Your data matches 13 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
St000038: Dyck paths ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[1,0]
=> 1
[1,0,1,0]
=> 1
[1,1,0,0]
=> 2
[1,0,1,0,1,0]
=> 1
[1,0,1,1,0,0]
=> 2
[1,1,0,0,1,0]
=> 2
[1,1,0,1,0,0]
=> 4
[1,1,1,0,0,0]
=> 6
[1,0,1,0,1,0,1,0]
=> 1
[1,0,1,0,1,1,0,0]
=> 2
[1,0,1,1,0,0,1,0]
=> 2
[1,0,1,1,0,1,0,0]
=> 4
[1,0,1,1,1,0,0,0]
=> 6
[1,1,0,0,1,0,1,0]
=> 2
[1,1,0,0,1,1,0,0]
=> 4
[1,1,0,1,0,0,1,0]
=> 4
[1,1,0,1,0,1,0,0]
=> 8
[1,1,0,1,1,0,0,0]
=> 12
[1,1,1,0,0,0,1,0]
=> 6
[1,1,1,0,0,1,0,0]
=> 12
[1,1,1,0,1,0,0,0]
=> 18
[1,1,1,1,0,0,0,0]
=> 24
[1,0,1,0,1,0,1,0,1,0]
=> 1
[1,0,1,0,1,0,1,1,0,0]
=> 2
[1,0,1,0,1,1,0,0,1,0]
=> 2
[1,0,1,0,1,1,0,1,0,0]
=> 4
[1,0,1,0,1,1,1,0,0,0]
=> 6
[1,0,1,1,0,0,1,0,1,0]
=> 2
[1,0,1,1,0,0,1,1,0,0]
=> 4
[1,0,1,1,0,1,0,0,1,0]
=> 4
[1,0,1,1,0,1,0,1,0,0]
=> 8
[1,0,1,1,0,1,1,0,0,0]
=> 12
[1,0,1,1,1,0,0,0,1,0]
=> 6
[1,0,1,1,1,0,0,1,0,0]
=> 12
[1,0,1,1,1,0,1,0,0,0]
=> 18
[1,0,1,1,1,1,0,0,0,0]
=> 24
[1,1,0,0,1,0,1,0,1,0]
=> 2
[1,1,0,0,1,0,1,1,0,0]
=> 4
[1,1,0,0,1,1,0,0,1,0]
=> 4
[1,1,0,0,1,1,0,1,0,0]
=> 8
[1,1,0,0,1,1,1,0,0,0]
=> 12
[1,1,0,1,0,0,1,0,1,0]
=> 4
[1,1,0,1,0,0,1,1,0,0]
=> 8
[1,1,0,1,0,1,0,0,1,0]
=> 8
[1,1,0,1,0,1,0,1,0,0]
=> 16
[1,1,0,1,0,1,1,0,0,0]
=> 24
[1,1,0,1,1,0,0,0,1,0]
=> 12
[1,1,0,1,1,0,0,1,0,0]
=> 24
[1,1,0,1,1,0,1,0,0,0]
=> 36
[1,1,0,1,1,1,0,0,0,0]
=> 48
Description
The product of the heights of the descending steps of a Dyck path. A Dyck path with 2n letters defines a partition inside an [n] x [n] board. This statistic counts the number of placements of n non-attacking rooks on the board. By the Gessel-Viennot theory of orthogonal polynomials this corresponds to the 0-moment of the Hermite polynomials. Summing the values of the statistic over all Dyck paths of fixed size n the number of perfect matchings (2n+1)!! is obtained: up steps are openers, down steps closers and the rooks determine a pairing of openers and closers.
Mp00025: Dyck paths to 132-avoiding permutationPermutations
St000033: Permutations ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[1,0]
=> [1] => 1
[1,0,1,0]
=> [2,1] => 1
[1,1,0,0]
=> [1,2] => 2
[1,0,1,0,1,0]
=> [3,2,1] => 1
[1,0,1,1,0,0]
=> [2,3,1] => 2
[1,1,0,0,1,0]
=> [3,1,2] => 2
[1,1,0,1,0,0]
=> [2,1,3] => 4
[1,1,1,0,0,0]
=> [1,2,3] => 6
[1,0,1,0,1,0,1,0]
=> [4,3,2,1] => 1
[1,0,1,0,1,1,0,0]
=> [3,4,2,1] => 2
[1,0,1,1,0,0,1,0]
=> [4,2,3,1] => 2
[1,0,1,1,0,1,0,0]
=> [3,2,4,1] => 4
[1,0,1,1,1,0,0,0]
=> [2,3,4,1] => 6
[1,1,0,0,1,0,1,0]
=> [4,3,1,2] => 2
[1,1,0,0,1,1,0,0]
=> [3,4,1,2] => 4
[1,1,0,1,0,0,1,0]
=> [4,2,1,3] => 4
[1,1,0,1,0,1,0,0]
=> [3,2,1,4] => 8
[1,1,0,1,1,0,0,0]
=> [2,3,1,4] => 12
[1,1,1,0,0,0,1,0]
=> [4,1,2,3] => 6
[1,1,1,0,0,1,0,0]
=> [3,1,2,4] => 12
[1,1,1,0,1,0,0,0]
=> [2,1,3,4] => 18
[1,1,1,1,0,0,0,0]
=> [1,2,3,4] => 24
[1,0,1,0,1,0,1,0,1,0]
=> [5,4,3,2,1] => 1
[1,0,1,0,1,0,1,1,0,0]
=> [4,5,3,2,1] => 2
[1,0,1,0,1,1,0,0,1,0]
=> [5,3,4,2,1] => 2
[1,0,1,0,1,1,0,1,0,0]
=> [4,3,5,2,1] => 4
[1,0,1,0,1,1,1,0,0,0]
=> [3,4,5,2,1] => 6
[1,0,1,1,0,0,1,0,1,0]
=> [5,4,2,3,1] => 2
[1,0,1,1,0,0,1,1,0,0]
=> [4,5,2,3,1] => 4
[1,0,1,1,0,1,0,0,1,0]
=> [5,3,2,4,1] => 4
[1,0,1,1,0,1,0,1,0,0]
=> [4,3,2,5,1] => 8
[1,0,1,1,0,1,1,0,0,0]
=> [3,4,2,5,1] => 12
[1,0,1,1,1,0,0,0,1,0]
=> [5,2,3,4,1] => 6
[1,0,1,1,1,0,0,1,0,0]
=> [4,2,3,5,1] => 12
[1,0,1,1,1,0,1,0,0,0]
=> [3,2,4,5,1] => 18
[1,0,1,1,1,1,0,0,0,0]
=> [2,3,4,5,1] => 24
[1,1,0,0,1,0,1,0,1,0]
=> [5,4,3,1,2] => 2
[1,1,0,0,1,0,1,1,0,0]
=> [4,5,3,1,2] => 4
[1,1,0,0,1,1,0,0,1,0]
=> [5,3,4,1,2] => 4
[1,1,0,0,1,1,0,1,0,0]
=> [4,3,5,1,2] => 8
[1,1,0,0,1,1,1,0,0,0]
=> [3,4,5,1,2] => 12
[1,1,0,1,0,0,1,0,1,0]
=> [5,4,2,1,3] => 4
[1,1,0,1,0,0,1,1,0,0]
=> [4,5,2,1,3] => 8
[1,1,0,1,0,1,0,0,1,0]
=> [5,3,2,1,4] => 8
[1,1,0,1,0,1,0,1,0,0]
=> [4,3,2,1,5] => 16
[1,1,0,1,0,1,1,0,0,0]
=> [3,4,2,1,5] => 24
[1,1,0,1,1,0,0,0,1,0]
=> [5,2,3,1,4] => 12
[1,1,0,1,1,0,0,1,0,0]
=> [4,2,3,1,5] => 24
[1,1,0,1,1,0,1,0,0,0]
=> [3,2,4,1,5] => 36
[1,1,0,1,1,1,0,0,0,0]
=> [2,3,4,1,5] => 48
Description
The number of permutations greater than or equal to the given permutation in (strong) Bruhat order.
Mp00031: Dyck paths to 312-avoiding permutationPermutations
St000040: Permutations ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[1,0]
=> [1] => 1
[1,0,1,0]
=> [1,2] => 1
[1,1,0,0]
=> [2,1] => 2
[1,0,1,0,1,0]
=> [1,2,3] => 1
[1,0,1,1,0,0]
=> [1,3,2] => 2
[1,1,0,0,1,0]
=> [2,1,3] => 2
[1,1,0,1,0,0]
=> [2,3,1] => 4
[1,1,1,0,0,0]
=> [3,2,1] => 6
[1,0,1,0,1,0,1,0]
=> [1,2,3,4] => 1
[1,0,1,0,1,1,0,0]
=> [1,2,4,3] => 2
[1,0,1,1,0,0,1,0]
=> [1,3,2,4] => 2
[1,0,1,1,0,1,0,0]
=> [1,3,4,2] => 4
[1,0,1,1,1,0,0,0]
=> [1,4,3,2] => 6
[1,1,0,0,1,0,1,0]
=> [2,1,3,4] => 2
[1,1,0,0,1,1,0,0]
=> [2,1,4,3] => 4
[1,1,0,1,0,0,1,0]
=> [2,3,1,4] => 4
[1,1,0,1,0,1,0,0]
=> [2,3,4,1] => 8
[1,1,0,1,1,0,0,0]
=> [2,4,3,1] => 12
[1,1,1,0,0,0,1,0]
=> [3,2,1,4] => 6
[1,1,1,0,0,1,0,0]
=> [3,2,4,1] => 12
[1,1,1,0,1,0,0,0]
=> [3,4,2,1] => 18
[1,1,1,1,0,0,0,0]
=> [4,3,2,1] => 24
[1,0,1,0,1,0,1,0,1,0]
=> [1,2,3,4,5] => 1
[1,0,1,0,1,0,1,1,0,0]
=> [1,2,3,5,4] => 2
[1,0,1,0,1,1,0,0,1,0]
=> [1,2,4,3,5] => 2
[1,0,1,0,1,1,0,1,0,0]
=> [1,2,4,5,3] => 4
[1,0,1,0,1,1,1,0,0,0]
=> [1,2,5,4,3] => 6
[1,0,1,1,0,0,1,0,1,0]
=> [1,3,2,4,5] => 2
[1,0,1,1,0,0,1,1,0,0]
=> [1,3,2,5,4] => 4
[1,0,1,1,0,1,0,0,1,0]
=> [1,3,4,2,5] => 4
[1,0,1,1,0,1,0,1,0,0]
=> [1,3,4,5,2] => 8
[1,0,1,1,0,1,1,0,0,0]
=> [1,3,5,4,2] => 12
[1,0,1,1,1,0,0,0,1,0]
=> [1,4,3,2,5] => 6
[1,0,1,1,1,0,0,1,0,0]
=> [1,4,3,5,2] => 12
[1,0,1,1,1,0,1,0,0,0]
=> [1,4,5,3,2] => 18
[1,0,1,1,1,1,0,0,0,0]
=> [1,5,4,3,2] => 24
[1,1,0,0,1,0,1,0,1,0]
=> [2,1,3,4,5] => 2
[1,1,0,0,1,0,1,1,0,0]
=> [2,1,3,5,4] => 4
[1,1,0,0,1,1,0,0,1,0]
=> [2,1,4,3,5] => 4
[1,1,0,0,1,1,0,1,0,0]
=> [2,1,4,5,3] => 8
[1,1,0,0,1,1,1,0,0,0]
=> [2,1,5,4,3] => 12
[1,1,0,1,0,0,1,0,1,0]
=> [2,3,1,4,5] => 4
[1,1,0,1,0,0,1,1,0,0]
=> [2,3,1,5,4] => 8
[1,1,0,1,0,1,0,0,1,0]
=> [2,3,4,1,5] => 8
[1,1,0,1,0,1,0,1,0,0]
=> [2,3,4,5,1] => 16
[1,1,0,1,0,1,1,0,0,0]
=> [2,3,5,4,1] => 24
[1,1,0,1,1,0,0,0,1,0]
=> [2,4,3,1,5] => 12
[1,1,0,1,1,0,0,1,0,0]
=> [2,4,3,5,1] => 24
[1,1,0,1,1,0,1,0,0,0]
=> [2,4,5,3,1] => 36
[1,1,0,1,1,1,0,0,0,0]
=> [2,5,4,3,1] => 48
Description
The number of regions of the inversion arrangement of a permutation. The inversion arrangement $\mathcal{A}_w$ consists of the hyperplanes $x_i-x_j=0$ such that $(i,j)$ is an inversion of $w$. Postnikov [4] conjectured that the number of regions in $\mathcal{A}_w$ equals the number of permutations in the interval $[id,w]$ in the strong Bruhat order if and only if $w$ avoids $4231$, $35142$, $42513$, $351624$. This conjecture was proved by Hultman-Linusson-Shareshian-Sjöstrand [1]. Oh-Postnikov-Yoo [3] showed that the number of regions of $\mathcal{A}_w$ is $|\chi_{G_w}(-1)|$ where $\chi_{G_w}$ is the chromatic polynomial of the inversion graph $G_w$. This is the graph with vertices ${1,2,\ldots,n}$ and edges $(i,j)$ for $i\lneq j$ $w_i\gneq w_j$. For a permutation $w=w_1\cdots w_n$, Lewis-Morales [2] and Hultman (see appendix in [2]) showed that this number equals the number of placements of $n$ non-attacking rooks on the south-west Rothe diagram of $w$.
Mp00031: Dyck paths to 312-avoiding permutationPermutations
St000109: Permutations ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[1,0]
=> [1] => 1
[1,0,1,0]
=> [1,2] => 1
[1,1,0,0]
=> [2,1] => 2
[1,0,1,0,1,0]
=> [1,2,3] => 1
[1,0,1,1,0,0]
=> [1,3,2] => 2
[1,1,0,0,1,0]
=> [2,1,3] => 2
[1,1,0,1,0,0]
=> [2,3,1] => 4
[1,1,1,0,0,0]
=> [3,2,1] => 6
[1,0,1,0,1,0,1,0]
=> [1,2,3,4] => 1
[1,0,1,0,1,1,0,0]
=> [1,2,4,3] => 2
[1,0,1,1,0,0,1,0]
=> [1,3,2,4] => 2
[1,0,1,1,0,1,0,0]
=> [1,3,4,2] => 4
[1,0,1,1,1,0,0,0]
=> [1,4,3,2] => 6
[1,1,0,0,1,0,1,0]
=> [2,1,3,4] => 2
[1,1,0,0,1,1,0,0]
=> [2,1,4,3] => 4
[1,1,0,1,0,0,1,0]
=> [2,3,1,4] => 4
[1,1,0,1,0,1,0,0]
=> [2,3,4,1] => 8
[1,1,0,1,1,0,0,0]
=> [2,4,3,1] => 12
[1,1,1,0,0,0,1,0]
=> [3,2,1,4] => 6
[1,1,1,0,0,1,0,0]
=> [3,2,4,1] => 12
[1,1,1,0,1,0,0,0]
=> [3,4,2,1] => 18
[1,1,1,1,0,0,0,0]
=> [4,3,2,1] => 24
[1,0,1,0,1,0,1,0,1,0]
=> [1,2,3,4,5] => 1
[1,0,1,0,1,0,1,1,0,0]
=> [1,2,3,5,4] => 2
[1,0,1,0,1,1,0,0,1,0]
=> [1,2,4,3,5] => 2
[1,0,1,0,1,1,0,1,0,0]
=> [1,2,4,5,3] => 4
[1,0,1,0,1,1,1,0,0,0]
=> [1,2,5,4,3] => 6
[1,0,1,1,0,0,1,0,1,0]
=> [1,3,2,4,5] => 2
[1,0,1,1,0,0,1,1,0,0]
=> [1,3,2,5,4] => 4
[1,0,1,1,0,1,0,0,1,0]
=> [1,3,4,2,5] => 4
[1,0,1,1,0,1,0,1,0,0]
=> [1,3,4,5,2] => 8
[1,0,1,1,0,1,1,0,0,0]
=> [1,3,5,4,2] => 12
[1,0,1,1,1,0,0,0,1,0]
=> [1,4,3,2,5] => 6
[1,0,1,1,1,0,0,1,0,0]
=> [1,4,3,5,2] => 12
[1,0,1,1,1,0,1,0,0,0]
=> [1,4,5,3,2] => 18
[1,0,1,1,1,1,0,0,0,0]
=> [1,5,4,3,2] => 24
[1,1,0,0,1,0,1,0,1,0]
=> [2,1,3,4,5] => 2
[1,1,0,0,1,0,1,1,0,0]
=> [2,1,3,5,4] => 4
[1,1,0,0,1,1,0,0,1,0]
=> [2,1,4,3,5] => 4
[1,1,0,0,1,1,0,1,0,0]
=> [2,1,4,5,3] => 8
[1,1,0,0,1,1,1,0,0,0]
=> [2,1,5,4,3] => 12
[1,1,0,1,0,0,1,0,1,0]
=> [2,3,1,4,5] => 4
[1,1,0,1,0,0,1,1,0,0]
=> [2,3,1,5,4] => 8
[1,1,0,1,0,1,0,0,1,0]
=> [2,3,4,1,5] => 8
[1,1,0,1,0,1,0,1,0,0]
=> [2,3,4,5,1] => 16
[1,1,0,1,0,1,1,0,0,0]
=> [2,3,5,4,1] => 24
[1,1,0,1,1,0,0,0,1,0]
=> [2,4,3,1,5] => 12
[1,1,0,1,1,0,0,1,0,0]
=> [2,4,3,5,1] => 24
[1,1,0,1,1,0,1,0,0,0]
=> [2,4,5,3,1] => 36
[1,1,0,1,1,1,0,0,0,0]
=> [2,5,4,3,1] => 48
Description
The number of elements less than or equal to the given element in Bruhat order.
Mp00023: Dyck paths to non-crossing permutationPermutations
Mp00160: Permutations graph of inversionsGraphs
St000269: Graphs ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[1,0]
=> [1] => ([],1)
=> 1
[1,0,1,0]
=> [1,2] => ([],2)
=> 1
[1,1,0,0]
=> [2,1] => ([(0,1)],2)
=> 2
[1,0,1,0,1,0]
=> [1,2,3] => ([],3)
=> 1
[1,0,1,1,0,0]
=> [1,3,2] => ([(1,2)],3)
=> 2
[1,1,0,0,1,0]
=> [2,1,3] => ([(1,2)],3)
=> 2
[1,1,0,1,0,0]
=> [2,3,1] => ([(0,2),(1,2)],3)
=> 4
[1,1,1,0,0,0]
=> [3,2,1] => ([(0,1),(0,2),(1,2)],3)
=> 6
[1,0,1,0,1,0,1,0]
=> [1,2,3,4] => ([],4)
=> 1
[1,0,1,0,1,1,0,0]
=> [1,2,4,3] => ([(2,3)],4)
=> 2
[1,0,1,1,0,0,1,0]
=> [1,3,2,4] => ([(2,3)],4)
=> 2
[1,0,1,1,0,1,0,0]
=> [1,3,4,2] => ([(1,3),(2,3)],4)
=> 4
[1,0,1,1,1,0,0,0]
=> [1,4,3,2] => ([(1,2),(1,3),(2,3)],4)
=> 6
[1,1,0,0,1,0,1,0]
=> [2,1,3,4] => ([(2,3)],4)
=> 2
[1,1,0,0,1,1,0,0]
=> [2,1,4,3] => ([(0,3),(1,2)],4)
=> 4
[1,1,0,1,0,0,1,0]
=> [2,3,1,4] => ([(1,3),(2,3)],4)
=> 4
[1,1,0,1,0,1,0,0]
=> [2,3,4,1] => ([(0,3),(1,3),(2,3)],4)
=> 8
[1,1,0,1,1,0,0,0]
=> [2,4,3,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> 12
[1,1,1,0,0,0,1,0]
=> [3,2,1,4] => ([(1,2),(1,3),(2,3)],4)
=> 6
[1,1,1,0,0,1,0,0]
=> [3,2,4,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> 12
[1,1,1,0,1,0,0,0]
=> [4,2,3,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 18
[1,1,1,1,0,0,0,0]
=> [4,3,2,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 24
[1,0,1,0,1,0,1,0,1,0]
=> [1,2,3,4,5] => ([],5)
=> 1
[1,0,1,0,1,0,1,1,0,0]
=> [1,2,3,5,4] => ([(3,4)],5)
=> 2
[1,0,1,0,1,1,0,0,1,0]
=> [1,2,4,3,5] => ([(3,4)],5)
=> 2
[1,0,1,0,1,1,0,1,0,0]
=> [1,2,4,5,3] => ([(2,4),(3,4)],5)
=> 4
[1,0,1,0,1,1,1,0,0,0]
=> [1,2,5,4,3] => ([(2,3),(2,4),(3,4)],5)
=> 6
[1,0,1,1,0,0,1,0,1,0]
=> [1,3,2,4,5] => ([(3,4)],5)
=> 2
[1,0,1,1,0,0,1,1,0,0]
=> [1,3,2,5,4] => ([(1,4),(2,3)],5)
=> 4
[1,0,1,1,0,1,0,0,1,0]
=> [1,3,4,2,5] => ([(2,4),(3,4)],5)
=> 4
[1,0,1,1,0,1,0,1,0,0]
=> [1,3,4,5,2] => ([(1,4),(2,4),(3,4)],5)
=> 8
[1,0,1,1,0,1,1,0,0,0]
=> [1,3,5,4,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> 12
[1,0,1,1,1,0,0,0,1,0]
=> [1,4,3,2,5] => ([(2,3),(2,4),(3,4)],5)
=> 6
[1,0,1,1,1,0,0,1,0,0]
=> [1,4,3,5,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> 12
[1,0,1,1,1,0,1,0,0,0]
=> [1,5,3,4,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 18
[1,0,1,1,1,1,0,0,0,0]
=> [1,5,4,3,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 24
[1,1,0,0,1,0,1,0,1,0]
=> [2,1,3,4,5] => ([(3,4)],5)
=> 2
[1,1,0,0,1,0,1,1,0,0]
=> [2,1,3,5,4] => ([(1,4),(2,3)],5)
=> 4
[1,1,0,0,1,1,0,0,1,0]
=> [2,1,4,3,5] => ([(1,4),(2,3)],5)
=> 4
[1,1,0,0,1,1,0,1,0,0]
=> [2,1,4,5,3] => ([(0,1),(2,4),(3,4)],5)
=> 8
[1,1,0,0,1,1,1,0,0,0]
=> [2,1,5,4,3] => ([(0,1),(2,3),(2,4),(3,4)],5)
=> 12
[1,1,0,1,0,0,1,0,1,0]
=> [2,3,1,4,5] => ([(2,4),(3,4)],5)
=> 4
[1,1,0,1,0,0,1,1,0,0]
=> [2,3,1,5,4] => ([(0,1),(2,4),(3,4)],5)
=> 8
[1,1,0,1,0,1,0,0,1,0]
=> [2,3,4,1,5] => ([(1,4),(2,4),(3,4)],5)
=> 8
[1,1,0,1,0,1,0,1,0,0]
=> [2,3,4,5,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 16
[1,1,0,1,0,1,1,0,0,0]
=> [2,3,5,4,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 24
[1,1,0,1,1,0,0,0,1,0]
=> [2,4,3,1,5] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> 12
[1,1,0,1,1,0,0,1,0,0]
=> [2,4,3,5,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 24
[1,1,0,1,1,0,1,0,0,0]
=> [2,5,3,4,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 36
[1,1,0,1,1,1,0,0,0,0]
=> [2,5,4,3,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 48
Description
The number of acyclic orientations of a graph.
Matching statistic: St001813
Mp00025: Dyck paths to 132-avoiding permutationPermutations
Mp00065: Permutations permutation posetPosets
St001813: Posets ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[1,0]
=> [1] => ([],1)
=> 1
[1,0,1,0]
=> [2,1] => ([],2)
=> 1
[1,1,0,0]
=> [1,2] => ([(0,1)],2)
=> 2
[1,0,1,0,1,0]
=> [3,2,1] => ([],3)
=> 1
[1,0,1,1,0,0]
=> [2,3,1] => ([(1,2)],3)
=> 2
[1,1,0,0,1,0]
=> [3,1,2] => ([(1,2)],3)
=> 2
[1,1,0,1,0,0]
=> [2,1,3] => ([(0,2),(1,2)],3)
=> 4
[1,1,1,0,0,0]
=> [1,2,3] => ([(0,2),(2,1)],3)
=> 6
[1,0,1,0,1,0,1,0]
=> [4,3,2,1] => ([],4)
=> 1
[1,0,1,0,1,1,0,0]
=> [3,4,2,1] => ([(2,3)],4)
=> 2
[1,0,1,1,0,0,1,0]
=> [4,2,3,1] => ([(2,3)],4)
=> 2
[1,0,1,1,0,1,0,0]
=> [3,2,4,1] => ([(1,3),(2,3)],4)
=> 4
[1,0,1,1,1,0,0,0]
=> [2,3,4,1] => ([(1,2),(2,3)],4)
=> 6
[1,1,0,0,1,0,1,0]
=> [4,3,1,2] => ([(2,3)],4)
=> 2
[1,1,0,0,1,1,0,0]
=> [3,4,1,2] => ([(0,3),(1,2)],4)
=> 4
[1,1,0,1,0,0,1,0]
=> [4,2,1,3] => ([(1,3),(2,3)],4)
=> 4
[1,1,0,1,0,1,0,0]
=> [3,2,1,4] => ([(0,3),(1,3),(2,3)],4)
=> 8
[1,1,0,1,1,0,0,0]
=> [2,3,1,4] => ([(0,3),(1,2),(2,3)],4)
=> 12
[1,1,1,0,0,0,1,0]
=> [4,1,2,3] => ([(1,2),(2,3)],4)
=> 6
[1,1,1,0,0,1,0,0]
=> [3,1,2,4] => ([(0,3),(1,2),(2,3)],4)
=> 12
[1,1,1,0,1,0,0,0]
=> [2,1,3,4] => ([(0,3),(1,3),(3,2)],4)
=> 18
[1,1,1,1,0,0,0,0]
=> [1,2,3,4] => ([(0,3),(2,1),(3,2)],4)
=> 24
[1,0,1,0,1,0,1,0,1,0]
=> [5,4,3,2,1] => ([],5)
=> 1
[1,0,1,0,1,0,1,1,0,0]
=> [4,5,3,2,1] => ([(3,4)],5)
=> 2
[1,0,1,0,1,1,0,0,1,0]
=> [5,3,4,2,1] => ([(3,4)],5)
=> 2
[1,0,1,0,1,1,0,1,0,0]
=> [4,3,5,2,1] => ([(2,4),(3,4)],5)
=> 4
[1,0,1,0,1,1,1,0,0,0]
=> [3,4,5,2,1] => ([(2,3),(3,4)],5)
=> 6
[1,0,1,1,0,0,1,0,1,0]
=> [5,4,2,3,1] => ([(3,4)],5)
=> 2
[1,0,1,1,0,0,1,1,0,0]
=> [4,5,2,3,1] => ([(1,4),(2,3)],5)
=> 4
[1,0,1,1,0,1,0,0,1,0]
=> [5,3,2,4,1] => ([(2,4),(3,4)],5)
=> 4
[1,0,1,1,0,1,0,1,0,0]
=> [4,3,2,5,1] => ([(1,4),(2,4),(3,4)],5)
=> 8
[1,0,1,1,0,1,1,0,0,0]
=> [3,4,2,5,1] => ([(1,4),(2,3),(3,4)],5)
=> 12
[1,0,1,1,1,0,0,0,1,0]
=> [5,2,3,4,1] => ([(2,3),(3,4)],5)
=> 6
[1,0,1,1,1,0,0,1,0,0]
=> [4,2,3,5,1] => ([(1,4),(2,3),(3,4)],5)
=> 12
[1,0,1,1,1,0,1,0,0,0]
=> [3,2,4,5,1] => ([(1,4),(2,4),(4,3)],5)
=> 18
[1,0,1,1,1,1,0,0,0,0]
=> [2,3,4,5,1] => ([(1,4),(3,2),(4,3)],5)
=> 24
[1,1,0,0,1,0,1,0,1,0]
=> [5,4,3,1,2] => ([(3,4)],5)
=> 2
[1,1,0,0,1,0,1,1,0,0]
=> [4,5,3,1,2] => ([(1,4),(2,3)],5)
=> 4
[1,1,0,0,1,1,0,0,1,0]
=> [5,3,4,1,2] => ([(1,4),(2,3)],5)
=> 4
[1,1,0,0,1,1,0,1,0,0]
=> [4,3,5,1,2] => ([(0,4),(1,4),(2,3)],5)
=> 8
[1,1,0,0,1,1,1,0,0,0]
=> [3,4,5,1,2] => ([(0,3),(1,4),(4,2)],5)
=> 12
[1,1,0,1,0,0,1,0,1,0]
=> [5,4,2,1,3] => ([(2,4),(3,4)],5)
=> 4
[1,1,0,1,0,0,1,1,0,0]
=> [4,5,2,1,3] => ([(0,4),(1,4),(2,3)],5)
=> 8
[1,1,0,1,0,1,0,0,1,0]
=> [5,3,2,1,4] => ([(1,4),(2,4),(3,4)],5)
=> 8
[1,1,0,1,0,1,0,1,0,0]
=> [4,3,2,1,5] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 16
[1,1,0,1,0,1,1,0,0,0]
=> [3,4,2,1,5] => ([(0,4),(1,4),(2,3),(3,4)],5)
=> 24
[1,1,0,1,1,0,0,0,1,0]
=> [5,2,3,1,4] => ([(1,4),(2,3),(3,4)],5)
=> 12
[1,1,0,1,1,0,0,1,0,0]
=> [4,2,3,1,5] => ([(0,4),(1,4),(2,3),(3,4)],5)
=> 24
[1,1,0,1,1,0,1,0,0,0]
=> [3,2,4,1,5] => ([(0,4),(1,3),(2,3),(3,4)],5)
=> 36
[1,1,0,1,1,1,0,0,0,0]
=> [2,3,4,1,5] => ([(0,4),(1,2),(2,3),(3,4)],5)
=> 48
Description
The product of the sizes of the principal order filters in a poset.
Matching statistic: St000948
Mp00199: Dyck paths prime Dyck pathDyck paths
Mp00023: Dyck paths to non-crossing permutationPermutations
Mp00160: Permutations graph of inversionsGraphs
St000948: Graphs ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[1,0]
=> [1,1,0,0]
=> [2,1] => ([(0,1)],2)
=> 1
[1,0,1,0]
=> [1,1,0,1,0,0]
=> [2,3,1] => ([(0,2),(1,2)],3)
=> 1
[1,1,0,0]
=> [1,1,1,0,0,0]
=> [3,2,1] => ([(0,1),(0,2),(1,2)],3)
=> 2
[1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,0]
=> [2,3,4,1] => ([(0,3),(1,3),(2,3)],4)
=> 1
[1,0,1,1,0,0]
=> [1,1,0,1,1,0,0,0]
=> [2,4,3,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> 2
[1,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0]
=> [3,2,4,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> 2
[1,1,0,1,0,0]
=> [1,1,1,0,1,0,0,0]
=> [4,2,3,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 4
[1,1,1,0,0,0]
=> [1,1,1,1,0,0,0,0]
=> [4,3,2,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 6
[1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> [2,3,4,5,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 1
[1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> [2,3,5,4,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> [2,4,3,5,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[1,0,1,1,0,1,0,0]
=> [1,1,0,1,1,0,1,0,0,0]
=> [2,5,3,4,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4
[1,0,1,1,1,0,0,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> [2,5,4,3,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 6
[1,1,0,0,1,0,1,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> [3,2,4,5,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[1,1,0,0,1,1,0,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> [3,2,5,4,1] => ([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> 4
[1,1,0,1,0,0,1,0]
=> [1,1,1,0,1,0,0,1,0,0]
=> [4,2,3,5,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4
[1,1,0,1,0,1,0,0]
=> [1,1,1,0,1,0,1,0,0,0]
=> [5,2,3,4,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 8
[1,1,0,1,1,0,0,0]
=> [1,1,1,0,1,1,0,0,0,0]
=> [5,2,4,3,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 12
[1,1,1,0,0,0,1,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> [4,3,2,5,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 6
[1,1,1,0,0,1,0,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> [5,3,2,4,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 12
[1,1,1,0,1,0,0,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> [5,3,4,2,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 18
[1,1,1,1,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [5,4,3,2,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 24
[1,0,1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,1,0,0]
=> [2,3,4,5,6,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> 1
[1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,0,1,1,0,0,0]
=> [2,3,4,6,5,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
[1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,0,1,1,0,0,1,0,0]
=> [2,3,5,4,6,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
[1,0,1,0,1,1,0,1,0,0]
=> [1,1,0,1,0,1,1,0,1,0,0,0]
=> [2,3,6,4,5,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 4
[1,0,1,0,1,1,1,0,0,0]
=> [1,1,0,1,0,1,1,1,0,0,0,0]
=> [2,3,6,5,4,1] => ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6
[1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,1,1,0,0,1,0,1,0,0]
=> [2,4,3,5,6,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
[1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,1,1,0,0,1,1,0,0,0]
=> [2,4,3,6,5,1] => ([(0,5),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> 4
[1,0,1,1,0,1,0,0,1,0]
=> [1,1,0,1,1,0,1,0,0,1,0,0]
=> [2,5,3,4,6,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 4
[1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,1,1,0,1,0,1,0,0,0]
=> [2,6,3,4,5,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 8
[1,0,1,1,0,1,1,0,0,0]
=> [1,1,0,1,1,0,1,1,0,0,0,0]
=> [2,6,3,5,4,1] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 12
[1,0,1,1,1,0,0,0,1,0]
=> [1,1,0,1,1,1,0,0,0,1,0,0]
=> [2,5,4,3,6,1] => ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6
[1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,1,1,1,0,0,1,0,0,0]
=> [2,6,4,3,5,1] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 12
[1,0,1,1,1,0,1,0,0,0]
=> [1,1,0,1,1,1,0,1,0,0,0,0]
=> [2,6,4,5,3,1] => ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 18
[1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,1,1,1,1,0,0,0,0,0]
=> [2,6,5,4,3,1] => ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 24
[1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,0,0,1,0,1,0,1,0,0]
=> [3,2,4,5,6,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
[1,1,0,0,1,0,1,1,0,0]
=> [1,1,1,0,0,1,0,1,1,0,0,0]
=> [3,2,4,6,5,1] => ([(0,5),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> 4
[1,1,0,0,1,1,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,1,0,0]
=> [3,2,5,4,6,1] => ([(0,5),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> 4
[1,1,0,0,1,1,0,1,0,0]
=> [1,1,1,0,0,1,1,0,1,0,0,0]
=> [3,2,6,4,5,1] => ([(0,1),(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 8
[1,1,0,0,1,1,1,0,0,0]
=> [1,1,1,0,0,1,1,1,0,0,0,0]
=> [3,2,6,5,4,1] => ([(0,1),(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 12
[1,1,0,1,0,0,1,0,1,0]
=> [1,1,1,0,1,0,0,1,0,1,0,0]
=> [4,2,3,5,6,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 4
[1,1,0,1,0,0,1,1,0,0]
=> [1,1,1,0,1,0,0,1,1,0,0,0]
=> [4,2,3,6,5,1] => ([(0,1),(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 8
[1,1,0,1,0,1,0,0,1,0]
=> [1,1,1,0,1,0,1,0,0,1,0,0]
=> [5,2,3,4,6,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 8
[1,1,0,1,0,1,0,1,0,0]
=> [1,1,1,0,1,0,1,0,1,0,0,0]
=> [6,2,3,4,5,1] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 16
[1,1,0,1,0,1,1,0,0,0]
=> [1,1,1,0,1,0,1,1,0,0,0,0]
=> [6,2,3,5,4,1] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 24
[1,1,0,1,1,0,0,0,1,0]
=> [1,1,1,0,1,1,0,0,0,1,0,0]
=> [5,2,4,3,6,1] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 12
[1,1,0,1,1,0,0,1,0,0]
=> [1,1,1,0,1,1,0,0,1,0,0,0]
=> [6,2,4,3,5,1] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 24
[1,1,0,1,1,0,1,0,0,0]
=> [1,1,1,0,1,1,0,1,0,0,0,0]
=> [6,2,4,5,3,1] => ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 36
[1,1,0,1,1,1,0,0,0,0]
=> [1,1,1,0,1,1,1,0,0,0,0,0]
=> [6,2,5,4,3,1] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 48
Description
The chromatic discriminant of a graph. The chromatic discriminant $\alpha(G)$ is the coefficient of the linear term of the chromatic polynomial $\chi(G,q)$. According to [1], it equals the cardinality of any of the following sets: (1) Acyclic orientations of G with unique sink at $q$, (2) Maximum $G$-parking functions relative to $q$, (3) Minimal $q$-critical states, (4) Spanning trees of G without broken circuits, (5) Conjugacy classes of Coxeter elements in the Coxeter group associated to $G$, (6) Multilinear Lyndon heaps on $G$. In addition, $\alpha(G)$ is also equal to the the dimension of the root space corresponding to the sum of all simple roots in the Kac-Moody Lie algebra associated to the graph.
Matching statistic: St001475
Mp00199: Dyck paths prime Dyck pathDyck paths
Mp00023: Dyck paths to non-crossing permutationPermutations
Mp00160: Permutations graph of inversionsGraphs
St001475: Graphs ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[1,0]
=> [1,1,0,0]
=> [2,1] => ([(0,1)],2)
=> 1
[1,0,1,0]
=> [1,1,0,1,0,0]
=> [2,3,1] => ([(0,2),(1,2)],3)
=> 1
[1,1,0,0]
=> [1,1,1,0,0,0]
=> [3,2,1] => ([(0,1),(0,2),(1,2)],3)
=> 2
[1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,0]
=> [2,3,4,1] => ([(0,3),(1,3),(2,3)],4)
=> 1
[1,0,1,1,0,0]
=> [1,1,0,1,1,0,0,0]
=> [2,4,3,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> 2
[1,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0]
=> [3,2,4,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> 2
[1,1,0,1,0,0]
=> [1,1,1,0,1,0,0,0]
=> [4,2,3,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 4
[1,1,1,0,0,0]
=> [1,1,1,1,0,0,0,0]
=> [4,3,2,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 6
[1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> [2,3,4,5,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 1
[1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> [2,3,5,4,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> [2,4,3,5,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[1,0,1,1,0,1,0,0]
=> [1,1,0,1,1,0,1,0,0,0]
=> [2,5,3,4,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4
[1,0,1,1,1,0,0,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> [2,5,4,3,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 6
[1,1,0,0,1,0,1,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> [3,2,4,5,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[1,1,0,0,1,1,0,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> [3,2,5,4,1] => ([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> 4
[1,1,0,1,0,0,1,0]
=> [1,1,1,0,1,0,0,1,0,0]
=> [4,2,3,5,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4
[1,1,0,1,0,1,0,0]
=> [1,1,1,0,1,0,1,0,0,0]
=> [5,2,3,4,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 8
[1,1,0,1,1,0,0,0]
=> [1,1,1,0,1,1,0,0,0,0]
=> [5,2,4,3,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 12
[1,1,1,0,0,0,1,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> [4,3,2,5,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 6
[1,1,1,0,0,1,0,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> [5,3,2,4,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 12
[1,1,1,0,1,0,0,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> [5,3,4,2,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 18
[1,1,1,1,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [5,4,3,2,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 24
[1,0,1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,1,0,0]
=> [2,3,4,5,6,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> 1
[1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,0,1,1,0,0,0]
=> [2,3,4,6,5,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
[1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,0,1,1,0,0,1,0,0]
=> [2,3,5,4,6,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
[1,0,1,0,1,1,0,1,0,0]
=> [1,1,0,1,0,1,1,0,1,0,0,0]
=> [2,3,6,4,5,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 4
[1,0,1,0,1,1,1,0,0,0]
=> [1,1,0,1,0,1,1,1,0,0,0,0]
=> [2,3,6,5,4,1] => ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6
[1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,1,1,0,0,1,0,1,0,0]
=> [2,4,3,5,6,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
[1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,1,1,0,0,1,1,0,0,0]
=> [2,4,3,6,5,1] => ([(0,5),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> 4
[1,0,1,1,0,1,0,0,1,0]
=> [1,1,0,1,1,0,1,0,0,1,0,0]
=> [2,5,3,4,6,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 4
[1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,1,1,0,1,0,1,0,0,0]
=> [2,6,3,4,5,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 8
[1,0,1,1,0,1,1,0,0,0]
=> [1,1,0,1,1,0,1,1,0,0,0,0]
=> [2,6,3,5,4,1] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 12
[1,0,1,1,1,0,0,0,1,0]
=> [1,1,0,1,1,1,0,0,0,1,0,0]
=> [2,5,4,3,6,1] => ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6
[1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,1,1,1,0,0,1,0,0,0]
=> [2,6,4,3,5,1] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 12
[1,0,1,1,1,0,1,0,0,0]
=> [1,1,0,1,1,1,0,1,0,0,0,0]
=> [2,6,4,5,3,1] => ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 18
[1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,1,1,1,1,0,0,0,0,0]
=> [2,6,5,4,3,1] => ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 24
[1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,0,0,1,0,1,0,1,0,0]
=> [3,2,4,5,6,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
[1,1,0,0,1,0,1,1,0,0]
=> [1,1,1,0,0,1,0,1,1,0,0,0]
=> [3,2,4,6,5,1] => ([(0,5),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> 4
[1,1,0,0,1,1,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,1,0,0]
=> [3,2,5,4,6,1] => ([(0,5),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> 4
[1,1,0,0,1,1,0,1,0,0]
=> [1,1,1,0,0,1,1,0,1,0,0,0]
=> [3,2,6,4,5,1] => ([(0,1),(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 8
[1,1,0,0,1,1,1,0,0,0]
=> [1,1,1,0,0,1,1,1,0,0,0,0]
=> [3,2,6,5,4,1] => ([(0,1),(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 12
[1,1,0,1,0,0,1,0,1,0]
=> [1,1,1,0,1,0,0,1,0,1,0,0]
=> [4,2,3,5,6,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 4
[1,1,0,1,0,0,1,1,0,0]
=> [1,1,1,0,1,0,0,1,1,0,0,0]
=> [4,2,3,6,5,1] => ([(0,1),(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 8
[1,1,0,1,0,1,0,0,1,0]
=> [1,1,1,0,1,0,1,0,0,1,0,0]
=> [5,2,3,4,6,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 8
[1,1,0,1,0,1,0,1,0,0]
=> [1,1,1,0,1,0,1,0,1,0,0,0]
=> [6,2,3,4,5,1] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 16
[1,1,0,1,0,1,1,0,0,0]
=> [1,1,1,0,1,0,1,1,0,0,0,0]
=> [6,2,3,5,4,1] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 24
[1,1,0,1,1,0,0,0,1,0]
=> [1,1,1,0,1,1,0,0,0,1,0,0]
=> [5,2,4,3,6,1] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 12
[1,1,0,1,1,0,0,1,0,0]
=> [1,1,1,0,1,1,0,0,1,0,0,0]
=> [6,2,4,3,5,1] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 24
[1,1,0,1,1,0,1,0,0,0]
=> [1,1,1,0,1,1,0,1,0,0,0,0]
=> [6,2,4,5,3,1] => ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 36
[1,1,0,1,1,1,0,0,0,0]
=> [1,1,1,0,1,1,1,0,0,0,0,0]
=> [6,2,5,4,3,1] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 48
Description
The evaluation of the Tutte polynomial of the graph at (x,y) equal to (1,0).
Matching statistic: St000274
Mp00033: Dyck paths to two-row standard tableauStandard tableaux
Mp00081: Standard tableaux reading word permutationPermutations
Mp00160: Permutations graph of inversionsGraphs
St000274: Graphs ⟶ ℤResult quality: 12% values known / values provided: 12%distinct values known / distinct values provided: 27%
Values
[1,0]
=> [[1],[2]]
=> [2,1] => ([(0,1)],2)
=> 1
[1,0,1,0]
=> [[1,3],[2,4]]
=> [2,4,1,3] => ([(0,3),(1,2),(2,3)],4)
=> 1
[1,1,0,0]
=> [[1,2],[3,4]]
=> [3,4,1,2] => ([(0,2),(0,3),(1,2),(1,3)],4)
=> 2
[1,0,1,0,1,0]
=> [[1,3,5],[2,4,6]]
=> [2,4,6,1,3,5] => ([(0,5),(1,4),(2,3),(2,4),(3,5),(4,5)],6)
=> 1
[1,0,1,1,0,0]
=> [[1,3,4],[2,5,6]]
=> [2,5,6,1,3,4] => ([(0,5),(1,3),(1,4),(2,3),(2,4),(3,5),(4,5)],6)
=> 2
[1,1,0,0,1,0]
=> [[1,2,5],[3,4,6]]
=> [3,4,6,1,2,5] => ([(0,5),(1,3),(1,4),(2,3),(2,4),(3,5),(4,5)],6)
=> 2
[1,1,0,1,0,0]
=> [[1,2,4],[3,5,6]]
=> [3,5,6,1,2,4] => ([(0,4),(0,5),(1,2),(1,3),(2,4),(2,5),(3,4),(3,5)],6)
=> 4
[1,1,1,0,0,0]
=> [[1,2,3],[4,5,6]]
=> [4,5,6,1,2,3] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5)],6)
=> 6
[1,0,1,0,1,0,1,0]
=> [[1,3,5,7],[2,4,6,8]]
=> [2,4,6,8,1,3,5,7] => ([(0,7),(1,6),(2,5),(2,6),(3,4),(3,7),(4,5),(4,6),(5,7),(6,7)],8)
=> ? = 1
[1,0,1,0,1,1,0,0]
=> [[1,3,5,6],[2,4,7,8]]
=> [2,4,7,8,1,3,5,6] => ([(0,7),(1,5),(1,6),(2,5),(2,6),(3,4),(3,7),(4,5),(4,6),(5,7),(6,7)],8)
=> ? = 2
[1,0,1,1,0,0,1,0]
=> [[1,3,4,7],[2,5,6,8]]
=> [2,5,6,8,1,3,4,7] => ([(0,7),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,7),(5,7),(6,7)],8)
=> ? = 2
[1,0,1,1,0,1,0,0]
=> [[1,3,4,6],[2,5,7,8]]
=> [2,5,7,8,1,3,4,6] => ([(0,7),(1,5),(1,6),(2,3),(2,4),(2,7),(3,5),(3,6),(4,5),(4,6),(5,7),(6,7)],8)
=> ? = 4
[1,0,1,1,1,0,0,0]
=> [[1,3,4,5],[2,6,7,8]]
=> [2,6,7,8,1,3,4,5] => ([(0,7),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,7),(5,7),(6,7)],8)
=> ? = 6
[1,1,0,0,1,0,1,0]
=> [[1,2,5,7],[3,4,6,8]]
=> [3,4,6,8,1,2,5,7] => ([(0,7),(1,5),(1,6),(2,5),(2,6),(3,4),(3,7),(4,5),(4,6),(5,7),(6,7)],8)
=> ? = 2
[1,1,0,0,1,1,0,0]
=> [[1,2,5,6],[3,4,7,8]]
=> [3,4,7,8,1,2,5,6] => ([(0,6),(0,7),(1,4),(1,5),(2,4),(2,5),(3,6),(3,7),(4,6),(4,7),(5,6),(5,7)],8)
=> ? = 4
[1,1,0,1,0,0,1,0]
=> [[1,2,4,7],[3,5,6,8]]
=> [3,5,6,8,1,2,4,7] => ([(0,7),(1,5),(1,6),(2,3),(2,4),(2,7),(3,5),(3,6),(4,5),(4,6),(5,7),(6,7)],8)
=> ? = 4
[1,1,0,1,0,1,0,0]
=> [[1,2,4,6],[3,5,7,8]]
=> [3,5,7,8,1,2,4,6] => ([(0,6),(0,7),(1,4),(1,5),(2,3),(2,4),(2,5),(3,6),(3,7),(4,6),(4,7),(5,6),(5,7)],8)
=> ? = 8
[1,1,0,1,1,0,0,0]
=> [[1,2,4,5],[3,6,7,8]]
=> [3,6,7,8,1,2,4,5] => ([(0,6),(0,7),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,6),(3,7),(4,6),(4,7),(5,6),(5,7)],8)
=> ? = 12
[1,1,1,0,0,0,1,0]
=> [[1,2,3,7],[4,5,6,8]]
=> [4,5,6,8,1,2,3,7] => ([(0,7),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,7),(5,7),(6,7)],8)
=> ? = 6
[1,1,1,0,0,1,0,0]
=> [[1,2,3,6],[4,5,7,8]]
=> [4,5,7,8,1,2,3,6] => ([(0,6),(0,7),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,6),(3,7),(4,6),(4,7),(5,6),(5,7)],8)
=> ? = 12
[1,1,1,0,1,0,0,0]
=> [[1,2,3,5],[4,6,7,8]]
=> [4,6,7,8,1,2,3,5] => ([(0,5),(0,6),(0,7),(1,2),(1,3),(1,4),(2,5),(2,6),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7)],8)
=> ? = 18
[1,1,1,1,0,0,0,0]
=> [[1,2,3,4],[5,6,7,8]]
=> [5,6,7,8,1,2,3,4] => ([(0,4),(0,5),(0,6),(0,7),(1,4),(1,5),(1,6),(1,7),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7)],8)
=> ? = 24
[1,0,1,0,1,0,1,0,1,0]
=> [[1,3,5,7,9],[2,4,6,8,10]]
=> [2,4,6,8,10,1,3,5,7,9] => ([(0,9),(1,8),(2,7),(2,8),(3,6),(3,9),(4,5),(4,7),(4,8),(5,6),(5,9),(6,7),(6,8),(7,9),(8,9)],10)
=> ? = 1
[1,0,1,0,1,0,1,1,0,0]
=> [[1,3,5,7,8],[2,4,6,9,10]]
=> [2,4,6,9,10,1,3,5,7,8] => ([(0,9),(1,7),(1,8),(2,7),(2,8),(3,6),(3,9),(4,5),(4,7),(4,8),(5,6),(5,9),(6,7),(6,8),(7,9),(8,9)],10)
=> ? = 2
[1,0,1,0,1,1,0,0,1,0]
=> [[1,3,5,6,9],[2,4,7,8,10]]
=> [2,4,7,8,10,1,3,5,6,9] => ([(0,9),(1,8),(2,7),(2,9),(3,5),(3,6),(3,8),(4,5),(4,6),(4,8),(5,7),(5,9),(6,7),(6,9),(7,8),(8,9)],10)
=> ? = 2
[1,0,1,0,1,1,0,1,0,0]
=> [[1,3,5,6,8],[2,4,7,9,10]]
=> [2,4,7,9,10,1,3,5,6,8] => ([(0,9),(1,7),(1,8),(2,6),(2,9),(3,5),(3,7),(3,8),(4,5),(4,7),(4,8),(5,6),(5,9),(6,7),(6,8),(7,9),(8,9)],10)
=> ? = 4
[1,0,1,0,1,1,1,0,0,0]
=> [[1,3,5,6,7],[2,4,8,9,10]]
=> [2,4,8,9,10,1,3,5,6,7] => ([(0,9),(1,5),(1,9),(2,6),(2,7),(2,8),(3,6),(3,7),(3,8),(4,6),(4,7),(4,8),(5,6),(5,7),(5,8),(6,9),(7,9),(8,9)],10)
=> ? = 6
[1,0,1,1,0,0,1,0,1,0]
=> [[1,3,4,7,9],[2,5,6,8,10]]
=> [2,5,6,8,10,1,3,4,7,9] => ([(0,9),(1,8),(2,7),(2,9),(3,5),(3,6),(3,8),(4,5),(4,6),(4,8),(5,7),(5,9),(6,7),(6,9),(7,8),(8,9)],10)
=> ? = 2
[1,0,1,1,0,0,1,1,0,0]
=> [[1,3,4,7,8],[2,5,6,9,10]]
=> [2,5,6,9,10,1,3,4,7,8] => ([(0,9),(1,7),(1,8),(2,7),(2,8),(3,5),(3,6),(3,9),(4,5),(4,6),(4,9),(5,7),(5,8),(6,7),(6,8),(7,9),(8,9)],10)
=> ? = 4
[1,0,1,1,0,1,0,0,1,0]
=> [[1,3,4,6,9],[2,5,7,8,10]]
=> [2,5,7,8,10,1,3,4,6,9] => ([(0,9),(1,8),(2,6),(2,7),(2,8),(3,4),(3,5),(3,9),(4,6),(4,7),(4,8),(5,6),(5,7),(5,8),(6,9),(7,9),(8,9)],10)
=> ? = 4
[1,0,1,1,0,1,0,1,0,0]
=> [[1,3,4,6,8],[2,5,7,9,10]]
=> [2,5,7,9,10,1,3,4,6,8] => ([(0,9),(1,7),(1,8),(2,5),(2,6),(2,9),(3,4),(3,7),(3,8),(4,5),(4,6),(4,9),(5,7),(5,8),(6,7),(6,8),(7,9),(8,9)],10)
=> ? = 8
[1,0,1,1,0,1,1,0,0,0]
=> [[1,3,4,6,7],[2,5,8,9,10]]
=> [2,5,8,9,10,1,3,4,6,7] => ([(0,9),(1,6),(1,7),(1,8),(2,6),(2,7),(2,8),(3,4),(3,5),(3,9),(4,6),(4,7),(4,8),(5,6),(5,7),(5,8),(6,9),(7,9),(8,9)],10)
=> ? = 12
[1,0,1,1,1,0,0,0,1,0]
=> [[1,3,4,5,9],[2,6,7,8,10]]
=> [2,6,7,8,10,1,3,4,5,9] => ([(0,9),(1,8),(2,5),(2,6),(2,7),(2,8),(3,5),(3,6),(3,7),(3,8),(4,5),(4,6),(4,7),(4,8),(5,9),(6,9),(7,9),(8,9)],10)
=> ? = 6
[1,0,1,1,1,0,0,1,0,0]
=> [[1,3,4,5,8],[2,6,7,9,10]]
=> [2,6,7,9,10,1,3,4,5,8] => ([(0,9),(1,7),(1,8),(2,4),(2,5),(2,6),(2,9),(3,4),(3,5),(3,6),(3,9),(4,7),(4,8),(5,7),(5,8),(6,7),(6,8),(7,9),(8,9)],10)
=> ? = 12
[1,0,1,1,1,0,1,0,0,0]
=> [[1,3,4,5,7],[2,6,8,9,10]]
=> [2,6,8,9,10,1,3,4,5,7] => ([(0,9),(1,6),(1,7),(1,8),(2,3),(2,4),(2,5),(2,9),(3,6),(3,7),(3,8),(4,6),(4,7),(4,8),(5,6),(5,7),(5,8),(6,9),(7,9),(8,9)],10)
=> ? = 18
[1,0,1,1,1,1,0,0,0,0]
=> [[1,3,4,5,6],[2,7,8,9,10]]
=> [2,7,8,9,10,1,3,4,5,6] => ([(0,9),(1,5),(1,6),(1,7),(1,8),(2,5),(2,6),(2,7),(2,8),(3,5),(3,6),(3,7),(3,8),(4,5),(4,6),(4,7),(4,8),(5,9),(6,9),(7,9),(8,9)],10)
=> ? = 24
[1,1,0,0,1,0,1,0,1,0]
=> [[1,2,5,7,9],[3,4,6,8,10]]
=> [3,4,6,8,10,1,2,5,7,9] => ([(0,9),(1,7),(1,8),(2,7),(2,8),(3,6),(3,9),(4,5),(4,7),(4,8),(5,6),(5,9),(6,7),(6,8),(7,9),(8,9)],10)
=> ? = 2
[1,1,0,0,1,0,1,1,0,0]
=> [[1,2,5,7,8],[3,4,6,9,10]]
=> [3,4,6,9,10,1,2,5,7,8] => ([(0,6),(0,7),(1,6),(1,7),(2,8),(2,9),(3,8),(3,9),(4,5),(4,8),(4,9),(5,6),(5,7),(6,8),(6,9),(7,8),(7,9)],10)
=> ? = 4
[1,1,0,0,1,1,0,0,1,0]
=> [[1,2,5,6,9],[3,4,7,8,10]]
=> [3,4,7,8,10,1,2,5,6,9] => ([(0,9),(1,7),(1,8),(2,7),(2,8),(3,5),(3,6),(3,9),(4,5),(4,6),(4,9),(5,7),(5,8),(6,7),(6,8),(7,9),(8,9)],10)
=> ? = 4
[1,1,0,0,1,1,0,1,0,0]
=> [[1,2,5,6,8],[3,4,7,9,10]]
=> [3,4,7,9,10,1,2,5,6,8] => ([(0,6),(0,7),(1,8),(1,9),(2,8),(2,9),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,8),(5,9),(6,8),(6,9),(7,8),(7,9)],10)
=> ? = 8
[1,1,0,0,1,1,1,0,0,0]
=> [[1,2,5,6,7],[3,4,8,9,10]]
=> [3,4,8,9,10,1,2,5,6,7] => ([(0,8),(0,9),(1,8),(1,9),(2,5),(2,6),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,8),(5,9),(6,8),(6,9),(7,8),(7,9)],10)
=> ? = 12
[1,1,0,1,0,0,1,0,1,0]
=> [[1,2,4,7,9],[3,5,6,8,10]]
=> [3,5,6,8,10,1,2,4,7,9] => ([(0,9),(1,7),(1,8),(2,6),(2,9),(3,5),(3,7),(3,8),(4,5),(4,7),(4,8),(5,6),(5,9),(6,7),(6,8),(7,9),(8,9)],10)
=> ? = 4
[1,1,0,1,0,0,1,1,0,0]
=> [[1,2,4,7,8],[3,5,6,9,10]]
=> [3,5,6,9,10,1,2,4,7,8] => ([(0,6),(0,7),(1,8),(1,9),(2,8),(2,9),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,8),(5,9),(6,8),(6,9),(7,8),(7,9)],10)
=> ? = 8
[1,1,0,1,0,1,0,0,1,0]
=> [[1,2,4,6,9],[3,5,7,8,10]]
=> [3,5,7,8,10,1,2,4,6,9] => ([(0,9),(1,7),(1,8),(2,5),(2,6),(2,9),(3,4),(3,7),(3,8),(4,5),(4,6),(4,9),(5,7),(5,8),(6,7),(6,8),(7,9),(8,9)],10)
=> ? = 8
[1,1,0,1,0,1,0,1,0,0]
=> [[1,2,4,6,8],[3,5,7,9,10]]
=> [3,5,7,9,10,1,2,4,6,8] => ([(0,8),(0,9),(1,6),(1,7),(2,5),(2,6),(2,7),(3,4),(3,8),(3,9),(4,5),(4,6),(4,7),(5,8),(5,9),(6,8),(6,9),(7,8),(7,9)],10)
=> ? = 16
[1,1,0,1,0,1,1,0,0,0]
=> [[1,2,4,6,7],[3,5,8,9,10]]
=> [3,5,8,9,10,1,2,4,6,7] => ([(0,8),(0,9),(1,5),(1,6),(1,7),(2,5),(2,6),(2,7),(3,4),(3,8),(3,9),(4,5),(4,6),(4,7),(5,8),(5,9),(6,8),(6,9),(7,8),(7,9)],10)
=> ? = 24
[1,1,0,1,1,0,0,0,1,0]
=> [[1,2,4,5,9],[3,6,7,8,10]]
=> [3,6,7,8,10,1,2,4,5,9] => ([(0,9),(1,7),(1,8),(2,4),(2,5),(2,6),(2,9),(3,4),(3,5),(3,6),(3,9),(4,7),(4,8),(5,7),(5,8),(6,7),(6,8),(7,9),(8,9)],10)
=> ? = 12
[1,1,0,1,1,0,0,1,0,0]
=> [[1,2,4,5,8],[3,6,7,9,10]]
=> [3,6,7,9,10,1,2,4,5,8] => ([(0,8),(0,9),(1,6),(1,7),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,8),(4,9),(5,8),(5,9),(6,8),(6,9),(7,8),(7,9)],10)
=> ? = 24
[1,1,0,1,1,0,1,0,0,0]
=> [[1,2,4,5,7],[3,6,8,9,10]]
=> [3,6,8,9,10,1,2,4,5,7] => ([(0,8),(0,9),(1,5),(1,6),(1,7),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,8),(4,9),(5,8),(5,9),(6,8),(6,9),(7,8),(7,9)],10)
=> ? = 36
[1,1,0,1,1,1,0,0,0,0]
=> [[1,2,4,5,6],[3,7,8,9,10]]
=> [3,7,8,9,10,1,2,4,5,6] => ([(0,8),(0,9),(1,4),(1,5),(1,6),(1,7),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,8),(4,9),(5,8),(5,9),(6,8),(6,9),(7,8),(7,9)],10)
=> ? = 48
[1,1,1,0,0,0,1,0,1,0]
=> [[1,2,3,7,9],[4,5,6,8,10]]
=> [4,5,6,8,10,1,2,3,7,9] => ([(0,9),(1,5),(1,9),(2,6),(2,7),(2,8),(3,6),(3,7),(3,8),(4,6),(4,7),(4,8),(5,6),(5,7),(5,8),(6,9),(7,9),(8,9)],10)
=> ? = 6
[1,1,1,0,0,0,1,1,0,0]
=> [[1,2,3,7,8],[4,5,6,9,10]]
=> [4,5,6,9,10,1,2,3,7,8] => ([(0,8),(0,9),(1,8),(1,9),(2,5),(2,6),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,8),(5,9),(6,8),(6,9),(7,8),(7,9)],10)
=> ? = 12
[1,1,1,0,0,1,0,0,1,0]
=> [[1,2,3,6,9],[4,5,7,8,10]]
=> [4,5,7,8,10,1,2,3,6,9] => ([(0,9),(1,6),(1,7),(1,8),(2,6),(2,7),(2,8),(3,4),(3,5),(3,9),(4,6),(4,7),(4,8),(5,6),(5,7),(5,8),(6,9),(7,9),(8,9)],10)
=> ? = 12
[1,1,1,0,0,1,0,1,0,0]
=> [[1,2,3,6,8],[4,5,7,9,10]]
=> [4,5,7,9,10,1,2,3,6,8] => ([(0,8),(0,9),(1,5),(1,6),(1,7),(2,5),(2,6),(2,7),(3,4),(3,8),(3,9),(4,5),(4,6),(4,7),(5,8),(5,9),(6,8),(6,9),(7,8),(7,9)],10)
=> ? = 24
[1,1,1,0,0,1,1,0,0,0]
=> [[1,2,3,6,7],[4,5,8,9,10]]
=> [4,5,8,9,10,1,2,3,6,7] => ([(0,7),(0,8),(0,9),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,7),(3,8),(3,9),(4,7),(4,8),(4,9),(5,7),(5,8),(5,9),(6,7),(6,8),(6,9)],10)
=> ? = 36
[1,1,1,0,1,0,0,0,1,0]
=> [[1,2,3,5,9],[4,6,7,8,10]]
=> [4,6,7,8,10,1,2,3,5,9] => ([(0,9),(1,6),(1,7),(1,8),(2,3),(2,4),(2,5),(2,9),(3,6),(3,7),(3,8),(4,6),(4,7),(4,8),(5,6),(5,7),(5,8),(6,9),(7,9),(8,9)],10)
=> ? = 18
[1,1,1,0,1,0,0,1,0,0]
=> [[1,2,3,5,8],[4,6,7,9,10]]
=> [4,6,7,9,10,1,2,3,5,8] => ([(0,8),(0,9),(1,5),(1,6),(1,7),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,8),(4,9),(5,8),(5,9),(6,8),(6,9),(7,8),(7,9)],10)
=> ? = 36
[1,1,1,0,1,0,1,0,0,0]
=> [[1,2,3,5,7],[4,6,8,9,10]]
=> [4,6,8,9,10,1,2,3,5,7] => ([(0,7),(0,8),(0,9),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,7),(3,8),(3,9),(4,7),(4,8),(4,9),(5,7),(5,8),(5,9),(6,7),(6,8),(6,9)],10)
=> ? = 54
Description
The number of perfect matchings of a graph. A matching of a graph $G$ is a subset $F \subset E(G)$ such that no two edges in $F$ share a vertex in common. A perfect matching $F'$ is then a matching such that every vertex in $V(G)$ is incident with exactly one edge in $F'$.
Mp00137: Dyck paths to symmetric ASMAlternating sign matrices
Mp00001: Alternating sign matrices to semistandard tableau via monotone trianglesSemistandard tableaux
Mp00075: Semistandard tableaux reading word permutationPermutations
St001735: Permutations ⟶ ℤResult quality: 12% values known / values provided: 12%distinct values known / distinct values provided: 27%
Values
[1,0]
=> [[1]]
=> [[1]]
=> [1] => 1
[1,0,1,0]
=> [[1,0],[0,1]]
=> [[1,1],[2]]
=> [3,1,2] => 1
[1,1,0,0]
=> [[0,1],[1,0]]
=> [[1,2],[2]]
=> [2,1,3] => 2
[1,0,1,0,1,0]
=> [[1,0,0],[0,1,0],[0,0,1]]
=> [[1,1,1],[2,2],[3]]
=> [6,4,5,1,2,3] => 1
[1,0,1,1,0,0]
=> [[1,0,0],[0,0,1],[0,1,0]]
=> [[1,1,1],[2,3],[3]]
=> [5,4,6,1,2,3] => 2
[1,1,0,0,1,0]
=> [[0,1,0],[1,0,0],[0,0,1]]
=> [[1,1,2],[2,2],[3]]
=> [6,3,4,1,2,5] => 2
[1,1,0,1,0,0]
=> [[0,1,0],[1,-1,1],[0,1,0]]
=> [[1,1,2],[2,3],[3]]
=> [5,3,6,1,2,4] => 4
[1,1,1,0,0,0]
=> [[0,0,1],[0,1,0],[1,0,0]]
=> [[1,2,3],[2,3],[3]]
=> [4,2,5,1,3,6] => 6
[1,0,1,0,1,0,1,0]
=> [[1,0,0,0],[0,1,0,0],[0,0,1,0],[0,0,0,1]]
=> [[1,1,1,1],[2,2,2],[3,3],[4]]
=> [10,8,9,5,6,7,1,2,3,4] => ? = 1
[1,0,1,0,1,1,0,0]
=> [[1,0,0,0],[0,1,0,0],[0,0,0,1],[0,0,1,0]]
=> [[1,1,1,1],[2,2,2],[3,4],[4]]
=> [9,8,10,5,6,7,1,2,3,4] => ? = 2
[1,0,1,1,0,0,1,0]
=> [[1,0,0,0],[0,0,1,0],[0,1,0,0],[0,0,0,1]]
=> [[1,1,1,1],[2,2,3],[3,3],[4]]
=> [10,7,8,5,6,9,1,2,3,4] => ? = 2
[1,0,1,1,0,1,0,0]
=> [[1,0,0,0],[0,0,1,0],[0,1,-1,1],[0,0,1,0]]
=> [[1,1,1,1],[2,2,3],[3,4],[4]]
=> [9,7,10,5,6,8,1,2,3,4] => ? = 4
[1,0,1,1,1,0,0,0]
=> [[1,0,0,0],[0,0,0,1],[0,0,1,0],[0,1,0,0]]
=> [[1,1,1,1],[2,3,4],[3,4],[4]]
=> [8,6,9,5,7,10,1,2,3,4] => ? = 6
[1,1,0,0,1,0,1,0]
=> [[0,1,0,0],[1,0,0,0],[0,0,1,0],[0,0,0,1]]
=> [[1,1,1,2],[2,2,2],[3,3],[4]]
=> [10,8,9,4,5,6,1,2,3,7] => ? = 2
[1,1,0,0,1,1,0,0]
=> [[0,1,0,0],[1,0,0,0],[0,0,0,1],[0,0,1,0]]
=> [[1,1,1,2],[2,2,2],[3,4],[4]]
=> [9,8,10,4,5,6,1,2,3,7] => ? = 4
[1,1,0,1,0,0,1,0]
=> [[0,1,0,0],[1,-1,1,0],[0,1,0,0],[0,0,0,1]]
=> [[1,1,1,2],[2,2,3],[3,3],[4]]
=> [10,7,8,4,5,9,1,2,3,6] => ? = 4
[1,1,0,1,0,1,0,0]
=> [[0,1,0,0],[1,-1,1,0],[0,1,-1,1],[0,0,1,0]]
=> [[1,1,1,2],[2,2,3],[3,4],[4]]
=> [9,7,10,4,5,8,1,2,3,6] => ? = 8
[1,1,0,1,1,0,0,0]
=> [[0,1,0,0],[1,-1,0,1],[0,0,1,0],[0,1,0,0]]
=> [[1,1,1,2],[2,3,4],[3,4],[4]]
=> [8,6,9,4,7,10,1,2,3,5] => ? = 12
[1,1,1,0,0,0,1,0]
=> [[0,0,1,0],[0,1,0,0],[1,0,0,0],[0,0,0,1]]
=> [[1,1,2,3],[2,2,3],[3,3],[4]]
=> [10,6,7,3,4,8,1,2,5,9] => ? = 6
[1,1,1,0,0,1,0,0]
=> [[0,0,1,0],[0,1,0,0],[1,0,-1,1],[0,0,1,0]]
=> [[1,1,2,3],[2,2,3],[3,4],[4]]
=> [9,6,10,3,4,7,1,2,5,8] => ? = 12
[1,1,1,0,1,0,0,0]
=> [[0,0,1,0],[0,1,-1,1],[1,-1,1,0],[0,1,0,0]]
=> [[1,1,2,3],[2,3,4],[3,4],[4]]
=> [8,5,9,3,6,10,1,2,4,7] => ? = 18
[1,1,1,1,0,0,0,0]
=> [[0,0,0,1],[0,0,1,0],[0,1,0,0],[1,0,0,0]]
=> [[1,2,3,4],[2,3,4],[3,4],[4]]
=> [7,4,8,2,5,9,1,3,6,10] => ? = 24
[1,0,1,0,1,0,1,0,1,0]
=> [[1,0,0,0,0],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,1,0],[0,0,0,0,1]]
=> [[1,1,1,1,1],[2,2,2,2],[3,3,3],[4,4],[5]]
=> [15,13,14,10,11,12,6,7,8,9,1,2,3,4,5] => ? = 1
[1,0,1,0,1,0,1,1,0,0]
=> [[1,0,0,0,0],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,0,1],[0,0,0,1,0]]
=> [[1,1,1,1,1],[2,2,2,2],[3,3,3],[4,5],[5]]
=> [14,13,15,10,11,12,6,7,8,9,1,2,3,4,5] => ? = 2
[1,0,1,0,1,1,0,0,1,0]
=> [[1,0,0,0,0],[0,1,0,0,0],[0,0,0,1,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [[1,1,1,1,1],[2,2,2,2],[3,3,4],[4,4],[5]]
=> [15,12,13,10,11,14,6,7,8,9,1,2,3,4,5] => ? = 2
[1,0,1,0,1,1,0,1,0,0]
=> [[1,0,0,0,0],[0,1,0,0,0],[0,0,0,1,0],[0,0,1,-1,1],[0,0,0,1,0]]
=> [[1,1,1,1,1],[2,2,2,2],[3,3,4],[4,5],[5]]
=> [14,12,15,10,11,13,6,7,8,9,1,2,3,4,5] => ? = 4
[1,0,1,0,1,1,1,0,0,0]
=> [[1,0,0,0,0],[0,1,0,0,0],[0,0,0,0,1],[0,0,0,1,0],[0,0,1,0,0]]
=> [[1,1,1,1,1],[2,2,2,2],[3,4,5],[4,5],[5]]
=> [13,11,14,10,12,15,6,7,8,9,1,2,3,4,5] => ? = 6
[1,0,1,1,0,0,1,0,1,0]
=> [[1,0,0,0,0],[0,0,1,0,0],[0,1,0,0,0],[0,0,0,1,0],[0,0,0,0,1]]
=> [[1,1,1,1,1],[2,2,2,3],[3,3,3],[4,4],[5]]
=> [15,13,14,9,10,11,6,7,8,12,1,2,3,4,5] => ? = 2
[1,0,1,1,0,0,1,1,0,0]
=> [[1,0,0,0,0],[0,0,1,0,0],[0,1,0,0,0],[0,0,0,0,1],[0,0,0,1,0]]
=> [[1,1,1,1,1],[2,2,2,3],[3,3,3],[4,5],[5]]
=> [14,13,15,9,10,11,6,7,8,12,1,2,3,4,5] => ? = 4
[1,0,1,1,0,1,0,0,1,0]
=> [[1,0,0,0,0],[0,0,1,0,0],[0,1,-1,1,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [[1,1,1,1,1],[2,2,2,3],[3,3,4],[4,4],[5]]
=> [15,12,13,9,10,14,6,7,8,11,1,2,3,4,5] => ? = 4
[1,0,1,1,0,1,0,1,0,0]
=> [[1,0,0,0,0],[0,0,1,0,0],[0,1,-1,1,0],[0,0,1,-1,1],[0,0,0,1,0]]
=> [[1,1,1,1,1],[2,2,2,3],[3,3,4],[4,5],[5]]
=> [14,12,15,9,10,13,6,7,8,11,1,2,3,4,5] => ? = 8
[1,0,1,1,0,1,1,0,0,0]
=> [[1,0,0,0,0],[0,0,1,0,0],[0,1,-1,0,1],[0,0,0,1,0],[0,0,1,0,0]]
=> [[1,1,1,1,1],[2,2,2,3],[3,4,5],[4,5],[5]]
=> [13,11,14,9,12,15,6,7,8,10,1,2,3,4,5] => ? = 12
[1,0,1,1,1,0,0,0,1,0]
=> [[1,0,0,0,0],[0,0,0,1,0],[0,0,1,0,0],[0,1,0,0,0],[0,0,0,0,1]]
=> [[1,1,1,1,1],[2,2,3,4],[3,3,4],[4,4],[5]]
=> [15,11,12,8,9,13,6,7,10,14,1,2,3,4,5] => ? = 6
[1,0,1,1,1,0,0,1,0,0]
=> [[1,0,0,0,0],[0,0,0,1,0],[0,0,1,0,0],[0,1,0,-1,1],[0,0,0,1,0]]
=> [[1,1,1,1,1],[2,2,3,4],[3,3,4],[4,5],[5]]
=> [14,11,15,8,9,12,6,7,10,13,1,2,3,4,5] => ? = 12
[1,0,1,1,1,0,1,0,0,0]
=> [[1,0,0,0,0],[0,0,0,1,0],[0,0,1,-1,1],[0,1,-1,1,0],[0,0,1,0,0]]
=> [[1,1,1,1,1],[2,2,3,4],[3,4,5],[4,5],[5]]
=> [13,10,14,8,11,15,6,7,9,12,1,2,3,4,5] => ? = 18
[1,0,1,1,1,1,0,0,0,0]
=> [[1,0,0,0,0],[0,0,0,0,1],[0,0,0,1,0],[0,0,1,0,0],[0,1,0,0,0]]
=> [[1,1,1,1,1],[2,3,4,5],[3,4,5],[4,5],[5]]
=> [12,9,13,7,10,14,6,8,11,15,1,2,3,4,5] => ? = 24
[1,1,0,0,1,0,1,0,1,0]
=> [[0,1,0,0,0],[1,0,0,0,0],[0,0,1,0,0],[0,0,0,1,0],[0,0,0,0,1]]
=> [[1,1,1,1,2],[2,2,2,2],[3,3,3],[4,4],[5]]
=> [15,13,14,10,11,12,5,6,7,8,1,2,3,4,9] => ? = 2
[1,1,0,0,1,0,1,1,0,0]
=> [[0,1,0,0,0],[1,0,0,0,0],[0,0,1,0,0],[0,0,0,0,1],[0,0,0,1,0]]
=> [[1,1,1,1,2],[2,2,2,2],[3,3,3],[4,5],[5]]
=> [14,13,15,10,11,12,5,6,7,8,1,2,3,4,9] => ? = 4
[1,1,0,0,1,1,0,0,1,0]
=> [[0,1,0,0,0],[1,0,0,0,0],[0,0,0,1,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [[1,1,1,1,2],[2,2,2,2],[3,3,4],[4,4],[5]]
=> [15,12,13,10,11,14,5,6,7,8,1,2,3,4,9] => ? = 4
[1,1,0,0,1,1,0,1,0,0]
=> [[0,1,0,0,0],[1,0,0,0,0],[0,0,0,1,0],[0,0,1,-1,1],[0,0,0,1,0]]
=> [[1,1,1,1,2],[2,2,2,2],[3,3,4],[4,5],[5]]
=> [14,12,15,10,11,13,5,6,7,8,1,2,3,4,9] => ? = 8
[1,1,0,0,1,1,1,0,0,0]
=> [[0,1,0,0,0],[1,0,0,0,0],[0,0,0,0,1],[0,0,0,1,0],[0,0,1,0,0]]
=> [[1,1,1,1,2],[2,2,2,2],[3,4,5],[4,5],[5]]
=> [13,11,14,10,12,15,5,6,7,8,1,2,3,4,9] => ? = 12
[1,1,0,1,0,0,1,0,1,0]
=> [[0,1,0,0,0],[1,-1,1,0,0],[0,1,0,0,0],[0,0,0,1,0],[0,0,0,0,1]]
=> [[1,1,1,1,2],[2,2,2,3],[3,3,3],[4,4],[5]]
=> [15,13,14,9,10,11,5,6,7,12,1,2,3,4,8] => ? = 4
[1,1,0,1,0,0,1,1,0,0]
=> [[0,1,0,0,0],[1,-1,1,0,0],[0,1,0,0,0],[0,0,0,0,1],[0,0,0,1,0]]
=> [[1,1,1,1,2],[2,2,2,3],[3,3,3],[4,5],[5]]
=> [14,13,15,9,10,11,5,6,7,12,1,2,3,4,8] => ? = 8
[1,1,0,1,0,1,0,0,1,0]
=> [[0,1,0,0,0],[1,-1,1,0,0],[0,1,-1,1,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [[1,1,1,1,2],[2,2,2,3],[3,3,4],[4,4],[5]]
=> [15,12,13,9,10,14,5,6,7,11,1,2,3,4,8] => ? = 8
[1,1,0,1,0,1,0,1,0,0]
=> [[0,1,0,0,0],[1,-1,1,0,0],[0,1,-1,1,0],[0,0,1,-1,1],[0,0,0,1,0]]
=> [[1,1,1,1,2],[2,2,2,3],[3,3,4],[4,5],[5]]
=> [14,12,15,9,10,13,5,6,7,11,1,2,3,4,8] => ? = 16
[1,1,0,1,0,1,1,0,0,0]
=> [[0,1,0,0,0],[1,-1,1,0,0],[0,1,-1,0,1],[0,0,0,1,0],[0,0,1,0,0]]
=> [[1,1,1,1,2],[2,2,2,3],[3,4,5],[4,5],[5]]
=> [13,11,14,9,12,15,5,6,7,10,1,2,3,4,8] => ? = 24
[1,1,0,1,1,0,0,0,1,0]
=> [[0,1,0,0,0],[1,-1,0,1,0],[0,0,1,0,0],[0,1,0,0,0],[0,0,0,0,1]]
=> [[1,1,1,1,2],[2,2,3,4],[3,3,4],[4,4],[5]]
=> [15,11,12,8,9,13,5,6,10,14,1,2,3,4,7] => ? = 12
[1,1,0,1,1,0,0,1,0,0]
=> [[0,1,0,0,0],[1,-1,0,1,0],[0,0,1,0,0],[0,1,0,-1,1],[0,0,0,1,0]]
=> [[1,1,1,1,2],[2,2,3,4],[3,3,4],[4,5],[5]]
=> [14,11,15,8,9,12,5,6,10,13,1,2,3,4,7] => ? = 24
[1,1,0,1,1,0,1,0,0,0]
=> [[0,1,0,0,0],[1,-1,0,1,0],[0,0,1,-1,1],[0,1,-1,1,0],[0,0,1,0,0]]
=> [[1,1,1,1,2],[2,2,3,4],[3,4,5],[4,5],[5]]
=> [13,10,14,8,11,15,5,6,9,12,1,2,3,4,7] => ? = 36
[1,1,0,1,1,1,0,0,0,0]
=> [[0,1,0,0,0],[1,-1,0,0,1],[0,0,0,1,0],[0,0,1,0,0],[0,1,0,0,0]]
=> [[1,1,1,1,2],[2,3,4,5],[3,4,5],[4,5],[5]]
=> [12,9,13,7,10,14,5,8,11,15,1,2,3,4,6] => ? = 48
[1,1,1,0,0,0,1,0,1,0]
=> [[0,0,1,0,0],[0,1,0,0,0],[1,0,0,0,0],[0,0,0,1,0],[0,0,0,0,1]]
=> [[1,1,1,2,3],[2,2,2,3],[3,3,3],[4,4],[5]]
=> [15,13,14,8,9,10,4,5,6,11,1,2,3,7,12] => ? = 6
[1,1,1,0,0,0,1,1,0,0]
=> [[0,0,1,0,0],[0,1,0,0,0],[1,0,0,0,0],[0,0,0,0,1],[0,0,0,1,0]]
=> [[1,1,1,2,3],[2,2,2,3],[3,3,3],[4,5],[5]]
=> [14,13,15,8,9,10,4,5,6,11,1,2,3,7,12] => ? = 12
[1,1,1,0,0,1,0,0,1,0]
=> [[0,0,1,0,0],[0,1,0,0,0],[1,0,-1,1,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [[1,1,1,2,3],[2,2,2,3],[3,3,4],[4,4],[5]]
=> [15,12,13,8,9,14,4,5,6,10,1,2,3,7,11] => ? = 12
[1,1,1,0,0,1,0,1,0,0]
=> [[0,0,1,0,0],[0,1,0,0,0],[1,0,-1,1,0],[0,0,1,-1,1],[0,0,0,1,0]]
=> [[1,1,1,2,3],[2,2,2,3],[3,3,4],[4,5],[5]]
=> [14,12,15,8,9,13,4,5,6,10,1,2,3,7,11] => ? = 24
[1,1,1,0,0,1,1,0,0,0]
=> [[0,0,1,0,0],[0,1,0,0,0],[1,0,-1,0,1],[0,0,0,1,0],[0,0,1,0,0]]
=> [[1,1,1,2,3],[2,2,2,3],[3,4,5],[4,5],[5]]
=> [13,11,14,8,12,15,4,5,6,9,1,2,3,7,10] => ? = 36
[1,1,1,0,1,0,0,0,1,0]
=> [[0,0,1,0,0],[0,1,-1,1,0],[1,-1,1,0,0],[0,1,0,0,0],[0,0,0,0,1]]
=> [[1,1,1,2,3],[2,2,3,4],[3,3,4],[4,4],[5]]
=> [15,11,12,7,8,13,4,5,9,14,1,2,3,6,10] => ? = 18
[1,1,1,0,1,0,0,1,0,0]
=> [[0,0,1,0,0],[0,1,-1,1,0],[1,-1,1,0,0],[0,1,0,-1,1],[0,0,0,1,0]]
=> [[1,1,1,2,3],[2,2,3,4],[3,3,4],[4,5],[5]]
=> [14,11,15,7,8,12,4,5,9,13,1,2,3,6,10] => ? = 36
[1,1,1,0,1,0,1,0,0,0]
=> [[0,0,1,0,0],[0,1,-1,1,0],[1,-1,1,-1,1],[0,1,-1,1,0],[0,0,1,0,0]]
=> [[1,1,1,2,3],[2,2,3,4],[3,4,5],[4,5],[5]]
=> [13,10,14,7,11,15,4,5,8,12,1,2,3,6,9] => ? = 54
Description
The number of permutations with the same set of runs. For example, the set of runs of $4132$ is $\{(13), (2), (4)\}$. The only other permutation with this set of runs is $4213$, so the statistic equals $2$ for these two permutations.
The following 3 statistics, ordered by result quality, also match your data. Click on any of them to see the details.
St001644The dimension of a graph. St000882The number of connected components of short braid edges in the graph of braid moves of a permutation. St001330The hat guessing number of a graph.