=> [1,1,0,1,0,0,1,0]
=> [5,3,1,2,4] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 1 + 3
[[0,0,1,0],[1,0,0,0],[0,1,0,0],[0,0,0,1]]
=> [1,1,1,0,0,0,1,0]
=> [2,3,5,1,4] => ([(0,4),(1,4),(2,3),(3,4)],5)
=> ? = 0 + 3
[[0,1,0,0],[0,0,1,0],[1,0,0,0],[0,0,0,1]]
=> [1,1,0,1,0,0,1,0]
=> [5,3,1,2,4] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 1 + 3
[[0,0,1,0],[0,1,0,0],[1,0,0,0],[0,0,0,1]]
=> [1,1,1,0,0,0,1,0]
=> [2,3,5,1,4] => ([(0,4),(1,4),(2,3),(3,4)],5)
=> ? = 0 + 3
[[0,1,0,0],[1,0,0,0],[0,0,0,1],[0,0,1,0]]
=> [1,1,0,0,1,1,0,0]
=> [2,4,1,5,3] => ([(0,4),(1,3),(2,3),(2,4)],5)
=> ? = 0 + 3
[[0,1,0,0],[1,-1,0,1],[0,1,0,0],[0,0,1,0]]
=> [1,1,0,1,1,0,0,0]
=> [4,3,1,5,2] => ([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> ? = 0 + 3
[[0,1,0,0],[0,0,0,1],[1,0,0,0],[0,0,1,0]]
=> [1,1,0,1,1,0,0,0]
=> [4,3,1,5,2] => ([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> ? = 0 + 3
[[0,1,0,0],[1,-1,0,1],[0,0,1,0],[0,1,0,0]]
=> [1,1,0,1,1,0,0,0]
=> [4,3,1,5,2] => ([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> ? = 0 + 3
[[0,1,0,0],[0,0,0,1],[1,-1,1,0],[0,1,0,0]]
=> [1,1,0,1,1,0,0,0]
=> [4,3,1,5,2] => ([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> ? = 0 + 3
[[0,1,0,0],[0,0,0,1],[0,0,1,0],[1,0,0,0]]
=> [1,1,0,1,1,0,0,0]
=> [4,3,1,5,2] => ([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> ? = 0 + 3
[[0,1,0,0,0],[1,0,0,0,0],[0,0,1,0,0],[0,0,0,1,0],[0,0,0,0,1]]
=> [1,1,0,0,1,0,1,0,1,0]
=> [2,6,1,3,4,5] => ([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> ? = -2 + 3
[[1,0,0,0,0],[0,0,1,0,0],[0,1,0,0,0],[0,0,0,1,0],[0,0,0,0,1]]
=> [1,0,1,1,0,0,1,0,1,0]
=> [3,1,6,2,4,5] => ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> ? = -1 + 3
[[0,1,0,0,0],[1,-1,1,0,0],[0,1,0,0,0],[0,0,0,1,0],[0,0,0,0,1]]
=> [1,1,0,1,0,0,1,0,1,0]
=> [6,3,1,2,4,5] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 0 + 3
[[0,0,1,0,0],[1,0,0,0,0],[0,1,0,0,0],[0,0,0,1,0],[0,0,0,0,1]]
=> [1,1,1,0,0,0,1,0,1,0]
=> [2,3,6,1,4,5] => ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> 2 = -1 + 3
[[0,1,0,0,0],[0,0,1,0,0],[1,0,0,0,0],[0,0,0,1,0],[0,0,0,0,1]]
=> [1,1,0,1,0,0,1,0,1,0]
=> [6,3,1,2,4,5] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 0 + 3
[[0,0,1,0,0],[0,1,0,0,0],[1,0,0,0,0],[0,0,0,1,0],[0,0,0,0,1]]
=> [1,1,1,0,0,0,1,0,1,0]
=> [2,3,6,1,4,5] => ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> 2 = -1 + 3
[[1,0,0,0,0],[0,1,0,0,0],[0,0,0,1,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [1,0,1,0,1,1,0,0,1,0]
=> [4,1,2,6,3,5] => ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> ? = 0 + 3
[[0,1,0,0,0],[1,0,0,0,0],[0,0,0,1,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [1,1,0,0,1,1,0,0,1,0]
=> [2,4,1,6,3,5] => ([(0,5),(1,4),(2,3),(2,4),(3,5)],6)
=> ? = 0 + 3
[[1,0,0,0,0],[0,0,1,0,0],[0,1,-1,1,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [1,0,1,1,0,1,0,0,1,0]
=> [6,1,4,2,3,5] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 1 + 3
[[0,1,0,0,0],[1,-1,1,0,0],[0,1,-1,1,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [1,1,0,1,0,1,0,0,1,0]
=> [6,4,1,2,3,5] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 2 + 3
[[0,0,1,0,0],[1,0,0,0,0],[0,1,-1,1,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [1,1,1,0,0,1,0,0,1,0]
=> [2,6,4,1,3,5] => ([(0,5),(1,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 1 + 3
[[0,1,0,0,0],[0,0,1,0,0],[1,0,-1,1,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [1,1,0,1,0,1,0,0,1,0]
=> [6,4,1,2,3,5] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 2 + 3
[[0,0,1,0,0],[0,1,0,0,0],[1,0,-1,1,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [1,1,1,0,0,1,0,0,1,0]
=> [2,6,4,1,3,5] => ([(0,5),(1,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 1 + 3
[[1,0,0,0,0],[0,0,0,1,0],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [1,0,1,1,1,0,0,0,1,0]
=> [3,1,4,6,2,5] => ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> ? = 0 + 3
[[0,1,0,0,0],[1,-1,0,1,0],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [1,1,0,1,1,0,0,0,1,0]
=> [4,3,1,6,2,5] => ([(0,2),(1,4),(1,5),(2,3),(3,4),(3,5),(4,5)],6)
=> ? = 0 + 3
[[0,0,1,0,0],[1,0,-1,1,0],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [1,1,1,0,1,0,0,0,1,0]
=> [6,3,4,1,2,5] => ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> ? = 0 + 3
[[0,0,0,1,0],[1,0,0,0,0],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [1,1,1,1,0,0,0,0,1,0]
=> [2,3,4,6,1,5] => ([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> ? = 1 + 3
[[0,1,0,0,0],[0,0,0,1,0],[1,0,0,0,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [1,1,0,1,1,0,0,0,1,0]
=> [4,3,1,6,2,5] => ([(0,2),(1,4),(1,5),(2,3),(3,4),(3,5),(4,5)],6)
=> ? = 0 + 3
[[0,0,1,0,0],[0,1,-1,1,0],[1,0,0,0,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [1,1,1,0,1,0,0,0,1,0]
=> [6,3,4,1,2,5] => ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> ? = 0 + 3
[[0,0,0,1,0],[0,1,0,0,0],[1,0,0,0,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [1,1,1,1,0,0,0,0,1,0]
=> [2,3,4,6,1,5] => ([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> ? = 1 + 3
[[1,0,0,0,0],[0,0,1,0,0],[0,0,0,1,0],[0,1,0,0,0],[0,0,0,0,1]]
=> [1,0,1,1,0,1,0,0,1,0]
=> [6,1,4,2,3,5] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 1 + 3
[[0,1,0,0,0],[1,-1,1,0,0],[0,0,0,1,0],[0,1,0,0,0],[0,0,0,0,1]]
=> [1,1,0,1,0,1,0,0,1,0]
=> [6,4,1,2,3,5] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 2 + 3
[[0,0,1,0,0],[1,0,0,0,0],[0,0,0,1,0],[0,1,0,0,0],[0,0,0,0,1]]
=> [1,1,1,0,0,1,0,0,1,0]
=> [2,6,4,1,3,5] => ([(0,5),(1,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 1 + 3
[[0,1,0,0,0],[0,0,1,0,0],[1,-1,0,1,0],[0,1,0,0,0],[0,0,0,0,1]]
=> [1,1,0,1,0,1,0,0,1,0]
=> [6,4,1,2,3,5] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 2 + 3
[[0,0,1,0,0],[0,1,0,0,0],[1,-1,0,1,0],[0,1,0,0,0],[0,0,0,0,1]]
=> [1,1,1,0,0,1,0,0,1,0]
=> [2,6,4,1,3,5] => ([(0,5),(1,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 1 + 3
[[1,0,0,0,0],[0,0,0,1,0],[0,0,1,0,0],[0,1,0,0,0],[0,0,0,0,1]]
=> [1,0,1,1,1,0,0,0,1,0]
=> [3,1,4,6,2,5] => ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> ? = 0 + 3
[[0,1,0,0,0],[1,-1,0,1,0],[0,0,1,0,0],[0,1,0,0,0],[0,0,0,0,1]]
=> [1,1,0,1,1,0,0,0,1,0]
=> [4,3,1,6,2,5] => ([(0,2),(1,4),(1,5),(2,3),(3,4),(3,5),(4,5)],6)
=> ? = 0 + 3
[[0,0,1,0,0],[1,0,-1,1,0],[0,0,1,0,0],[0,1,0,0,0],[0,0,0,0,1]]
=> [1,1,1,0,1,0,0,0,1,0]
=> [6,3,4,1,2,5] => ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> ? = 0 + 3
[[0,0,0,1,0],[1,0,0,0,0],[0,0,1,0,0],[0,1,0,0,0],[0,0,0,0,1]]
=> [1,1,1,1,0,0,0,0,1,0]
=> [2,3,4,6,1,5] => ([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> ? = 1 + 3
[[0,1,0,0,0],[0,0,0,1,0],[1,-1,1,0,0],[0,1,0,0,0],[0,0,0,0,1]]
=> [1,1,0,1,1,0,0,0,1,0]
=> [4,3,1,6,2,5] => ([(0,2),(1,4),(1,5),(2,3),(3,4),(3,5),(4,5)],6)
=> ? = 0 + 3
[[0,0,1,0,0],[0,1,-1,1,0],[1,-1,1,0,0],[0,1,0,0,0],[0,0,0,0,1]]
=> [1,1,1,0,1,0,0,0,1,0]
=> [6,3,4,1,2,5] => ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> ? = 0 + 3
[[0,0,0,1,0],[0,1,0,0,0],[1,-1,1,0,0],[0,1,0,0,0],[0,0,0,0,1]]
=> [1,1,1,1,0,0,0,0,1,0]
=> [2,3,4,6,1,5] => ([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> ? = 1 + 3
[[0,0,1,0,0],[0,0,0,1,0],[1,0,0,0,0],[0,1,0,0,0],[0,0,0,0,1]]
=> [1,1,1,0,1,0,0,0,1,0]
=> [6,3,4,1,2,5] => ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> ? = 0 + 3
[[0,0,0,1,0],[0,0,1,0,0],[1,0,0,0,0],[0,1,0,0,0],[0,0,0,0,1]]
=> [1,1,1,1,0,0,0,0,1,0]
=> [2,3,4,6,1,5] => ([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> ? = 1 + 3
[[0,1,0,0,0],[0,0,1,0,0],[0,0,0,1,0],[1,0,0,0,0],[0,0,0,0,1]]
=> [1,1,0,1,0,1,0,0,1,0]
=> [6,4,1,2,3,5] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 2 + 3
[[0,0,1,0,0],[0,1,0,0,0],[0,0,0,1,0],[1,0,0,0,0],[0,0,0,0,1]]
=> [1,1,1,0,0,1,0,0,1,0]
=> [2,6,4,1,3,5] => ([(0,5),(1,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 1 + 3
[[0,1,0,0,0],[0,0,0,1,0],[0,0,1,0,0],[1,0,0,0,0],[0,0,0,0,1]]
=> [1,1,0,1,1,0,0,0,1,0]
=> [4,3,1,6,2,5] => ([(0,2),(1,4),(1,5),(2,3),(3,4),(3,5),(4,5)],6)
=> ? = 0 + 3
[[0,0,1,0,0],[0,1,-1,1,0],[0,0,1,0,0],[1,0,0,0,0],[0,0,0,0,1]]
=> [1,1,1,0,1,0,0,0,1,0]
=> [6,3,4,1,2,5] => ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> ? = 0 + 3
[[0,0,0,1,0],[0,1,0,0,0],[0,0,1,0,0],[1,0,0,0,0],[0,0,0,0,1]]
=> [1,1,1,1,0,0,0,0,1,0]
=> [2,3,4,6,1,5] => ([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> ? = 1 + 3
[[1,0,0,0,0,0],[0,1,0,0,0,0],[0,0,0,1,0,0],[0,0,1,0,0,0],[0,0,0,0,1,0],[0,0,0,0,0,1]]
=> [1,0,1,0,1,1,0,0,1,0,1,0]
=> [4,1,2,7,3,5,6] => ([(0,6),(1,6),(2,5),(3,5),(4,5),(4,6)],7)
=> 2 = -1 + 3
[[0,1,0,0,0,0],[1,-1,0,0,1,0],[0,1,0,0,0,0],[0,0,1,0,0,0],[0,0,0,1,-1,1],[0,0,0,0,1,0]]
=> [1,1,0,1,1,1,0,0,0,1,0,0]
=> [4,3,1,7,6,2,5] => ([(0,4),(0,5),(1,2),(1,3),(2,3),(2,6),(3,6),(4,5),(4,6),(5,6)],7)
=> 3 = 0 + 3
[[0,1,0,0,0,0],[0,0,0,0,1,0],[1,0,0,0,0,0],[0,0,1,0,0,0],[0,0,0,1,-1,1],[0,0,0,0,1,0]]
=> [1,1,0,1,1,1,0,0,0,1,0,0]
=> [4,3,1,7,6,2,5] => ([(0,4),(0,5),(1,2),(1,3),(2,3),(2,6),(3,6),(4,5),(4,6),(5,6)],7)
=> 3 = 0 + 3
[[0,1,0,0,0,0],[1,-1,0,0,1,0],[0,0,1,0,0,0],[0,1,0,0,0,0],[0,0,0,1,-1,1],[0,0,0,0,1,0]]
=> [1,1,0,1,1,1,0,0,0,1,0,0]
=> [4,3,1,7,6,2,5] => ([(0,4),(0,5),(1,2),(1,3),(2,3),(2,6),(3,6),(4,5),(4,6),(5,6)],7)
=> 3 = 0 + 3
[[0,1,0,0,0,0],[0,0,0,0,1,0],[1,-1,1,0,0,0],[0,1,0,0,0,0],[0,0,0,1,-1,1],[0,0,0,0,1,0]]
=> [1,1,0,1,1,1,0,0,0,1,0,0]
=> [4,3,1,7,6,2,5] => ([(0,4),(0,5),(1,2),(1,3),(2,3),(2,6),(3,6),(4,5),(4,6),(5,6)],7)
=> 3 = 0 + 3
[[0,1,0,0,0,0],[0,0,0,0,1,0],[0,0,1,0,0,0],[1,0,0,0,0,0],[0,0,0,1,-1,1],[0,0,0,0,1,0]]
=> [1,1,0,1,1,1,0,0,0,1,0,0]
=> [4,3,1,7,6,2,5] => ([(0,4),(0,5),(1,2),(1,3),(2,3),(2,6),(3,6),(4,5),(4,6),(5,6)],7)
=> 3 = 0 + 3
[[0,1,0,0,0,0],[1,-1,0,0,1,0],[0,1,0,0,0,0],[0,0,0,1,0,0],[0,0,1,0,-1,1],[0,0,0,0,1,0]]
=> [1,1,0,1,1,1,0,0,0,1,0,0]
=> [4,3,1,7,6,2,5] => ([(0,4),(0,5),(1,2),(1,3),(2,3),(2,6),(3,6),(4,5),(4,6),(5,6)],7)
=> 3 = 0 + 3
[[0,1,0,0,0,0],[0,0,0,0,1,0],[1,0,0,0,0,0],[0,0,0,1,0,0],[0,0,1,0,-1,1],[0,0,0,0,1,0]]
=> [1,1,0,1,1,1,0,0,0,1,0,0]
=> [4,3,1,7,6,2,5] => ([(0,4),(0,5),(1,2),(1,3),(2,3),(2,6),(3,6),(4,5),(4,6),(5,6)],7)
=> 3 = 0 + 3
[[0,1,0,0,0,0],[1,-1,0,0,1,0],[0,0,1,0,0,0],[0,1,-1,1,0,0],[0,0,1,0,-1,1],[0,0,0,0,1,0]]
=> [1,1,0,1,1,1,0,0,0,1,0,0]
=> [4,3,1,7,6,2,5] => ([(0,4),(0,5),(1,2),(1,3),(2,3),(2,6),(3,6),(4,5),(4,6),(5,6)],7)
=> 3 = 0 + 3
[[0,1,0,0,0,0],[0,0,0,0,1,0],[1,-1,1,0,0,0],[0,1,-1,1,0,0],[0,0,1,0,-1,1],[0,0,0,0,1,0]]
=> [1,1,0,1,1,1,0,0,0,1,0,0]
=> [4,3,1,7,6,2,5] => ([(0,4),(0,5),(1,2),(1,3),(2,3),(2,6),(3,6),(4,5),(4,6),(5,6)],7)
=> 3 = 0 + 3
[[0,1,0,0,0,0],[0,0,0,0,1,0],[0,0,1,0,0,0],[1,0,-1,1,0,0],[0,0,1,0,-1,1],[0,0,0,0,1,0]]
=> [1,1,0,1,1,1,0,0,0,1,0,0]
=> [4,3,1,7,6,2,5] => ([(0,4),(0,5),(1,2),(1,3),(2,3),(2,6),(3,6),(4,5),(4,6),(5,6)],7)
=> 3 = 0 + 3
[[0,1,0,0,0,0],[1,-1,0,0,1,0],[0,0,0,1,0,0],[0,1,0,0,0,0],[0,0,1,0,-1,1],[0,0,0,0,1,0]]
=> [1,1,0,1,1,1,0,0,0,1,0,0]
=> [4,3,1,7,6,2,5] => ([(0,4),(0,5),(1,2),(1,3),(2,3),(2,6),(3,6),(4,5),(4,6),(5,6)],7)
=> 3 = 0 + 3
[[0,1,0,0,0,0],[0,0,0,0,1,0],[1,-1,0,1,0,0],[0,1,0,0,0,0],[0,0,1,0,-1,1],[0,0,0,0,1,0]]
=> [1,1,0,1,1,1,0,0,0,1,0,0]
=> [4,3,1,7,6,2,5] => ([(0,4),(0,5),(1,2),(1,3),(2,3),(2,6),(3,6),(4,5),(4,6),(5,6)],7)
=> 3 = 0 + 3
[[0,1,0,0,0,0],[0,0,0,0,1,0],[0,0,0,1,0,0],[1,0,0,0,0,0],[0,0,1,0,-1,1],[0,0,0,0,1,0]]
=> [1,1,0,1,1,1,0,0,0,1,0,0]
=> [4,3,1,7,6,2,5] => ([(0,4),(0,5),(1,2),(1,3),(2,3),(2,6),(3,6),(4,5),(4,6),(5,6)],7)
=> 3 = 0 + 3
[[0,1,0,0,0,0],[1,-1,0,0,1,0],[0,0,1,0,0,0],[0,0,0,1,0,0],[0,1,0,0,-1,1],[0,0,0,0,1,0]]
=> [1,1,0,1,1,1,0,0,0,1,0,0]
=> [4,3,1,7,6,2,5] => ([(0,4),(0,5),(1,2),(1,3),(2,3),(2,6),(3,6),(4,5),(4,6),(5,6)],7)
=> 3 = 0 + 3
[[0,1,0,0,0,0],[0,0,0,0,1,0],[1,-1,1,0,0,0],[0,0,0,1,0,0],[0,1,0,0,-1,1],[0,0,0,0,1,0]]
=> [1,1,0,1,1,1,0,0,0,1,0,0]
=> [4,3,1,7,6,2,5] => ([(0,4),(0,5),(1,2),(1,3),(2,3),(2,6),(3,6),(4,5),(4,6),(5,6)],7)
=> 3 = 0 + 3
[[0,1,0,0,0,0],[0,0,0,0,1,0],[0,0,1,0,0,0],[1,-1,0,1,0,0],[0,1,0,0,-1,1],[0,0,0,0,1,0]]
=> [1,1,0,1,1,1,0,0,0,1,0,0]
=> [4,3,1,7,6,2,5] => ([(0,4),(0,5),(1,2),(1,3),(2,3),(2,6),(3,6),(4,5),(4,6),(5,6)],7)
=> 3 = 0 + 3
[[0,1,0,0,0,0],[1,-1,0,0,1,0],[0,0,0,1,0,0],[0,0,1,0,0,0],[0,1,0,0,-1,1],[0,0,0,0,1,0]]
=> [1,1,0,1,1,1,0,0,0,1,0,0]
=> [4,3,1,7,6,2,5] => ([(0,4),(0,5),(1,2),(1,3),(2,3),(2,6),(3,6),(4,5),(4,6),(5,6)],7)
=> 3 = 0 + 3
[[0,1,0,0,0,0],[0,0,0,0,1,0],[1,-1,0,1,0,0],[0,0,1,0,0,0],[0,1,0,0,-1,1],[0,0,0,0,1,0]]
=> [1,1,0,1,1,1,0,0,0,1,0,0]
=> [4,3,1,7,6,2,5] => ([(0,4),(0,5),(1,2),(1,3),(2,3),(2,6),(3,6),(4,5),(4,6),(5,6)],7)
=> 3 = 0 + 3
[[0,1,0,0,0,0],[0,0,0,0,1,0],[0,0,0,1,0,0],[1,-1,1,0,0,0],[0,1,0,0,-1,1],[0,0,0,0,1,0]]
=> [1,1,0,1,1,1,0,0,0,1,0,0]
=> [4,3,1,7,6,2,5] => ([(0,4),(0,5),(1,2),(1,3),(2,3),(2,6),(3,6),(4,5),(4,6),(5,6)],7)
=> 3 = 0 + 3
[[0,1,0,0,0,0],[0,0,0,0,1,0],[0,0,1,0,0,0],[0,0,0,1,0,0],[1,0,0,0,-1,1],[0,0,0,0,1,0]]
=> [1,1,0,1,1,1,0,0,0,1,0,0]
=> [4,3,1,7,6,2,5] => ([(0,4),(0,5),(1,2),(1,3),(2,3),(2,6),(3,6),(4,5),(4,6),(5,6)],7)
=> 3 = 0 + 3
[[0,1,0,0,0,0],[0,0,0,0,1,0],[0,0,0,1,0,0],[0,0,1,0,0,0],[1,0,0,0,-1,1],[0,0,0,0,1,0]]
=> [1,1,0,1,1,1,0,0,0,1,0,0]
=> [4,3,1,7,6,2,5] => ([(0,4),(0,5),(1,2),(1,3),(2,3),(2,6),(3,6),(4,5),(4,6),(5,6)],7)
=> 3 = 0 + 3
[[0,0,1,0,0,0],[1,0,0,0,0,0],[0,1,0,0,0,0],[0,0,0,0,0,1],[0,0,0,1,0,0],[0,0,0,0,1,0]]
=> [1,1,1,0,0,0,1,1,1,0,0,0]
=> [2,3,5,1,6,7,4] => ([(0,6),(1,6),(2,5),(3,5),(4,5),(4,6)],7)
=> 2 = -1 + 3
[[0,0,1,0,0,0],[0,1,0,0,0,0],[1,0,0,0,0,0],[0,0,0,0,0,1],[0,0,0,1,0,0],[0,0,0,0,1,0]]
=> [1,1,1,0,0,0,1,1,1,0,0,0]
=> [2,3,5,1,6,7,4] => ([(0,6),(1,6),(2,5),(3,5),(4,5),(4,6)],7)
=> 2 = -1 + 3
[[0,1,0,0,0,0],[1,-1,0,0,1,0],[0,1,0,0,0,0],[0,0,1,0,0,0],[0,0,0,0,0,1],[0,0,0,1,0,0]]
=> [1,1,0,1,1,1,0,0,0,1,0,0]
=> [4,3,1,7,6,2,5] => ([(0,4),(0,5),(1,2),(1,3),(2,3),(2,6),(3,6),(4,5),(4,6),(5,6)],7)
=> 3 = 0 + 3
[[0,1,0,0,0,0],[0,0,0,0,1,0],[1,0,0,0,0,0],[0,0,1,0,0,0],[0,0,0,0,0,1],[0,0,0,1,0,0]]
=> [1,1,0,1,1,1,0,0,0,1,0,0]
=> [4,3,1,7,6,2,5] => ([(0,4),(0,5),(1,2),(1,3),(2,3),(2,6),(3,6),(4,5),(4,6),(5,6)],7)
=> 3 = 0 + 3
[[0,1,0,0,0,0],[1,-1,0,0,1,0],[0,0,1,0,0,0],[0,1,0,0,0,0],[0,0,0,0,0,1],[0,0,0,1,0,0]]
=> [1,1,0,1,1,1,0,0,0,1,0,0]
=> [4,3,1,7,6,2,5] => ([(0,4),(0,5),(1,2),(1,3),(2,3),(2,6),(3,6),(4,5),(4,6),(5,6)],7)
=> 3 = 0 + 3
[[0,1,0,0,0,0],[0,0,0,0,1,0],[1,-1,1,0,0,0],[0,1,0,0,0,0],[0,0,0,0,0,1],[0,0,0,1,0,0]]
=> [1,1,0,1,1,1,0,0,0,1,0,0]
=> [4,3,1,7,6,2,5] => ([(0,4),(0,5),(1,2),(1,3),(2,3),(2,6),(3,6),(4,5),(4,6),(5,6)],7)
=> 3 = 0 + 3
[[0,1,0,0,0,0],[0,0,0,0,1,0],[0,0,1,0,0,0],[1,0,0,0,0,0],[0,0,0,0,0,1],[0,0,0,1,0,0]]
=> [1,1,0,1,1,1,0,0,0,1,0,0]
=> [4,3,1,7,6,2,5] => ([(0,4),(0,5),(1,2),(1,3),(2,3),(2,6),(3,6),(4,5),(4,6),(5,6)],7)
=> 3 = 0 + 3
[[0,1,0,0,0,0],[1,-1,0,0,1,0],[0,1,0,0,0,0],[0,0,0,1,0,0],[0,0,1,-1,0,1],[0,0,0,1,0,0]]
=> [1,1,0,1,1,1,0,0,0,1,0,0]
=> [4,3,1,7,6,2,5] => ([(0,4),(0,5),(1,2),(1,3),(2,3),(2,6),(3,6),(4,5),(4,6),(5,6)],7)
=> 3 = 0 + 3
[[0,1,0,0,0,0],[0,0,0,0,1,0],[1,0,0,0,0,0],[0,0,0,1,0,0],[0,0,1,-1,0,1],[0,0,0,1,0,0]]
=> [1,1,0,1,1,1,0,0,0,1,0,0]
=> [4,3,1,7,6,2,5] => ([(0,4),(0,5),(1,2),(1,3),(2,3),(2,6),(3,6),(4,5),(4,6),(5,6)],7)
=> 3 = 0 + 3
[[0,1,0,0,0,0],[1,-1,0,0,1,0],[0,0,1,0,0,0],[0,1,-1,1,0,0],[0,0,1,-1,0,1],[0,0,0,1,0,0]]
=> [1,1,0,1,1,1,0,0,0,1,0,0]
=> [4,3,1,7,6,2,5] => ([(0,4),(0,5),(1,2),(1,3),(2,3),(2,6),(3,6),(4,5),(4,6),(5,6)],7)
=> 3 = 0 + 3
[[0,1,0,0,0,0],[0,0,0,0,1,0],[1,-1,1,0,0,0],[0,1,-1,1,0,0],[0,0,1,-1,0,1],[0,0,0,1,0,0]]
=> [1,1,0,1,1,1,0,0,0,1,0,0]
=> [4,3,1,7,6,2,5] => ([(0,4),(0,5),(1,2),(1,3),(2,3),(2,6),(3,6),(4,5),(4,6),(5,6)],7)
=> 3 = 0 + 3
[[0,1,0,0,0,0],[0,0,0,0,1,0],[0,0,1,0,0,0],[1,0,-1,1,0,0],[0,0,1,-1,0,1],[0,0,0,1,0,0]]
=> [1,1,0,1,1,1,0,0,0,1,0,0]
=> [4,3,1,7,6,2,5] => ([(0,4),(0,5),(1,2),(1,3),(2,3),(2,6),(3,6),(4,5),(4,6),(5,6)],7)
=> 3 = 0 + 3
[[0,1,0,0,0,0],[1,-1,0,0,1,0],[0,0,0,1,0,0],[0,1,0,0,0,0],[0,0,1,-1,0,1],[0,0,0,1,0,0]]
=> [1,1,0,1,1,1,0,0,0,1,0,0]
=> [4,3,1,7,6,2,5] => ([(0,4),(0,5),(1,2),(1,3),(2,3),(2,6),(3,6),(4,5),(4,6),(5,6)],7)
=> 3 = 0 + 3
[[0,1,0,0,0,0],[0,0,0,0,1,0],[1,-1,0,1,0,0],[0,1,0,0,0,0],[0,0,1,-1,0,1],[0,0,0,1,0,0]]
=> [1,1,0,1,1,1,0,0,0,1,0,0]
=> [4,3,1,7,6,2,5] => ([(0,4),(0,5),(1,2),(1,3),(2,3),(2,6),(3,6),(4,5),(4,6),(5,6)],7)
=> 3 = 0 + 3
[[0,1,0,0,0,0],[0,0,0,0,1,0],[0,0,0,1,0,0],[1,0,0,0,0,0],[0,0,1,-1,0,1],[0,0,0,1,0,0]]
=> [1,1,0,1,1,1,0,0,0,1,0,0]
=> [4,3,1,7,6,2,5] => ([(0,4),(0,5),(1,2),(1,3),(2,3),(2,6),(3,6),(4,5),(4,6),(5,6)],7)
=> 3 = 0 + 3
[[0,1,0,0,0,0],[1,-1,0,0,1,0],[0,0,1,0,0,0],[0,0,0,1,0,0],[0,1,0,-1,0,1],[0,0,0,1,0,0]]
=> [1,1,0,1,1,1,0,0,0,1,0,0]
=> [4,3,1,7,6,2,5] => ([(0,4),(0,5),(1,2),(1,3),(2,3),(2,6),(3,6),(4,5),(4,6),(5,6)],7)
=> 3 = 0 + 3
[[0,1,0,0,0,0],[0,0,0,0,1,0],[1,-1,1,0,0,0],[0,0,0,1,0,0],[0,1,0,-1,0,1],[0,0,0,1,0,0]]
=> [1,1,0,1,1,1,0,0,0,1,0,0]
=> [4,3,1,7,6,2,5] => ([(0,4),(0,5),(1,2),(1,3),(2,3),(2,6),(3,6),(4,5),(4,6),(5,6)],7)
=> 3 = 0 + 3
[[0,1,0,0,0,0],[0,0,0,0,1,0],[0,0,1,0,0,0],[1,-1,0,1,0,0],[0,1,0,-1,0,1],[0,0,0,1,0,0]]
=> [1,1,0,1,1,1,0,0,0,1,0,0]
=> [4,3,1,7,6,2,5] => ([(0,4),(0,5),(1,2),(1,3),(2,3),(2,6),(3,6),(4,5),(4,6),(5,6)],7)
=> 3 = 0 + 3
[[0,1,0,0,0,0],[1,-1,0,0,1,0],[0,0,0,1,0,0],[0,0,1,0,0,0],[0,1,0,-1,0,1],[0,0,0,1,0,0]]
=> [1,1,0,1,1,1,0,0,0,1,0,0]
=> [4,3,1,7,6,2,5] => ([(0,4),(0,5),(1,2),(1,3),(2,3),(2,6),(3,6),(4,5),(4,6),(5,6)],7)
=> 3 = 0 + 3
[[0,1,0,0,0,0],[0,0,0,0,1,0],[1,-1,0,1,0,0],[0,0,1,0,0,0],[0,1,0,-1,0,1],[0,0,0,1,0,0]]
=> [1,1,0,1,1,1,0,0,0,1,0,0]
=> [4,3,1,7,6,2,5] => ([(0,4),(0,5),(1,2),(1,3),(2,3),(2,6),(3,6),(4,5),(4,6),(5,6)],7)
=> 3 = 0 + 3
[[0,1,0,0,0,0],[0,0,0,0,1,0],[0,0,0,1,0,0],[1,-1,1,0,0,0],[0,1,0,-1,0,1],[0,0,0,1,0,0]]
=> [1,1,0,1,1,1,0,0,0,1,0,0]
=> [4,3,1,7,6,2,5] => ([(0,4),(0,5),(1,2),(1,3),(2,3),(2,6),(3,6),(4,5),(4,6),(5,6)],7)
=> 3 = 0 + 3
[[0,1,0,0,0,0],[0,0,0,0,1,0],[0,0,1,0,0,0],[0,0,0,1,0,0],[1,0,0,-1,0,1],[0,0,0,1,0,0]]
=> [1,1,0,1,1,1,0,0,0,1,0,0]
=> [4,3,1,7,6,2,5] => ([(0,4),(0,5),(1,2),(1,3),(2,3),(2,6),(3,6),(4,5),(4,6),(5,6)],7)
=> 3 = 0 + 3
[[0,1,0,0,0,0],[0,0,0,0,1,0],[0,0,0,1,0,0],[0,0,1,0,0,0],[1,0,0,-1,0,1],[0,0,0,1,0,0]]
=> [1,1,0,1,1,1,0,0,0,1,0,0]
=> [4,3,1,7,6,2,5] => ([(0,4),(0,5),(1,2),(1,3),(2,3),(2,6),(3,6),(4,5),(4,6),(5,6)],7)
=> 3 = 0 + 3
[[0,0,1,0,0,0],[1,0,0,0,0,0],[0,1,0,0,0,0],[0,0,0,0,0,1],[0,0,0,0,1,0],[0,0,0,1,0,0]]
=> [1,1,1,0,0,0,1,1,1,0,0,0]
=> [2,3,5,1,6,7,4] => ([(0,6),(1,6),(2,5),(3,5),(4,5),(4,6)],7)
=> 2 = -1 + 3
[[0,0,1,0,0,0],[0,1,0,0,0,0],[1,0,0,0,0,0],[0,0,0,0,0,1],[0,0,0,0,1,0],[0,0,0,1,0,0]]
=> [1,1,1,0,0,0,1,1,1,0,0,0]
=> [2,3,5,1,6,7,4] => ([(0,6),(1,6),(2,5),(3,5),(4,5),(4,6)],7)
=> 2 = -1 + 3
[[0,1,0,0,0,0],[1,-1,0,0,1,0],[0,1,0,0,0,0],[0,0,0,1,0,0],[0,0,0,0,0,1],[0,0,1,0,0,0]]
=> [1,1,0,1,1,1,0,0,0,1,0,0]
=> [4,3,1,7,6,2,5] => ([(0,4),(0,5),(1,2),(1,3),(2,3),(2,6),(3,6),(4,5),(4,6),(5,6)],7)
=> 3 = 0 + 3
Description
The largest eigenvalue of a graph if it is integral. If a graph is $d$-regular, then its largest eigenvalue equals $d$. One can show that the largest eigenvalue always lies between the average degree and the maximal degree. This statistic is undefined if the largest eigenvalue of the graph is not integral.
Matching statistic: St001624
Mp00007: Alternating sign matrices to Dyck pathDyck paths
Mp00119: Dyck paths to 321-avoiding permutation (Krattenthaler)Permutations
Mp00208: Permutations lattice of intervalsLattices
St001624: Lattices ⟶ ℤResult quality: 1% values known / values provided: 1%distinct values known / distinct values provided: 7%
Values
[[0,1,0],[1,0,0],[0,0,1]]
=> [1,1,0,0,1,0]
=> [2,1,3] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6)
=> 2 = 0 + 2
[[0,1,0,0],[1,0,0,0],[0,0,1,0],[0,0,0,1]]
=> [1,1,0,0,1,0,1,0]
=> [2,1,3,4] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,6),(3,6),(4,5),(4,7),(5,8),(6,7),(7,8)],9)
=> ? = -1 + 2
[[1,0,0,0],[0,0,1,0],[0,1,0,0],[0,0,0,1]]
=> [1,0,1,1,0,0,1,0]
=> [1,3,2,4] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,7),(4,6),(5,6),(5,7),(6,8),(7,8)],9)
=> ? = 0 + 2
[[0,1,0,0],[1,-1,1,0],[0,1,0,0],[0,0,0,1]]
=> [1,1,0,1,0,0,1,0]
=> [2,3,1,4] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,6),(4,7),(5,7),(7,6)],8)
=> ? = 1 + 2
[[0,0,1,0],[1,0,0,0],[0,1,0,0],[0,0,0,1]]
=> [1,1,1,0,0,0,1,0]
=> [3,1,2,4] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,6),(4,7),(5,7),(7,6)],8)
=> ? = 0 + 2
[[0,1,0,0],[0,0,1,0],[1,0,0,0],[0,0,0,1]]
=> [1,1,0,1,0,0,1,0]
=> [2,3,1,4] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,6),(4,7),(5,7),(7,6)],8)
=> ? = 1 + 2
[[0,0,1,0],[0,1,0,0],[1,0,0,0],[0,0,0,1]]
=> [1,1,1,0,0,0,1,0]
=> [3,1,2,4] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,6),(4,7),(5,7),(7,6)],8)
=> ? = 0 + 2
[[0,1,0,0],[1,0,0,0],[0,0,0,1],[0,0,1,0]]
=> [1,1,0,0,1,1,0,0]
=> [2,1,4,3] => ([(0,1),(0,2),(0,3),(0,4),(1,6),(2,6),(3,5),(4,5),(5,7),(6,7)],8)
=> ? = 0 + 2
[[0,1,0,0],[1,-1,0,1],[0,1,0,0],[0,0,1,0]]
=> [1,1,0,1,1,0,0,0]
=> [2,4,1,3] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6)
=> 2 = 0 + 2
[[0,1,0,0],[0,0,0,1],[1,0,0,0],[0,0,1,0]]
=> [1,1,0,1,1,0,0,0]
=> [2,4,1,3] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6)
=> 2 = 0 + 2
[[0,1,0,0],[1,-1,0,1],[0,0,1,0],[0,1,0,0]]
=> [1,1,0,1,1,0,0,0]
=> [2,4,1,3] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6)
=> 2 = 0 + 2
[[0,1,0,0],[0,0,0,1],[1,-1,1,0],[0,1,0,0]]
=> [1,1,0,1,1,0,0,0]
=> [2,4,1,3] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6)
=> 2 = 0 + 2
[[0,1,0,0],[0,0,0,1],[0,0,1,0],[1,0,0,0]]
=> [1,1,0,1,1,0,0,0]
=> [2,4,1,3] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6)
=> 2 = 0 + 2
[[0,1,0,0,0],[1,0,0,0,0],[0,0,1,0,0],[0,0,0,1,0],[0,0,0,0,1]]
=> [1,1,0,0,1,0,1,0,1,0]
=> [2,1,3,4,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,11),(2,11),(3,10),(4,9),(4,12),(5,10),(5,12),(7,6),(8,6),(9,7),(10,8),(11,9),(12,7),(12,8)],13)
=> ? = -2 + 2
[[1,0,0,0,0],[0,0,1,0,0],[0,1,0,0,0],[0,0,0,1,0],[0,0,0,0,1]]
=> [1,0,1,1,0,0,1,0,1,0]
=> [1,3,2,4,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,10),(2,12),(3,12),(4,9),(5,10),(5,11),(7,6),(8,6),(9,8),(10,7),(11,7),(11,8),(12,9),(12,11)],13)
=> ? = -1 + 2
[[0,1,0,0,0],[1,-1,1,0,0],[0,1,0,0,0],[0,0,0,1,0],[0,0,0,0,1]]
=> [1,1,0,1,0,0,1,0,1,0]
=> [2,3,1,4,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,6),(3,7),(4,7),(5,6),(5,9),(6,10),(7,8),(8,9),(9,10)],11)
=> ? = 0 + 2
[[0,0,1,0,0],[1,0,0,0,0],[0,1,0,0,0],[0,0,0,1,0],[0,0,0,0,1]]
=> [1,1,1,0,0,0,1,0,1,0]
=> [3,1,2,4,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,6),(3,7),(4,7),(5,6),(5,9),(6,10),(7,8),(8,9),(9,10)],11)
=> ? = -1 + 2
[[0,1,0,0,0],[0,0,1,0,0],[1,0,0,0,0],[0,0,0,1,0],[0,0,0,0,1]]
=> [1,1,0,1,0,0,1,0,1,0]
=> [2,3,1,4,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,6),(3,7),(4,7),(5,6),(5,9),(6,10),(7,8),(8,9),(9,10)],11)
=> ? = 0 + 2
[[0,0,1,0,0],[0,1,0,0,0],[1,0,0,0,0],[0,0,0,1,0],[0,0,0,0,1]]
=> [1,1,1,0,0,0,1,0,1,0]
=> [3,1,2,4,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,6),(3,7),(4,7),(5,6),(5,9),(6,10),(7,8),(8,9),(9,10)],11)
=> ? = -1 + 2
[[1,0,0,0,0],[0,1,0,0,0],[0,0,0,1,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [1,0,1,0,1,1,0,0,1,0]
=> [1,2,4,3,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,10),(2,12),(3,12),(4,9),(5,10),(5,11),(7,6),(8,6),(9,8),(10,7),(11,7),(11,8),(12,9),(12,11)],13)
=> ? = 0 + 2
[[0,1,0,0,0],[1,0,0,0,0],[0,0,0,1,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [1,1,0,0,1,1,0,0,1,0]
=> [2,1,4,3,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,6),(3,6),(4,7),(5,7),(6,9),(7,8),(7,9),(8,10),(9,10)],11)
=> ? = 0 + 2
[[1,0,0,0,0],[0,0,1,0,0],[0,1,-1,1,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [1,0,1,1,0,1,0,0,1,0]
=> [1,3,4,2,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,8),(4,7),(5,9),(6,9),(7,10),(8,10),(9,7),(9,8)],11)
=> ? = 1 + 2
[[0,1,0,0,0],[1,-1,1,0,0],[0,1,-1,1,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [1,1,0,1,0,1,0,0,1,0]
=> [2,3,4,1,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,9),(2,8),(3,7),(4,6),(5,6),(5,7),(6,10),(7,10),(8,9),(10,8)],11)
=> ? = 2 + 2
[[0,0,1,0,0],[1,0,0,0,0],[0,1,-1,1,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [1,1,1,0,0,1,0,0,1,0]
=> [3,1,4,2,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,7),(2,7),(3,7),(4,7),(5,6),(7,6)],8)
=> ? = 1 + 2
[[0,1,0,0,0],[0,0,1,0,0],[1,0,-1,1,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [1,1,0,1,0,1,0,0,1,0]
=> [2,3,4,1,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,9),(2,8),(3,7),(4,6),(5,6),(5,7),(6,10),(7,10),(8,9),(10,8)],11)
=> ? = 2 + 2
[[0,0,1,0,0],[0,1,0,0,0],[1,0,-1,1,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [1,1,1,0,0,1,0,0,1,0]
=> [3,1,4,2,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,7),(2,7),(3,7),(4,7),(5,6),(7,6)],8)
=> ? = 1 + 2
[[1,0,0,0,0],[0,0,0,1,0],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [1,0,1,1,1,0,0,0,1,0]
=> [1,4,2,3,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,8),(4,7),(5,9),(6,9),(7,10),(8,10),(9,7),(9,8)],11)
=> ? = 0 + 2
[[0,1,0,0,0],[1,-1,0,1,0],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [1,1,0,1,1,0,0,0,1,0]
=> [2,4,1,3,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,7),(2,7),(3,7),(4,7),(5,6),(7,6)],8)
=> ? = 0 + 2
[[0,0,1,0,0],[1,0,-1,1,0],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [1,1,1,0,1,0,0,0,1,0]
=> [3,4,1,2,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,7),(3,7),(4,6),(5,6),(6,9),(7,9),(9,8)],10)
=> ? = 0 + 2
[[0,0,0,1,0],[1,0,0,0,0],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [1,1,1,1,0,0,0,0,1,0]
=> [4,1,2,3,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,9),(2,8),(3,7),(4,6),(5,6),(5,7),(6,10),(7,10),(8,9),(10,8)],11)
=> ? = 1 + 2
[[0,1,0,0,0],[0,0,0,1,0],[1,0,0,0,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [1,1,0,1,1,0,0,0,1,0]
=> [2,4,1,3,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,7),(2,7),(3,7),(4,7),(5,6),(7,6)],8)
=> ? = 0 + 2
[[0,0,1,0,0],[0,1,-1,1,0],[1,0,0,0,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [1,1,1,0,1,0,0,0,1,0]
=> [3,4,1,2,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,7),(3,7),(4,6),(5,6),(6,9),(7,9),(9,8)],10)
=> ? = 0 + 2
[[0,0,0,1,0],[0,1,0,0,0],[1,0,0,0,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [1,1,1,1,0,0,0,0,1,0]
=> [4,1,2,3,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,9),(2,8),(3,7),(4,6),(5,6),(5,7),(6,10),(7,10),(8,9),(10,8)],11)
=> ? = 1 + 2
[[1,0,0,0,0],[0,0,1,0,0],[0,0,0,1,0],[0,1,0,0,0],[0,0,0,0,1]]
=> [1,0,1,1,0,1,0,0,1,0]
=> [1,3,4,2,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,8),(4,7),(5,9),(6,9),(7,10),(8,10),(9,7),(9,8)],11)
=> ? = 1 + 2
[[0,1,0,0,0],[1,-1,1,0,0],[0,0,0,1,0],[0,1,0,0,0],[0,0,0,0,1]]
=> [1,1,0,1,0,1,0,0,1,0]
=> [2,3,4,1,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,9),(2,8),(3,7),(4,6),(5,6),(5,7),(6,10),(7,10),(8,9),(10,8)],11)
=> ? = 2 + 2
[[0,0,1,0,0],[1,0,0,0,0],[0,0,0,1,0],[0,1,0,0,0],[0,0,0,0,1]]
=> [1,1,1,0,0,1,0,0,1,0]
=> [3,1,4,2,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,7),(2,7),(3,7),(4,7),(5,6),(7,6)],8)
=> ? = 1 + 2
[[0,1,0,0,0],[0,0,1,0,0],[1,-1,0,1,0],[0,1,0,0,0],[0,0,0,0,1]]
=> [1,1,0,1,0,1,0,0,1,0]
=> [2,3,4,1,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,9),(2,8),(3,7),(4,6),(5,6),(5,7),(6,10),(7,10),(8,9),(10,8)],11)
=> ? = 2 + 2
[[0,0,1,0,0],[0,1,0,0,0],[1,-1,0,1,0],[0,1,0,0,0],[0,0,0,0,1]]
=> [1,1,1,0,0,1,0,0,1,0]
=> [3,1,4,2,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,7),(2,7),(3,7),(4,7),(5,6),(7,6)],8)
=> ? = 1 + 2
[[1,0,0,0,0],[0,0,0,1,0],[0,0,1,0,0],[0,1,0,0,0],[0,0,0,0,1]]
=> [1,0,1,1,1,0,0,0,1,0]
=> [1,4,2,3,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,8),(4,7),(5,9),(6,9),(7,10),(8,10),(9,7),(9,8)],11)
=> ? = 0 + 2
[[0,1,0,0,0],[1,-1,0,1,0],[0,0,1,0,0],[0,1,0,0,0],[0,0,0,0,1]]
=> [1,1,0,1,1,0,0,0,1,0]
=> [2,4,1,3,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,7),(2,7),(3,7),(4,7),(5,6),(7,6)],8)
=> ? = 0 + 2
[[0,0,1,0,0],[1,0,-1,1,0],[0,0,1,0,0],[0,1,0,0,0],[0,0,0,0,1]]
=> [1,1,1,0,1,0,0,0,1,0]
=> [3,4,1,2,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,7),(3,7),(4,6),(5,6),(6,9),(7,9),(9,8)],10)
=> ? = 0 + 2
[[0,0,0,1,0],[1,0,0,0,0],[0,0,1,0,0],[0,1,0,0,0],[0,0,0,0,1]]
=> [1,1,1,1,0,0,0,0,1,0]
=> [4,1,2,3,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,9),(2,8),(3,7),(4,6),(5,6),(5,7),(6,10),(7,10),(8,9),(10,8)],11)
=> ? = 1 + 2
[[0,1,0,0,0],[0,0,0,1,0],[1,-1,1,0,0],[0,1,0,0,0],[0,0,0,0,1]]
=> [1,1,0,1,1,0,0,0,1,0]
=> [2,4,1,3,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,7),(2,7),(3,7),(4,7),(5,6),(7,6)],8)
=> ? = 0 + 2
[[0,0,1,0,0],[0,1,-1,1,0],[1,-1,1,0,0],[0,1,0,0,0],[0,0,0,0,1]]
=> [1,1,1,0,1,0,0,0,1,0]
=> [3,4,1,2,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,7),(3,7),(4,6),(5,6),(6,9),(7,9),(9,8)],10)
=> ? = 0 + 2
[[0,0,0,1,0],[0,1,0,0,0],[1,-1,1,0,0],[0,1,0,0,0],[0,0,0,0,1]]
=> [1,1,1,1,0,0,0,0,1,0]
=> [4,1,2,3,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,9),(2,8),(3,7),(4,6),(5,6),(5,7),(6,10),(7,10),(8,9),(10,8)],11)
=> ? = 1 + 2
[[0,0,1,0,0],[0,0,0,1,0],[1,0,0,0,0],[0,1,0,0,0],[0,0,0,0,1]]
=> [1,1,1,0,1,0,0,0,1,0]
=> [3,4,1,2,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,7),(3,7),(4,6),(5,6),(6,9),(7,9),(9,8)],10)
=> ? = 0 + 2
[[0,0,0,1,0],[0,0,1,0,0],[1,0,0,0,0],[0,1,0,0,0],[0,0,0,0,1]]
=> [1,1,1,1,0,0,0,0,1,0]
=> [4,1,2,3,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,9),(2,8),(3,7),(4,6),(5,6),(5,7),(6,10),(7,10),(8,9),(10,8)],11)
=> ? = 1 + 2
[[0,1,0,0,0],[0,0,1,0,0],[0,0,0,1,0],[1,0,0,0,0],[0,0,0,0,1]]
=> [1,1,0,1,0,1,0,0,1,0]
=> [2,3,4,1,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,9),(2,8),(3,7),(4,6),(5,6),(5,7),(6,10),(7,10),(8,9),(10,8)],11)
=> ? = 2 + 2
[[0,0,1,0,0],[0,1,0,0,0],[0,0,0,1,0],[1,0,0,0,0],[0,0,0,0,1]]
=> [1,1,1,0,0,1,0,0,1,0]
=> [3,1,4,2,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,7),(2,7),(3,7),(4,7),(5,6),(7,6)],8)
=> ? = 1 + 2
[[0,1,0,0,0],[0,0,0,1,0],[0,0,1,0,0],[1,0,0,0,0],[0,0,0,0,1]]
=> [1,1,0,1,1,0,0,0,1,0]
=> [2,4,1,3,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,7),(2,7),(3,7),(4,7),(5,6),(7,6)],8)
=> ? = 0 + 2
[[0,0,1,0,0],[0,1,-1,1,0],[0,0,1,0,0],[1,0,0,0,0],[0,0,0,0,1]]
=> [1,1,1,0,1,0,0,0,1,0]
=> [3,4,1,2,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,7),(3,7),(4,6),(5,6),(6,9),(7,9),(9,8)],10)
=> ? = 0 + 2
[[0,0,0,1,0],[0,1,0,0,0],[0,0,1,0,0],[1,0,0,0,0],[0,0,0,0,1]]
=> [1,1,1,1,0,0,0,0,1,0]
=> [4,1,2,3,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,9),(2,8),(3,7),(4,6),(5,6),(5,7),(6,10),(7,10),(8,9),(10,8)],11)
=> ? = 1 + 2
[[0,0,1,0,0],[0,0,0,1,0],[0,1,0,0,0],[1,0,0,0,0],[0,0,0,0,1]]
=> [1,1,1,0,1,0,0,0,1,0]
=> [3,4,1,2,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,7),(3,7),(4,6),(5,6),(6,9),(7,9),(9,8)],10)
=> ? = 0 + 2
[[0,0,0,1,0],[0,0,1,0,0],[0,1,0,0,0],[1,0,0,0,0],[0,0,0,0,1]]
=> [1,1,1,1,0,0,0,0,1,0]
=> [4,1,2,3,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,9),(2,8),(3,7),(4,6),(5,6),(5,7),(6,10),(7,10),(8,9),(10,8)],11)
=> ? = 1 + 2
[[0,1,0,0,0],[1,0,0,0,0],[0,0,1,0,0],[0,0,0,0,1],[0,0,0,1,0]]
=> [1,1,0,0,1,0,1,1,0,0]
=> [2,1,3,5,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(1,9),(2,7),(3,7),(4,6),(5,6),(6,9),(7,8),(8,10),(9,10)],11)
=> ? = -1 + 2
[[1,0,0,0,0],[0,0,1,0,0],[0,1,0,0,0],[0,0,0,0,1],[0,0,0,1,0]]
=> [1,0,1,1,0,0,1,1,0,0]
=> [1,3,2,5,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,6),(3,6),(4,7),(5,7),(6,9),(7,8),(7,9),(8,10),(9,10)],11)
=> ? = 0 + 2
[[0,1,0,0,0],[1,-1,0,1,0],[0,1,0,0,0],[0,0,1,-1,1],[0,0,0,1,0]]
=> [1,1,0,1,1,0,0,1,0,0]
=> [2,4,1,5,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 2 = 0 + 2
[[0,1,0,0,0],[0,0,0,1,0],[1,0,0,0,0],[0,0,1,-1,1],[0,0,0,1,0]]
=> [1,1,0,1,1,0,0,1,0,0]
=> [2,4,1,5,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 2 = 0 + 2
[[0,1,0,0,0],[1,-1,0,1,0],[0,0,1,0,0],[0,1,0,-1,1],[0,0,0,1,0]]
=> [1,1,0,1,1,0,0,1,0,0]
=> [2,4,1,5,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 2 = 0 + 2
[[0,1,0,0,0],[0,0,0,1,0],[1,-1,1,0,0],[0,1,0,-1,1],[0,0,0,1,0]]
=> [1,1,0,1,1,0,0,1,0,0]
=> [2,4,1,5,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 2 = 0 + 2
[[0,1,0,0,0],[0,0,0,1,0],[0,0,1,0,0],[1,0,0,-1,1],[0,0,0,1,0]]
=> [1,1,0,1,1,0,0,1,0,0]
=> [2,4,1,5,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 2 = 0 + 2
[[0,0,1,0,0],[1,0,0,0,0],[0,1,-1,0,1],[0,0,1,0,0],[0,0,0,1,0]]
=> [1,1,1,0,0,1,1,0,0,0]
=> [3,1,5,2,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 2 = 0 + 2
[[0,0,1,0,0],[0,1,0,0,0],[1,0,-1,0,1],[0,0,1,0,0],[0,0,0,1,0]]
=> [1,1,1,0,0,1,1,0,0,0]
=> [3,1,5,2,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 2 = 0 + 2
[[0,0,1,0,0],[1,0,0,0,0],[0,0,0,0,1],[0,1,0,0,0],[0,0,0,1,0]]
=> [1,1,1,0,0,1,1,0,0,0]
=> [3,1,5,2,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 2 = 0 + 2
[[0,0,1,0,0],[0,1,0,0,0],[1,-1,0,0,1],[0,1,0,0,0],[0,0,0,1,0]]
=> [1,1,1,0,0,1,1,0,0,0]
=> [3,1,5,2,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 2 = 0 + 2
[[0,0,1,0,0],[0,1,0,0,0],[0,0,0,0,1],[1,0,0,0,0],[0,0,0,1,0]]
=> [1,1,1,0,0,1,1,0,0,0]
=> [3,1,5,2,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 2 = 0 + 2
[[0,1,0,0,0],[1,-1,0,1,0],[0,1,0,0,0],[0,0,0,0,1],[0,0,1,0,0]]
=> [1,1,0,1,1,0,0,1,0,0]
=> [2,4,1,5,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 2 = 0 + 2
[[0,1,0,0,0],[0,0,0,1,0],[1,0,0,0,0],[0,0,0,0,1],[0,0,1,0,0]]
=> [1,1,0,1,1,0,0,1,0,0]
=> [2,4,1,5,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 2 = 0 + 2
[[0,1,0,0,0],[1,-1,0,1,0],[0,0,1,0,0],[0,1,-1,0,1],[0,0,1,0,0]]
=> [1,1,0,1,1,0,0,1,0,0]
=> [2,4,1,5,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 2 = 0 + 2
[[0,1,0,0,0],[0,0,0,1,0],[1,-1,1,0,0],[0,1,-1,0,1],[0,0,1,0,0]]
=> [1,1,0,1,1,0,0,1,0,0]
=> [2,4,1,5,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 2 = 0 + 2
[[0,1,0,0,0],[0,0,0,1,0],[0,0,1,0,0],[1,0,-1,0,1],[0,0,1,0,0]]
=> [1,1,0,1,1,0,0,1,0,0]
=> [2,4,1,5,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 2 = 0 + 2
[[0,0,1,0,0],[1,0,0,0,0],[0,1,-1,0,1],[0,0,0,1,0],[0,0,1,0,0]]
=> [1,1,1,0,0,1,1,0,0,0]
=> [3,1,5,2,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 2 = 0 + 2
[[0,0,1,0,0],[0,1,0,0,0],[1,0,-1,0,1],[0,0,0,1,0],[0,0,1,0,0]]
=> [1,1,1,0,0,1,1,0,0,0]
=> [3,1,5,2,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 2 = 0 + 2
[[0,0,1,0,0],[1,0,0,0,0],[0,0,0,0,1],[0,1,-1,1,0],[0,0,1,0,0]]
=> [1,1,1,0,0,1,1,0,0,0]
=> [3,1,5,2,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 2 = 0 + 2
[[0,0,1,0,0],[0,1,0,0,0],[1,-1,0,0,1],[0,1,-1,1,0],[0,0,1,0,0]]
=> [1,1,1,0,0,1,1,0,0,0]
=> [3,1,5,2,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 2 = 0 + 2
[[0,0,1,0,0],[0,1,0,0,0],[0,0,0,0,1],[1,0,-1,1,0],[0,0,1,0,0]]
=> [1,1,1,0,0,1,1,0,0,0]
=> [3,1,5,2,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 2 = 0 + 2
[[0,1,0,0,0],[1,-1,0,1,0],[0,0,1,0,0],[0,0,0,0,1],[0,1,0,0,0]]
=> [1,1,0,1,1,0,0,1,0,0]
=> [2,4,1,5,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 2 = 0 + 2
[[0,1,0,0,0],[0,0,0,1,0],[1,-1,1,0,0],[0,0,0,0,1],[0,1,0,0,0]]
=> [1,1,0,1,1,0,0,1,0,0]
=> [2,4,1,5,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 2 = 0 + 2
[[0,1,0,0,0],[0,0,0,1,0],[0,0,1,0,0],[1,-1,0,0,1],[0,1,0,0,0]]
=> [1,1,0,1,1,0,0,1,0,0]
=> [2,4,1,5,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 2 = 0 + 2
[[0,0,1,0,0],[1,0,0,0,0],[0,0,0,0,1],[0,0,0,1,0],[0,1,0,0,0]]
=> [1,1,1,0,0,1,1,0,0,0]
=> [3,1,5,2,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 2 = 0 + 2
[[0,0,1,0,0],[0,1,0,0,0],[1,-1,0,0,1],[0,0,0,1,0],[0,1,0,0,0]]
=> [1,1,1,0,0,1,1,0,0,0]
=> [3,1,5,2,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 2 = 0 + 2
[[0,0,1,0,0],[0,1,0,0,0],[0,0,0,0,1],[1,-1,0,1,0],[0,1,0,0,0]]
=> [1,1,1,0,0,1,1,0,0,0]
=> [3,1,5,2,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 2 = 0 + 2
[[0,1,0,0,0],[0,0,0,1,0],[0,0,1,0,0],[0,0,0,0,1],[1,0,0,0,0]]
=> [1,1,0,1,1,0,0,1,0,0]
=> [2,4,1,5,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 2 = 0 + 2
[[0,0,1,0,0],[0,1,0,0,0],[0,0,0,0,1],[0,0,0,1,0],[1,0,0,0,0]]
=> [1,1,1,0,0,1,1,0,0,0]
=> [3,1,5,2,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 2 = 0 + 2
Description
The breadth of a lattice. The '''breadth''' of a lattice is the least integer $b$ such that any join $x_1\vee x_2\vee\cdots\vee x_n$, with $n > b$, can be expressed as a join over a proper subset of $\{x_1,x_2,\ldots,x_n\}$.
Matching statistic: St001630
Mp00007: Alternating sign matrices to Dyck pathDyck paths
Mp00119: Dyck paths to 321-avoiding permutation (Krattenthaler)Permutations
Mp00208: Permutations lattice of intervalsLattices
St001630: Lattices ⟶ ℤResult quality: 1% values known / values provided: 1%distinct values known / distinct values provided: 7%
Values
[[0,1,0],[1,0,0],[0,0,1]]
=> [1,1,0,0,1,0]
=> [2,1,3] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6)
=> 2 = 0 + 2
[[0,1,0,0],[1,0,0,0],[0,0,1,0],[0,0,0,1]]
=> [1,1,0,0,1,0,1,0]
=> [2,1,3,4] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,6),(3,6),(4,5),(4,7),(5,8),(6,7),(7,8)],9)
=> ? = -1 + 2
[[1,0,0,0],[0,0,1,0],[0,1,0,0],[0,0,0,1]]
=> [1,0,1,1,0,0,1,0]
=> [1,3,2,4] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,7),(4,6),(5,6),(5,7),(6,8),(7,8)],9)
=> ? = 0 + 2
[[0,1,0,0],[1,-1,1,0],[0,1,0,0],[0,0,0,1]]
=> [1,1,0,1,0,0,1,0]
=> [2,3,1,4] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,6),(4,7),(5,7),(7,6)],8)
=> ? = 1 + 2
[[0,0,1,0],[1,0,0,0],[0,1,0,0],[0,0,0,1]]
=> [1,1,1,0,0,0,1,0]
=> [3,1,2,4] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,6),(4,7),(5,7),(7,6)],8)
=> ? = 0 + 2
[[0,1,0,0],[0,0,1,0],[1,0,0,0],[0,0,0,1]]
=> [1,1,0,1,0,0,1,0]
=> [2,3,1,4] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,6),(4,7),(5,7),(7,6)],8)
=> ? = 1 + 2
[[0,0,1,0],[0,1,0,0],[1,0,0,0],[0,0,0,1]]
=> [1,1,1,0,0,0,1,0]
=> [3,1,2,4] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,6),(4,7),(5,7),(7,6)],8)
=> ? = 0 + 2
[[0,1,0,0],[1,0,0,0],[0,0,0,1],[0,0,1,0]]
=> [1,1,0,0,1,1,0,0]
=> [2,1,4,3] => ([(0,1),(0,2),(0,3),(0,4),(1,6),(2,6),(3,5),(4,5),(5,7),(6,7)],8)
=> ? = 0 + 2
[[0,1,0,0],[1,-1,0,1],[0,1,0,0],[0,0,1,0]]
=> [1,1,0,1,1,0,0,0]
=> [2,4,1,3] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6)
=> 2 = 0 + 2
[[0,1,0,0],[0,0,0,1],[1,0,0,0],[0,0,1,0]]
=> [1,1,0,1,1,0,0,0]
=> [2,4,1,3] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6)
=> 2 = 0 + 2
[[0,1,0,0],[1,-1,0,1],[0,0,1,0],[0,1,0,0]]
=> [1,1,0,1,1,0,0,0]
=> [2,4,1,3] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6)
=> 2 = 0 + 2
[[0,1,0,0],[0,0,0,1],[1,-1,1,0],[0,1,0,0]]
=> [1,1,0,1,1,0,0,0]
=> [2,4,1,3] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6)
=> 2 = 0 + 2
[[0,1,0,0],[0,0,0,1],[0,0,1,0],[1,0,0,0]]
=> [1,1,0,1,1,0,0,0]
=> [2,4,1,3] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6)
=> 2 = 0 + 2
[[0,1,0,0,0],[1,0,0,0,0],[0,0,1,0,0],[0,0,0,1,0],[0,0,0,0,1]]
=> [1,1,0,0,1,0,1,0,1,0]
=> [2,1,3,4,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,11),(2,11),(3,10),(4,9),(4,12),(5,10),(5,12),(7,6),(8,6),(9,7),(10,8),(11,9),(12,7),(12,8)],13)
=> ? = -2 + 2
[[1,0,0,0,0],[0,0,1,0,0],[0,1,0,0,0],[0,0,0,1,0],[0,0,0,0,1]]
=> [1,0,1,1,0,0,1,0,1,0]
=> [1,3,2,4,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,10),(2,12),(3,12),(4,9),(5,10),(5,11),(7,6),(8,6),(9,8),(10,7),(11,7),(11,8),(12,9),(12,11)],13)
=> ? = -1 + 2
[[0,1,0,0,0],[1,-1,1,0,0],[0,1,0,0,0],[0,0,0,1,0],[0,0,0,0,1]]
=> [1,1,0,1,0,0,1,0,1,0]
=> [2,3,1,4,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,6),(3,7),(4,7),(5,6),(5,9),(6,10),(7,8),(8,9),(9,10)],11)
=> ? = 0 + 2
[[0,0,1,0,0],[1,0,0,0,0],[0,1,0,0,0],[0,0,0,1,0],[0,0,0,0,1]]
=> [1,1,1,0,0,0,1,0,1,0]
=> [3,1,2,4,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,6),(3,7),(4,7),(5,6),(5,9),(6,10),(7,8),(8,9),(9,10)],11)
=> ? = -1 + 2
[[0,1,0,0,0],[0,0,1,0,0],[1,0,0,0,0],[0,0,0,1,0],[0,0,0,0,1]]
=> [1,1,0,1,0,0,1,0,1,0]
=> [2,3,1,4,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,6),(3,7),(4,7),(5,6),(5,9),(6,10),(7,8),(8,9),(9,10)],11)
=> ? = 0 + 2
[[0,0,1,0,0],[0,1,0,0,0],[1,0,0,0,0],[0,0,0,1,0],[0,0,0,0,1]]
=> [1,1,1,0,0,0,1,0,1,0]
=> [3,1,2,4,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,6),(3,7),(4,7),(5,6),(5,9),(6,10),(7,8),(8,9),(9,10)],11)
=> ? = -1 + 2
[[1,0,0,0,0],[0,1,0,0,0],[0,0,0,1,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [1,0,1,0,1,1,0,0,1,0]
=> [1,2,4,3,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,10),(2,12),(3,12),(4,9),(5,10),(5,11),(7,6),(8,6),(9,8),(10,7),(11,7),(11,8),(12,9),(12,11)],13)
=> ? = 0 + 2
[[0,1,0,0,0],[1,0,0,0,0],[0,0,0,1,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [1,1,0,0,1,1,0,0,1,0]
=> [2,1,4,3,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,6),(3,6),(4,7),(5,7),(6,9),(7,8),(7,9),(8,10),(9,10)],11)
=> ? = 0 + 2
[[1,0,0,0,0],[0,0,1,0,0],[0,1,-1,1,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [1,0,1,1,0,1,0,0,1,0]
=> [1,3,4,2,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,8),(4,7),(5,9),(6,9),(7,10),(8,10),(9,7),(9,8)],11)
=> ? = 1 + 2
[[0,1,0,0,0],[1,-1,1,0,0],[0,1,-1,1,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [1,1,0,1,0,1,0,0,1,0]
=> [2,3,4,1,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,9),(2,8),(3,7),(4,6),(5,6),(5,7),(6,10),(7,10),(8,9),(10,8)],11)
=> ? = 2 + 2
[[0,0,1,0,0],[1,0,0,0,0],[0,1,-1,1,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [1,1,1,0,0,1,0,0,1,0]
=> [3,1,4,2,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,7),(2,7),(3,7),(4,7),(5,6),(7,6)],8)
=> ? = 1 + 2
[[0,1,0,0,0],[0,0,1,0,0],[1,0,-1,1,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [1,1,0,1,0,1,0,0,1,0]
=> [2,3,4,1,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,9),(2,8),(3,7),(4,6),(5,6),(5,7),(6,10),(7,10),(8,9),(10,8)],11)
=> ? = 2 + 2
[[0,0,1,0,0],[0,1,0,0,0],[1,0,-1,1,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [1,1,1,0,0,1,0,0,1,0]
=> [3,1,4,2,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,7),(2,7),(3,7),(4,7),(5,6),(7,6)],8)
=> ? = 1 + 2
[[1,0,0,0,0],[0,0,0,1,0],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [1,0,1,1,1,0,0,0,1,0]
=> [1,4,2,3,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,8),(4,7),(5,9),(6,9),(7,10),(8,10),(9,7),(9,8)],11)
=> ? = 0 + 2
[[0,1,0,0,0],[1,-1,0,1,0],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [1,1,0,1,1,0,0,0,1,0]
=> [2,4,1,3,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,7),(2,7),(3,7),(4,7),(5,6),(7,6)],8)
=> ? = 0 + 2
[[0,0,1,0,0],[1,0,-1,1,0],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [1,1,1,0,1,0,0,0,1,0]
=> [3,4,1,2,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,7),(3,7),(4,6),(5,6),(6,9),(7,9),(9,8)],10)
=> ? = 0 + 2
[[0,0,0,1,0],[1,0,0,0,0],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [1,1,1,1,0,0,0,0,1,0]
=> [4,1,2,3,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,9),(2,8),(3,7),(4,6),(5,6),(5,7),(6,10),(7,10),(8,9),(10,8)],11)
=> ? = 1 + 2
[[0,1,0,0,0],[0,0,0,1,0],[1,0,0,0,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [1,1,0,1,1,0,0,0,1,0]
=> [2,4,1,3,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,7),(2,7),(3,7),(4,7),(5,6),(7,6)],8)
=> ? = 0 + 2
[[0,0,1,0,0],[0,1,-1,1,0],[1,0,0,0,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [1,1,1,0,1,0,0,0,1,0]
=> [3,4,1,2,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,7),(3,7),(4,6),(5,6),(6,9),(7,9),(9,8)],10)
=> ? = 0 + 2
[[0,0,0,1,0],[0,1,0,0,0],[1,0,0,0,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [1,1,1,1,0,0,0,0,1,0]
=> [4,1,2,3,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,9),(2,8),(3,7),(4,6),(5,6),(5,7),(6,10),(7,10),(8,9),(10,8)],11)
=> ? = 1 + 2
[[1,0,0,0,0],[0,0,1,0,0],[0,0,0,1,0],[0,1,0,0,0],[0,0,0,0,1]]
=> [1,0,1,1,0,1,0,0,1,0]
=> [1,3,4,2,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,8),(4,7),(5,9),(6,9),(7,10),(8,10),(9,7),(9,8)],11)
=> ? = 1 + 2
[[0,1,0,0,0],[1,-1,1,0,0],[0,0,0,1,0],[0,1,0,0,0],[0,0,0,0,1]]
=> [1,1,0,1,0,1,0,0,1,0]
=> [2,3,4,1,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,9),(2,8),(3,7),(4,6),(5,6),(5,7),(6,10),(7,10),(8,9),(10,8)],11)
=> ? = 2 + 2
[[0,0,1,0,0],[1,0,0,0,0],[0,0,0,1,0],[0,1,0,0,0],[0,0,0,0,1]]
=> [1,1,1,0,0,1,0,0,1,0]
=> [3,1,4,2,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,7),(2,7),(3,7),(4,7),(5,6),(7,6)],8)
=> ? = 1 + 2
[[0,1,0,0,0],[0,0,1,0,0],[1,-1,0,1,0],[0,1,0,0,0],[0,0,0,0,1]]
=> [1,1,0,1,0,1,0,0,1,0]
=> [2,3,4,1,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,9),(2,8),(3,7),(4,6),(5,6),(5,7),(6,10),(7,10),(8,9),(10,8)],11)
=> ? = 2 + 2
[[0,0,1,0,0],[0,1,0,0,0],[1,-1,0,1,0],[0,1,0,0,0],[0,0,0,0,1]]
=> [1,1,1,0,0,1,0,0,1,0]
=> [3,1,4,2,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,7),(2,7),(3,7),(4,7),(5,6),(7,6)],8)
=> ? = 1 + 2
[[1,0,0,0,0],[0,0,0,1,0],[0,0,1,0,0],[0,1,0,0,0],[0,0,0,0,1]]
=> [1,0,1,1,1,0,0,0,1,0]
=> [1,4,2,3,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,8),(4,7),(5,9),(6,9),(7,10),(8,10),(9,7),(9,8)],11)
=> ? = 0 + 2
[[0,1,0,0,0],[1,-1,0,1,0],[0,0,1,0,0],[0,1,0,0,0],[0,0,0,0,1]]
=> [1,1,0,1,1,0,0,0,1,0]
=> [2,4,1,3,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,7),(2,7),(3,7),(4,7),(5,6),(7,6)],8)
=> ? = 0 + 2
[[0,0,1,0,0],[1,0,-1,1,0],[0,0,1,0,0],[0,1,0,0,0],[0,0,0,0,1]]
=> [1,1,1,0,1,0,0,0,1,0]
=> [3,4,1,2,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,7),(3,7),(4,6),(5,6),(6,9),(7,9),(9,8)],10)
=> ? = 0 + 2
[[0,0,0,1,0],[1,0,0,0,0],[0,0,1,0,0],[0,1,0,0,0],[0,0,0,0,1]]
=> [1,1,1,1,0,0,0,0,1,0]
=> [4,1,2,3,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,9),(2,8),(3,7),(4,6),(5,6),(5,7),(6,10),(7,10),(8,9),(10,8)],11)
=> ? = 1 + 2
[[0,1,0,0,0],[0,0,0,1,0],[1,-1,1,0,0],[0,1,0,0,0],[0,0,0,0,1]]
=> [1,1,0,1,1,0,0,0,1,0]
=> [2,4,1,3,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,7),(2,7),(3,7),(4,7),(5,6),(7,6)],8)
=> ? = 0 + 2
[[0,0,1,0,0],[0,1,-1,1,0],[1,-1,1,0,0],[0,1,0,0,0],[0,0,0,0,1]]
=> [1,1,1,0,1,0,0,0,1,0]
=> [3,4,1,2,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,7),(3,7),(4,6),(5,6),(6,9),(7,9),(9,8)],10)
=> ? = 0 + 2
[[0,0,0,1,0],[0,1,0,0,0],[1,-1,1,0,0],[0,1,0,0,0],[0,0,0,0,1]]
=> [1,1,1,1,0,0,0,0,1,0]
=> [4,1,2,3,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,9),(2,8),(3,7),(4,6),(5,6),(5,7),(6,10),(7,10),(8,9),(10,8)],11)
=> ? = 1 + 2
[[0,0,1,0,0],[0,0,0,1,0],[1,0,0,0,0],[0,1,0,0,0],[0,0,0,0,1]]
=> [1,1,1,0,1,0,0,0,1,0]
=> [3,4,1,2,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,7),(3,7),(4,6),(5,6),(6,9),(7,9),(9,8)],10)
=> ? = 0 + 2
[[0,0,0,1,0],[0,0,1,0,0],[1,0,0,0,0],[0,1,0,0,0],[0,0,0,0,1]]
=> [1,1,1,1,0,0,0,0,1,0]
=> [4,1,2,3,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,9),(2,8),(3,7),(4,6),(5,6),(5,7),(6,10),(7,10),(8,9),(10,8)],11)
=> ? = 1 + 2
[[0,1,0,0,0],[0,0,1,0,0],[0,0,0,1,0],[1,0,0,0,0],[0,0,0,0,1]]
=> [1,1,0,1,0,1,0,0,1,0]
=> [2,3,4,1,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,9),(2,8),(3,7),(4,6),(5,6),(5,7),(6,10),(7,10),(8,9),(10,8)],11)
=> ? = 2 + 2
[[0,0,1,0,0],[0,1,0,0,0],[0,0,0,1,0],[1,0,0,0,0],[0,0,0,0,1]]
=> [1,1,1,0,0,1,0,0,1,0]
=> [3,1,4,2,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,7),(2,7),(3,7),(4,7),(5,6),(7,6)],8)
=> ? = 1 + 2
[[0,1,0,0,0],[0,0,0,1,0],[0,0,1,0,0],[1,0,0,0,0],[0,0,0,0,1]]
=> [1,1,0,1,1,0,0,0,1,0]
=> [2,4,1,3,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,7),(2,7),(3,7),(4,7),(5,6),(7,6)],8)
=> ? = 0 + 2
[[0,0,1,0,0],[0,1,-1,1,0],[0,0,1,0,0],[1,0,0,0,0],[0,0,0,0,1]]
=> [1,1,1,0,1,0,0,0,1,0]
=> [3,4,1,2,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,7),(3,7),(4,6),(5,6),(6,9),(7,9),(9,8)],10)
=> ? = 0 + 2
[[0,0,0,1,0],[0,1,0,0,0],[0,0,1,0,0],[1,0,0,0,0],[0,0,0,0,1]]
=> [1,1,1,1,0,0,0,0,1,0]
=> [4,1,2,3,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,9),(2,8),(3,7),(4,6),(5,6),(5,7),(6,10),(7,10),(8,9),(10,8)],11)
=> ? = 1 + 2
[[0,0,1,0,0],[0,0,0,1,0],[0,1,0,0,0],[1,0,0,0,0],[0,0,0,0,1]]
=> [1,1,1,0,1,0,0,0,1,0]
=> [3,4,1,2,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,7),(3,7),(4,6),(5,6),(6,9),(7,9),(9,8)],10)
=> ? = 0 + 2
[[0,0,0,1,0],[0,0,1,0,0],[0,1,0,0,0],[1,0,0,0,0],[0,0,0,0,1]]
=> [1,1,1,1,0,0,0,0,1,0]
=> [4,1,2,3,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,9),(2,8),(3,7),(4,6),(5,6),(5,7),(6,10),(7,10),(8,9),(10,8)],11)
=> ? = 1 + 2
[[0,1,0,0,0],[1,0,0,0,0],[0,0,1,0,0],[0,0,0,0,1],[0,0,0,1,0]]
=> [1,1,0,0,1,0,1,1,0,0]
=> [2,1,3,5,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(1,9),(2,7),(3,7),(4,6),(5,6),(6,9),(7,8),(8,10),(9,10)],11)
=> ? = -1 + 2
[[1,0,0,0,0],[0,0,1,0,0],[0,1,0,0,0],[0,0,0,0,1],[0,0,0,1,0]]
=> [1,0,1,1,0,0,1,1,0,0]
=> [1,3,2,5,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,6),(3,6),(4,7),(5,7),(6,9),(7,8),(7,9),(8,10),(9,10)],11)
=> ? = 0 + 2
[[0,1,0,0,0],[1,-1,0,1,0],[0,1,0,0,0],[0,0,1,-1,1],[0,0,0,1,0]]
=> [1,1,0,1,1,0,0,1,0,0]
=> [2,4,1,5,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 2 = 0 + 2
[[0,1,0,0,0],[0,0,0,1,0],[1,0,0,0,0],[0,0,1,-1,1],[0,0,0,1,0]]
=> [1,1,0,1,1,0,0,1,0,0]
=> [2,4,1,5,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 2 = 0 + 2
[[0,1,0,0,0],[1,-1,0,1,0],[0,0,1,0,0],[0,1,0,-1,1],[0,0,0,1,0]]
=> [1,1,0,1,1,0,0,1,0,0]
=> [2,4,1,5,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 2 = 0 + 2
[[0,1,0,0,0],[0,0,0,1,0],[1,-1,1,0,0],[0,1,0,-1,1],[0,0,0,1,0]]
=> [1,1,0,1,1,0,0,1,0,0]
=> [2,4,1,5,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 2 = 0 + 2
[[0,1,0,0,0],[0,0,0,1,0],[0,0,1,0,0],[1,0,0,-1,1],[0,0,0,1,0]]
=> [1,1,0,1,1,0,0,1,0,0]
=> [2,4,1,5,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 2 = 0 + 2
[[0,0,1,0,0],[1,0,0,0,0],[0,1,-1,0,1],[0,0,1,0,0],[0,0,0,1,0]]
=> [1,1,1,0,0,1,1,0,0,0]
=> [3,1,5,2,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 2 = 0 + 2
[[0,0,1,0,0],[0,1,0,0,0],[1,0,-1,0,1],[0,0,1,0,0],[0,0,0,1,0]]
=> [1,1,1,0,0,1,1,0,0,0]
=> [3,1,5,2,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 2 = 0 + 2
[[0,0,1,0,0],[1,0,0,0,0],[0,0,0,0,1],[0,1,0,0,0],[0,0,0,1,0]]
=> [1,1,1,0,0,1,1,0,0,0]
=> [3,1,5,2,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 2 = 0 + 2
[[0,0,1,0,0],[0,1,0,0,0],[1,-1,0,0,1],[0,1,0,0,0],[0,0,0,1,0]]
=> [1,1,1,0,0,1,1,0,0,0]
=> [3,1,5,2,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 2 = 0 + 2
[[0,0,1,0,0],[0,1,0,0,0],[0,0,0,0,1],[1,0,0,0,0],[0,0,0,1,0]]
=> [1,1,1,0,0,1,1,0,0,0]
=> [3,1,5,2,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 2 = 0 + 2
[[0,1,0,0,0],[1,-1,0,1,0],[0,1,0,0,0],[0,0,0,0,1],[0,0,1,0,0]]
=> [1,1,0,1,1,0,0,1,0,0]
=> [2,4,1,5,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 2 = 0 + 2
[[0,1,0,0,0],[0,0,0,1,0],[1,0,0,0,0],[0,0,0,0,1],[0,0,1,0,0]]
=> [1,1,0,1,1,0,0,1,0,0]
=> [2,4,1,5,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 2 = 0 + 2
[[0,1,0,0,0],[1,-1,0,1,0],[0,0,1,0,0],[0,1,-1,0,1],[0,0,1,0,0]]
=> [1,1,0,1,1,0,0,1,0,0]
=> [2,4,1,5,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 2 = 0 + 2
[[0,1,0,0,0],[0,0,0,1,0],[1,-1,1,0,0],[0,1,-1,0,1],[0,0,1,0,0]]
=> [1,1,0,1,1,0,0,1,0,0]
=> [2,4,1,5,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 2 = 0 + 2
[[0,1,0,0,0],[0,0,0,1,0],[0,0,1,0,0],[1,0,-1,0,1],[0,0,1,0,0]]
=> [1,1,0,1,1,0,0,1,0,0]
=> [2,4,1,5,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 2 = 0 + 2
[[0,0,1,0,0],[1,0,0,0,0],[0,1,-1,0,1],[0,0,0,1,0],[0,0,1,0,0]]
=> [1,1,1,0,0,1,1,0,0,0]
=> [3,1,5,2,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 2 = 0 + 2
[[0,0,1,0,0],[0,1,0,0,0],[1,0,-1,0,1],[0,0,0,1,0],[0,0,1,0,0]]
=> [1,1,1,0,0,1,1,0,0,0]
=> [3,1,5,2,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 2 = 0 + 2
[[0,0,1,0,0],[1,0,0,0,0],[0,0,0,0,1],[0,1,-1,1,0],[0,0,1,0,0]]
=> [1,1,1,0,0,1,1,0,0,0]
=> [3,1,5,2,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 2 = 0 + 2
[[0,0,1,0,0],[0,1,0,0,0],[1,-1,0,0,1],[0,1,-1,1,0],[0,0,1,0,0]]
=> [1,1,1,0,0,1,1,0,0,0]
=> [3,1,5,2,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 2 = 0 + 2
[[0,0,1,0,0],[0,1,0,0,0],[0,0,0,0,1],[1,0,-1,1,0],[0,0,1,0,0]]
=> [1,1,1,0,0,1,1,0,0,0]
=> [3,1,5,2,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 2 = 0 + 2
[[0,1,0,0,0],[1,-1,0,1,0],[0,0,1,0,0],[0,0,0,0,1],[0,1,0,0,0]]
=> [1,1,0,1,1,0,0,1,0,0]
=> [2,4,1,5,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 2 = 0 + 2
[[0,1,0,0,0],[0,0,0,1,0],[1,-1,1,0,0],[0,0,0,0,1],[0,1,0,0,0]]
=> [1,1,0,1,1,0,0,1,0,0]
=> [2,4,1,5,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 2 = 0 + 2
[[0,1,0,0,0],[0,0,0,1,0],[0,0,1,0,0],[1,-1,0,0,1],[0,1,0,0,0]]
=> [1,1,0,1,1,0,0,1,0,0]
=> [2,4,1,5,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 2 = 0 + 2
[[0,0,1,0,0],[1,0,0,0,0],[0,0,0,0,1],[0,0,0,1,0],[0,1,0,0,0]]
=> [1,1,1,0,0,1,1,0,0,0]
=> [3,1,5,2,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 2 = 0 + 2
[[0,0,1,0,0],[0,1,0,0,0],[1,-1,0,0,1],[0,0,0,1,0],[0,1,0,0,0]]
=> [1,1,1,0,0,1,1,0,0,0]
=> [3,1,5,2,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 2 = 0 + 2
[[0,0,1,0,0],[0,1,0,0,0],[0,0,0,0,1],[1,-1,0,1,0],[0,1,0,0,0]]
=> [1,1,1,0,0,1,1,0,0,0]
=> [3,1,5,2,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 2 = 0 + 2
[[0,1,0,0,0],[0,0,0,1,0],[0,0,1,0,0],[0,0,0,0,1],[1,0,0,0,0]]
=> [1,1,0,1,1,0,0,1,0,0]
=> [2,4,1,5,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 2 = 0 + 2
[[0,0,1,0,0],[0,1,0,0,0],[0,0,0,0,1],[0,0,0,1,0],[1,0,0,0,0]]
=> [1,1,1,0,0,1,1,0,0,0]
=> [3,1,5,2,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 2 = 0 + 2
Description
The global dimension of the incidence algebra of the lattice over the rational numbers.
Matching statistic: St001878
Mp00007: Alternating sign matrices to Dyck pathDyck paths
Mp00119: Dyck paths to 321-avoiding permutation (Krattenthaler)Permutations
Mp00208: Permutations lattice of intervalsLattices
St001878: Lattices ⟶ ℤResult quality: 1% values known / values provided: 1%distinct values known / distinct values provided: 7%
Values
[[0,1,0],[1,0,0],[0,0,1]]
=> [1,1,0,0,1,0]
=> [2,1,3] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6)
=> 2 = 0 + 2
[[0,1,0,0],[1,0,0,0],[0,0,1,0],[0,0,0,1]]
=> [1,1,0,0,1,0,1,0]
=> [2,1,3,4] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,6),(3,6),(4,5),(4,7),(5,8),(6,7),(7,8)],9)
=> ? = -1 + 2
[[1,0,0,0],[0,0,1,0],[0,1,0,0],[0,0,0,1]]
=> [1,0,1,1,0,0,1,0]
=> [1,3,2,4] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,7),(4,6),(5,6),(5,7),(6,8),(7,8)],9)
=> ? = 0 + 2
[[0,1,0,0],[1,-1,1,0],[0,1,0,0],[0,0,0,1]]
=> [1,1,0,1,0,0,1,0]
=> [2,3,1,4] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,6),(4,7),(5,7),(7,6)],8)
=> ? = 1 + 2
[[0,0,1,0],[1,0,0,0],[0,1,0,0],[0,0,0,1]]
=> [1,1,1,0,0,0,1,0]
=> [3,1,2,4] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,6),(4,7),(5,7),(7,6)],8)
=> ? = 0 + 2
[[0,1,0,0],[0,0,1,0],[1,0,0,0],[0,0,0,1]]
=> [1,1,0,1,0,0,1,0]
=> [2,3,1,4] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,6),(4,7),(5,7),(7,6)],8)
=> ? = 1 + 2
[[0,0,1,0],[0,1,0,0],[1,0,0,0],[0,0,0,1]]
=> [1,1,1,0,0,0,1,0]
=> [3,1,2,4] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,6),(4,7),(5,7),(7,6)],8)
=> ? = 0 + 2
[[0,1,0,0],[1,0,0,0],[0,0,0,1],[0,0,1,0]]
=> [1,1,0,0,1,1,0,0]
=> [2,1,4,3] => ([(0,1),(0,2),(0,3),(0,4),(1,6),(2,6),(3,5),(4,5),(5,7),(6,7)],8)
=> ? = 0 + 2
[[0,1,0,0],[1,-1,0,1],[0,1,0,0],[0,0,1,0]]
=> [1,1,0,1,1,0,0,0]
=> [2,4,1,3] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6)
=> 2 = 0 + 2
[[0,1,0,0],[0,0,0,1],[1,0,0,0],[0,0,1,0]]
=> [1,1,0,1,1,0,0,0]
=> [2,4,1,3] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6)
=> 2 = 0 + 2
[[0,1,0,0],[1,-1,0,1],[0,0,1,0],[0,1,0,0]]
=> [1,1,0,1,1,0,0,0]
=> [2,4,1,3] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6)
=> 2 = 0 + 2
[[0,1,0,0],[0,0,0,1],[1,-1,1,0],[0,1,0,0]]
=> [1,1,0,1,1,0,0,0]
=> [2,4,1,3] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6)
=> 2 = 0 + 2
[[0,1,0,0],[0,0,0,1],[0,0,1,0],[1,0,0,0]]
=> [1,1,0,1,1,0,0,0]
=> [2,4,1,3] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6)
=> 2 = 0 + 2
[[0,1,0,0,0],[1,0,0,0,0],[0,0,1,0,0],[0,0,0,1,0],[0,0,0,0,1]]
=> [1,1,0,0,1,0,1,0,1,0]
=> [2,1,3,4,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,11),(2,11),(3,10),(4,9),(4,12),(5,10),(5,12),(7,6),(8,6),(9,7),(10,8),(11,9),(12,7),(12,8)],13)
=> ? = -2 + 2
[[1,0,0,0,0],[0,0,1,0,0],[0,1,0,0,0],[0,0,0,1,0],[0,0,0,0,1]]
=> [1,0,1,1,0,0,1,0,1,0]
=> [1,3,2,4,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,10),(2,12),(3,12),(4,9),(5,10),(5,11),(7,6),(8,6),(9,8),(10,7),(11,7),(11,8),(12,9),(12,11)],13)
=> ? = -1 + 2
[[0,1,0,0,0],[1,-1,1,0,0],[0,1,0,0,0],[0,0,0,1,0],[0,0,0,0,1]]
=> [1,1,0,1,0,0,1,0,1,0]
=> [2,3,1,4,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,6),(3,7),(4,7),(5,6),(5,9),(6,10),(7,8),(8,9),(9,10)],11)
=> ? = 0 + 2
[[0,0,1,0,0],[1,0,0,0,0],[0,1,0,0,0],[0,0,0,1,0],[0,0,0,0,1]]
=> [1,1,1,0,0,0,1,0,1,0]
=> [3,1,2,4,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,6),(3,7),(4,7),(5,6),(5,9),(6,10),(7,8),(8,9),(9,10)],11)
=> ? = -1 + 2
[[0,1,0,0,0],[0,0,1,0,0],[1,0,0,0,0],[0,0,0,1,0],[0,0,0,0,1]]
=> [1,1,0,1,0,0,1,0,1,0]
=> [2,3,1,4,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,6),(3,7),(4,7),(5,6),(5,9),(6,10),(7,8),(8,9),(9,10)],11)
=> ? = 0 + 2
[[0,0,1,0,0],[0,1,0,0,0],[1,0,0,0,0],[0,0,0,1,0],[0,0,0,0,1]]
=> [1,1,1,0,0,0,1,0,1,0]
=> [3,1,2,4,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,6),(3,7),(4,7),(5,6),(5,9),(6,10),(7,8),(8,9),(9,10)],11)
=> ? = -1 + 2
[[1,0,0,0,0],[0,1,0,0,0],[0,0,0,1,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [1,0,1,0,1,1,0,0,1,0]
=> [1,2,4,3,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,10),(2,12),(3,12),(4,9),(5,10),(5,11),(7,6),(8,6),(9,8),(10,7),(11,7),(11,8),(12,9),(12,11)],13)
=> ? = 0 + 2
[[0,1,0,0,0],[1,0,0,0,0],[0,0,0,1,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [1,1,0,0,1,1,0,0,1,0]
=> [2,1,4,3,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,6),(3,6),(4,7),(5,7),(6,9),(7,8),(7,9),(8,10),(9,10)],11)
=> ? = 0 + 2
[[1,0,0,0,0],[0,0,1,0,0],[0,1,-1,1,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [1,0,1,1,0,1,0,0,1,0]
=> [1,3,4,2,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,8),(4,7),(5,9),(6,9),(7,10),(8,10),(9,7),(9,8)],11)
=> ? = 1 + 2
[[0,1,0,0,0],[1,-1,1,0,0],[0,1,-1,1,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [1,1,0,1,0,1,0,0,1,0]
=> [2,3,4,1,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,9),(2,8),(3,7),(4,6),(5,6),(5,7),(6,10),(7,10),(8,9),(10,8)],11)
=> ? = 2 + 2
[[0,0,1,0,0],[1,0,0,0,0],[0,1,-1,1,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [1,1,1,0,0,1,0,0,1,0]
=> [3,1,4,2,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,7),(2,7),(3,7),(4,7),(5,6),(7,6)],8)
=> ? = 1 + 2
[[0,1,0,0,0],[0,0,1,0,0],[1,0,-1,1,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [1,1,0,1,0,1,0,0,1,0]
=> [2,3,4,1,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,9),(2,8),(3,7),(4,6),(5,6),(5,7),(6,10),(7,10),(8,9),(10,8)],11)
=> ? = 2 + 2
[[0,0,1,0,0],[0,1,0,0,0],[1,0,-1,1,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [1,1,1,0,0,1,0,0,1,0]
=> [3,1,4,2,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,7),(2,7),(3,7),(4,7),(5,6),(7,6)],8)
=> ? = 1 + 2
[[1,0,0,0,0],[0,0,0,1,0],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [1,0,1,1,1,0,0,0,1,0]
=> [1,4,2,3,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,8),(4,7),(5,9),(6,9),(7,10),(8,10),(9,7),(9,8)],11)
=> ? = 0 + 2
[[0,1,0,0,0],[1,-1,0,1,0],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [1,1,0,1,1,0,0,0,1,0]
=> [2,4,1,3,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,7),(2,7),(3,7),(4,7),(5,6),(7,6)],8)
=> ? = 0 + 2
[[0,0,1,0,0],[1,0,-1,1,0],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [1,1,1,0,1,0,0,0,1,0]
=> [3,4,1,2,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,7),(3,7),(4,6),(5,6),(6,9),(7,9),(9,8)],10)
=> ? = 0 + 2
[[0,0,0,1,0],[1,0,0,0,0],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [1,1,1,1,0,0,0,0,1,0]
=> [4,1,2,3,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,9),(2,8),(3,7),(4,6),(5,6),(5,7),(6,10),(7,10),(8,9),(10,8)],11)
=> ? = 1 + 2
[[0,1,0,0,0],[0,0,0,1,0],[1,0,0,0,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [1,1,0,1,1,0,0,0,1,0]
=> [2,4,1,3,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,7),(2,7),(3,7),(4,7),(5,6),(7,6)],8)
=> ? = 0 + 2
[[0,0,1,0,0],[0,1,-1,1,0],[1,0,0,0,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [1,1,1,0,1,0,0,0,1,0]
=> [3,4,1,2,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,7),(3,7),(4,6),(5,6),(6,9),(7,9),(9,8)],10)
=> ? = 0 + 2
[[0,0,0,1,0],[0,1,0,0,0],[1,0,0,0,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [1,1,1,1,0,0,0,0,1,0]
=> [4,1,2,3,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,9),(2,8),(3,7),(4,6),(5,6),(5,7),(6,10),(7,10),(8,9),(10,8)],11)
=> ? = 1 + 2
[[1,0,0,0,0],[0,0,1,0,0],[0,0,0,1,0],[0,1,0,0,0],[0,0,0,0,1]]
=> [1,0,1,1,0,1,0,0,1,0]
=> [1,3,4,2,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,8),(4,7),(5,9),(6,9),(7,10),(8,10),(9,7),(9,8)],11)
=> ? = 1 + 2
[[0,1,0,0,0],[1,-1,1,0,0],[0,0,0,1,0],[0,1,0,0,0],[0,0,0,0,1]]
=> [1,1,0,1,0,1,0,0,1,0]
=> [2,3,4,1,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,9),(2,8),(3,7),(4,6),(5,6),(5,7),(6,10),(7,10),(8,9),(10,8)],11)
=> ? = 2 + 2
[[0,0,1,0,0],[1,0,0,0,0],[0,0,0,1,0],[0,1,0,0,0],[0,0,0,0,1]]
=> [1,1,1,0,0,1,0,0,1,0]
=> [3,1,4,2,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,7),(2,7),(3,7),(4,7),(5,6),(7,6)],8)
=> ? = 1 + 2
[[0,1,0,0,0],[0,0,1,0,0],[1,-1,0,1,0],[0,1,0,0,0],[0,0,0,0,1]]
=> [1,1,0,1,0,1,0,0,1,0]
=> [2,3,4,1,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,9),(2,8),(3,7),(4,6),(5,6),(5,7),(6,10),(7,10),(8,9),(10,8)],11)
=> ? = 2 + 2
[[0,0,1,0,0],[0,1,0,0,0],[1,-1,0,1,0],[0,1,0,0,0],[0,0,0,0,1]]
=> [1,1,1,0,0,1,0,0,1,0]
=> [3,1,4,2,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,7),(2,7),(3,7),(4,7),(5,6),(7,6)],8)
=> ? = 1 + 2
[[1,0,0,0,0],[0,0,0,1,0],[0,0,1,0,0],[0,1,0,0,0],[0,0,0,0,1]]
=> [1,0,1,1,1,0,0,0,1,0]
=> [1,4,2,3,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,8),(4,7),(5,9),(6,9),(7,10),(8,10),(9,7),(9,8)],11)
=> ? = 0 + 2
[[0,1,0,0,0],[1,-1,0,1,0],[0,0,1,0,0],[0,1,0,0,0],[0,0,0,0,1]]
=> [1,1,0,1,1,0,0,0,1,0]
=> [2,4,1,3,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,7),(2,7),(3,7),(4,7),(5,6),(7,6)],8)
=> ? = 0 + 2
[[0,0,1,0,0],[1,0,-1,1,0],[0,0,1,0,0],[0,1,0,0,0],[0,0,0,0,1]]
=> [1,1,1,0,1,0,0,0,1,0]
=> [3,4,1,2,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,7),(3,7),(4,6),(5,6),(6,9),(7,9),(9,8)],10)
=> ? = 0 + 2
[[0,0,0,1,0],[1,0,0,0,0],[0,0,1,0,0],[0,1,0,0,0],[0,0,0,0,1]]
=> [1,1,1,1,0,0,0,0,1,0]
=> [4,1,2,3,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,9),(2,8),(3,7),(4,6),(5,6),(5,7),(6,10),(7,10),(8,9),(10,8)],11)
=> ? = 1 + 2
[[0,1,0,0,0],[0,0,0,1,0],[1,-1,1,0,0],[0,1,0,0,0],[0,0,0,0,1]]
=> [1,1,0,1,1,0,0,0,1,0]
=> [2,4,1,3,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,7),(2,7),(3,7),(4,7),(5,6),(7,6)],8)
=> ? = 0 + 2
[[0,0,1,0,0],[0,1,-1,1,0],[1,-1,1,0,0],[0,1,0,0,0],[0,0,0,0,1]]
=> [1,1,1,0,1,0,0,0,1,0]
=> [3,4,1,2,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,7),(3,7),(4,6),(5,6),(6,9),(7,9),(9,8)],10)
=> ? = 0 + 2
[[0,0,0,1,0],[0,1,0,0,0],[1,-1,1,0,0],[0,1,0,0,0],[0,0,0,0,1]]
=> [1,1,1,1,0,0,0,0,1,0]
=> [4,1,2,3,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,9),(2,8),(3,7),(4,6),(5,6),(5,7),(6,10),(7,10),(8,9),(10,8)],11)
=> ? = 1 + 2
[[0,0,1,0,0],[0,0,0,1,0],[1,0,0,0,0],[0,1,0,0,0],[0,0,0,0,1]]
=> [1,1,1,0,1,0,0,0,1,0]
=> [3,4,1,2,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,7),(3,7),(4,6),(5,6),(6,9),(7,9),(9,8)],10)
=> ? = 0 + 2
[[0,0,0,1,0],[0,0,1,0,0],[1,0,0,0,0],[0,1,0,0,0],[0,0,0,0,1]]
=> [1,1,1,1,0,0,0,0,1,0]
=> [4,1,2,3,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,9),(2,8),(3,7),(4,6),(5,6),(5,7),(6,10),(7,10),(8,9),(10,8)],11)
=> ? = 1 + 2
[[0,1,0,0,0],[0,0,1,0,0],[0,0,0,1,0],[1,0,0,0,0],[0,0,0,0,1]]
=> [1,1,0,1,0,1,0,0,1,0]
=> [2,3,4,1,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,9),(2,8),(3,7),(4,6),(5,6),(5,7),(6,10),(7,10),(8,9),(10,8)],11)
=> ? = 2 + 2
[[0,0,1,0,0],[0,1,0,0,0],[0,0,0,1,0],[1,0,0,0,0],[0,0,0,0,1]]
=> [1,1,1,0,0,1,0,0,1,0]
=> [3,1,4,2,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,7),(2,7),(3,7),(4,7),(5,6),(7,6)],8)
=> ? = 1 + 2
[[0,1,0,0,0],[0,0,0,1,0],[0,0,1,0,0],[1,0,0,0,0],[0,0,0,0,1]]
=> [1,1,0,1,1,0,0,0,1,0]
=> [2,4,1,3,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,7),(2,7),(3,7),(4,7),(5,6),(7,6)],8)
=> ? = 0 + 2
[[0,0,1,0,0],[0,1,-1,1,0],[0,0,1,0,0],[1,0,0,0,0],[0,0,0,0,1]]
=> [1,1,1,0,1,0,0,0,1,0]
=> [3,4,1,2,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,7),(3,7),(4,6),(5,6),(6,9),(7,9),(9,8)],10)
=> ? = 0 + 2
[[0,0,0,1,0],[0,1,0,0,0],[0,0,1,0,0],[1,0,0,0,0],[0,0,0,0,1]]
=> [1,1,1,1,0,0,0,0,1,0]
=> [4,1,2,3,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,9),(2,8),(3,7),(4,6),(5,6),(5,7),(6,10),(7,10),(8,9),(10,8)],11)
=> ? = 1 + 2
[[0,0,1,0,0],[0,0,0,1,0],[0,1,0,0,0],[1,0,0,0,0],[0,0,0,0,1]]
=> [1,1,1,0,1,0,0,0,1,0]
=> [3,4,1,2,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,7),(3,7),(4,6),(5,6),(6,9),(7,9),(9,8)],10)
=> ? = 0 + 2
[[0,0,0,1,0],[0,0,1,0,0],[0,1,0,0,0],[1,0,0,0,0],[0,0,0,0,1]]
=> [1,1,1,1,0,0,0,0,1,0]
=> [4,1,2,3,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,9),(2,8),(3,7),(4,6),(5,6),(5,7),(6,10),(7,10),(8,9),(10,8)],11)
=> ? = 1 + 2
[[0,1,0,0,0],[1,0,0,0,0],[0,0,1,0,0],[0,0,0,0,1],[0,0,0,1,0]]
=> [1,1,0,0,1,0,1,1,0,0]
=> [2,1,3,5,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(1,9),(2,7),(3,7),(4,6),(5,6),(6,9),(7,8),(8,10),(9,10)],11)
=> ? = -1 + 2
[[1,0,0,0,0],[0,0,1,0,0],[0,1,0,0,0],[0,0,0,0,1],[0,0,0,1,0]]
=> [1,0,1,1,0,0,1,1,0,0]
=> [1,3,2,5,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,6),(3,6),(4,7),(5,7),(6,9),(7,8),(7,9),(8,10),(9,10)],11)
=> ? = 0 + 2
[[0,1,0,0,0],[1,-1,0,1,0],[0,1,0,0,0],[0,0,1,-1,1],[0,0,0,1,0]]
=> [1,1,0,1,1,0,0,1,0,0]
=> [2,4,1,5,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 2 = 0 + 2
[[0,1,0,0,0],[0,0,0,1,0],[1,0,0,0,0],[0,0,1,-1,1],[0,0,0,1,0]]
=> [1,1,0,1,1,0,0,1,0,0]
=> [2,4,1,5,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 2 = 0 + 2
[[0,1,0,0,0],[1,-1,0,1,0],[0,0,1,0,0],[0,1,0,-1,1],[0,0,0,1,0]]
=> [1,1,0,1,1,0,0,1,0,0]
=> [2,4,1,5,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 2 = 0 + 2
[[0,1,0,0,0],[0,0,0,1,0],[1,-1,1,0,0],[0,1,0,-1,1],[0,0,0,1,0]]
=> [1,1,0,1,1,0,0,1,0,0]
=> [2,4,1,5,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 2 = 0 + 2
[[0,1,0,0,0],[0,0,0,1,0],[0,0,1,0,0],[1,0,0,-1,1],[0,0,0,1,0]]
=> [1,1,0,1,1,0,0,1,0,0]
=> [2,4,1,5,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 2 = 0 + 2
[[0,0,1,0,0],[1,0,0,0,0],[0,1,-1,0,1],[0,0,1,0,0],[0,0,0,1,0]]
=> [1,1,1,0,0,1,1,0,0,0]
=> [3,1,5,2,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 2 = 0 + 2
[[0,0,1,0,0],[0,1,0,0,0],[1,0,-1,0,1],[0,0,1,0,0],[0,0,0,1,0]]
=> [1,1,1,0,0,1,1,0,0,0]
=> [3,1,5,2,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 2 = 0 + 2
[[0,0,1,0,0],[1,0,0,0,0],[0,0,0,0,1],[0,1,0,0,0],[0,0,0,1,0]]
=> [1,1,1,0,0,1,1,0,0,0]
=> [3,1,5,2,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 2 = 0 + 2
[[0,0,1,0,0],[0,1,0,0,0],[1,-1,0,0,1],[0,1,0,0,0],[0,0,0,1,0]]
=> [1,1,1,0,0,1,1,0,0,0]
=> [3,1,5,2,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 2 = 0 + 2
[[0,0,1,0,0],[0,1,0,0,0],[0,0,0,0,1],[1,0,0,0,0],[0,0,0,1,0]]
=> [1,1,1,0,0,1,1,0,0,0]
=> [3,1,5,2,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 2 = 0 + 2
[[0,1,0,0,0],[1,-1,0,1,0],[0,1,0,0,0],[0,0,0,0,1],[0,0,1,0,0]]
=> [1,1,0,1,1,0,0,1,0,0]
=> [2,4,1,5,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 2 = 0 + 2
[[0,1,0,0,0],[0,0,0,1,0],[1,0,0,0,0],[0,0,0,0,1],[0,0,1,0,0]]
=> [1,1,0,1,1,0,0,1,0,0]
=> [2,4,1,5,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 2 = 0 + 2
[[0,1,0,0,0],[1,-1,0,1,0],[0,0,1,0,0],[0,1,-1,0,1],[0,0,1,0,0]]
=> [1,1,0,1,1,0,0,1,0,0]
=> [2,4,1,5,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 2 = 0 + 2
[[0,1,0,0,0],[0,0,0,1,0],[1,-1,1,0,0],[0,1,-1,0,1],[0,0,1,0,0]]
=> [1,1,0,1,1,0,0,1,0,0]
=> [2,4,1,5,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 2 = 0 + 2
[[0,1,0,0,0],[0,0,0,1,0],[0,0,1,0,0],[1,0,-1,0,1],[0,0,1,0,0]]
=> [1,1,0,1,1,0,0,1,0,0]
=> [2,4,1,5,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 2 = 0 + 2
[[0,0,1,0,0],[1,0,0,0,0],[0,1,-1,0,1],[0,0,0,1,0],[0,0,1,0,0]]
=> [1,1,1,0,0,1,1,0,0,0]
=> [3,1,5,2,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 2 = 0 + 2
[[0,0,1,0,0],[0,1,0,0,0],[1,0,-1,0,1],[0,0,0,1,0],[0,0,1,0,0]]
=> [1,1,1,0,0,1,1,0,0,0]
=> [3,1,5,2,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 2 = 0 + 2
[[0,0,1,0,0],[1,0,0,0,0],[0,0,0,0,1],[0,1,-1,1,0],[0,0,1,0,0]]
=> [1,1,1,0,0,1,1,0,0,0]
=> [3,1,5,2,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 2 = 0 + 2
[[0,0,1,0,0],[0,1,0,0,0],[1,-1,0,0,1],[0,1,-1,1,0],[0,0,1,0,0]]
=> [1,1,1,0,0,1,1,0,0,0]
=> [3,1,5,2,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 2 = 0 + 2
[[0,0,1,0,0],[0,1,0,0,0],[0,0,0,0,1],[1,0,-1,1,0],[0,0,1,0,0]]
=> [1,1,1,0,0,1,1,0,0,0]
=> [3,1,5,2,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 2 = 0 + 2
[[0,1,0,0,0],[1,-1,0,1,0],[0,0,1,0,0],[0,0,0,0,1],[0,1,0,0,0]]
=> [1,1,0,1,1,0,0,1,0,0]
=> [2,4,1,5,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 2 = 0 + 2
[[0,1,0,0,0],[0,0,0,1,0],[1,-1,1,0,0],[0,0,0,0,1],[0,1,0,0,0]]
=> [1,1,0,1,1,0,0,1,0,0]
=> [2,4,1,5,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 2 = 0 + 2
[[0,1,0,0,0],[0,0,0,1,0],[0,0,1,0,0],[1,-1,0,0,1],[0,1,0,0,0]]
=> [1,1,0,1,1,0,0,1,0,0]
=> [2,4,1,5,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 2 = 0 + 2
[[0,0,1,0,0],[1,0,0,0,0],[0,0,0,0,1],[0,0,0,1,0],[0,1,0,0,0]]
=> [1,1,1,0,0,1,1,0,0,0]
=> [3,1,5,2,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 2 = 0 + 2
[[0,0,1,0,0],[0,1,0,0,0],[1,-1,0,0,1],[0,0,0,1,0],[0,1,0,0,0]]
=> [1,1,1,0,0,1,1,0,0,0]
=> [3,1,5,2,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 2 = 0 + 2
[[0,0,1,0,0],[0,1,0,0,0],[0,0,0,0,1],[1,-1,0,1,0],[0,1,0,0,0]]
=> [1,1,1,0,0,1,1,0,0,0]
=> [3,1,5,2,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 2 = 0 + 2
[[0,1,0,0,0],[0,0,0,1,0],[0,0,1,0,0],[0,0,0,0,1],[1,0,0,0,0]]
=> [1,1,0,1,1,0,0,1,0,0]
=> [2,4,1,5,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 2 = 0 + 2
[[0,0,1,0,0],[0,1,0,0,0],[0,0,0,0,1],[0,0,0,1,0],[1,0,0,0,0]]
=> [1,1,1,0,0,1,1,0,0,0]
=> [3,1,5,2,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 2 = 0 + 2
Description
The projective dimension of the simple modules corresponding to the minimum of L in the incidence algebra of the lattice L.
Mp00098: Alternating sign matrices link patternPerfect matchings
Mp00144: Perfect matchings rotationPerfect matchings
Mp00283: Perfect matchings non-nesting-exceedence permutationPermutations
St000373: Permutations ⟶ ℤResult quality: 1% values known / values provided: 1%distinct values known / distinct values provided: 7%
Values
[[0,1,0],[1,0,0],[0,0,1]]
=> [(1,2),(3,4),(5,6)]
=> [(1,6),(2,3),(4,5)]
=> [3,5,2,6,4,1] => 0
[[0,1,0,0],[1,0,0,0],[0,0,1,0],[0,0,0,1]]
=> [(1,2),(3,6),(4,5),(7,8)]
=> [(1,8),(2,3),(4,7),(5,6)]
=> [3,6,2,7,8,5,4,1] => ? = -1
[[1,0,0,0],[0,0,1,0],[0,1,0,0],[0,0,0,1]]
=> [(1,8),(2,3),(4,5),(6,7)]
=> [(1,2),(3,4),(5,6),(7,8)]
=> [2,1,4,3,6,5,8,7] => 0
[[0,1,0,0],[1,-1,1,0],[0,1,0,0],[0,0,0,1]]
=> [(1,2),(3,8),(4,5),(6,7)]
=> [(1,4),(2,3),(5,6),(7,8)]
=> [3,4,2,1,6,5,8,7] => ? = 1
[[0,0,1,0],[1,0,0,0],[0,1,0,0],[0,0,0,1]]
=> [(1,8),(2,3),(4,5),(6,7)]
=> [(1,2),(3,4),(5,6),(7,8)]
=> [2,1,4,3,6,5,8,7] => 0
[[0,1,0,0],[0,0,1,0],[1,0,0,0],[0,0,0,1]]
=> [(1,2),(3,6),(4,5),(7,8)]
=> [(1,8),(2,3),(4,7),(5,6)]
=> [3,6,2,7,8,5,4,1] => ? = 1
[[0,0,1,0],[0,1,0,0],[1,0,0,0],[0,0,0,1]]
=> [(1,6),(2,3),(4,5),(7,8)]
=> [(1,8),(2,7),(3,4),(5,6)]
=> [4,6,7,3,8,5,2,1] => ? = 0
[[0,1,0,0],[1,0,0,0],[0,0,0,1],[0,0,1,0]]
=> [(1,2),(3,4),(5,6),(7,8)]
=> [(1,8),(2,3),(4,5),(6,7)]
=> [3,5,2,7,4,8,6,1] => ? = 0
[[0,1,0,0],[1,-1,0,1],[0,1,0,0],[0,0,1,0]]
=> [(1,2),(3,4),(5,6),(7,8)]
=> [(1,8),(2,3),(4,5),(6,7)]
=> [3,5,2,7,4,8,6,1] => ? = 0
[[0,1,0,0],[0,0,0,1],[1,0,0,0],[0,0,1,0]]
=> [(1,2),(3,4),(5,6),(7,8)]
=> [(1,8),(2,3),(4,5),(6,7)]
=> [3,5,2,7,4,8,6,1] => ? = 0
[[0,1,0,0],[1,-1,0,1],[0,0,1,0],[0,1,0,0]]
=> [(1,2),(3,4),(5,8),(6,7)]
=> [(1,6),(2,3),(4,5),(7,8)]
=> [3,5,2,6,4,1,8,7] => ? = 0
[[0,1,0,0],[0,0,0,1],[1,-1,1,0],[0,1,0,0]]
=> [(1,2),(3,4),(5,6),(7,8)]
=> [(1,8),(2,3),(4,5),(6,7)]
=> [3,5,2,7,4,8,6,1] => ? = 0
[[0,1,0,0],[0,0,0,1],[0,0,1,0],[1,0,0,0]]
=> [(1,2),(3,4),(5,8),(6,7)]
=> [(1,6),(2,3),(4,5),(7,8)]
=> [3,5,2,6,4,1,8,7] => ? = 0
[[0,1,0,0,0],[1,0,0,0,0],[0,0,1,0,0],[0,0,0,1,0],[0,0,0,0,1]]
=> [(1,2),(3,8),(4,7),(5,6),(9,10)]
=> [(1,10),(2,3),(4,9),(5,8),(6,7)]
=> [3,7,2,8,9,10,6,5,4,1] => ? = -2
[[1,0,0,0,0],[0,0,1,0,0],[0,1,0,0,0],[0,0,0,1,0],[0,0,0,0,1]]
=> [(1,10),(2,3),(4,7),(5,6),(8,9)]
=> [(1,2),(3,4),(5,8),(6,7),(9,10)]
=> [2,1,4,3,7,8,6,5,10,9] => ? = -1
[[0,1,0,0,0],[1,-1,1,0,0],[0,1,0,0,0],[0,0,0,1,0],[0,0,0,0,1]]
=> [(1,2),(3,10),(4,7),(5,6),(8,9)]
=> [(1,4),(2,3),(5,8),(6,7),(9,10)]
=> [3,4,2,1,7,8,6,5,10,9] => ? = 0
[[0,0,1,0,0],[1,0,0,0,0],[0,1,0,0,0],[0,0,0,1,0],[0,0,0,0,1]]
=> [(1,10),(2,3),(4,7),(5,6),(8,9)]
=> [(1,2),(3,4),(5,8),(6,7),(9,10)]
=> [2,1,4,3,7,8,6,5,10,9] => ? = -1
[[0,1,0,0,0],[0,0,1,0,0],[1,0,0,0,0],[0,0,0,1,0],[0,0,0,0,1]]
=> [(1,2),(3,8),(4,7),(5,6),(9,10)]
=> [(1,10),(2,3),(4,9),(5,8),(6,7)]
=> [3,7,2,8,9,10,6,5,4,1] => ? = 0
[[0,0,1,0,0],[0,1,0,0,0],[1,0,0,0,0],[0,0,0,1,0],[0,0,0,0,1]]
=> [(1,8),(2,3),(4,7),(5,6),(9,10)]
=> [(1,10),(2,9),(3,4),(5,8),(6,7)]
=> [4,7,8,3,9,10,6,5,2,1] => ? = -1
[[1,0,0,0,0],[0,1,0,0,0],[0,0,0,1,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [(1,10),(2,9),(3,4),(5,6),(7,8)]
=> [(1,2),(3,10),(4,5),(6,7),(8,9)]
=> [2,1,5,7,4,9,6,10,8,3] => ? = 0
[[0,1,0,0,0],[1,0,0,0,0],[0,0,0,1,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [(1,2),(3,4),(5,6),(7,8),(9,10)]
=> [(1,10),(2,3),(4,5),(6,7),(8,9)]
=> [3,5,2,7,4,9,6,10,8,1] => ? = 0
[[1,0,0,0,0],[0,0,1,0,0],[0,1,-1,1,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [(1,10),(2,3),(4,9),(5,6),(7,8)]
=> [(1,2),(3,4),(5,10),(6,7),(8,9)]
=> [2,1,4,3,7,9,6,10,8,5] => ? = 1
[[0,1,0,0,0],[1,-1,1,0,0],[0,1,-1,1,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [(1,2),(3,10),(4,9),(5,6),(7,8)]
=> [(1,4),(2,3),(5,10),(6,7),(8,9)]
=> [3,4,2,1,7,9,6,10,8,5] => ? = 2
[[0,0,1,0,0],[1,0,0,0,0],[0,1,-1,1,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [(1,10),(2,3),(4,9),(5,6),(7,8)]
=> [(1,2),(3,4),(5,10),(6,7),(8,9)]
=> [2,1,4,3,7,9,6,10,8,5] => ? = 1
[[0,1,0,0,0],[0,0,1,0,0],[1,0,-1,1,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [(1,2),(3,4),(5,6),(7,8),(9,10)]
=> [(1,10),(2,3),(4,5),(6,7),(8,9)]
=> [3,5,2,7,4,9,6,10,8,1] => ? = 2
[[0,0,1,0,0],[0,1,0,0,0],[1,0,-1,1,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [(1,4),(2,3),(5,6),(7,8),(9,10)]
=> [(1,10),(2,5),(3,4),(6,7),(8,9)]
=> [4,5,7,3,2,9,6,10,8,1] => ? = 1
[[1,0,0,0,0],[0,0,0,1,0],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [(1,10),(2,9),(3,4),(5,6),(7,8)]
=> [(1,2),(3,10),(4,5),(6,7),(8,9)]
=> [2,1,5,7,4,9,6,10,8,3] => ? = 0
[[0,1,0,0,0],[1,-1,0,1,0],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [(1,2),(3,4),(5,6),(7,8),(9,10)]
=> [(1,10),(2,3),(4,5),(6,7),(8,9)]
=> [3,5,2,7,4,9,6,10,8,1] => ? = 0
[[0,0,1,0,0],[1,0,-1,1,0],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [(1,10),(2,9),(3,4),(5,6),(7,8)]
=> [(1,2),(3,10),(4,5),(6,7),(8,9)]
=> [2,1,5,7,4,9,6,10,8,3] => ? = 0
[[0,0,0,1,0],[1,0,0,0,0],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [(1,10),(2,3),(4,9),(5,6),(7,8)]
=> [(1,2),(3,4),(5,10),(6,7),(8,9)]
=> [2,1,4,3,7,9,6,10,8,5] => ? = 1
[[0,1,0,0,0],[0,0,0,1,0],[1,0,0,0,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [(1,2),(3,4),(5,6),(7,8),(9,10)]
=> [(1,10),(2,3),(4,5),(6,7),(8,9)]
=> [3,5,2,7,4,9,6,10,8,1] => ? = 0
[[0,0,1,0,0],[0,1,-1,1,0],[1,0,0,0,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [(1,2),(3,4),(5,6),(7,8),(9,10)]
=> [(1,10),(2,3),(4,5),(6,7),(8,9)]
=> [3,5,2,7,4,9,6,10,8,1] => ? = 0
[[0,0,0,1,0],[0,1,0,0,0],[1,0,0,0,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [(1,4),(2,3),(5,6),(7,8),(9,10)]
=> [(1,10),(2,5),(3,4),(6,7),(8,9)]
=> [4,5,7,3,2,9,6,10,8,1] => ? = 1
[[1,0,0,0,0],[0,0,1,0,0],[0,0,0,1,0],[0,1,0,0,0],[0,0,0,0,1]]
=> [(1,10),(2,3),(4,7),(5,6),(8,9)]
=> [(1,2),(3,4),(5,8),(6,7),(9,10)]
=> [2,1,4,3,7,8,6,5,10,9] => ? = 1
[[0,1,0,0,0],[1,-1,1,0,0],[0,0,0,1,0],[0,1,0,0,0],[0,0,0,0,1]]
=> [(1,2),(3,10),(4,7),(5,6),(8,9)]
=> [(1,4),(2,3),(5,8),(6,7),(9,10)]
=> [3,4,2,1,7,8,6,5,10,9] => ? = 2
[[0,0,1,0,0],[1,0,0,0,0],[0,0,0,1,0],[0,1,0,0,0],[0,0,0,0,1]]
=> [(1,10),(2,3),(4,7),(5,6),(8,9)]
=> [(1,2),(3,4),(5,8),(6,7),(9,10)]
=> [2,1,4,3,7,8,6,5,10,9] => ? = 1
[[0,1,0,0,0],[0,0,1,0,0],[1,-1,0,1,0],[0,1,0,0,0],[0,0,0,0,1]]
=> [(1,2),(3,8),(4,7),(5,6),(9,10)]
=> [(1,10),(2,3),(4,9),(5,8),(6,7)]
=> [3,7,2,8,9,10,6,5,4,1] => ? = 2
[[0,0,1,0,0],[0,1,0,0,0],[1,-1,0,1,0],[0,1,0,0,0],[0,0,0,0,1]]
=> [(1,8),(2,3),(4,7),(5,6),(9,10)]
=> [(1,10),(2,9),(3,4),(5,8),(6,7)]
=> [4,7,8,3,9,10,6,5,2,1] => ? = 1
[[1,0,0,0,0],[0,0,0,1,0],[0,0,1,0,0],[0,1,0,0,0],[0,0,0,0,1]]
=> [(1,10),(2,7),(3,4),(5,6),(8,9)]
=> [(1,2),(3,8),(4,5),(6,7),(9,10)]
=> [2,1,5,7,4,8,6,3,10,9] => ? = 0
[[0,1,0,0,0],[1,-1,0,1,0],[0,0,1,0,0],[0,1,0,0,0],[0,0,0,0,1]]
=> [(1,2),(3,4),(5,6),(7,10),(8,9)]
=> [(1,8),(2,3),(4,5),(6,7),(9,10)]
=> [3,5,2,7,4,8,6,1,10,9] => ? = 0
[[0,0,1,0,0],[1,0,-1,1,0],[0,0,1,0,0],[0,1,0,0,0],[0,0,0,0,1]]
=> [(1,10),(2,7),(3,4),(5,6),(8,9)]
=> [(1,2),(3,8),(4,5),(6,7),(9,10)]
=> [2,1,5,7,4,8,6,3,10,9] => ? = 0
[[0,0,0,1,0],[1,0,0,0,0],[0,0,1,0,0],[0,1,0,0,0],[0,0,0,0,1]]
=> [(1,10),(2,3),(4,7),(5,6),(8,9)]
=> [(1,2),(3,4),(5,8),(6,7),(9,10)]
=> [2,1,4,3,7,8,6,5,10,9] => ? = 1
[[0,1,0,0,0],[0,0,0,1,0],[1,-1,1,0,0],[0,1,0,0,0],[0,0,0,0,1]]
=> [(1,2),(3,4),(5,6),(7,8),(9,10)]
=> [(1,10),(2,3),(4,5),(6,7),(8,9)]
=> [3,5,2,7,4,9,6,10,8,1] => ? = 0
[[0,0,1,0,0],[0,1,-1,1,0],[1,-1,1,0,0],[0,1,0,0,0],[0,0,0,0,1]]
=> [(1,8),(2,7),(3,4),(5,6),(9,10)]
=> [(1,10),(2,9),(3,8),(4,5),(6,7)]
=> [5,7,8,9,4,10,6,3,2,1] => ? = 0
[[0,0,0,1,0],[0,1,0,0,0],[1,-1,1,0,0],[0,1,0,0,0],[0,0,0,0,1]]
=> [(1,8),(2,3),(4,7),(5,6),(9,10)]
=> [(1,10),(2,9),(3,4),(5,8),(6,7)]
=> [4,7,8,3,9,10,6,5,2,1] => ? = 1
[[0,0,1,0,0],[0,0,0,1,0],[1,0,0,0,0],[0,1,0,0,0],[0,0,0,0,1]]
=> [(1,2),(3,4),(5,6),(7,8),(9,10)]
=> [(1,10),(2,3),(4,5),(6,7),(8,9)]
=> [3,5,2,7,4,9,6,10,8,1] => ? = 0
[[0,0,0,1,0],[0,0,1,0,0],[1,0,0,0,0],[0,1,0,0,0],[0,0,0,0,1]]
=> [(1,4),(2,3),(5,6),(7,8),(9,10)]
=> [(1,10),(2,5),(3,4),(6,7),(8,9)]
=> [4,5,7,3,2,9,6,10,8,1] => ? = 1
[[0,1,0,0,0],[0,0,1,0,0],[0,0,0,1,0],[1,0,0,0,0],[0,0,0,0,1]]
=> [(1,2),(3,10),(4,7),(5,6),(8,9)]
=> [(1,4),(2,3),(5,8),(6,7),(9,10)]
=> [3,4,2,1,7,8,6,5,10,9] => ? = 2
[[0,0,1,0,0],[0,1,0,0,0],[0,0,0,1,0],[1,0,0,0,0],[0,0,0,0,1]]
=> [(1,10),(2,3),(4,7),(5,6),(8,9)]
=> [(1,2),(3,4),(5,8),(6,7),(9,10)]
=> [2,1,4,3,7,8,6,5,10,9] => ? = 1
[[0,1,0,0,0],[0,0,0,1,0],[0,0,1,0,0],[1,0,0,0,0],[0,0,0,0,1]]
=> [(1,2),(3,4),(5,6),(7,10),(8,9)]
=> [(1,8),(2,3),(4,5),(6,7),(9,10)]
=> [3,5,2,7,4,8,6,1,10,9] => ? = 0
[[0,0,1,0,0],[0,1,-1,1,0],[0,0,1,0,0],[1,0,0,0,0],[0,0,0,0,1]]
=> [(1,10),(2,7),(3,4),(5,6),(8,9)]
=> [(1,2),(3,8),(4,5),(6,7),(9,10)]
=> [2,1,5,7,4,8,6,3,10,9] => ? = 0
[[0,0,0,1,0],[0,1,0,0,0],[0,0,1,0,0],[1,0,0,0,0],[0,0,0,0,1]]
=> [(1,10),(2,3),(4,7),(5,6),(8,9)]
=> [(1,2),(3,4),(5,8),(6,7),(9,10)]
=> [2,1,4,3,7,8,6,5,10,9] => ? = 1
[[0,0,1,0,0],[0,0,0,1,0],[0,1,0,0,0],[1,0,0,0,0],[0,0,0,0,1]]
=> [(1,2),(3,4),(5,6),(7,10),(8,9)]
=> [(1,8),(2,3),(4,5),(6,7),(9,10)]
=> [3,5,2,7,4,8,6,1,10,9] => ? = 0
[[1,0,0,0,0],[0,0,1,0,0],[0,1,0,0,0],[0,0,0,0,1],[0,0,0,1,0]]
=> [(1,10),(2,3),(4,5),(6,7),(8,9)]
=> [(1,2),(3,4),(5,6),(7,8),(9,10)]
=> [2,1,4,3,6,5,8,7,10,9] => 0
[[0,0,1,0,0],[1,0,0,0,0],[0,1,0,0,0],[0,0,0,0,1],[0,0,0,1,0]]
=> [(1,10),(2,3),(4,5),(6,7),(8,9)]
=> [(1,2),(3,4),(5,6),(7,8),(9,10)]
=> [2,1,4,3,6,5,8,7,10,9] => 0
[[1,0,0,0,0],[0,0,1,0,0],[0,1,-1,0,1],[0,0,1,0,0],[0,0,0,1,0]]
=> [(1,10),(2,3),(4,5),(6,7),(8,9)]
=> [(1,2),(3,4),(5,6),(7,8),(9,10)]
=> [2,1,4,3,6,5,8,7,10,9] => 0
[[0,0,1,0,0],[1,0,0,0,0],[0,1,-1,0,1],[0,0,1,0,0],[0,0,0,1,0]]
=> [(1,10),(2,3),(4,5),(6,7),(8,9)]
=> [(1,2),(3,4),(5,6),(7,8),(9,10)]
=> [2,1,4,3,6,5,8,7,10,9] => 0
[[0,0,0,1,0],[1,0,0,0,0],[0,1,0,-1,1],[0,0,1,0,0],[0,0,0,1,0]]
=> [(1,10),(2,3),(4,5),(6,7),(8,9)]
=> [(1,2),(3,4),(5,6),(7,8),(9,10)]
=> [2,1,4,3,6,5,8,7,10,9] => 0
[[1,0,0,0,0],[0,0,1,0,0],[0,0,0,0,1],[0,1,0,0,0],[0,0,0,1,0]]
=> [(1,10),(2,3),(4,5),(6,7),(8,9)]
=> [(1,2),(3,4),(5,6),(7,8),(9,10)]
=> [2,1,4,3,6,5,8,7,10,9] => 0
[[0,0,1,0,0],[1,0,0,0,0],[0,0,0,0,1],[0,1,0,0,0],[0,0,0,1,0]]
=> [(1,10),(2,3),(4,5),(6,7),(8,9)]
=> [(1,2),(3,4),(5,6),(7,8),(9,10)]
=> [2,1,4,3,6,5,8,7,10,9] => 0
[[0,0,0,1,0],[1,0,0,0,0],[0,0,1,-1,1],[0,1,0,0,0],[0,0,0,1,0]]
=> [(1,10),(2,3),(4,5),(6,7),(8,9)]
=> [(1,2),(3,4),(5,6),(7,8),(9,10)]
=> [2,1,4,3,6,5,8,7,10,9] => 0
[[0,0,1,0,0],[0,1,0,0,0],[0,0,0,0,1],[1,0,0,0,0],[0,0,0,1,0]]
=> [(1,10),(2,3),(4,5),(6,7),(8,9)]
=> [(1,2),(3,4),(5,6),(7,8),(9,10)]
=> [2,1,4,3,6,5,8,7,10,9] => 0
[[0,0,0,1,0],[0,1,0,0,0],[0,0,1,-1,1],[1,0,0,0,0],[0,0,0,1,0]]
=> [(1,10),(2,3),(4,5),(6,7),(8,9)]
=> [(1,2),(3,4),(5,6),(7,8),(9,10)]
=> [2,1,4,3,6,5,8,7,10,9] => 0
[[0,0,0,1,0],[0,0,1,0,0],[0,1,0,-1,1],[1,0,0,0,0],[0,0,0,1,0]]
=> [(1,10),(2,3),(4,5),(6,7),(8,9)]
=> [(1,2),(3,4),(5,6),(7,8),(9,10)]
=> [2,1,4,3,6,5,8,7,10,9] => 0
[[1,0,0,0,0],[0,0,1,0,0],[0,0,0,0,1],[0,1,-1,1,0],[0,0,1,0,0]]
=> [(1,10),(2,3),(4,5),(6,7),(8,9)]
=> [(1,2),(3,4),(5,6),(7,8),(9,10)]
=> [2,1,4,3,6,5,8,7,10,9] => 0
[[0,0,1,0,0],[1,0,0,0,0],[0,0,0,0,1],[0,1,-1,1,0],[0,0,1,0,0]]
=> [(1,10),(2,3),(4,5),(6,7),(8,9)]
=> [(1,2),(3,4),(5,6),(7,8),(9,10)]
=> [2,1,4,3,6,5,8,7,10,9] => 0
[[0,0,0,1,0],[1,0,0,0,0],[0,0,1,-1,1],[0,1,-1,1,0],[0,0,1,0,0]]
=> [(1,10),(2,3),(4,5),(6,7),(8,9)]
=> [(1,2),(3,4),(5,6),(7,8),(9,10)]
=> [2,1,4,3,6,5,8,7,10,9] => 0
[[0,0,1,0,0],[0,1,0,0,0],[0,0,0,0,1],[1,0,-1,1,0],[0,0,1,0,0]]
=> [(1,10),(2,3),(4,5),(6,7),(8,9)]
=> [(1,2),(3,4),(5,6),(7,8),(9,10)]
=> [2,1,4,3,6,5,8,7,10,9] => 0
[[0,0,0,1,0],[0,1,0,0,0],[0,0,1,-1,1],[1,0,-1,1,0],[0,0,1,0,0]]
=> [(1,10),(2,3),(4,5),(6,7),(8,9)]
=> [(1,2),(3,4),(5,6),(7,8),(9,10)]
=> [2,1,4,3,6,5,8,7,10,9] => 0
[[0,0,0,1,0],[1,0,0,0,0],[0,0,0,0,1],[0,1,0,0,0],[0,0,1,0,0]]
=> [(1,10),(2,3),(4,5),(6,7),(8,9)]
=> [(1,2),(3,4),(5,6),(7,8),(9,10)]
=> [2,1,4,3,6,5,8,7,10,9] => 0
[[0,0,0,1,0],[0,1,0,0,0],[0,0,0,0,1],[1,0,0,0,0],[0,0,1,0,0]]
=> [(1,10),(2,3),(4,5),(6,7),(8,9)]
=> [(1,2),(3,4),(5,6),(7,8),(9,10)]
=> [2,1,4,3,6,5,8,7,10,9] => 0
[[0,0,0,1,0],[0,0,1,0,0],[0,1,-1,0,1],[1,0,0,0,0],[0,0,1,0,0]]
=> [(1,10),(2,3),(4,5),(6,7),(8,9)]
=> [(1,2),(3,4),(5,6),(7,8),(9,10)]
=> [2,1,4,3,6,5,8,7,10,9] => 0
[[0,0,1,0,0],[0,1,0,0,0],[0,0,0,0,1],[0,0,0,1,0],[1,0,0,0,0]]
=> [(1,10),(2,3),(4,5),(6,7),(8,9)]
=> [(1,2),(3,4),(5,6),(7,8),(9,10)]
=> [2,1,4,3,6,5,8,7,10,9] => 0
[[0,0,0,1,0],[0,1,0,0,0],[0,0,1,-1,1],[0,0,0,1,0],[1,0,0,0,0]]
=> [(1,10),(2,3),(4,5),(6,7),(8,9)]
=> [(1,2),(3,4),(5,6),(7,8),(9,10)]
=> [2,1,4,3,6,5,8,7,10,9] => 0
[[0,0,0,1,0],[0,1,0,0,0],[0,0,0,0,1],[0,0,1,0,0],[1,0,0,0,0]]
=> [(1,10),(2,3),(4,5),(6,7),(8,9)]
=> [(1,2),(3,4),(5,6),(7,8),(9,10)]
=> [2,1,4,3,6,5,8,7,10,9] => 0
[[0,0,0,1,0],[0,0,1,0,0],[0,1,-1,0,1],[0,0,1,0,0],[1,0,0,0,0]]
=> [(1,10),(2,3),(4,5),(6,7),(8,9)]
=> [(1,2),(3,4),(5,6),(7,8),(9,10)]
=> [2,1,4,3,6,5,8,7,10,9] => 0
Description
The number of weak exceedences of a permutation that are also mid-points of a decreasing subsequence of length $3$. Given a permutation $\pi = [\pi_1,\ldots,\pi_n]$, this statistic counts the number of position $j$ such that $\pi_j \geq j$ and there exist indices $i,k$ with $i < j < k$ and $\pi_i > \pi_j > \pi_k$. See also [[St000213]] and [[St000119]].
Mp00098: Alternating sign matrices link patternPerfect matchings
Mp00144: Perfect matchings rotationPerfect matchings
Mp00283: Perfect matchings non-nesting-exceedence permutationPermutations
St000862: Permutations ⟶ ℤResult quality: 1% values known / values provided: 1%distinct values known / distinct values provided: 7%
Values
[[0,1,0],[1,0,0],[0,0,1]]
=> [(1,2),(3,4),(5,6)]
=> [(1,6),(2,3),(4,5)]
=> [3,5,2,6,4,1] => 2 = 0 + 2
[[0,1,0,0],[1,0,0,0],[0,0,1,0],[0,0,0,1]]
=> [(1,2),(3,6),(4,5),(7,8)]
=> [(1,8),(2,3),(4,7),(5,6)]
=> [3,6,2,7,8,5,4,1] => ? = -1 + 2
[[1,0,0,0],[0,0,1,0],[0,1,0,0],[0,0,0,1]]
=> [(1,8),(2,3),(4,5),(6,7)]
=> [(1,2),(3,4),(5,6),(7,8)]
=> [2,1,4,3,6,5,8,7] => 2 = 0 + 2
[[0,1,0,0],[1,-1,1,0],[0,1,0,0],[0,0,0,1]]
=> [(1,2),(3,8),(4,5),(6,7)]
=> [(1,4),(2,3),(5,6),(7,8)]
=> [3,4,2,1,6,5,8,7] => ? = 1 + 2
[[0,0,1,0],[1,0,0,0],[0,1,0,0],[0,0,0,1]]
=> [(1,8),(2,3),(4,5),(6,7)]
=> [(1,2),(3,4),(5,6),(7,8)]
=> [2,1,4,3,6,5,8,7] => 2 = 0 + 2
[[0,1,0,0],[0,0,1,0],[1,0,0,0],[0,0,0,1]]
=> [(1,2),(3,6),(4,5),(7,8)]
=> [(1,8),(2,3),(4,7),(5,6)]
=> [3,6,2,7,8,5,4,1] => ? = 1 + 2
[[0,0,1,0],[0,1,0,0],[1,0,0,0],[0,0,0,1]]
=> [(1,6),(2,3),(4,5),(7,8)]
=> [(1,8),(2,7),(3,4),(5,6)]
=> [4,6,7,3,8,5,2,1] => ? = 0 + 2
[[0,1,0,0],[1,0,0,0],[0,0,0,1],[0,0,1,0]]
=> [(1,2),(3,4),(5,6),(7,8)]
=> [(1,8),(2,3),(4,5),(6,7)]
=> [3,5,2,7,4,8,6,1] => ? = 0 + 2
[[0,1,0,0],[1,-1,0,1],[0,1,0,0],[0,0,1,0]]
=> [(1,2),(3,4),(5,6),(7,8)]
=> [(1,8),(2,3),(4,5),(6,7)]
=> [3,5,2,7,4,8,6,1] => ? = 0 + 2
[[0,1,0,0],[0,0,0,1],[1,0,0,0],[0,0,1,0]]
=> [(1,2),(3,4),(5,6),(7,8)]
=> [(1,8),(2,3),(4,5),(6,7)]
=> [3,5,2,7,4,8,6,1] => ? = 0 + 2
[[0,1,0,0],[1,-1,0,1],[0,0,1,0],[0,1,0,0]]
=> [(1,2),(3,4),(5,8),(6,7)]
=> [(1,6),(2,3),(4,5),(7,8)]
=> [3,5,2,6,4,1,8,7] => ? = 0 + 2
[[0,1,0,0],[0,0,0,1],[1,-1,1,0],[0,1,0,0]]
=> [(1,2),(3,4),(5,6),(7,8)]
=> [(1,8),(2,3),(4,5),(6,7)]
=> [3,5,2,7,4,8,6,1] => ? = 0 + 2
[[0,1,0,0],[0,0,0,1],[0,0,1,0],[1,0,0,0]]
=> [(1,2),(3,4),(5,8),(6,7)]
=> [(1,6),(2,3),(4,5),(7,8)]
=> [3,5,2,6,4,1,8,7] => ? = 0 + 2
[[0,1,0,0,0],[1,0,0,0,0],[0,0,1,0,0],[0,0,0,1,0],[0,0,0,0,1]]
=> [(1,2),(3,8),(4,7),(5,6),(9,10)]
=> [(1,10),(2,3),(4,9),(5,8),(6,7)]
=> [3,7,2,8,9,10,6,5,4,1] => ? = -2 + 2
[[1,0,0,0,0],[0,0,1,0,0],[0,1,0,0,0],[0,0,0,1,0],[0,0,0,0,1]]
=> [(1,10),(2,3),(4,7),(5,6),(8,9)]
=> [(1,2),(3,4),(5,8),(6,7),(9,10)]
=> [2,1,4,3,7,8,6,5,10,9] => ? = -1 + 2
[[0,1,0,0,0],[1,-1,1,0,0],[0,1,0,0,0],[0,0,0,1,0],[0,0,0,0,1]]
=> [(1,2),(3,10),(4,7),(5,6),(8,9)]
=> [(1,4),(2,3),(5,8),(6,7),(9,10)]
=> [3,4,2,1,7,8,6,5,10,9] => ? = 0 + 2
[[0,0,1,0,0],[1,0,0,0,0],[0,1,0,0,0],[0,0,0,1,0],[0,0,0,0,1]]
=> [(1,10),(2,3),(4,7),(5,6),(8,9)]
=> [(1,2),(3,4),(5,8),(6,7),(9,10)]
=> [2,1,4,3,7,8,6,5,10,9] => ? = -1 + 2
[[0,1,0,0,0],[0,0,1,0,0],[1,0,0,0,0],[0,0,0,1,0],[0,0,0,0,1]]
=> [(1,2),(3,8),(4,7),(5,6),(9,10)]
=> [(1,10),(2,3),(4,9),(5,8),(6,7)]
=> [3,7,2,8,9,10,6,5,4,1] => ? = 0 + 2
[[0,0,1,0,0],[0,1,0,0,0],[1,0,0,0,0],[0,0,0,1,0],[0,0,0,0,1]]
=> [(1,8),(2,3),(4,7),(5,6),(9,10)]
=> [(1,10),(2,9),(3,4),(5,8),(6,7)]
=> [4,7,8,3,9,10,6,5,2,1] => ? = -1 + 2
[[1,0,0,0,0],[0,1,0,0,0],[0,0,0,1,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [(1,10),(2,9),(3,4),(5,6),(7,8)]
=> [(1,2),(3,10),(4,5),(6,7),(8,9)]
=> [2,1,5,7,4,9,6,10,8,3] => ? = 0 + 2
[[0,1,0,0,0],[1,0,0,0,0],[0,0,0,1,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [(1,2),(3,4),(5,6),(7,8),(9,10)]
=> [(1,10),(2,3),(4,5),(6,7),(8,9)]
=> [3,5,2,7,4,9,6,10,8,1] => ? = 0 + 2
[[1,0,0,0,0],[0,0,1,0,0],[0,1,-1,1,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [(1,10),(2,3),(4,9),(5,6),(7,8)]
=> [(1,2),(3,4),(5,10),(6,7),(8,9)]
=> [2,1,4,3,7,9,6,10,8,5] => ? = 1 + 2
[[0,1,0,0,0],[1,-1,1,0,0],[0,1,-1,1,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [(1,2),(3,10),(4,9),(5,6),(7,8)]
=> [(1,4),(2,3),(5,10),(6,7),(8,9)]
=> [3,4,2,1,7,9,6,10,8,5] => ? = 2 + 2
[[0,0,1,0,0],[1,0,0,0,0],[0,1,-1,1,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [(1,10),(2,3),(4,9),(5,6),(7,8)]
=> [(1,2),(3,4),(5,10),(6,7),(8,9)]
=> [2,1,4,3,7,9,6,10,8,5] => ? = 1 + 2
[[0,1,0,0,0],[0,0,1,0,0],[1,0,-1,1,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [(1,2),(3,4),(5,6),(7,8),(9,10)]
=> [(1,10),(2,3),(4,5),(6,7),(8,9)]
=> [3,5,2,7,4,9,6,10,8,1] => ? = 2 + 2
[[0,0,1,0,0],[0,1,0,0,0],[1,0,-1,1,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [(1,4),(2,3),(5,6),(7,8),(9,10)]
=> [(1,10),(2,5),(3,4),(6,7),(8,9)]
=> [4,5,7,3,2,9,6,10,8,1] => ? = 1 + 2
[[1,0,0,0,0],[0,0,0,1,0],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [(1,10),(2,9),(3,4),(5,6),(7,8)]
=> [(1,2),(3,10),(4,5),(6,7),(8,9)]
=> [2,1,5,7,4,9,6,10,8,3] => ? = 0 + 2
[[0,1,0,0,0],[1,-1,0,1,0],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [(1,2),(3,4),(5,6),(7,8),(9,10)]
=> [(1,10),(2,3),(4,5),(6,7),(8,9)]
=> [3,5,2,7,4,9,6,10,8,1] => ? = 0 + 2
[[0,0,1,0,0],[1,0,-1,1,0],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [(1,10),(2,9),(3,4),(5,6),(7,8)]
=> [(1,2),(3,10),(4,5),(6,7),(8,9)]
=> [2,1,5,7,4,9,6,10,8,3] => ? = 0 + 2
[[0,0,0,1,0],[1,0,0,0,0],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [(1,10),(2,3),(4,9),(5,6),(7,8)]
=> [(1,2),(3,4),(5,10),(6,7),(8,9)]
=> [2,1,4,3,7,9,6,10,8,5] => ? = 1 + 2
[[0,1,0,0,0],[0,0,0,1,0],[1,0,0,0,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [(1,2),(3,4),(5,6),(7,8),(9,10)]
=> [(1,10),(2,3),(4,5),(6,7),(8,9)]
=> [3,5,2,7,4,9,6,10,8,1] => ? = 0 + 2
[[0,0,1,0,0],[0,1,-1,1,0],[1,0,0,0,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [(1,2),(3,4),(5,6),(7,8),(9,10)]
=> [(1,10),(2,3),(4,5),(6,7),(8,9)]
=> [3,5,2,7,4,9,6,10,8,1] => ? = 0 + 2
[[0,0,0,1,0],[0,1,0,0,0],[1,0,0,0,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [(1,4),(2,3),(5,6),(7,8),(9,10)]
=> [(1,10),(2,5),(3,4),(6,7),(8,9)]
=> [4,5,7,3,2,9,6,10,8,1] => ? = 1 + 2
[[1,0,0,0,0],[0,0,1,0,0],[0,0,0,1,0],[0,1,0,0,0],[0,0,0,0,1]]
=> [(1,10),(2,3),(4,7),(5,6),(8,9)]
=> [(1,2),(3,4),(5,8),(6,7),(9,10)]
=> [2,1,4,3,7,8,6,5,10,9] => ? = 1 + 2
[[0,1,0,0,0],[1,-1,1,0,0],[0,0,0,1,0],[0,1,0,0,0],[0,0,0,0,1]]
=> [(1,2),(3,10),(4,7),(5,6),(8,9)]
=> [(1,4),(2,3),(5,8),(6,7),(9,10)]
=> [3,4,2,1,7,8,6,5,10,9] => ? = 2 + 2
[[0,0,1,0,0],[1,0,0,0,0],[0,0,0,1,0],[0,1,0,0,0],[0,0,0,0,1]]
=> [(1,10),(2,3),(4,7),(5,6),(8,9)]
=> [(1,2),(3,4),(5,8),(6,7),(9,10)]
=> [2,1,4,3,7,8,6,5,10,9] => ? = 1 + 2
[[0,1,0,0,0],[0,0,1,0,0],[1,-1,0,1,0],[0,1,0,0,0],[0,0,0,0,1]]
=> [(1,2),(3,8),(4,7),(5,6),(9,10)]
=> [(1,10),(2,3),(4,9),(5,8),(6,7)]
=> [3,7,2,8,9,10,6,5,4,1] => ? = 2 + 2
[[0,0,1,0,0],[0,1,0,0,0],[1,-1,0,1,0],[0,1,0,0,0],[0,0,0,0,1]]
=> [(1,8),(2,3),(4,7),(5,6),(9,10)]
=> [(1,10),(2,9),(3,4),(5,8),(6,7)]
=> [4,7,8,3,9,10,6,5,2,1] => ? = 1 + 2
[[1,0,0,0,0],[0,0,0,1,0],[0,0,1,0,0],[0,1,0,0,0],[0,0,0,0,1]]
=> [(1,10),(2,7),(3,4),(5,6),(8,9)]
=> [(1,2),(3,8),(4,5),(6,7),(9,10)]
=> [2,1,5,7,4,8,6,3,10,9] => ? = 0 + 2
[[0,1,0,0,0],[1,-1,0,1,0],[0,0,1,0,0],[0,1,0,0,0],[0,0,0,0,1]]
=> [(1,2),(3,4),(5,6),(7,10),(8,9)]
=> [(1,8),(2,3),(4,5),(6,7),(9,10)]
=> [3,5,2,7,4,8,6,1,10,9] => ? = 0 + 2
[[0,0,1,0,0],[1,0,-1,1,0],[0,0,1,0,0],[0,1,0,0,0],[0,0,0,0,1]]
=> [(1,10),(2,7),(3,4),(5,6),(8,9)]
=> [(1,2),(3,8),(4,5),(6,7),(9,10)]
=> [2,1,5,7,4,8,6,3,10,9] => ? = 0 + 2
[[0,0,0,1,0],[1,0,0,0,0],[0,0,1,0,0],[0,1,0,0,0],[0,0,0,0,1]]
=> [(1,10),(2,3),(4,7),(5,6),(8,9)]
=> [(1,2),(3,4),(5,8),(6,7),(9,10)]
=> [2,1,4,3,7,8,6,5,10,9] => ? = 1 + 2
[[0,1,0,0,0],[0,0,0,1,0],[1,-1,1,0,0],[0,1,0,0,0],[0,0,0,0,1]]
=> [(1,2),(3,4),(5,6),(7,8),(9,10)]
=> [(1,10),(2,3),(4,5),(6,7),(8,9)]
=> [3,5,2,7,4,9,6,10,8,1] => ? = 0 + 2
[[0,0,1,0,0],[0,1,-1,1,0],[1,-1,1,0,0],[0,1,0,0,0],[0,0,0,0,1]]
=> [(1,8),(2,7),(3,4),(5,6),(9,10)]
=> [(1,10),(2,9),(3,8),(4,5),(6,7)]
=> [5,7,8,9,4,10,6,3,2,1] => ? = 0 + 2
[[0,0,0,1,0],[0,1,0,0,0],[1,-1,1,0,0],[0,1,0,0,0],[0,0,0,0,1]]
=> [(1,8),(2,3),(4,7),(5,6),(9,10)]
=> [(1,10),(2,9),(3,4),(5,8),(6,7)]
=> [4,7,8,3,9,10,6,5,2,1] => ? = 1 + 2
[[0,0,1,0,0],[0,0,0,1,0],[1,0,0,0,0],[0,1,0,0,0],[0,0,0,0,1]]
=> [(1,2),(3,4),(5,6),(7,8),(9,10)]
=> [(1,10),(2,3),(4,5),(6,7),(8,9)]
=> [3,5,2,7,4,9,6,10,8,1] => ? = 0 + 2
[[0,0,0,1,0],[0,0,1,0,0],[1,0,0,0,0],[0,1,0,0,0],[0,0,0,0,1]]
=> [(1,4),(2,3),(5,6),(7,8),(9,10)]
=> [(1,10),(2,5),(3,4),(6,7),(8,9)]
=> [4,5,7,3,2,9,6,10,8,1] => ? = 1 + 2
[[0,1,0,0,0],[0,0,1,0,0],[0,0,0,1,0],[1,0,0,0,0],[0,0,0,0,1]]
=> [(1,2),(3,10),(4,7),(5,6),(8,9)]
=> [(1,4),(2,3),(5,8),(6,7),(9,10)]
=> [3,4,2,1,7,8,6,5,10,9] => ? = 2 + 2
[[0,0,1,0,0],[0,1,0,0,0],[0,0,0,1,0],[1,0,0,0,0],[0,0,0,0,1]]
=> [(1,10),(2,3),(4,7),(5,6),(8,9)]
=> [(1,2),(3,4),(5,8),(6,7),(9,10)]
=> [2,1,4,3,7,8,6,5,10,9] => ? = 1 + 2
[[0,1,0,0,0],[0,0,0,1,0],[0,0,1,0,0],[1,0,0,0,0],[0,0,0,0,1]]
=> [(1,2),(3,4),(5,6),(7,10),(8,9)]
=> [(1,8),(2,3),(4,5),(6,7),(9,10)]
=> [3,5,2,7,4,8,6,1,10,9] => ? = 0 + 2
[[0,0,1,0,0],[0,1,-1,1,0],[0,0,1,0,0],[1,0,0,0,0],[0,0,0,0,1]]
=> [(1,10),(2,7),(3,4),(5,6),(8,9)]
=> [(1,2),(3,8),(4,5),(6,7),(9,10)]
=> [2,1,5,7,4,8,6,3,10,9] => ? = 0 + 2
[[0,0,0,1,0],[0,1,0,0,0],[0,0,1,0,0],[1,0,0,0,0],[0,0,0,0,1]]
=> [(1,10),(2,3),(4,7),(5,6),(8,9)]
=> [(1,2),(3,4),(5,8),(6,7),(9,10)]
=> [2,1,4,3,7,8,6,5,10,9] => ? = 1 + 2
[[0,0,1,0,0],[0,0,0,1,0],[0,1,0,0,0],[1,0,0,0,0],[0,0,0,0,1]]
=> [(1,2),(3,4),(5,6),(7,10),(8,9)]
=> [(1,8),(2,3),(4,5),(6,7),(9,10)]
=> [3,5,2,7,4,8,6,1,10,9] => ? = 0 + 2
[[1,0,0,0,0],[0,0,1,0,0],[0,1,0,0,0],[0,0,0,0,1],[0,0,0,1,0]]
=> [(1,10),(2,3),(4,5),(6,7),(8,9)]
=> [(1,2),(3,4),(5,6),(7,8),(9,10)]
=> [2,1,4,3,6,5,8,7,10,9] => 2 = 0 + 2
[[0,0,1,0,0],[1,0,0,0,0],[0,1,0,0,0],[0,0,0,0,1],[0,0,0,1,0]]
=> [(1,10),(2,3),(4,5),(6,7),(8,9)]
=> [(1,2),(3,4),(5,6),(7,8),(9,10)]
=> [2,1,4,3,6,5,8,7,10,9] => 2 = 0 + 2
[[1,0,0,0,0],[0,0,1,0,0],[0,1,-1,0,1],[0,0,1,0,0],[0,0,0,1,0]]
=> [(1,10),(2,3),(4,5),(6,7),(8,9)]
=> [(1,2),(3,4),(5,6),(7,8),(9,10)]
=> [2,1,4,3,6,5,8,7,10,9] => 2 = 0 + 2
[[0,0,1,0,0],[1,0,0,0,0],[0,1,-1,0,1],[0,0,1,0,0],[0,0,0,1,0]]
=> [(1,10),(2,3),(4,5),(6,7),(8,9)]
=> [(1,2),(3,4),(5,6),(7,8),(9,10)]
=> [2,1,4,3,6,5,8,7,10,9] => 2 = 0 + 2
[[0,0,0,1,0],[1,0,0,0,0],[0,1,0,-1,1],[0,0,1,0,0],[0,0,0,1,0]]
=> [(1,10),(2,3),(4,5),(6,7),(8,9)]
=> [(1,2),(3,4),(5,6),(7,8),(9,10)]
=> [2,1,4,3,6,5,8,7,10,9] => 2 = 0 + 2
[[1,0,0,0,0],[0,0,1,0,0],[0,0,0,0,1],[0,1,0,0,0],[0,0,0,1,0]]
=> [(1,10),(2,3),(4,5),(6,7),(8,9)]
=> [(1,2),(3,4),(5,6),(7,8),(9,10)]
=> [2,1,4,3,6,5,8,7,10,9] => 2 = 0 + 2
[[0,0,1,0,0],[1,0,0,0,0],[0,0,0,0,1],[0,1,0,0,0],[0,0,0,1,0]]
=> [(1,10),(2,3),(4,5),(6,7),(8,9)]
=> [(1,2),(3,4),(5,6),(7,8),(9,10)]
=> [2,1,4,3,6,5,8,7,10,9] => 2 = 0 + 2
[[0,0,0,1,0],[1,0,0,0,0],[0,0,1,-1,1],[0,1,0,0,0],[0,0,0,1,0]]
=> [(1,10),(2,3),(4,5),(6,7),(8,9)]
=> [(1,2),(3,4),(5,6),(7,8),(9,10)]
=> [2,1,4,3,6,5,8,7,10,9] => 2 = 0 + 2
[[0,0,1,0,0],[0,1,0,0,0],[0,0,0,0,1],[1,0,0,0,0],[0,0,0,1,0]]
=> [(1,10),(2,3),(4,5),(6,7),(8,9)]
=> [(1,2),(3,4),(5,6),(7,8),(9,10)]
=> [2,1,4,3,6,5,8,7,10,9] => 2 = 0 + 2
[[0,0,0,1,0],[0,1,0,0,0],[0,0,1,-1,1],[1,0,0,0,0],[0,0,0,1,0]]
=> [(1,10),(2,3),(4,5),(6,7),(8,9)]
=> [(1,2),(3,4),(5,6),(7,8),(9,10)]
=> [2,1,4,3,6,5,8,7,10,9] => 2 = 0 + 2
[[0,0,0,1,0],[0,0,1,0,0],[0,1,0,-1,1],[1,0,0,0,0],[0,0,0,1,0]]
=> [(1,10),(2,3),(4,5),(6,7),(8,9)]
=> [(1,2),(3,4),(5,6),(7,8),(9,10)]
=> [2,1,4,3,6,5,8,7,10,9] => 2 = 0 + 2
[[1,0,0,0,0],[0,0,1,0,0],[0,0,0,0,1],[0,1,-1,1,0],[0,0,1,0,0]]
=> [(1,10),(2,3),(4,5),(6,7),(8,9)]
=> [(1,2),(3,4),(5,6),(7,8),(9,10)]
=> [2,1,4,3,6,5,8,7,10,9] => 2 = 0 + 2
[[0,0,1,0,0],[1,0,0,0,0],[0,0,0,0,1],[0,1,-1,1,0],[0,0,1,0,0]]
=> [(1,10),(2,3),(4,5),(6,7),(8,9)]
=> [(1,2),(3,4),(5,6),(7,8),(9,10)]
=> [2,1,4,3,6,5,8,7,10,9] => 2 = 0 + 2
[[0,0,0,1,0],[1,0,0,0,0],[0,0,1,-1,1],[0,1,-1,1,0],[0,0,1,0,0]]
=> [(1,10),(2,3),(4,5),(6,7),(8,9)]
=> [(1,2),(3,4),(5,6),(7,8),(9,10)]
=> [2,1,4,3,6,5,8,7,10,9] => 2 = 0 + 2
[[0,0,1,0,0],[0,1,0,0,0],[0,0,0,0,1],[1,0,-1,1,0],[0,0,1,0,0]]
=> [(1,10),(2,3),(4,5),(6,7),(8,9)]
=> [(1,2),(3,4),(5,6),(7,8),(9,10)]
=> [2,1,4,3,6,5,8,7,10,9] => 2 = 0 + 2
[[0,0,0,1,0],[0,1,0,0,0],[0,0,1,-1,1],[1,0,-1,1,0],[0,0,1,0,0]]
=> [(1,10),(2,3),(4,5),(6,7),(8,9)]
=> [(1,2),(3,4),(5,6),(7,8),(9,10)]
=> [2,1,4,3,6,5,8,7,10,9] => 2 = 0 + 2
[[0,0,0,1,0],[1,0,0,0,0],[0,0,0,0,1],[0,1,0,0,0],[0,0,1,0,0]]
=> [(1,10),(2,3),(4,5),(6,7),(8,9)]
=> [(1,2),(3,4),(5,6),(7,8),(9,10)]
=> [2,1,4,3,6,5,8,7,10,9] => 2 = 0 + 2
[[0,0,0,1,0],[0,1,0,0,0],[0,0,0,0,1],[1,0,0,0,0],[0,0,1,0,0]]
=> [(1,10),(2,3),(4,5),(6,7),(8,9)]
=> [(1,2),(3,4),(5,6),(7,8),(9,10)]
=> [2,1,4,3,6,5,8,7,10,9] => 2 = 0 + 2
[[0,0,0,1,0],[0,0,1,0,0],[0,1,-1,0,1],[1,0,0,0,0],[0,0,1,0,0]]
=> [(1,10),(2,3),(4,5),(6,7),(8,9)]
=> [(1,2),(3,4),(5,6),(7,8),(9,10)]
=> [2,1,4,3,6,5,8,7,10,9] => 2 = 0 + 2
[[0,0,1,0,0],[0,1,0,0,0],[0,0,0,0,1],[0,0,0,1,0],[1,0,0,0,0]]
=> [(1,10),(2,3),(4,5),(6,7),(8,9)]
=> [(1,2),(3,4),(5,6),(7,8),(9,10)]
=> [2,1,4,3,6,5,8,7,10,9] => 2 = 0 + 2
[[0,0,0,1,0],[0,1,0,0,0],[0,0,1,-1,1],[0,0,0,1,0],[1,0,0,0,0]]
=> [(1,10),(2,3),(4,5),(6,7),(8,9)]
=> [(1,2),(3,4),(5,6),(7,8),(9,10)]
=> [2,1,4,3,6,5,8,7,10,9] => 2 = 0 + 2
[[0,0,0,1,0],[0,1,0,0,0],[0,0,0,0,1],[0,0,1,0,0],[1,0,0,0,0]]
=> [(1,10),(2,3),(4,5),(6,7),(8,9)]
=> [(1,2),(3,4),(5,6),(7,8),(9,10)]
=> [2,1,4,3,6,5,8,7,10,9] => 2 = 0 + 2
[[0,0,0,1,0],[0,0,1,0,0],[0,1,-1,0,1],[0,0,1,0,0],[1,0,0,0,0]]
=> [(1,10),(2,3),(4,5),(6,7),(8,9)]
=> [(1,2),(3,4),(5,6),(7,8),(9,10)]
=> [2,1,4,3,6,5,8,7,10,9] => 2 = 0 + 2
Description
The number of parts of the shifted shape of a permutation. The diagram of a strict partition $\lambda_1 < \lambda_2 < \dots < \lambda_\ell$ of $n$ is a tableau with $\ell$ rows, the $i$-th row being indented by $i$ cells. A shifted standard Young tableau is a filling of such a diagram, where entries in rows and columns are strictly increasing. The shifted Robinson-Schensted algorithm [1] associates to a permutation a pair $(P, Q)$ of standard shifted Young tableaux of the same shape, where off-diagonal entries in $Q$ may be circled. This statistic records the number of parts of the shifted shape.