searching the database
Your data matches 45 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
(click to perform a complete search on your data)
Matching statistic: St000366
(load all 46 compositions to match this statistic)
(load all 46 compositions to match this statistic)
St000366: Permutations ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[1] => 0
[1,2] => 0
[2,1] => 0
[1,2,3] => 0
[1,3,2] => 0
[2,1,3] => 0
[2,3,1] => 0
[3,1,2] => 0
[3,2,1] => 1
[1,2,3,4] => 0
[1,2,4,3] => 0
[1,3,2,4] => 0
[1,3,4,2] => 0
[1,4,2,3] => 0
[1,4,3,2] => 1
[2,1,3,4] => 0
[2,1,4,3] => 0
[2,3,1,4] => 0
[2,3,4,1] => 0
[2,4,1,3] => 0
[2,4,3,1] => 1
[3,1,2,4] => 0
[3,1,4,2] => 0
[3,2,1,4] => 1
[3,2,4,1] => 0
[3,4,1,2] => 0
[3,4,2,1] => 1
[4,1,2,3] => 0
[4,1,3,2] => 0
[4,2,1,3] => 1
[4,2,3,1] => 0
[4,3,1,2] => 1
[4,3,2,1] => 2
[1,2,3,4,5] => 0
[1,2,3,5,4] => 0
[1,2,4,3,5] => 0
[1,2,4,5,3] => 0
[1,2,5,3,4] => 0
[1,2,5,4,3] => 1
[1,3,2,4,5] => 0
[1,3,2,5,4] => 0
[1,3,4,2,5] => 0
[1,3,4,5,2] => 0
[1,3,5,2,4] => 0
[1,3,5,4,2] => 1
[1,4,2,3,5] => 0
[1,4,2,5,3] => 0
[1,4,3,2,5] => 1
[1,4,3,5,2] => 0
[1,4,5,2,3] => 0
Description
The number of double descents of a permutation.
A double descent of a permutation $\pi$ is a position $i$ such that $\pi(i) > \pi(i+1) > \pi(i+2)$.
Matching statistic: St000365
(load all 34 compositions to match this statistic)
(load all 34 compositions to match this statistic)
Mp00069: Permutations —complement⟶ Permutations
St000365: Permutations ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
St000365: Permutations ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[1] => [1] => 0
[1,2] => [2,1] => 0
[2,1] => [1,2] => 0
[1,2,3] => [3,2,1] => 0
[1,3,2] => [3,1,2] => 0
[2,1,3] => [2,3,1] => 0
[2,3,1] => [2,1,3] => 0
[3,1,2] => [1,3,2] => 0
[3,2,1] => [1,2,3] => 1
[1,2,3,4] => [4,3,2,1] => 0
[1,2,4,3] => [4,3,1,2] => 0
[1,3,2,4] => [4,2,3,1] => 0
[1,3,4,2] => [4,2,1,3] => 0
[1,4,2,3] => [4,1,3,2] => 0
[1,4,3,2] => [4,1,2,3] => 1
[2,1,3,4] => [3,4,2,1] => 0
[2,1,4,3] => [3,4,1,2] => 0
[2,3,1,4] => [3,2,4,1] => 0
[2,3,4,1] => [3,2,1,4] => 0
[2,4,1,3] => [3,1,4,2] => 0
[2,4,3,1] => [3,1,2,4] => 1
[3,1,2,4] => [2,4,3,1] => 0
[3,1,4,2] => [2,4,1,3] => 0
[3,2,1,4] => [2,3,4,1] => 1
[3,2,4,1] => [2,3,1,4] => 0
[3,4,1,2] => [2,1,4,3] => 0
[3,4,2,1] => [2,1,3,4] => 1
[4,1,2,3] => [1,4,3,2] => 0
[4,1,3,2] => [1,4,2,3] => 0
[4,2,1,3] => [1,3,4,2] => 1
[4,2,3,1] => [1,3,2,4] => 0
[4,3,1,2] => [1,2,4,3] => 1
[4,3,2,1] => [1,2,3,4] => 2
[1,2,3,4,5] => [5,4,3,2,1] => 0
[1,2,3,5,4] => [5,4,3,1,2] => 0
[1,2,4,3,5] => [5,4,2,3,1] => 0
[1,2,4,5,3] => [5,4,2,1,3] => 0
[1,2,5,3,4] => [5,4,1,3,2] => 0
[1,2,5,4,3] => [5,4,1,2,3] => 1
[1,3,2,4,5] => [5,3,4,2,1] => 0
[1,3,2,5,4] => [5,3,4,1,2] => 0
[1,3,4,2,5] => [5,3,2,4,1] => 0
[1,3,4,5,2] => [5,3,2,1,4] => 0
[1,3,5,2,4] => [5,3,1,4,2] => 0
[1,3,5,4,2] => [5,3,1,2,4] => 1
[1,4,2,3,5] => [5,2,4,3,1] => 0
[1,4,2,5,3] => [5,2,4,1,3] => 0
[1,4,3,2,5] => [5,2,3,4,1] => 1
[1,4,3,5,2] => [5,2,3,1,4] => 0
[1,4,5,2,3] => [5,2,1,4,3] => 0
Description
The number of double ascents of a permutation.
A double ascent of a permutation $\pi$ is a position $i$ such that $\pi(i) < \pi(i+1) < \pi(i+2)$.
Matching statistic: St000731
(load all 40 compositions to match this statistic)
(load all 40 compositions to match this statistic)
Mp00237: Permutations —descent views to invisible inversion bottoms⟶ Permutations
St000731: Permutations ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
St000731: Permutations ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[1] => [1] => 0
[1,2] => [1,2] => 0
[2,1] => [2,1] => 0
[1,2,3] => [1,2,3] => 0
[1,3,2] => [1,3,2] => 0
[2,1,3] => [2,1,3] => 0
[2,3,1] => [3,2,1] => 0
[3,1,2] => [3,1,2] => 0
[3,2,1] => [2,3,1] => 1
[1,2,3,4] => [1,2,3,4] => 0
[1,2,4,3] => [1,2,4,3] => 0
[1,3,2,4] => [1,3,2,4] => 0
[1,3,4,2] => [1,4,3,2] => 0
[1,4,2,3] => [1,4,2,3] => 0
[1,4,3,2] => [1,3,4,2] => 1
[2,1,3,4] => [2,1,3,4] => 0
[2,1,4,3] => [2,1,4,3] => 0
[2,3,1,4] => [3,2,1,4] => 0
[2,3,4,1] => [4,2,3,1] => 0
[2,4,1,3] => [4,2,1,3] => 0
[2,4,3,1] => [3,2,4,1] => 1
[3,1,2,4] => [3,1,2,4] => 0
[3,1,4,2] => [3,4,1,2] => 0
[3,2,1,4] => [2,3,1,4] => 1
[3,2,4,1] => [4,3,2,1] => 0
[3,4,1,2] => [4,1,3,2] => 0
[3,4,2,1] => [2,4,3,1] => 1
[4,1,2,3] => [4,1,2,3] => 0
[4,1,3,2] => [4,3,1,2] => 0
[4,2,1,3] => [2,4,1,3] => 1
[4,2,3,1] => [3,4,2,1] => 0
[4,3,1,2] => [3,1,4,2] => 1
[4,3,2,1] => [2,3,4,1] => 2
[1,2,3,4,5] => [1,2,3,4,5] => 0
[1,2,3,5,4] => [1,2,3,5,4] => 0
[1,2,4,3,5] => [1,2,4,3,5] => 0
[1,2,4,5,3] => [1,2,5,4,3] => 0
[1,2,5,3,4] => [1,2,5,3,4] => 0
[1,2,5,4,3] => [1,2,4,5,3] => 1
[1,3,2,4,5] => [1,3,2,4,5] => 0
[1,3,2,5,4] => [1,3,2,5,4] => 0
[1,3,4,2,5] => [1,4,3,2,5] => 0
[1,3,4,5,2] => [1,5,3,4,2] => 0
[1,3,5,2,4] => [1,5,3,2,4] => 0
[1,3,5,4,2] => [1,4,3,5,2] => 1
[1,4,2,3,5] => [1,4,2,3,5] => 0
[1,4,2,5,3] => [1,4,5,2,3] => 0
[1,4,3,2,5] => [1,3,4,2,5] => 1
[1,4,3,5,2] => [1,5,4,3,2] => 0
[1,4,5,2,3] => [1,5,2,4,3] => 0
Description
The number of double exceedences of a permutation.
A double exceedence is an index $\sigma(i)$ such that $i < \sigma(i) < \sigma(\sigma(i))$.
Matching statistic: St001167
(load all 2 compositions to match this statistic)
(load all 2 compositions to match this statistic)
Mp00071: Permutations —descent composition⟶ Integer compositions
Mp00231: Integer compositions —bounce path⟶ Dyck paths
St001167: Dyck paths ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00231: Integer compositions —bounce path⟶ Dyck paths
St001167: Dyck paths ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[1] => [1] => [1,0]
=> 0
[1,2] => [2] => [1,1,0,0]
=> 0
[2,1] => [1,1] => [1,0,1,0]
=> 0
[1,2,3] => [3] => [1,1,1,0,0,0]
=> 0
[1,3,2] => [2,1] => [1,1,0,0,1,0]
=> 0
[2,1,3] => [1,2] => [1,0,1,1,0,0]
=> 0
[2,3,1] => [2,1] => [1,1,0,0,1,0]
=> 0
[3,1,2] => [1,2] => [1,0,1,1,0,0]
=> 0
[3,2,1] => [1,1,1] => [1,0,1,0,1,0]
=> 1
[1,2,3,4] => [4] => [1,1,1,1,0,0,0,0]
=> 0
[1,2,4,3] => [3,1] => [1,1,1,0,0,0,1,0]
=> 0
[1,3,2,4] => [2,2] => [1,1,0,0,1,1,0,0]
=> 0
[1,3,4,2] => [3,1] => [1,1,1,0,0,0,1,0]
=> 0
[1,4,2,3] => [2,2] => [1,1,0,0,1,1,0,0]
=> 0
[1,4,3,2] => [2,1,1] => [1,1,0,0,1,0,1,0]
=> 1
[2,1,3,4] => [1,3] => [1,0,1,1,1,0,0,0]
=> 0
[2,1,4,3] => [1,2,1] => [1,0,1,1,0,0,1,0]
=> 0
[2,3,1,4] => [2,2] => [1,1,0,0,1,1,0,0]
=> 0
[2,3,4,1] => [3,1] => [1,1,1,0,0,0,1,0]
=> 0
[2,4,1,3] => [2,2] => [1,1,0,0,1,1,0,0]
=> 0
[2,4,3,1] => [2,1,1] => [1,1,0,0,1,0,1,0]
=> 1
[3,1,2,4] => [1,3] => [1,0,1,1,1,0,0,0]
=> 0
[3,1,4,2] => [1,2,1] => [1,0,1,1,0,0,1,0]
=> 0
[3,2,1,4] => [1,1,2] => [1,0,1,0,1,1,0,0]
=> 1
[3,2,4,1] => [1,2,1] => [1,0,1,1,0,0,1,0]
=> 0
[3,4,1,2] => [2,2] => [1,1,0,0,1,1,0,0]
=> 0
[3,4,2,1] => [2,1,1] => [1,1,0,0,1,0,1,0]
=> 1
[4,1,2,3] => [1,3] => [1,0,1,1,1,0,0,0]
=> 0
[4,1,3,2] => [1,2,1] => [1,0,1,1,0,0,1,0]
=> 0
[4,2,1,3] => [1,1,2] => [1,0,1,0,1,1,0,0]
=> 1
[4,2,3,1] => [1,2,1] => [1,0,1,1,0,0,1,0]
=> 0
[4,3,1,2] => [1,1,2] => [1,0,1,0,1,1,0,0]
=> 1
[4,3,2,1] => [1,1,1,1] => [1,0,1,0,1,0,1,0]
=> 2
[1,2,3,4,5] => [5] => [1,1,1,1,1,0,0,0,0,0]
=> 0
[1,2,3,5,4] => [4,1] => [1,1,1,1,0,0,0,0,1,0]
=> 0
[1,2,4,3,5] => [3,2] => [1,1,1,0,0,0,1,1,0,0]
=> 0
[1,2,4,5,3] => [4,1] => [1,1,1,1,0,0,0,0,1,0]
=> 0
[1,2,5,3,4] => [3,2] => [1,1,1,0,0,0,1,1,0,0]
=> 0
[1,2,5,4,3] => [3,1,1] => [1,1,1,0,0,0,1,0,1,0]
=> 1
[1,3,2,4,5] => [2,3] => [1,1,0,0,1,1,1,0,0,0]
=> 0
[1,3,2,5,4] => [2,2,1] => [1,1,0,0,1,1,0,0,1,0]
=> 0
[1,3,4,2,5] => [3,2] => [1,1,1,0,0,0,1,1,0,0]
=> 0
[1,3,4,5,2] => [4,1] => [1,1,1,1,0,0,0,0,1,0]
=> 0
[1,3,5,2,4] => [3,2] => [1,1,1,0,0,0,1,1,0,0]
=> 0
[1,3,5,4,2] => [3,1,1] => [1,1,1,0,0,0,1,0,1,0]
=> 1
[1,4,2,3,5] => [2,3] => [1,1,0,0,1,1,1,0,0,0]
=> 0
[1,4,2,5,3] => [2,2,1] => [1,1,0,0,1,1,0,0,1,0]
=> 0
[1,4,3,2,5] => [2,1,2] => [1,1,0,0,1,0,1,1,0,0]
=> 1
[1,4,3,5,2] => [2,2,1] => [1,1,0,0,1,1,0,0,1,0]
=> 0
[1,4,5,2,3] => [3,2] => [1,1,1,0,0,0,1,1,0,0]
=> 0
Description
The number of simple modules that appear as the top of an indecomposable non-projective modules that is reflexive in the corresponding Nakayama algebra.
The top of a module is the cokernel of the inclusion of the radical of the module into the module.
For Nakayama algebras with at most 8 simple modules, the statistic also coincides with the number of simple modules with projective dimension at least 3 in the corresponding Nakayama algebra.
Matching statistic: St001253
(load all 2 compositions to match this statistic)
(load all 2 compositions to match this statistic)
Mp00071: Permutations —descent composition⟶ Integer compositions
Mp00231: Integer compositions —bounce path⟶ Dyck paths
St001253: Dyck paths ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00231: Integer compositions —bounce path⟶ Dyck paths
St001253: Dyck paths ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[1] => [1] => [1,0]
=> 0
[1,2] => [2] => [1,1,0,0]
=> 0
[2,1] => [1,1] => [1,0,1,0]
=> 0
[1,2,3] => [3] => [1,1,1,0,0,0]
=> 0
[1,3,2] => [2,1] => [1,1,0,0,1,0]
=> 0
[2,1,3] => [1,2] => [1,0,1,1,0,0]
=> 0
[2,3,1] => [2,1] => [1,1,0,0,1,0]
=> 0
[3,1,2] => [1,2] => [1,0,1,1,0,0]
=> 0
[3,2,1] => [1,1,1] => [1,0,1,0,1,0]
=> 1
[1,2,3,4] => [4] => [1,1,1,1,0,0,0,0]
=> 0
[1,2,4,3] => [3,1] => [1,1,1,0,0,0,1,0]
=> 0
[1,3,2,4] => [2,2] => [1,1,0,0,1,1,0,0]
=> 0
[1,3,4,2] => [3,1] => [1,1,1,0,0,0,1,0]
=> 0
[1,4,2,3] => [2,2] => [1,1,0,0,1,1,0,0]
=> 0
[1,4,3,2] => [2,1,1] => [1,1,0,0,1,0,1,0]
=> 1
[2,1,3,4] => [1,3] => [1,0,1,1,1,0,0,0]
=> 0
[2,1,4,3] => [1,2,1] => [1,0,1,1,0,0,1,0]
=> 0
[2,3,1,4] => [2,2] => [1,1,0,0,1,1,0,0]
=> 0
[2,3,4,1] => [3,1] => [1,1,1,0,0,0,1,0]
=> 0
[2,4,1,3] => [2,2] => [1,1,0,0,1,1,0,0]
=> 0
[2,4,3,1] => [2,1,1] => [1,1,0,0,1,0,1,0]
=> 1
[3,1,2,4] => [1,3] => [1,0,1,1,1,0,0,0]
=> 0
[3,1,4,2] => [1,2,1] => [1,0,1,1,0,0,1,0]
=> 0
[3,2,1,4] => [1,1,2] => [1,0,1,0,1,1,0,0]
=> 1
[3,2,4,1] => [1,2,1] => [1,0,1,1,0,0,1,0]
=> 0
[3,4,1,2] => [2,2] => [1,1,0,0,1,1,0,0]
=> 0
[3,4,2,1] => [2,1,1] => [1,1,0,0,1,0,1,0]
=> 1
[4,1,2,3] => [1,3] => [1,0,1,1,1,0,0,0]
=> 0
[4,1,3,2] => [1,2,1] => [1,0,1,1,0,0,1,0]
=> 0
[4,2,1,3] => [1,1,2] => [1,0,1,0,1,1,0,0]
=> 1
[4,2,3,1] => [1,2,1] => [1,0,1,1,0,0,1,0]
=> 0
[4,3,1,2] => [1,1,2] => [1,0,1,0,1,1,0,0]
=> 1
[4,3,2,1] => [1,1,1,1] => [1,0,1,0,1,0,1,0]
=> 2
[1,2,3,4,5] => [5] => [1,1,1,1,1,0,0,0,0,0]
=> 0
[1,2,3,5,4] => [4,1] => [1,1,1,1,0,0,0,0,1,0]
=> 0
[1,2,4,3,5] => [3,2] => [1,1,1,0,0,0,1,1,0,0]
=> 0
[1,2,4,5,3] => [4,1] => [1,1,1,1,0,0,0,0,1,0]
=> 0
[1,2,5,3,4] => [3,2] => [1,1,1,0,0,0,1,1,0,0]
=> 0
[1,2,5,4,3] => [3,1,1] => [1,1,1,0,0,0,1,0,1,0]
=> 1
[1,3,2,4,5] => [2,3] => [1,1,0,0,1,1,1,0,0,0]
=> 0
[1,3,2,5,4] => [2,2,1] => [1,1,0,0,1,1,0,0,1,0]
=> 0
[1,3,4,2,5] => [3,2] => [1,1,1,0,0,0,1,1,0,0]
=> 0
[1,3,4,5,2] => [4,1] => [1,1,1,1,0,0,0,0,1,0]
=> 0
[1,3,5,2,4] => [3,2] => [1,1,1,0,0,0,1,1,0,0]
=> 0
[1,3,5,4,2] => [3,1,1] => [1,1,1,0,0,0,1,0,1,0]
=> 1
[1,4,2,3,5] => [2,3] => [1,1,0,0,1,1,1,0,0,0]
=> 0
[1,4,2,5,3] => [2,2,1] => [1,1,0,0,1,1,0,0,1,0]
=> 0
[1,4,3,2,5] => [2,1,2] => [1,1,0,0,1,0,1,1,0,0]
=> 1
[1,4,3,5,2] => [2,2,1] => [1,1,0,0,1,1,0,0,1,0]
=> 0
[1,4,5,2,3] => [3,2] => [1,1,1,0,0,0,1,1,0,0]
=> 0
Description
The number of non-projective indecomposable reflexive modules in the corresponding Nakayama algebra.
For the first 196 values the statistic coincides also with the number of fixed points of $\tau \Omega^2$ composed with its inverse, see theorem 5.8. in the reference for more details.
The number of Dyck paths of length n where the statistics returns zero seems to be 2^(n-1).
Matching statistic: St001066
(load all 6 compositions to match this statistic)
(load all 6 compositions to match this statistic)
Mp00071: Permutations —descent composition⟶ Integer compositions
Mp00231: Integer compositions —bounce path⟶ Dyck paths
St001066: Dyck paths ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00231: Integer compositions —bounce path⟶ Dyck paths
St001066: Dyck paths ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[1] => [1] => [1,0]
=> 1 = 0 + 1
[1,2] => [2] => [1,1,0,0]
=> 1 = 0 + 1
[2,1] => [1,1] => [1,0,1,0]
=> 1 = 0 + 1
[1,2,3] => [3] => [1,1,1,0,0,0]
=> 1 = 0 + 1
[1,3,2] => [2,1] => [1,1,0,0,1,0]
=> 1 = 0 + 1
[2,1,3] => [1,2] => [1,0,1,1,0,0]
=> 1 = 0 + 1
[2,3,1] => [2,1] => [1,1,0,0,1,0]
=> 1 = 0 + 1
[3,1,2] => [1,2] => [1,0,1,1,0,0]
=> 1 = 0 + 1
[3,2,1] => [1,1,1] => [1,0,1,0,1,0]
=> 2 = 1 + 1
[1,2,3,4] => [4] => [1,1,1,1,0,0,0,0]
=> 1 = 0 + 1
[1,2,4,3] => [3,1] => [1,1,1,0,0,0,1,0]
=> 1 = 0 + 1
[1,3,2,4] => [2,2] => [1,1,0,0,1,1,0,0]
=> 1 = 0 + 1
[1,3,4,2] => [3,1] => [1,1,1,0,0,0,1,0]
=> 1 = 0 + 1
[1,4,2,3] => [2,2] => [1,1,0,0,1,1,0,0]
=> 1 = 0 + 1
[1,4,3,2] => [2,1,1] => [1,1,0,0,1,0,1,0]
=> 2 = 1 + 1
[2,1,3,4] => [1,3] => [1,0,1,1,1,0,0,0]
=> 1 = 0 + 1
[2,1,4,3] => [1,2,1] => [1,0,1,1,0,0,1,0]
=> 1 = 0 + 1
[2,3,1,4] => [2,2] => [1,1,0,0,1,1,0,0]
=> 1 = 0 + 1
[2,3,4,1] => [3,1] => [1,1,1,0,0,0,1,0]
=> 1 = 0 + 1
[2,4,1,3] => [2,2] => [1,1,0,0,1,1,0,0]
=> 1 = 0 + 1
[2,4,3,1] => [2,1,1] => [1,1,0,0,1,0,1,0]
=> 2 = 1 + 1
[3,1,2,4] => [1,3] => [1,0,1,1,1,0,0,0]
=> 1 = 0 + 1
[3,1,4,2] => [1,2,1] => [1,0,1,1,0,0,1,0]
=> 1 = 0 + 1
[3,2,1,4] => [1,1,2] => [1,0,1,0,1,1,0,0]
=> 2 = 1 + 1
[3,2,4,1] => [1,2,1] => [1,0,1,1,0,0,1,0]
=> 1 = 0 + 1
[3,4,1,2] => [2,2] => [1,1,0,0,1,1,0,0]
=> 1 = 0 + 1
[3,4,2,1] => [2,1,1] => [1,1,0,0,1,0,1,0]
=> 2 = 1 + 1
[4,1,2,3] => [1,3] => [1,0,1,1,1,0,0,0]
=> 1 = 0 + 1
[4,1,3,2] => [1,2,1] => [1,0,1,1,0,0,1,0]
=> 1 = 0 + 1
[4,2,1,3] => [1,1,2] => [1,0,1,0,1,1,0,0]
=> 2 = 1 + 1
[4,2,3,1] => [1,2,1] => [1,0,1,1,0,0,1,0]
=> 1 = 0 + 1
[4,3,1,2] => [1,1,2] => [1,0,1,0,1,1,0,0]
=> 2 = 1 + 1
[4,3,2,1] => [1,1,1,1] => [1,0,1,0,1,0,1,0]
=> 3 = 2 + 1
[1,2,3,4,5] => [5] => [1,1,1,1,1,0,0,0,0,0]
=> 1 = 0 + 1
[1,2,3,5,4] => [4,1] => [1,1,1,1,0,0,0,0,1,0]
=> 1 = 0 + 1
[1,2,4,3,5] => [3,2] => [1,1,1,0,0,0,1,1,0,0]
=> 1 = 0 + 1
[1,2,4,5,3] => [4,1] => [1,1,1,1,0,0,0,0,1,0]
=> 1 = 0 + 1
[1,2,5,3,4] => [3,2] => [1,1,1,0,0,0,1,1,0,0]
=> 1 = 0 + 1
[1,2,5,4,3] => [3,1,1] => [1,1,1,0,0,0,1,0,1,0]
=> 2 = 1 + 1
[1,3,2,4,5] => [2,3] => [1,1,0,0,1,1,1,0,0,0]
=> 1 = 0 + 1
[1,3,2,5,4] => [2,2,1] => [1,1,0,0,1,1,0,0,1,0]
=> 1 = 0 + 1
[1,3,4,2,5] => [3,2] => [1,1,1,0,0,0,1,1,0,0]
=> 1 = 0 + 1
[1,3,4,5,2] => [4,1] => [1,1,1,1,0,0,0,0,1,0]
=> 1 = 0 + 1
[1,3,5,2,4] => [3,2] => [1,1,1,0,0,0,1,1,0,0]
=> 1 = 0 + 1
[1,3,5,4,2] => [3,1,1] => [1,1,1,0,0,0,1,0,1,0]
=> 2 = 1 + 1
[1,4,2,3,5] => [2,3] => [1,1,0,0,1,1,1,0,0,0]
=> 1 = 0 + 1
[1,4,2,5,3] => [2,2,1] => [1,1,0,0,1,1,0,0,1,0]
=> 1 = 0 + 1
[1,4,3,2,5] => [2,1,2] => [1,1,0,0,1,0,1,1,0,0]
=> 2 = 1 + 1
[1,4,3,5,2] => [2,2,1] => [1,1,0,0,1,1,0,0,1,0]
=> 1 = 0 + 1
[1,4,5,2,3] => [3,2] => [1,1,1,0,0,0,1,1,0,0]
=> 1 = 0 + 1
Description
The number of simple reflexive modules in the corresponding Nakayama algebra.
Matching statistic: St001238
(load all 8 compositions to match this statistic)
(load all 8 compositions to match this statistic)
Mp00061: Permutations —to increasing tree⟶ Binary trees
Mp00020: Binary trees —to Tamari-corresponding Dyck path⟶ Dyck paths
St001238: Dyck paths ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00020: Binary trees —to Tamari-corresponding Dyck path⟶ Dyck paths
St001238: Dyck paths ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[1] => [.,.]
=> [1,0]
=> 1 = 0 + 1
[1,2] => [.,[.,.]]
=> [1,1,0,0]
=> 1 = 0 + 1
[2,1] => [[.,.],.]
=> [1,0,1,0]
=> 1 = 0 + 1
[1,2,3] => [.,[.,[.,.]]]
=> [1,1,1,0,0,0]
=> 1 = 0 + 1
[1,3,2] => [.,[[.,.],.]]
=> [1,1,0,1,0,0]
=> 1 = 0 + 1
[2,1,3] => [[.,.],[.,.]]
=> [1,0,1,1,0,0]
=> 1 = 0 + 1
[2,3,1] => [[.,[.,.]],.]
=> [1,1,0,0,1,0]
=> 1 = 0 + 1
[3,1,2] => [[.,.],[.,.]]
=> [1,0,1,1,0,0]
=> 1 = 0 + 1
[3,2,1] => [[[.,.],.],.]
=> [1,0,1,0,1,0]
=> 2 = 1 + 1
[1,2,3,4] => [.,[.,[.,[.,.]]]]
=> [1,1,1,1,0,0,0,0]
=> 1 = 0 + 1
[1,2,4,3] => [.,[.,[[.,.],.]]]
=> [1,1,1,0,1,0,0,0]
=> 1 = 0 + 1
[1,3,2,4] => [.,[[.,.],[.,.]]]
=> [1,1,0,1,1,0,0,0]
=> 1 = 0 + 1
[1,3,4,2] => [.,[[.,[.,.]],.]]
=> [1,1,1,0,0,1,0,0]
=> 1 = 0 + 1
[1,4,2,3] => [.,[[.,.],[.,.]]]
=> [1,1,0,1,1,0,0,0]
=> 1 = 0 + 1
[1,4,3,2] => [.,[[[.,.],.],.]]
=> [1,1,0,1,0,1,0,0]
=> 2 = 1 + 1
[2,1,3,4] => [[.,.],[.,[.,.]]]
=> [1,0,1,1,1,0,0,0]
=> 1 = 0 + 1
[2,1,4,3] => [[.,.],[[.,.],.]]
=> [1,0,1,1,0,1,0,0]
=> 1 = 0 + 1
[2,3,1,4] => [[.,[.,.]],[.,.]]
=> [1,1,0,0,1,1,0,0]
=> 1 = 0 + 1
[2,3,4,1] => [[.,[.,[.,.]]],.]
=> [1,1,1,0,0,0,1,0]
=> 1 = 0 + 1
[2,4,1,3] => [[.,[.,.]],[.,.]]
=> [1,1,0,0,1,1,0,0]
=> 1 = 0 + 1
[2,4,3,1] => [[.,[[.,.],.]],.]
=> [1,1,0,1,0,0,1,0]
=> 2 = 1 + 1
[3,1,2,4] => [[.,.],[.,[.,.]]]
=> [1,0,1,1,1,0,0,0]
=> 1 = 0 + 1
[3,1,4,2] => [[.,.],[[.,.],.]]
=> [1,0,1,1,0,1,0,0]
=> 1 = 0 + 1
[3,2,1,4] => [[[.,.],.],[.,.]]
=> [1,0,1,0,1,1,0,0]
=> 2 = 1 + 1
[3,2,4,1] => [[[.,.],[.,.]],.]
=> [1,0,1,1,0,0,1,0]
=> 1 = 0 + 1
[3,4,1,2] => [[.,[.,.]],[.,.]]
=> [1,1,0,0,1,1,0,0]
=> 1 = 0 + 1
[3,4,2,1] => [[[.,[.,.]],.],.]
=> [1,1,0,0,1,0,1,0]
=> 2 = 1 + 1
[4,1,2,3] => [[.,.],[.,[.,.]]]
=> [1,0,1,1,1,0,0,0]
=> 1 = 0 + 1
[4,1,3,2] => [[.,.],[[.,.],.]]
=> [1,0,1,1,0,1,0,0]
=> 1 = 0 + 1
[4,2,1,3] => [[[.,.],.],[.,.]]
=> [1,0,1,0,1,1,0,0]
=> 2 = 1 + 1
[4,2,3,1] => [[[.,.],[.,.]],.]
=> [1,0,1,1,0,0,1,0]
=> 1 = 0 + 1
[4,3,1,2] => [[[.,.],.],[.,.]]
=> [1,0,1,0,1,1,0,0]
=> 2 = 1 + 1
[4,3,2,1] => [[[[.,.],.],.],.]
=> [1,0,1,0,1,0,1,0]
=> 3 = 2 + 1
[1,2,3,4,5] => [.,[.,[.,[.,[.,.]]]]]
=> [1,1,1,1,1,0,0,0,0,0]
=> 1 = 0 + 1
[1,2,3,5,4] => [.,[.,[.,[[.,.],.]]]]
=> [1,1,1,1,0,1,0,0,0,0]
=> 1 = 0 + 1
[1,2,4,3,5] => [.,[.,[[.,.],[.,.]]]]
=> [1,1,1,0,1,1,0,0,0,0]
=> 1 = 0 + 1
[1,2,4,5,3] => [.,[.,[[.,[.,.]],.]]]
=> [1,1,1,1,0,0,1,0,0,0]
=> 1 = 0 + 1
[1,2,5,3,4] => [.,[.,[[.,.],[.,.]]]]
=> [1,1,1,0,1,1,0,0,0,0]
=> 1 = 0 + 1
[1,2,5,4,3] => [.,[.,[[[.,.],.],.]]]
=> [1,1,1,0,1,0,1,0,0,0]
=> 2 = 1 + 1
[1,3,2,4,5] => [.,[[.,.],[.,[.,.]]]]
=> [1,1,0,1,1,1,0,0,0,0]
=> 1 = 0 + 1
[1,3,2,5,4] => [.,[[.,.],[[.,.],.]]]
=> [1,1,0,1,1,0,1,0,0,0]
=> 1 = 0 + 1
[1,3,4,2,5] => [.,[[.,[.,.]],[.,.]]]
=> [1,1,1,0,0,1,1,0,0,0]
=> 1 = 0 + 1
[1,3,4,5,2] => [.,[[.,[.,[.,.]]],.]]
=> [1,1,1,1,0,0,0,1,0,0]
=> 1 = 0 + 1
[1,3,5,2,4] => [.,[[.,[.,.]],[.,.]]]
=> [1,1,1,0,0,1,1,0,0,0]
=> 1 = 0 + 1
[1,3,5,4,2] => [.,[[.,[[.,.],.]],.]]
=> [1,1,1,0,1,0,0,1,0,0]
=> 2 = 1 + 1
[1,4,2,3,5] => [.,[[.,.],[.,[.,.]]]]
=> [1,1,0,1,1,1,0,0,0,0]
=> 1 = 0 + 1
[1,4,2,5,3] => [.,[[.,.],[[.,.],.]]]
=> [1,1,0,1,1,0,1,0,0,0]
=> 1 = 0 + 1
[1,4,3,2,5] => [.,[[[.,.],.],[.,.]]]
=> [1,1,0,1,0,1,1,0,0,0]
=> 2 = 1 + 1
[1,4,3,5,2] => [.,[[[.,.],[.,.]],.]]
=> [1,1,0,1,1,0,0,1,0,0]
=> 1 = 0 + 1
[1,4,5,2,3] => [.,[[.,[.,.]],[.,.]]]
=> [1,1,1,0,0,1,1,0,0,0]
=> 1 = 0 + 1
Description
The number of simple modules S such that the Auslander-Reiten translate of S is isomorphic to the Nakayama functor applied to the second syzygy of S.
Matching statistic: St001483
(load all 2 compositions to match this statistic)
(load all 2 compositions to match this statistic)
Mp00071: Permutations —descent composition⟶ Integer compositions
Mp00231: Integer compositions —bounce path⟶ Dyck paths
St001483: Dyck paths ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00231: Integer compositions —bounce path⟶ Dyck paths
St001483: Dyck paths ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[1] => [1] => [1,0]
=> 1 = 0 + 1
[1,2] => [2] => [1,1,0,0]
=> 1 = 0 + 1
[2,1] => [1,1] => [1,0,1,0]
=> 1 = 0 + 1
[1,2,3] => [3] => [1,1,1,0,0,0]
=> 1 = 0 + 1
[1,3,2] => [2,1] => [1,1,0,0,1,0]
=> 1 = 0 + 1
[2,1,3] => [1,2] => [1,0,1,1,0,0]
=> 1 = 0 + 1
[2,3,1] => [2,1] => [1,1,0,0,1,0]
=> 1 = 0 + 1
[3,1,2] => [1,2] => [1,0,1,1,0,0]
=> 1 = 0 + 1
[3,2,1] => [1,1,1] => [1,0,1,0,1,0]
=> 2 = 1 + 1
[1,2,3,4] => [4] => [1,1,1,1,0,0,0,0]
=> 1 = 0 + 1
[1,2,4,3] => [3,1] => [1,1,1,0,0,0,1,0]
=> 1 = 0 + 1
[1,3,2,4] => [2,2] => [1,1,0,0,1,1,0,0]
=> 1 = 0 + 1
[1,3,4,2] => [3,1] => [1,1,1,0,0,0,1,0]
=> 1 = 0 + 1
[1,4,2,3] => [2,2] => [1,1,0,0,1,1,0,0]
=> 1 = 0 + 1
[1,4,3,2] => [2,1,1] => [1,1,0,0,1,0,1,0]
=> 2 = 1 + 1
[2,1,3,4] => [1,3] => [1,0,1,1,1,0,0,0]
=> 1 = 0 + 1
[2,1,4,3] => [1,2,1] => [1,0,1,1,0,0,1,0]
=> 1 = 0 + 1
[2,3,1,4] => [2,2] => [1,1,0,0,1,1,0,0]
=> 1 = 0 + 1
[2,3,4,1] => [3,1] => [1,1,1,0,0,0,1,0]
=> 1 = 0 + 1
[2,4,1,3] => [2,2] => [1,1,0,0,1,1,0,0]
=> 1 = 0 + 1
[2,4,3,1] => [2,1,1] => [1,1,0,0,1,0,1,0]
=> 2 = 1 + 1
[3,1,2,4] => [1,3] => [1,0,1,1,1,0,0,0]
=> 1 = 0 + 1
[3,1,4,2] => [1,2,1] => [1,0,1,1,0,0,1,0]
=> 1 = 0 + 1
[3,2,1,4] => [1,1,2] => [1,0,1,0,1,1,0,0]
=> 2 = 1 + 1
[3,2,4,1] => [1,2,1] => [1,0,1,1,0,0,1,0]
=> 1 = 0 + 1
[3,4,1,2] => [2,2] => [1,1,0,0,1,1,0,0]
=> 1 = 0 + 1
[3,4,2,1] => [2,1,1] => [1,1,0,0,1,0,1,0]
=> 2 = 1 + 1
[4,1,2,3] => [1,3] => [1,0,1,1,1,0,0,0]
=> 1 = 0 + 1
[4,1,3,2] => [1,2,1] => [1,0,1,1,0,0,1,0]
=> 1 = 0 + 1
[4,2,1,3] => [1,1,2] => [1,0,1,0,1,1,0,0]
=> 2 = 1 + 1
[4,2,3,1] => [1,2,1] => [1,0,1,1,0,0,1,0]
=> 1 = 0 + 1
[4,3,1,2] => [1,1,2] => [1,0,1,0,1,1,0,0]
=> 2 = 1 + 1
[4,3,2,1] => [1,1,1,1] => [1,0,1,0,1,0,1,0]
=> 3 = 2 + 1
[1,2,3,4,5] => [5] => [1,1,1,1,1,0,0,0,0,0]
=> 1 = 0 + 1
[1,2,3,5,4] => [4,1] => [1,1,1,1,0,0,0,0,1,0]
=> 1 = 0 + 1
[1,2,4,3,5] => [3,2] => [1,1,1,0,0,0,1,1,0,0]
=> 1 = 0 + 1
[1,2,4,5,3] => [4,1] => [1,1,1,1,0,0,0,0,1,0]
=> 1 = 0 + 1
[1,2,5,3,4] => [3,2] => [1,1,1,0,0,0,1,1,0,0]
=> 1 = 0 + 1
[1,2,5,4,3] => [3,1,1] => [1,1,1,0,0,0,1,0,1,0]
=> 2 = 1 + 1
[1,3,2,4,5] => [2,3] => [1,1,0,0,1,1,1,0,0,0]
=> 1 = 0 + 1
[1,3,2,5,4] => [2,2,1] => [1,1,0,0,1,1,0,0,1,0]
=> 1 = 0 + 1
[1,3,4,2,5] => [3,2] => [1,1,1,0,0,0,1,1,0,0]
=> 1 = 0 + 1
[1,3,4,5,2] => [4,1] => [1,1,1,1,0,0,0,0,1,0]
=> 1 = 0 + 1
[1,3,5,2,4] => [3,2] => [1,1,1,0,0,0,1,1,0,0]
=> 1 = 0 + 1
[1,3,5,4,2] => [3,1,1] => [1,1,1,0,0,0,1,0,1,0]
=> 2 = 1 + 1
[1,4,2,3,5] => [2,3] => [1,1,0,0,1,1,1,0,0,0]
=> 1 = 0 + 1
[1,4,2,5,3] => [2,2,1] => [1,1,0,0,1,1,0,0,1,0]
=> 1 = 0 + 1
[1,4,3,2,5] => [2,1,2] => [1,1,0,0,1,0,1,1,0,0]
=> 2 = 1 + 1
[1,4,3,5,2] => [2,2,1] => [1,1,0,0,1,1,0,0,1,0]
=> 1 = 0 + 1
[1,4,5,2,3] => [3,2] => [1,1,1,0,0,0,1,1,0,0]
=> 1 = 0 + 1
Description
The number of simple module modules that appear in the socle of the regular module but have no nontrivial selfextensions with the regular module.
Matching statistic: St000039
Mp00071: Permutations —descent composition⟶ Integer compositions
Mp00231: Integer compositions —bounce path⟶ Dyck paths
Mp00129: Dyck paths —to 321-avoiding permutation (Billey-Jockusch-Stanley)⟶ Permutations
St000039: Permutations ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00231: Integer compositions —bounce path⟶ Dyck paths
Mp00129: Dyck paths —to 321-avoiding permutation (Billey-Jockusch-Stanley)⟶ Permutations
St000039: Permutations ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[1] => [1] => [1,0]
=> [1] => 0
[1,2] => [2] => [1,1,0,0]
=> [1,2] => 0
[2,1] => [1,1] => [1,0,1,0]
=> [2,1] => 0
[1,2,3] => [3] => [1,1,1,0,0,0]
=> [1,2,3] => 0
[1,3,2] => [2,1] => [1,1,0,0,1,0]
=> [1,3,2] => 0
[2,1,3] => [1,2] => [1,0,1,1,0,0]
=> [2,1,3] => 0
[2,3,1] => [2,1] => [1,1,0,0,1,0]
=> [1,3,2] => 0
[3,1,2] => [1,2] => [1,0,1,1,0,0]
=> [2,1,3] => 0
[3,2,1] => [1,1,1] => [1,0,1,0,1,0]
=> [2,3,1] => 1
[1,2,3,4] => [4] => [1,1,1,1,0,0,0,0]
=> [1,2,3,4] => 0
[1,2,4,3] => [3,1] => [1,1,1,0,0,0,1,0]
=> [1,2,4,3] => 0
[1,3,2,4] => [2,2] => [1,1,0,0,1,1,0,0]
=> [1,3,2,4] => 0
[1,3,4,2] => [3,1] => [1,1,1,0,0,0,1,0]
=> [1,2,4,3] => 0
[1,4,2,3] => [2,2] => [1,1,0,0,1,1,0,0]
=> [1,3,2,4] => 0
[1,4,3,2] => [2,1,1] => [1,1,0,0,1,0,1,0]
=> [1,3,4,2] => 1
[2,1,3,4] => [1,3] => [1,0,1,1,1,0,0,0]
=> [2,1,3,4] => 0
[2,1,4,3] => [1,2,1] => [1,0,1,1,0,0,1,0]
=> [2,1,4,3] => 0
[2,3,1,4] => [2,2] => [1,1,0,0,1,1,0,0]
=> [1,3,2,4] => 0
[2,3,4,1] => [3,1] => [1,1,1,0,0,0,1,0]
=> [1,2,4,3] => 0
[2,4,1,3] => [2,2] => [1,1,0,0,1,1,0,0]
=> [1,3,2,4] => 0
[2,4,3,1] => [2,1,1] => [1,1,0,0,1,0,1,0]
=> [1,3,4,2] => 1
[3,1,2,4] => [1,3] => [1,0,1,1,1,0,0,0]
=> [2,1,3,4] => 0
[3,1,4,2] => [1,2,1] => [1,0,1,1,0,0,1,0]
=> [2,1,4,3] => 0
[3,2,1,4] => [1,1,2] => [1,0,1,0,1,1,0,0]
=> [2,3,1,4] => 1
[3,2,4,1] => [1,2,1] => [1,0,1,1,0,0,1,0]
=> [2,1,4,3] => 0
[3,4,1,2] => [2,2] => [1,1,0,0,1,1,0,0]
=> [1,3,2,4] => 0
[3,4,2,1] => [2,1,1] => [1,1,0,0,1,0,1,0]
=> [1,3,4,2] => 1
[4,1,2,3] => [1,3] => [1,0,1,1,1,0,0,0]
=> [2,1,3,4] => 0
[4,1,3,2] => [1,2,1] => [1,0,1,1,0,0,1,0]
=> [2,1,4,3] => 0
[4,2,1,3] => [1,1,2] => [1,0,1,0,1,1,0,0]
=> [2,3,1,4] => 1
[4,2,3,1] => [1,2,1] => [1,0,1,1,0,0,1,0]
=> [2,1,4,3] => 0
[4,3,1,2] => [1,1,2] => [1,0,1,0,1,1,0,0]
=> [2,3,1,4] => 1
[4,3,2,1] => [1,1,1,1] => [1,0,1,0,1,0,1,0]
=> [2,3,4,1] => 2
[1,2,3,4,5] => [5] => [1,1,1,1,1,0,0,0,0,0]
=> [1,2,3,4,5] => 0
[1,2,3,5,4] => [4,1] => [1,1,1,1,0,0,0,0,1,0]
=> [1,2,3,5,4] => 0
[1,2,4,3,5] => [3,2] => [1,1,1,0,0,0,1,1,0,0]
=> [1,2,4,3,5] => 0
[1,2,4,5,3] => [4,1] => [1,1,1,1,0,0,0,0,1,0]
=> [1,2,3,5,4] => 0
[1,2,5,3,4] => [3,2] => [1,1,1,0,0,0,1,1,0,0]
=> [1,2,4,3,5] => 0
[1,2,5,4,3] => [3,1,1] => [1,1,1,0,0,0,1,0,1,0]
=> [1,2,4,5,3] => 1
[1,3,2,4,5] => [2,3] => [1,1,0,0,1,1,1,0,0,0]
=> [1,3,2,4,5] => 0
[1,3,2,5,4] => [2,2,1] => [1,1,0,0,1,1,0,0,1,0]
=> [1,3,2,5,4] => 0
[1,3,4,2,5] => [3,2] => [1,1,1,0,0,0,1,1,0,0]
=> [1,2,4,3,5] => 0
[1,3,4,5,2] => [4,1] => [1,1,1,1,0,0,0,0,1,0]
=> [1,2,3,5,4] => 0
[1,3,5,2,4] => [3,2] => [1,1,1,0,0,0,1,1,0,0]
=> [1,2,4,3,5] => 0
[1,3,5,4,2] => [3,1,1] => [1,1,1,0,0,0,1,0,1,0]
=> [1,2,4,5,3] => 1
[1,4,2,3,5] => [2,3] => [1,1,0,0,1,1,1,0,0,0]
=> [1,3,2,4,5] => 0
[1,4,2,5,3] => [2,2,1] => [1,1,0,0,1,1,0,0,1,0]
=> [1,3,2,5,4] => 0
[1,4,3,2,5] => [2,1,2] => [1,1,0,0,1,0,1,1,0,0]
=> [1,3,4,2,5] => 1
[1,4,3,5,2] => [2,2,1] => [1,1,0,0,1,1,0,0,1,0]
=> [1,3,2,5,4] => 0
[1,4,5,2,3] => [3,2] => [1,1,1,0,0,0,1,1,0,0]
=> [1,2,4,3,5] => 0
Description
The number of crossings of a permutation.
A crossing of a permutation $\pi$ is given by a pair $(i,j)$ such that either $i < j \leq \pi(i) \leq \pi(j)$ or $\pi(i) < \pi(j) < i < j$.
Pictorially, the diagram of a permutation is obtained by writing the numbers from $1$ to $n$ in this order on a line, and connecting $i$ and $\pi(i)$ with an arc above the line if $i\leq\pi(i)$ and with an arc below the line if $i > \pi(i)$. Then the number of crossings is the number of pairs of arcs above the line that cross or touch, plus the number of arcs below the line that cross.
Matching statistic: St000052
Mp00071: Permutations —descent composition⟶ Integer compositions
Mp00231: Integer compositions —bounce path⟶ Dyck paths
Mp00229: Dyck paths —Delest-Viennot⟶ Dyck paths
St000052: Dyck paths ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00231: Integer compositions —bounce path⟶ Dyck paths
Mp00229: Dyck paths —Delest-Viennot⟶ Dyck paths
St000052: Dyck paths ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[1] => [1] => [1,0]
=> [1,0]
=> 0
[1,2] => [2] => [1,1,0,0]
=> [1,0,1,0]
=> 0
[2,1] => [1,1] => [1,0,1,0]
=> [1,1,0,0]
=> 0
[1,2,3] => [3] => [1,1,1,0,0,0]
=> [1,0,1,0,1,0]
=> 0
[1,3,2] => [2,1] => [1,1,0,0,1,0]
=> [1,0,1,1,0,0]
=> 0
[2,1,3] => [1,2] => [1,0,1,1,0,0]
=> [1,1,0,0,1,0]
=> 0
[2,3,1] => [2,1] => [1,1,0,0,1,0]
=> [1,0,1,1,0,0]
=> 0
[3,1,2] => [1,2] => [1,0,1,1,0,0]
=> [1,1,0,0,1,0]
=> 0
[3,2,1] => [1,1,1] => [1,0,1,0,1,0]
=> [1,1,0,1,0,0]
=> 1
[1,2,3,4] => [4] => [1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> 0
[1,2,4,3] => [3,1] => [1,1,1,0,0,0,1,0]
=> [1,0,1,0,1,1,0,0]
=> 0
[1,3,2,4] => [2,2] => [1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,0]
=> 0
[1,3,4,2] => [3,1] => [1,1,1,0,0,0,1,0]
=> [1,0,1,0,1,1,0,0]
=> 0
[1,4,2,3] => [2,2] => [1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,0]
=> 0
[1,4,3,2] => [2,1,1] => [1,1,0,0,1,0,1,0]
=> [1,0,1,1,0,1,0,0]
=> 1
[2,1,3,4] => [1,3] => [1,0,1,1,1,0,0,0]
=> [1,1,0,0,1,0,1,0]
=> 0
[2,1,4,3] => [1,2,1] => [1,0,1,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0]
=> 0
[2,3,1,4] => [2,2] => [1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,0]
=> 0
[2,3,4,1] => [3,1] => [1,1,1,0,0,0,1,0]
=> [1,0,1,0,1,1,0,0]
=> 0
[2,4,1,3] => [2,2] => [1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,0]
=> 0
[2,4,3,1] => [2,1,1] => [1,1,0,0,1,0,1,0]
=> [1,0,1,1,0,1,0,0]
=> 1
[3,1,2,4] => [1,3] => [1,0,1,1,1,0,0,0]
=> [1,1,0,0,1,0,1,0]
=> 0
[3,1,4,2] => [1,2,1] => [1,0,1,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0]
=> 0
[3,2,1,4] => [1,1,2] => [1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,0,1,0]
=> 1
[3,2,4,1] => [1,2,1] => [1,0,1,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0]
=> 0
[3,4,1,2] => [2,2] => [1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,0]
=> 0
[3,4,2,1] => [2,1,1] => [1,1,0,0,1,0,1,0]
=> [1,0,1,1,0,1,0,0]
=> 1
[4,1,2,3] => [1,3] => [1,0,1,1,1,0,0,0]
=> [1,1,0,0,1,0,1,0]
=> 0
[4,1,3,2] => [1,2,1] => [1,0,1,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0]
=> 0
[4,2,1,3] => [1,1,2] => [1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,0,1,0]
=> 1
[4,2,3,1] => [1,2,1] => [1,0,1,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0]
=> 0
[4,3,1,2] => [1,1,2] => [1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,0,1,0]
=> 1
[4,3,2,1] => [1,1,1,1] => [1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,0]
=> 2
[1,2,3,4,5] => [5] => [1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> 0
[1,2,3,5,4] => [4,1] => [1,1,1,1,0,0,0,0,1,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> 0
[1,2,4,3,5] => [3,2] => [1,1,1,0,0,0,1,1,0,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> 0
[1,2,4,5,3] => [4,1] => [1,1,1,1,0,0,0,0,1,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> 0
[1,2,5,3,4] => [3,2] => [1,1,1,0,0,0,1,1,0,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> 0
[1,2,5,4,3] => [3,1,1] => [1,1,1,0,0,0,1,0,1,0]
=> [1,0,1,0,1,1,0,1,0,0]
=> 1
[1,3,2,4,5] => [2,3] => [1,1,0,0,1,1,1,0,0,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> 0
[1,3,2,5,4] => [2,2,1] => [1,1,0,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> 0
[1,3,4,2,5] => [3,2] => [1,1,1,0,0,0,1,1,0,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> 0
[1,3,4,5,2] => [4,1] => [1,1,1,1,0,0,0,0,1,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> 0
[1,3,5,2,4] => [3,2] => [1,1,1,0,0,0,1,1,0,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> 0
[1,3,5,4,2] => [3,1,1] => [1,1,1,0,0,0,1,0,1,0]
=> [1,0,1,0,1,1,0,1,0,0]
=> 1
[1,4,2,3,5] => [2,3] => [1,1,0,0,1,1,1,0,0,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> 0
[1,4,2,5,3] => [2,2,1] => [1,1,0,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> 0
[1,4,3,2,5] => [2,1,2] => [1,1,0,0,1,0,1,1,0,0]
=> [1,0,1,1,0,1,0,0,1,0]
=> 1
[1,4,3,5,2] => [2,2,1] => [1,1,0,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> 0
[1,4,5,2,3] => [3,2] => [1,1,1,0,0,0,1,1,0,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> 0
Description
The number of valleys of a Dyck path not on the x-axis.
That is, the number of valleys of nonminimal height. This corresponds to the number of -1's in an inclusion of Dyck paths into alternating sign matrices.
The following 35 statistics, ordered by result quality, also match your data. Click on any of them to see the details.
St000118The number of occurrences of the contiguous pattern [.,[.,[.,.]]] in a binary tree. St000359The number of occurrences of the pattern 23-1. St001172The number of 1-rises at odd height of a Dyck path. St001229The vector space dimension of the first extension group between the Jacobson radical J and J^2. St001744The number of occurrences of the arrow pattern 1-2 with an arrow from 1 to 2 in a permutation. St000776The maximal multiplicity of an eigenvalue in a graph. St000732The number of double deficiencies of a permutation. St000931The number of occurrences of the pattern UUU in a Dyck path. St001314The number of tilting modules of arbitrary projective dimension that have no simple modules as a direct summand in the corresponding Nakayama algebra. St001651The Frankl number of a lattice. St001845The number of join irreducibles minus the rank of a lattice. St001882The number of occurrences of a type-B 231 pattern in a signed permutation. St000259The diameter of a connected graph. St000260The radius of a connected graph. St000302The determinant of the distance matrix of a connected graph. St000466The Gutman (or modified Schultz) index of a connected graph. St000467The hyper-Wiener index of a connected graph. St000771The largest multiplicity of a distance Laplacian eigenvalue in a connected graph. St000772The multiplicity of the largest distance Laplacian eigenvalue in a connected graph. St000777The number of distinct eigenvalues of the distance Laplacian of a connected graph. St001645The pebbling number of a connected graph. St001330The hat guessing number of a graph. St001604The multiplicity of the irreducible representation corresponding to a partition in the relabelling action on polygons. St001875The number of simple modules with projective dimension at most 1. St001301The first Betti number of the order complex associated with the poset. St001396Number of triples of incomparable elements in a finite poset. St001964The interval resolution global dimension of a poset. St000181The number of connected components of the Hasse diagram for the poset. St000908The length of the shortest maximal antichain in a poset. St001532The leading coefficient of the Poincare polynomial of the poset cone. St001533The largest coefficient of the Poincare polynomial of the poset cone. St001634The trace of the Coxeter matrix of the incidence algebra of a poset. St001095The number of non-isomorphic posets with precisely one further covering relation. St000914The sum of the values of the Möbius function of a poset. St001890The maximum magnitude of the Möbius function of a poset.
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!