searching the database
Your data matches 36 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
(click to perform a complete search on your data)
Matching statistic: St000007
Mp00230: Integer partitions —parallelogram polyomino⟶ Dyck paths
Mp00120: Dyck paths —Lalanne-Kreweras involution⟶ Dyck paths
Mp00201: Dyck paths —Ringel⟶ Permutations
St000007: Permutations ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00120: Dyck paths —Lalanne-Kreweras involution⟶ Dyck paths
Mp00201: Dyck paths —Ringel⟶ Permutations
St000007: Permutations ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[1]
=> [1,0]
=> [1,0]
=> [2,1] => 2
[2]
=> [1,0,1,0]
=> [1,1,0,0]
=> [2,3,1] => 2
[1,1]
=> [1,1,0,0]
=> [1,0,1,0]
=> [3,1,2] => 2
[3]
=> [1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> [2,3,4,1] => 2
[2,1]
=> [1,0,1,1,0,0]
=> [1,1,0,0,1,0]
=> [2,4,1,3] => 2
[1,1,1]
=> [1,1,0,1,0,0]
=> [1,1,0,1,0,0]
=> [4,3,1,2] => 3
[4]
=> [1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> [2,3,4,5,1] => 2
[3,1]
=> [1,0,1,0,1,1,0,0]
=> [1,1,1,0,0,0,1,0]
=> [2,3,5,1,4] => 2
[2,2]
=> [1,1,1,0,0,0]
=> [1,0,1,0,1,0]
=> [4,1,2,3] => 2
[2,1,1]
=> [1,0,1,1,0,1,0,0]
=> [1,1,1,0,0,1,0,0]
=> [2,5,4,1,3] => 3
[1,1,1,1]
=> [1,1,0,1,0,1,0,0]
=> [1,1,1,0,1,0,0,0]
=> [5,3,4,1,2] => 3
[5]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [2,3,4,5,6,1] => 2
[4,1]
=> [1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,0,0,0,0,1,0]
=> [2,3,4,6,1,5] => 2
[3,2]
=> [1,0,1,1,1,0,0,0]
=> [1,1,0,0,1,0,1,0]
=> [2,5,1,3,4] => 2
[3,1,1]
=> [1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> [2,3,6,5,1,4] => 3
[2,2,1]
=> [1,1,1,0,0,1,0,0]
=> [1,0,1,1,0,1,0,0]
=> [5,1,4,2,3] => 3
[2,1,1,1]
=> [1,0,1,1,0,1,0,1,0,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> [2,6,4,5,1,3] => 3
[1,1,1,1,1]
=> [1,1,0,1,0,1,0,1,0,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> [6,3,4,5,1,2] => 3
[6]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0]
=> [2,3,4,5,6,7,1] => 2
[5,1]
=> [1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> [2,3,4,5,7,1,6] => 2
[4,2]
=> [1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,0,0,0,1,0,1,0]
=> [2,3,6,1,4,5] => 2
[3,3]
=> [1,1,1,0,1,0,0,0]
=> [1,1,0,1,0,1,0,0]
=> [5,4,1,2,3] => 3
[3,2,1]
=> [1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,0,1,1,0,1,0,0]
=> [2,6,1,5,3,4] => 3
[2,2,2]
=> [1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> [5,1,2,3,4] => 2
[2,2,1,1]
=> [1,1,1,0,0,1,0,1,0,0]
=> [1,0,1,1,1,0,1,0,0,0]
=> [6,1,4,5,2,3] => 3
[7]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> [2,3,4,5,6,7,8,1] => 2
[6,1]
=> [1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> [2,3,4,5,6,8,1,7] => 2
[5,2]
=> [1,0,1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,1,0,0,0,0,1,0,1,0]
=> [2,3,4,7,1,5,6] => 2
[4,3]
=> [1,0,1,1,1,0,1,0,0,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> [2,6,5,1,3,4] => 3
[3,3,1]
=> [1,1,1,0,1,0,0,1,0,0]
=> [1,1,0,1,1,0,1,0,0,0]
=> [6,4,1,5,2,3] => 3
[3,2,2]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,0,1,0,1,0,1,0]
=> [2,6,1,3,4,5] => 2
[2,2,2,1]
=> [1,1,1,1,0,0,0,1,0,0]
=> [1,0,1,0,1,1,0,1,0,0]
=> [6,1,2,5,3,4] => 3
[8]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0]
=> [2,3,4,5,6,7,8,9,1] => 2
[7,1]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> [2,3,4,5,6,7,9,1,8] => 2
[4,4]
=> [1,1,1,0,1,0,1,0,0,0]
=> [1,1,1,0,1,0,1,0,0,0]
=> [6,5,4,1,2,3] => 4
[3,3,2]
=> [1,1,1,0,1,1,0,0,0,0]
=> [1,1,0,1,0,1,0,0,1,0]
=> [6,4,1,2,3,5] => 2
[2,2,2,2]
=> [1,1,1,1,0,1,0,0,0,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> [5,6,1,2,3,4] => 2
[9]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0]
=> [2,3,4,5,6,7,8,9,10,1] => 2
[3,3,3]
=> [1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [6,1,2,3,4,5] => 2
[3,2,2,2]
=> [1,0,1,1,1,1,0,1,0,0,0,0]
=> [1,1,1,0,0,1,0,1,0,1,0,0]
=> [2,6,7,1,3,4,5] => 2
[10]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0]
=> [2,3,4,5,6,7,8,9,10,11,1] => 2
[5,5]
=> [1,1,1,0,1,0,1,0,1,0,0,0]
=> [1,1,1,1,0,1,0,1,0,0,0,0]
=> [7,6,4,5,1,2,3] => 4
[4,3,3]
=> [1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0]
=> [2,7,1,3,4,5,6] => 2
[4,4,3]
=> [1,1,1,0,1,1,1,0,0,0,0,0]
=> [1,1,0,1,0,1,0,0,1,0,1,0]
=> [7,4,1,2,3,5,6] => 2
[6,6]
=> [1,1,1,0,1,0,1,0,1,0,1,0,0,0]
=> [1,1,1,1,1,0,1,0,1,0,0,0,0,0]
=> [8,7,4,5,6,1,2,3] => 4
[4,4,4]
=> [1,1,1,1,1,0,1,0,0,0,0,0]
=> [1,1,0,1,0,1,0,1,0,1,0,0]
=> [7,6,1,2,3,4,5] => 3
[3,3,3,3]
=> [1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> [7,1,2,3,4,5,6] => 2
[4,3,3,3]
=> [1,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0,1,0]
=> [2,8,1,3,4,5,6,7] => 2
[4,4,3,3]
=> [1,1,1,0,1,1,1,1,0,0,0,0,0,0]
=> [1,1,0,1,0,1,0,0,1,0,1,0,1,0]
=> [8,4,1,2,3,5,6,7] => 2
[5,5,5]
=> [1,1,1,1,1,0,1,0,1,0,0,0,0,0]
=> [1,1,1,0,1,0,1,0,1,0,1,0,0,0]
=> [6,7,8,1,2,3,4,5] => 2
Description
The number of saliances of the permutation.
A saliance is a right-to-left maximum. This can be described as an occurrence of the mesh pattern $([1], {(1,1)})$, i.e., the upper right quadrant is shaded, see [1].
Matching statistic: St000298
Mp00230: Integer partitions —parallelogram polyomino⟶ Dyck paths
Mp00229: Dyck paths —Delest-Viennot⟶ Dyck paths
Mp00232: Dyck paths —parallelogram poset⟶ Posets
St000298: Posets ⟶ ℤResult quality: 50% ●values known / values provided: 51%●distinct values known / distinct values provided: 50%
Mp00229: Dyck paths —Delest-Viennot⟶ Dyck paths
Mp00232: Dyck paths —parallelogram poset⟶ Posets
St000298: Posets ⟶ ℤResult quality: 50% ●values known / values provided: 51%●distinct values known / distinct values provided: 50%
Values
[1]
=> [1,0]
=> [1,0]
=> ([],1)
=> 1 = 2 - 1
[2]
=> [1,0,1,0]
=> [1,1,0,0]
=> ([(0,1)],2)
=> 1 = 2 - 1
[1,1]
=> [1,1,0,0]
=> [1,0,1,0]
=> ([(0,1)],2)
=> 1 = 2 - 1
[3]
=> [1,0,1,0,1,0]
=> [1,1,0,1,0,0]
=> ([(0,2),(2,1)],3)
=> 1 = 2 - 1
[2,1]
=> [1,0,1,1,0,0]
=> [1,1,0,0,1,0]
=> ([(0,2),(2,1)],3)
=> 1 = 2 - 1
[1,1,1]
=> [1,1,0,1,0,0]
=> [1,1,1,0,0,0]
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2 = 3 - 1
[4]
=> [1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,0]
=> ([(0,3),(2,1),(3,2)],4)
=> 1 = 2 - 1
[3,1]
=> [1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,0,1,0]
=> ([(0,3),(2,1),(3,2)],4)
=> 1 = 2 - 1
[2,2]
=> [1,1,1,0,0,0]
=> [1,0,1,0,1,0]
=> ([(0,2),(2,1)],3)
=> 1 = 2 - 1
[2,1,1]
=> [1,0,1,1,0,1,0,0]
=> [1,1,0,1,1,0,0,0]
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> 2 = 3 - 1
[1,1,1,1]
=> [1,1,0,1,0,1,0,0]
=> [1,1,1,1,0,0,0,0]
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 2 = 3 - 1
[5]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1 = 2 - 1
[4,1]
=> [1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,0,0,1,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1 = 2 - 1
[3,2]
=> [1,0,1,1,1,0,0,0]
=> [1,1,0,0,1,0,1,0]
=> ([(0,3),(2,1),(3,2)],4)
=> 1 = 2 - 1
[3,1,1]
=> [1,0,1,0,1,1,0,1,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6)
=> 2 = 3 - 1
[2,2,1]
=> [1,1,1,0,0,1,0,0]
=> [1,0,1,1,1,0,0,0]
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> 2 = 3 - 1
[2,1,1,1]
=> [1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
=> ? = 3 - 1
[1,1,1,1,1]
=> [1,1,0,1,0,1,0,1,0,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ? = 3 - 1
[6]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,1,0,0]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 1 = 2 - 1
[5,1]
=> [1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,0,1,0,0,1,0]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 1 = 2 - 1
[4,2]
=> [1,0,1,0,1,1,1,0,0,0]
=> [1,1,0,1,0,0,1,0,1,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1 = 2 - 1
[3,3]
=> [1,1,1,0,1,0,0,0]
=> [1,1,1,0,1,0,0,0]
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 2 = 3 - 1
[3,2,1]
=> [1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6)
=> 2 = 3 - 1
[2,2,2]
=> [1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> ([(0,3),(2,1),(3,2)],4)
=> 1 = 2 - 1
[2,2,1,1]
=> [1,1,1,0,0,1,0,1,0,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
=> ? = 3 - 1
[7]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 1 = 2 - 1
[6,1]
=> [1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,0,1,0,1,0,0,1,0]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 1 = 2 - 1
[5,2]
=> [1,0,1,0,1,0,1,1,1,0,0,0]
=> [1,1,0,1,0,1,0,0,1,0,1,0]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 1 = 2 - 1
[4,3]
=> [1,0,1,1,1,0,1,0,0,0]
=> [1,1,0,1,1,0,1,0,0,0]
=> ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
=> ? = 3 - 1
[3,3,1]
=> [1,1,1,0,1,0,0,1,0,0]
=> [1,1,1,0,1,1,0,0,0,0]
=> ([(0,3),(0,4),(1,6),(2,5),(3,7),(4,2),(4,7),(5,6),(7,1),(7,5)],8)
=> ? = 3 - 1
[3,2,2]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,0,1,0,1,0,1,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1 = 2 - 1
[2,2,2,1]
=> [1,1,1,1,0,0,0,1,0,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6)
=> 2 = 3 - 1
[8]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> ([(0,7),(2,4),(3,2),(4,6),(5,3),(6,1),(7,5)],8)
=> ? = 2 - 1
[7,1]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,0,1,0]
=> ([(0,7),(2,4),(3,2),(4,6),(5,3),(6,1),(7,5)],8)
=> ? = 2 - 1
[4,4]
=> [1,1,1,0,1,0,1,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> ([(0,3),(0,4),(1,7),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6),(5,7),(6,8),(7,8)],9)
=> ? = 4 - 1
[3,3,2]
=> [1,1,1,0,1,1,0,0,0,0]
=> [1,1,1,0,1,0,0,0,1,0]
=> ([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7)
=> ? = 2 - 1
[2,2,2,2]
=> [1,1,1,1,0,1,0,0,0,0]
=> [1,1,1,0,1,0,1,0,0,0]
=> ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ? = 2 - 1
[9]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> ([(0,8),(2,3),(3,5),(4,2),(5,7),(6,4),(7,1),(8,6)],9)
=> ? = 2 - 1
[3,3,3]
=> [1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1 = 2 - 1
[3,2,2,2]
=> [1,0,1,1,1,1,0,1,0,0,0,0]
=> [1,1,0,1,1,0,1,0,1,0,0,0]
=> ([(0,5),(1,6),(2,7),(3,4),(3,6),(4,2),(4,8),(5,1),(5,3),(6,8),(8,7)],9)
=> ? = 2 - 1
[10]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> ([(0,9),(2,4),(3,2),(4,6),(5,3),(6,8),(7,5),(8,1),(9,7)],10)
=> ? = 2 - 1
[5,5]
=> [1,1,1,0,1,0,1,0,1,0,0,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0]
=> ([(0,4),(0,5),(1,9),(2,3),(2,11),(3,8),(4,1),(4,10),(5,2),(5,10),(7,6),(8,6),(9,7),(10,9),(10,11),(11,7),(11,8)],12)
=> ? = 4 - 1
[4,3,3]
=> [1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 1 = 2 - 1
[4,4,3]
=> [1,1,1,0,1,1,1,0,0,0,0,0]
=> [1,1,1,0,1,0,0,0,1,0,1,0]
=> ([(0,3),(0,5),(1,7),(3,6),(4,2),(5,1),(5,6),(6,7),(7,4)],8)
=> ? = 2 - 1
[6,6]
=> [1,1,1,0,1,0,1,0,1,0,1,0,0,0]
=> [1,1,1,1,1,1,0,1,0,0,0,0,0,0]
=> ([(0,5),(0,6),(1,4),(1,14),(2,11),(3,10),(4,3),(4,12),(5,1),(5,13),(6,2),(6,13),(8,9),(9,7),(10,7),(11,8),(12,9),(12,10),(13,11),(13,14),(14,8),(14,12)],15)
=> ? = 4 - 1
[4,4,4]
=> [1,1,1,1,1,0,1,0,0,0,0,0]
=> [1,1,1,0,1,0,1,0,1,0,0,0]
=> ([(0,2),(0,5),(1,7),(2,6),(3,4),(3,9),(4,1),(4,8),(5,3),(5,6),(6,9),(8,7),(9,8)],10)
=> ? = 3 - 1
[3,3,3,3]
=> [1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 1 = 2 - 1
[4,3,3,3]
=> [1,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0,1,0]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 1 = 2 - 1
[4,4,3,3]
=> [1,1,1,0,1,1,1,1,0,0,0,0,0,0]
=> [1,1,1,0,1,0,0,0,1,0,1,0,1,0]
=> ([(0,3),(0,6),(1,8),(3,7),(4,2),(5,4),(6,1),(6,7),(7,8),(8,5)],9)
=> ? = 2 - 1
[5,5,5]
=> [1,1,1,1,1,0,1,0,1,0,0,0,0,0]
=> [1,1,1,1,1,0,1,0,1,0,0,0,0,0]
=> ([(0,5),(0,6),(1,4),(1,14),(2,11),(3,10),(4,3),(4,12),(5,1),(5,13),(6,2),(6,13),(8,9),(9,7),(10,7),(11,8),(12,9),(12,10),(13,11),(13,14),(14,8),(14,12)],15)
=> ? = 2 - 1
[3,3,3,3,3]
=> [1,1,1,1,1,1,0,1,0,0,0,0,0,0]
=> [1,1,1,0,1,0,1,0,1,0,1,0,0,0]
=> ([(0,2),(0,6),(1,8),(2,7),(3,5),(3,9),(4,3),(4,11),(5,1),(5,10),(6,4),(6,7),(7,11),(9,10),(10,8),(11,9)],12)
=> ? = 3 - 1
[4,4,4,4]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 1 = 2 - 1
[5,4,4,4]
=> [1,0,1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> ([(0,7),(2,4),(3,2),(4,6),(5,3),(6,1),(7,5)],8)
=> ? = 2 - 1
[]
=> []
=> []
=> ?
=> ? = 1 - 1
[3,3,3,3,3,3]
=> [1,1,1,1,1,1,0,1,0,1,0,0,0,0,0,0]
=> [1,1,1,1,1,0,1,0,1,0,1,0,0,0,0,0]
=> ([(0,6),(0,7),(1,11),(2,5),(2,15),(3,13),(4,3),(4,17),(5,4),(5,16),(6,2),(6,14),(7,1),(7,14),(9,12),(10,9),(11,10),(12,8),(13,8),(14,11),(14,15),(15,10),(15,16),(16,9),(16,17),(17,12),(17,13)],18)
=> ? = 3 - 1
[3,3,3,3,3,3,3]
=> [1,1,1,1,1,1,0,1,0,1,0,1,0,0,0,0,0,0]
=> [1,1,1,1,1,1,1,0,1,0,1,0,0,0,0,0,0,0]
=> ([(0,7),(0,8),(1,6),(1,19),(2,4),(2,18),(3,14),(4,15),(5,3),(5,23),(6,5),(6,22),(7,1),(7,20),(8,2),(8,20),(10,11),(11,12),(12,9),(13,9),(14,13),(15,10),(16,12),(16,13),(17,11),(17,16),(18,15),(18,21),(19,21),(19,22),(20,18),(20,19),(21,10),(21,17),(22,17),(22,23),(23,14),(23,16)],24)
=> ? = 2 - 1
[4,4,4,4,4]
=> [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> ([(0,7),(2,4),(3,2),(4,6),(5,3),(6,1),(7,5)],8)
=> ? = 2 - 1
[4,4,4,4,4,4]
=> [1,1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0,0]
=> [1,1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0,0]
=> ([(0,2),(0,8),(1,10),(2,9),(3,5),(3,11),(4,3),(4,13),(5,7),(5,12),(6,4),(6,15),(7,1),(7,14),(8,6),(8,9),(9,15),(11,12),(12,14),(13,11),(14,10),(15,13)],16)
=> ? = 3 - 1
[5,5,5,5]
=> [1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0]
=> [1,1,1,0,1,0,1,0,1,0,1,0,1,0,0,0]
=> ([(0,2),(0,7),(1,9),(2,8),(3,4),(3,11),(4,6),(4,10),(5,3),(5,13),(6,1),(6,12),(7,5),(7,8),(8,13),(10,12),(11,10),(12,9),(13,11)],14)
=> ? = 2 - 1
[6,6,6,6]
=> [1,1,1,1,1,1,1,0,1,0,1,0,0,0,0,0,0,0]
=> [1,1,1,1,1,0,1,0,1,0,1,0,1,0,0,0,0,0]
=> ?
=> ? = 4 - 1
[5,5,5,5,5,5]
=> [1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> ([(0,9),(2,4),(3,2),(4,6),(5,3),(6,8),(7,5),(8,1),(9,7)],10)
=> ? = 2 - 1
[5,5,5,5,5]
=> [1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> ([(0,8),(2,3),(3,5),(4,2),(5,7),(6,4),(7,1),(8,6)],9)
=> ? = 2 - 1
[5,4,4,4,4]
=> [1,0,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> ([(0,8),(2,3),(3,5),(4,2),(5,7),(6,4),(7,1),(8,6)],9)
=> ? = 2 - 1
Description
The order dimension or Dushnik-Miller dimension of a poset.
This is the minimal number of linear orderings whose intersection is the given poset.
Matching statistic: St000307
Mp00230: Integer partitions —parallelogram polyomino⟶ Dyck paths
Mp00229: Dyck paths —Delest-Viennot⟶ Dyck paths
Mp00232: Dyck paths —parallelogram poset⟶ Posets
St000307: Posets ⟶ ℤResult quality: 50% ●values known / values provided: 51%●distinct values known / distinct values provided: 50%
Mp00229: Dyck paths —Delest-Viennot⟶ Dyck paths
Mp00232: Dyck paths —parallelogram poset⟶ Posets
St000307: Posets ⟶ ℤResult quality: 50% ●values known / values provided: 51%●distinct values known / distinct values provided: 50%
Values
[1]
=> [1,0]
=> [1,0]
=> ([],1)
=> 1 = 2 - 1
[2]
=> [1,0,1,0]
=> [1,1,0,0]
=> ([(0,1)],2)
=> 1 = 2 - 1
[1,1]
=> [1,1,0,0]
=> [1,0,1,0]
=> ([(0,1)],2)
=> 1 = 2 - 1
[3]
=> [1,0,1,0,1,0]
=> [1,1,0,1,0,0]
=> ([(0,2),(2,1)],3)
=> 1 = 2 - 1
[2,1]
=> [1,0,1,1,0,0]
=> [1,1,0,0,1,0]
=> ([(0,2),(2,1)],3)
=> 1 = 2 - 1
[1,1,1]
=> [1,1,0,1,0,0]
=> [1,1,1,0,0,0]
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2 = 3 - 1
[4]
=> [1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,0]
=> ([(0,3),(2,1),(3,2)],4)
=> 1 = 2 - 1
[3,1]
=> [1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,0,1,0]
=> ([(0,3),(2,1),(3,2)],4)
=> 1 = 2 - 1
[2,2]
=> [1,1,1,0,0,0]
=> [1,0,1,0,1,0]
=> ([(0,2),(2,1)],3)
=> 1 = 2 - 1
[2,1,1]
=> [1,0,1,1,0,1,0,0]
=> [1,1,0,1,1,0,0,0]
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> 2 = 3 - 1
[1,1,1,1]
=> [1,1,0,1,0,1,0,0]
=> [1,1,1,1,0,0,0,0]
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 2 = 3 - 1
[5]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1 = 2 - 1
[4,1]
=> [1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,0,0,1,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1 = 2 - 1
[3,2]
=> [1,0,1,1,1,0,0,0]
=> [1,1,0,0,1,0,1,0]
=> ([(0,3),(2,1),(3,2)],4)
=> 1 = 2 - 1
[3,1,1]
=> [1,0,1,0,1,1,0,1,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6)
=> 2 = 3 - 1
[2,2,1]
=> [1,1,1,0,0,1,0,0]
=> [1,0,1,1,1,0,0,0]
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> 2 = 3 - 1
[2,1,1,1]
=> [1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
=> ? = 3 - 1
[1,1,1,1,1]
=> [1,1,0,1,0,1,0,1,0,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ? = 3 - 1
[6]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,1,0,0]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 1 = 2 - 1
[5,1]
=> [1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,0,1,0,0,1,0]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 1 = 2 - 1
[4,2]
=> [1,0,1,0,1,1,1,0,0,0]
=> [1,1,0,1,0,0,1,0,1,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1 = 2 - 1
[3,3]
=> [1,1,1,0,1,0,0,0]
=> [1,1,1,0,1,0,0,0]
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 2 = 3 - 1
[3,2,1]
=> [1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6)
=> 2 = 3 - 1
[2,2,2]
=> [1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> ([(0,3),(2,1),(3,2)],4)
=> 1 = 2 - 1
[2,2,1,1]
=> [1,1,1,0,0,1,0,1,0,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
=> ? = 3 - 1
[7]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 1 = 2 - 1
[6,1]
=> [1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,0,1,0,1,0,0,1,0]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 1 = 2 - 1
[5,2]
=> [1,0,1,0,1,0,1,1,1,0,0,0]
=> [1,1,0,1,0,1,0,0,1,0,1,0]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 1 = 2 - 1
[4,3]
=> [1,0,1,1,1,0,1,0,0,0]
=> [1,1,0,1,1,0,1,0,0,0]
=> ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
=> ? = 3 - 1
[3,3,1]
=> [1,1,1,0,1,0,0,1,0,0]
=> [1,1,1,0,1,1,0,0,0,0]
=> ([(0,3),(0,4),(1,6),(2,5),(3,7),(4,2),(4,7),(5,6),(7,1),(7,5)],8)
=> ? = 3 - 1
[3,2,2]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,0,1,0,1,0,1,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1 = 2 - 1
[2,2,2,1]
=> [1,1,1,1,0,0,0,1,0,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6)
=> 2 = 3 - 1
[8]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> ([(0,7),(2,4),(3,2),(4,6),(5,3),(6,1),(7,5)],8)
=> ? = 2 - 1
[7,1]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,0,1,0]
=> ([(0,7),(2,4),(3,2),(4,6),(5,3),(6,1),(7,5)],8)
=> ? = 2 - 1
[4,4]
=> [1,1,1,0,1,0,1,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> ([(0,3),(0,4),(1,7),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6),(5,7),(6,8),(7,8)],9)
=> ? = 4 - 1
[3,3,2]
=> [1,1,1,0,1,1,0,0,0,0]
=> [1,1,1,0,1,0,0,0,1,0]
=> ([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7)
=> ? = 2 - 1
[2,2,2,2]
=> [1,1,1,1,0,1,0,0,0,0]
=> [1,1,1,0,1,0,1,0,0,0]
=> ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ? = 2 - 1
[9]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> ([(0,8),(2,3),(3,5),(4,2),(5,7),(6,4),(7,1),(8,6)],9)
=> ? = 2 - 1
[3,3,3]
=> [1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1 = 2 - 1
[3,2,2,2]
=> [1,0,1,1,1,1,0,1,0,0,0,0]
=> [1,1,0,1,1,0,1,0,1,0,0,0]
=> ([(0,5),(1,6),(2,7),(3,4),(3,6),(4,2),(4,8),(5,1),(5,3),(6,8),(8,7)],9)
=> ? = 2 - 1
[10]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> ([(0,9),(2,4),(3,2),(4,6),(5,3),(6,8),(7,5),(8,1),(9,7)],10)
=> ? = 2 - 1
[5,5]
=> [1,1,1,0,1,0,1,0,1,0,0,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0]
=> ([(0,4),(0,5),(1,9),(2,3),(2,11),(3,8),(4,1),(4,10),(5,2),(5,10),(7,6),(8,6),(9,7),(10,9),(10,11),(11,7),(11,8)],12)
=> ? = 4 - 1
[4,3,3]
=> [1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 1 = 2 - 1
[4,4,3]
=> [1,1,1,0,1,1,1,0,0,0,0,0]
=> [1,1,1,0,1,0,0,0,1,0,1,0]
=> ([(0,3),(0,5),(1,7),(3,6),(4,2),(5,1),(5,6),(6,7),(7,4)],8)
=> ? = 2 - 1
[6,6]
=> [1,1,1,0,1,0,1,0,1,0,1,0,0,0]
=> [1,1,1,1,1,1,0,1,0,0,0,0,0,0]
=> ([(0,5),(0,6),(1,4),(1,14),(2,11),(3,10),(4,3),(4,12),(5,1),(5,13),(6,2),(6,13),(8,9),(9,7),(10,7),(11,8),(12,9),(12,10),(13,11),(13,14),(14,8),(14,12)],15)
=> ? = 4 - 1
[4,4,4]
=> [1,1,1,1,1,0,1,0,0,0,0,0]
=> [1,1,1,0,1,0,1,0,1,0,0,0]
=> ([(0,2),(0,5),(1,7),(2,6),(3,4),(3,9),(4,1),(4,8),(5,3),(5,6),(6,9),(8,7),(9,8)],10)
=> ? = 3 - 1
[3,3,3,3]
=> [1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 1 = 2 - 1
[4,3,3,3]
=> [1,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0,1,0]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 1 = 2 - 1
[4,4,3,3]
=> [1,1,1,0,1,1,1,1,0,0,0,0,0,0]
=> [1,1,1,0,1,0,0,0,1,0,1,0,1,0]
=> ([(0,3),(0,6),(1,8),(3,7),(4,2),(5,4),(6,1),(6,7),(7,8),(8,5)],9)
=> ? = 2 - 1
[5,5,5]
=> [1,1,1,1,1,0,1,0,1,0,0,0,0,0]
=> [1,1,1,1,1,0,1,0,1,0,0,0,0,0]
=> ([(0,5),(0,6),(1,4),(1,14),(2,11),(3,10),(4,3),(4,12),(5,1),(5,13),(6,2),(6,13),(8,9),(9,7),(10,7),(11,8),(12,9),(12,10),(13,11),(13,14),(14,8),(14,12)],15)
=> ? = 2 - 1
[3,3,3,3,3]
=> [1,1,1,1,1,1,0,1,0,0,0,0,0,0]
=> [1,1,1,0,1,0,1,0,1,0,1,0,0,0]
=> ([(0,2),(0,6),(1,8),(2,7),(3,5),(3,9),(4,3),(4,11),(5,1),(5,10),(6,4),(6,7),(7,11),(9,10),(10,8),(11,9)],12)
=> ? = 3 - 1
[4,4,4,4]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 1 = 2 - 1
[5,4,4,4]
=> [1,0,1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> ([(0,7),(2,4),(3,2),(4,6),(5,3),(6,1),(7,5)],8)
=> ? = 2 - 1
[]
=> []
=> []
=> ?
=> ? = 1 - 1
[3,3,3,3,3,3]
=> [1,1,1,1,1,1,0,1,0,1,0,0,0,0,0,0]
=> [1,1,1,1,1,0,1,0,1,0,1,0,0,0,0,0]
=> ([(0,6),(0,7),(1,11),(2,5),(2,15),(3,13),(4,3),(4,17),(5,4),(5,16),(6,2),(6,14),(7,1),(7,14),(9,12),(10,9),(11,10),(12,8),(13,8),(14,11),(14,15),(15,10),(15,16),(16,9),(16,17),(17,12),(17,13)],18)
=> ? = 3 - 1
[3,3,3,3,3,3,3]
=> [1,1,1,1,1,1,0,1,0,1,0,1,0,0,0,0,0,0]
=> [1,1,1,1,1,1,1,0,1,0,1,0,0,0,0,0,0,0]
=> ([(0,7),(0,8),(1,6),(1,19),(2,4),(2,18),(3,14),(4,15),(5,3),(5,23),(6,5),(6,22),(7,1),(7,20),(8,2),(8,20),(10,11),(11,12),(12,9),(13,9),(14,13),(15,10),(16,12),(16,13),(17,11),(17,16),(18,15),(18,21),(19,21),(19,22),(20,18),(20,19),(21,10),(21,17),(22,17),(22,23),(23,14),(23,16)],24)
=> ? = 2 - 1
[4,4,4,4,4]
=> [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> ([(0,7),(2,4),(3,2),(4,6),(5,3),(6,1),(7,5)],8)
=> ? = 2 - 1
[4,4,4,4,4,4]
=> [1,1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0,0]
=> [1,1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0,0]
=> ([(0,2),(0,8),(1,10),(2,9),(3,5),(3,11),(4,3),(4,13),(5,7),(5,12),(6,4),(6,15),(7,1),(7,14),(8,6),(8,9),(9,15),(11,12),(12,14),(13,11),(14,10),(15,13)],16)
=> ? = 3 - 1
[5,5,5,5]
=> [1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0]
=> [1,1,1,0,1,0,1,0,1,0,1,0,1,0,0,0]
=> ([(0,2),(0,7),(1,9),(2,8),(3,4),(3,11),(4,6),(4,10),(5,3),(5,13),(6,1),(6,12),(7,5),(7,8),(8,13),(10,12),(11,10),(12,9),(13,11)],14)
=> ? = 2 - 1
[6,6,6,6]
=> [1,1,1,1,1,1,1,0,1,0,1,0,0,0,0,0,0,0]
=> [1,1,1,1,1,0,1,0,1,0,1,0,1,0,0,0,0,0]
=> ?
=> ? = 4 - 1
[5,5,5,5,5,5]
=> [1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> ([(0,9),(2,4),(3,2),(4,6),(5,3),(6,8),(7,5),(8,1),(9,7)],10)
=> ? = 2 - 1
[5,5,5,5,5]
=> [1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> ([(0,8),(2,3),(3,5),(4,2),(5,7),(6,4),(7,1),(8,6)],9)
=> ? = 2 - 1
[5,4,4,4,4]
=> [1,0,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> ([(0,8),(2,3),(3,5),(4,2),(5,7),(6,4),(7,1),(8,6)],9)
=> ? = 2 - 1
Description
The number of rowmotion orbits of a poset.
Rowmotion is an operation on order ideals in a poset $P$. It sends an order ideal $I$ to the order ideal generated by the minimal antichain of $P \setminus I$.
Matching statistic: St000632
Mp00230: Integer partitions —parallelogram polyomino⟶ Dyck paths
Mp00229: Dyck paths —Delest-Viennot⟶ Dyck paths
Mp00232: Dyck paths —parallelogram poset⟶ Posets
St000632: Posets ⟶ ℤResult quality: 50% ●values known / values provided: 51%●distinct values known / distinct values provided: 50%
Mp00229: Dyck paths —Delest-Viennot⟶ Dyck paths
Mp00232: Dyck paths —parallelogram poset⟶ Posets
St000632: Posets ⟶ ℤResult quality: 50% ●values known / values provided: 51%●distinct values known / distinct values provided: 50%
Values
[1]
=> [1,0]
=> [1,0]
=> ([],1)
=> 0 = 2 - 2
[2]
=> [1,0,1,0]
=> [1,1,0,0]
=> ([(0,1)],2)
=> 0 = 2 - 2
[1,1]
=> [1,1,0,0]
=> [1,0,1,0]
=> ([(0,1)],2)
=> 0 = 2 - 2
[3]
=> [1,0,1,0,1,0]
=> [1,1,0,1,0,0]
=> ([(0,2),(2,1)],3)
=> 0 = 2 - 2
[2,1]
=> [1,0,1,1,0,0]
=> [1,1,0,0,1,0]
=> ([(0,2),(2,1)],3)
=> 0 = 2 - 2
[1,1,1]
=> [1,1,0,1,0,0]
=> [1,1,1,0,0,0]
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1 = 3 - 2
[4]
=> [1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,0]
=> ([(0,3),(2,1),(3,2)],4)
=> 0 = 2 - 2
[3,1]
=> [1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,0,1,0]
=> ([(0,3),(2,1),(3,2)],4)
=> 0 = 2 - 2
[2,2]
=> [1,1,1,0,0,0]
=> [1,0,1,0,1,0]
=> ([(0,2),(2,1)],3)
=> 0 = 2 - 2
[2,1,1]
=> [1,0,1,1,0,1,0,0]
=> [1,1,0,1,1,0,0,0]
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> 1 = 3 - 2
[1,1,1,1]
=> [1,1,0,1,0,1,0,0]
=> [1,1,1,1,0,0,0,0]
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 1 = 3 - 2
[5]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 0 = 2 - 2
[4,1]
=> [1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,0,0,1,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 0 = 2 - 2
[3,2]
=> [1,0,1,1,1,0,0,0]
=> [1,1,0,0,1,0,1,0]
=> ([(0,3),(2,1),(3,2)],4)
=> 0 = 2 - 2
[3,1,1]
=> [1,0,1,0,1,1,0,1,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6)
=> 1 = 3 - 2
[2,2,1]
=> [1,1,1,0,0,1,0,0]
=> [1,0,1,1,1,0,0,0]
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> 1 = 3 - 2
[2,1,1,1]
=> [1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
=> ? = 3 - 2
[1,1,1,1,1]
=> [1,1,0,1,0,1,0,1,0,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ? = 3 - 2
[6]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,1,0,0]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 0 = 2 - 2
[5,1]
=> [1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,0,1,0,0,1,0]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 0 = 2 - 2
[4,2]
=> [1,0,1,0,1,1,1,0,0,0]
=> [1,1,0,1,0,0,1,0,1,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 0 = 2 - 2
[3,3]
=> [1,1,1,0,1,0,0,0]
=> [1,1,1,0,1,0,0,0]
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 1 = 3 - 2
[3,2,1]
=> [1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6)
=> 1 = 3 - 2
[2,2,2]
=> [1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> ([(0,3),(2,1),(3,2)],4)
=> 0 = 2 - 2
[2,2,1,1]
=> [1,1,1,0,0,1,0,1,0,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
=> ? = 3 - 2
[7]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 0 = 2 - 2
[6,1]
=> [1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,0,1,0,1,0,0,1,0]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 0 = 2 - 2
[5,2]
=> [1,0,1,0,1,0,1,1,1,0,0,0]
=> [1,1,0,1,0,1,0,0,1,0,1,0]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 0 = 2 - 2
[4,3]
=> [1,0,1,1,1,0,1,0,0,0]
=> [1,1,0,1,1,0,1,0,0,0]
=> ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
=> ? = 3 - 2
[3,3,1]
=> [1,1,1,0,1,0,0,1,0,0]
=> [1,1,1,0,1,1,0,0,0,0]
=> ([(0,3),(0,4),(1,6),(2,5),(3,7),(4,2),(4,7),(5,6),(7,1),(7,5)],8)
=> ? = 3 - 2
[3,2,2]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,0,1,0,1,0,1,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 0 = 2 - 2
[2,2,2,1]
=> [1,1,1,1,0,0,0,1,0,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6)
=> 1 = 3 - 2
[8]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> ([(0,7),(2,4),(3,2),(4,6),(5,3),(6,1),(7,5)],8)
=> ? = 2 - 2
[7,1]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,0,1,0]
=> ([(0,7),(2,4),(3,2),(4,6),(5,3),(6,1),(7,5)],8)
=> ? = 2 - 2
[4,4]
=> [1,1,1,0,1,0,1,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> ([(0,3),(0,4),(1,7),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6),(5,7),(6,8),(7,8)],9)
=> ? = 4 - 2
[3,3,2]
=> [1,1,1,0,1,1,0,0,0,0]
=> [1,1,1,0,1,0,0,0,1,0]
=> ([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7)
=> ? = 2 - 2
[2,2,2,2]
=> [1,1,1,1,0,1,0,0,0,0]
=> [1,1,1,0,1,0,1,0,0,0]
=> ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ? = 2 - 2
[9]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> ([(0,8),(2,3),(3,5),(4,2),(5,7),(6,4),(7,1),(8,6)],9)
=> ? = 2 - 2
[3,3,3]
=> [1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 0 = 2 - 2
[3,2,2,2]
=> [1,0,1,1,1,1,0,1,0,0,0,0]
=> [1,1,0,1,1,0,1,0,1,0,0,0]
=> ([(0,5),(1,6),(2,7),(3,4),(3,6),(4,2),(4,8),(5,1),(5,3),(6,8),(8,7)],9)
=> ? = 2 - 2
[10]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> ([(0,9),(2,4),(3,2),(4,6),(5,3),(6,8),(7,5),(8,1),(9,7)],10)
=> ? = 2 - 2
[5,5]
=> [1,1,1,0,1,0,1,0,1,0,0,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0]
=> ([(0,4),(0,5),(1,9),(2,3),(2,11),(3,8),(4,1),(4,10),(5,2),(5,10),(7,6),(8,6),(9,7),(10,9),(10,11),(11,7),(11,8)],12)
=> ? = 4 - 2
[4,3,3]
=> [1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 0 = 2 - 2
[4,4,3]
=> [1,1,1,0,1,1,1,0,0,0,0,0]
=> [1,1,1,0,1,0,0,0,1,0,1,0]
=> ([(0,3),(0,5),(1,7),(3,6),(4,2),(5,1),(5,6),(6,7),(7,4)],8)
=> ? = 2 - 2
[6,6]
=> [1,1,1,0,1,0,1,0,1,0,1,0,0,0]
=> [1,1,1,1,1,1,0,1,0,0,0,0,0,0]
=> ([(0,5),(0,6),(1,4),(1,14),(2,11),(3,10),(4,3),(4,12),(5,1),(5,13),(6,2),(6,13),(8,9),(9,7),(10,7),(11,8),(12,9),(12,10),(13,11),(13,14),(14,8),(14,12)],15)
=> ? = 4 - 2
[4,4,4]
=> [1,1,1,1,1,0,1,0,0,0,0,0]
=> [1,1,1,0,1,0,1,0,1,0,0,0]
=> ([(0,2),(0,5),(1,7),(2,6),(3,4),(3,9),(4,1),(4,8),(5,3),(5,6),(6,9),(8,7),(9,8)],10)
=> ? = 3 - 2
[3,3,3,3]
=> [1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 0 = 2 - 2
[4,3,3,3]
=> [1,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0,1,0]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 0 = 2 - 2
[4,4,3,3]
=> [1,1,1,0,1,1,1,1,0,0,0,0,0,0]
=> [1,1,1,0,1,0,0,0,1,0,1,0,1,0]
=> ([(0,3),(0,6),(1,8),(3,7),(4,2),(5,4),(6,1),(6,7),(7,8),(8,5)],9)
=> ? = 2 - 2
[5,5,5]
=> [1,1,1,1,1,0,1,0,1,0,0,0,0,0]
=> [1,1,1,1,1,0,1,0,1,0,0,0,0,0]
=> ([(0,5),(0,6),(1,4),(1,14),(2,11),(3,10),(4,3),(4,12),(5,1),(5,13),(6,2),(6,13),(8,9),(9,7),(10,7),(11,8),(12,9),(12,10),(13,11),(13,14),(14,8),(14,12)],15)
=> ? = 2 - 2
[3,3,3,3,3]
=> [1,1,1,1,1,1,0,1,0,0,0,0,0,0]
=> [1,1,1,0,1,0,1,0,1,0,1,0,0,0]
=> ([(0,2),(0,6),(1,8),(2,7),(3,5),(3,9),(4,3),(4,11),(5,1),(5,10),(6,4),(6,7),(7,11),(9,10),(10,8),(11,9)],12)
=> ? = 3 - 2
[4,4,4,4]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 0 = 2 - 2
[5,4,4,4]
=> [1,0,1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> ([(0,7),(2,4),(3,2),(4,6),(5,3),(6,1),(7,5)],8)
=> ? = 2 - 2
[]
=> []
=> []
=> ?
=> ? = 1 - 2
[3,3,3,3,3,3]
=> [1,1,1,1,1,1,0,1,0,1,0,0,0,0,0,0]
=> [1,1,1,1,1,0,1,0,1,0,1,0,0,0,0,0]
=> ([(0,6),(0,7),(1,11),(2,5),(2,15),(3,13),(4,3),(4,17),(5,4),(5,16),(6,2),(6,14),(7,1),(7,14),(9,12),(10,9),(11,10),(12,8),(13,8),(14,11),(14,15),(15,10),(15,16),(16,9),(16,17),(17,12),(17,13)],18)
=> ? = 3 - 2
[3,3,3,3,3,3,3]
=> [1,1,1,1,1,1,0,1,0,1,0,1,0,0,0,0,0,0]
=> [1,1,1,1,1,1,1,0,1,0,1,0,0,0,0,0,0,0]
=> ([(0,7),(0,8),(1,6),(1,19),(2,4),(2,18),(3,14),(4,15),(5,3),(5,23),(6,5),(6,22),(7,1),(7,20),(8,2),(8,20),(10,11),(11,12),(12,9),(13,9),(14,13),(15,10),(16,12),(16,13),(17,11),(17,16),(18,15),(18,21),(19,21),(19,22),(20,18),(20,19),(21,10),(21,17),(22,17),(22,23),(23,14),(23,16)],24)
=> ? = 2 - 2
[4,4,4,4,4]
=> [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> ([(0,7),(2,4),(3,2),(4,6),(5,3),(6,1),(7,5)],8)
=> ? = 2 - 2
[4,4,4,4,4,4]
=> [1,1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0,0]
=> [1,1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0,0]
=> ([(0,2),(0,8),(1,10),(2,9),(3,5),(3,11),(4,3),(4,13),(5,7),(5,12),(6,4),(6,15),(7,1),(7,14),(8,6),(8,9),(9,15),(11,12),(12,14),(13,11),(14,10),(15,13)],16)
=> ? = 3 - 2
[5,5,5,5]
=> [1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0]
=> [1,1,1,0,1,0,1,0,1,0,1,0,1,0,0,0]
=> ([(0,2),(0,7),(1,9),(2,8),(3,4),(3,11),(4,6),(4,10),(5,3),(5,13),(6,1),(6,12),(7,5),(7,8),(8,13),(10,12),(11,10),(12,9),(13,11)],14)
=> ? = 2 - 2
[6,6,6,6]
=> [1,1,1,1,1,1,1,0,1,0,1,0,0,0,0,0,0,0]
=> [1,1,1,1,1,0,1,0,1,0,1,0,1,0,0,0,0,0]
=> ?
=> ? = 4 - 2
[5,5,5,5,5,5]
=> [1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> ([(0,9),(2,4),(3,2),(4,6),(5,3),(6,8),(7,5),(8,1),(9,7)],10)
=> ? = 2 - 2
[5,5,5,5,5]
=> [1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> ([(0,8),(2,3),(3,5),(4,2),(5,7),(6,4),(7,1),(8,6)],9)
=> ? = 2 - 2
[5,4,4,4,4]
=> [1,0,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> ([(0,8),(2,3),(3,5),(4,2),(5,7),(6,4),(7,1),(8,6)],9)
=> ? = 2 - 2
Description
The jump number of the poset.
A jump in a linear extension $e_1, \dots, e_n$ of a poset $P$ is a pair $(e_i, e_{i+1})$ so that $e_{i+1}$ does not cover $e_i$ in $P$. The jump number of a poset is the minimal number of jumps in linear extensions of a poset.
Matching statistic: St000640
Mp00230: Integer partitions —parallelogram polyomino⟶ Dyck paths
Mp00229: Dyck paths —Delest-Viennot⟶ Dyck paths
Mp00232: Dyck paths —parallelogram poset⟶ Posets
St000640: Posets ⟶ ℤResult quality: 43% ●values known / values provided: 43%●distinct values known / distinct values provided: 50%
Mp00229: Dyck paths —Delest-Viennot⟶ Dyck paths
Mp00232: Dyck paths —parallelogram poset⟶ Posets
St000640: Posets ⟶ ℤResult quality: 43% ●values known / values provided: 43%●distinct values known / distinct values provided: 50%
Values
[1]
=> [1,0]
=> [1,0]
=> ([],1)
=> ? = 2 - 1
[2]
=> [1,0,1,0]
=> [1,1,0,0]
=> ([(0,1)],2)
=> 1 = 2 - 1
[1,1]
=> [1,1,0,0]
=> [1,0,1,0]
=> ([(0,1)],2)
=> 1 = 2 - 1
[3]
=> [1,0,1,0,1,0]
=> [1,1,0,1,0,0]
=> ([(0,2),(2,1)],3)
=> 1 = 2 - 1
[2,1]
=> [1,0,1,1,0,0]
=> [1,1,0,0,1,0]
=> ([(0,2),(2,1)],3)
=> 1 = 2 - 1
[1,1,1]
=> [1,1,0,1,0,0]
=> [1,1,1,0,0,0]
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2 = 3 - 1
[4]
=> [1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,0]
=> ([(0,3),(2,1),(3,2)],4)
=> 1 = 2 - 1
[3,1]
=> [1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,0,1,0]
=> ([(0,3),(2,1),(3,2)],4)
=> 1 = 2 - 1
[2,2]
=> [1,1,1,0,0,0]
=> [1,0,1,0,1,0]
=> ([(0,2),(2,1)],3)
=> 1 = 2 - 1
[2,1,1]
=> [1,0,1,1,0,1,0,0]
=> [1,1,0,1,1,0,0,0]
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> 2 = 3 - 1
[1,1,1,1]
=> [1,1,0,1,0,1,0,0]
=> [1,1,1,1,0,0,0,0]
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 2 = 3 - 1
[5]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1 = 2 - 1
[4,1]
=> [1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,0,0,1,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1 = 2 - 1
[3,2]
=> [1,0,1,1,1,0,0,0]
=> [1,1,0,0,1,0,1,0]
=> ([(0,3),(2,1),(3,2)],4)
=> 1 = 2 - 1
[3,1,1]
=> [1,0,1,0,1,1,0,1,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6)
=> 2 = 3 - 1
[2,2,1]
=> [1,1,1,0,0,1,0,0]
=> [1,0,1,1,1,0,0,0]
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> 2 = 3 - 1
[2,1,1,1]
=> [1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
=> ? = 3 - 1
[1,1,1,1,1]
=> [1,1,0,1,0,1,0,1,0,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ? = 3 - 1
[6]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,1,0,0]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 1 = 2 - 1
[5,1]
=> [1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,0,1,0,0,1,0]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 1 = 2 - 1
[4,2]
=> [1,0,1,0,1,1,1,0,0,0]
=> [1,1,0,1,0,0,1,0,1,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1 = 2 - 1
[3,3]
=> [1,1,1,0,1,0,0,0]
=> [1,1,1,0,1,0,0,0]
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 2 = 3 - 1
[3,2,1]
=> [1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6)
=> 2 = 3 - 1
[2,2,2]
=> [1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> ([(0,3),(2,1),(3,2)],4)
=> 1 = 2 - 1
[2,2,1,1]
=> [1,1,1,0,0,1,0,1,0,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
=> ? = 3 - 1
[7]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> ? = 2 - 1
[6,1]
=> [1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,0,1,0,1,0,0,1,0]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> ? = 2 - 1
[5,2]
=> [1,0,1,0,1,0,1,1,1,0,0,0]
=> [1,1,0,1,0,1,0,0,1,0,1,0]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 1 = 2 - 1
[4,3]
=> [1,0,1,1,1,0,1,0,0,0]
=> [1,1,0,1,1,0,1,0,0,0]
=> ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
=> ? = 3 - 1
[3,3,1]
=> [1,1,1,0,1,0,0,1,0,0]
=> [1,1,1,0,1,1,0,0,0,0]
=> ([(0,3),(0,4),(1,6),(2,5),(3,7),(4,2),(4,7),(5,6),(7,1),(7,5)],8)
=> ? = 3 - 1
[3,2,2]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,0,1,0,1,0,1,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1 = 2 - 1
[2,2,2,1]
=> [1,1,1,1,0,0,0,1,0,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6)
=> 2 = 3 - 1
[8]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> ([(0,7),(2,4),(3,2),(4,6),(5,3),(6,1),(7,5)],8)
=> ? = 2 - 1
[7,1]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,0,1,0]
=> ([(0,7),(2,4),(3,2),(4,6),(5,3),(6,1),(7,5)],8)
=> ? = 2 - 1
[4,4]
=> [1,1,1,0,1,0,1,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> ([(0,3),(0,4),(1,7),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6),(5,7),(6,8),(7,8)],9)
=> ? = 4 - 1
[3,3,2]
=> [1,1,1,0,1,1,0,0,0,0]
=> [1,1,1,0,1,0,0,0,1,0]
=> ([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7)
=> ? = 2 - 1
[2,2,2,2]
=> [1,1,1,1,0,1,0,0,0,0]
=> [1,1,1,0,1,0,1,0,0,0]
=> ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ? = 2 - 1
[9]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> ([(0,8),(2,3),(3,5),(4,2),(5,7),(6,4),(7,1),(8,6)],9)
=> ? = 2 - 1
[3,3,3]
=> [1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1 = 2 - 1
[3,2,2,2]
=> [1,0,1,1,1,1,0,1,0,0,0,0]
=> [1,1,0,1,1,0,1,0,1,0,0,0]
=> ([(0,5),(1,6),(2,7),(3,4),(3,6),(4,2),(4,8),(5,1),(5,3),(6,8),(8,7)],9)
=> ? = 2 - 1
[10]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> ([(0,9),(2,4),(3,2),(4,6),(5,3),(6,8),(7,5),(8,1),(9,7)],10)
=> ? = 2 - 1
[5,5]
=> [1,1,1,0,1,0,1,0,1,0,0,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0]
=> ([(0,4),(0,5),(1,9),(2,3),(2,11),(3,8),(4,1),(4,10),(5,2),(5,10),(7,6),(8,6),(9,7),(10,9),(10,11),(11,7),(11,8)],12)
=> ? = 4 - 1
[4,3,3]
=> [1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 1 = 2 - 1
[4,4,3]
=> [1,1,1,0,1,1,1,0,0,0,0,0]
=> [1,1,1,0,1,0,0,0,1,0,1,0]
=> ([(0,3),(0,5),(1,7),(3,6),(4,2),(5,1),(5,6),(6,7),(7,4)],8)
=> ? = 2 - 1
[6,6]
=> [1,1,1,0,1,0,1,0,1,0,1,0,0,0]
=> [1,1,1,1,1,1,0,1,0,0,0,0,0,0]
=> ([(0,5),(0,6),(1,4),(1,14),(2,11),(3,10),(4,3),(4,12),(5,1),(5,13),(6,2),(6,13),(8,9),(9,7),(10,7),(11,8),(12,9),(12,10),(13,11),(13,14),(14,8),(14,12)],15)
=> ? = 4 - 1
[4,4,4]
=> [1,1,1,1,1,0,1,0,0,0,0,0]
=> [1,1,1,0,1,0,1,0,1,0,0,0]
=> ([(0,2),(0,5),(1,7),(2,6),(3,4),(3,9),(4,1),(4,8),(5,3),(5,6),(6,9),(8,7),(9,8)],10)
=> ? = 3 - 1
[3,3,3,3]
=> [1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 1 = 2 - 1
[4,3,3,3]
=> [1,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0,1,0]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> ? = 2 - 1
[4,4,3,3]
=> [1,1,1,0,1,1,1,1,0,0,0,0,0,0]
=> [1,1,1,0,1,0,0,0,1,0,1,0,1,0]
=> ([(0,3),(0,6),(1,8),(3,7),(4,2),(5,4),(6,1),(6,7),(7,8),(8,5)],9)
=> ? = 2 - 1
[5,5,5]
=> [1,1,1,1,1,0,1,0,1,0,0,0,0,0]
=> [1,1,1,1,1,0,1,0,1,0,0,0,0,0]
=> ([(0,5),(0,6),(1,4),(1,14),(2,11),(3,10),(4,3),(4,12),(5,1),(5,13),(6,2),(6,13),(8,9),(9,7),(10,7),(11,8),(12,9),(12,10),(13,11),(13,14),(14,8),(14,12)],15)
=> ? = 2 - 1
[3,3,3,3,3]
=> [1,1,1,1,1,1,0,1,0,0,0,0,0,0]
=> [1,1,1,0,1,0,1,0,1,0,1,0,0,0]
=> ([(0,2),(0,6),(1,8),(2,7),(3,5),(3,9),(4,3),(4,11),(5,1),(5,10),(6,4),(6,7),(7,11),(9,10),(10,8),(11,9)],12)
=> ? = 3 - 1
[4,4,4,4]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> ? = 2 - 1
[5,4,4,4]
=> [1,0,1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> ([(0,7),(2,4),(3,2),(4,6),(5,3),(6,1),(7,5)],8)
=> ? = 2 - 1
[]
=> []
=> []
=> ?
=> ? = 1 - 1
[3,3,3,3,3,3]
=> [1,1,1,1,1,1,0,1,0,1,0,0,0,0,0,0]
=> [1,1,1,1,1,0,1,0,1,0,1,0,0,0,0,0]
=> ([(0,6),(0,7),(1,11),(2,5),(2,15),(3,13),(4,3),(4,17),(5,4),(5,16),(6,2),(6,14),(7,1),(7,14),(9,12),(10,9),(11,10),(12,8),(13,8),(14,11),(14,15),(15,10),(15,16),(16,9),(16,17),(17,12),(17,13)],18)
=> ? = 3 - 1
[3,3,3,3,3,3,3]
=> [1,1,1,1,1,1,0,1,0,1,0,1,0,0,0,0,0,0]
=> [1,1,1,1,1,1,1,0,1,0,1,0,0,0,0,0,0,0]
=> ([(0,7),(0,8),(1,6),(1,19),(2,4),(2,18),(3,14),(4,15),(5,3),(5,23),(6,5),(6,22),(7,1),(7,20),(8,2),(8,20),(10,11),(11,12),(12,9),(13,9),(14,13),(15,10),(16,12),(16,13),(17,11),(17,16),(18,15),(18,21),(19,21),(19,22),(20,18),(20,19),(21,10),(21,17),(22,17),(22,23),(23,14),(23,16)],24)
=> ? = 2 - 1
[4,4,4,4,4]
=> [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> ([(0,7),(2,4),(3,2),(4,6),(5,3),(6,1),(7,5)],8)
=> ? = 2 - 1
[4,4,4,4,4,4]
=> [1,1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0,0]
=> [1,1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0,0]
=> ([(0,2),(0,8),(1,10),(2,9),(3,5),(3,11),(4,3),(4,13),(5,7),(5,12),(6,4),(6,15),(7,1),(7,14),(8,6),(8,9),(9,15),(11,12),(12,14),(13,11),(14,10),(15,13)],16)
=> ? = 3 - 1
[5,5,5,5]
=> [1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0]
=> [1,1,1,0,1,0,1,0,1,0,1,0,1,0,0,0]
=> ([(0,2),(0,7),(1,9),(2,8),(3,4),(3,11),(4,6),(4,10),(5,3),(5,13),(6,1),(6,12),(7,5),(7,8),(8,13),(10,12),(11,10),(12,9),(13,11)],14)
=> ? = 2 - 1
[6,6,6,6]
=> [1,1,1,1,1,1,1,0,1,0,1,0,0,0,0,0,0,0]
=> [1,1,1,1,1,0,1,0,1,0,1,0,1,0,0,0,0,0]
=> ?
=> ? = 4 - 1
[5,5,5,5,5,5]
=> [1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> ([(0,9),(2,4),(3,2),(4,6),(5,3),(6,8),(7,5),(8,1),(9,7)],10)
=> ? = 2 - 1
[5,5,5,5,5]
=> [1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> ([(0,8),(2,3),(3,5),(4,2),(5,7),(6,4),(7,1),(8,6)],9)
=> ? = 2 - 1
[5,4,4,4,4]
=> [1,0,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> ([(0,8),(2,3),(3,5),(4,2),(5,7),(6,4),(7,1),(8,6)],9)
=> ? = 2 - 1
Description
The rank of the largest boolean interval in a poset.
Matching statistic: St001330
Mp00230: Integer partitions —parallelogram polyomino⟶ Dyck paths
Mp00201: Dyck paths —Ringel⟶ Permutations
Mp00160: Permutations —graph of inversions⟶ Graphs
St001330: Graphs ⟶ ℤResult quality: 40% ●values known / values provided: 40%●distinct values known / distinct values provided: 50%
Mp00201: Dyck paths —Ringel⟶ Permutations
Mp00160: Permutations —graph of inversions⟶ Graphs
St001330: Graphs ⟶ ℤResult quality: 40% ●values known / values provided: 40%●distinct values known / distinct values provided: 50%
Values
[1]
=> [1,0]
=> [2,1] => ([(0,1)],2)
=> 2
[2]
=> [1,0,1,0]
=> [3,1,2] => ([(0,2),(1,2)],3)
=> 2
[1,1]
=> [1,1,0,0]
=> [2,3,1] => ([(0,2),(1,2)],3)
=> 2
[3]
=> [1,0,1,0,1,0]
=> [4,1,2,3] => ([(0,3),(1,3),(2,3)],4)
=> 2
[2,1]
=> [1,0,1,1,0,0]
=> [3,1,4,2] => ([(0,3),(1,2),(2,3)],4)
=> 2
[1,1,1]
=> [1,1,0,1,0,0]
=> [4,3,1,2] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ? = 3
[4]
=> [1,0,1,0,1,0,1,0]
=> [5,1,2,3,4] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 2
[3,1]
=> [1,0,1,0,1,1,0,0]
=> [4,1,2,5,3] => ([(0,4),(1,4),(2,3),(3,4)],5)
=> 2
[2,2]
=> [1,1,1,0,0,0]
=> [2,3,4,1] => ([(0,3),(1,3),(2,3)],4)
=> 2
[2,1,1]
=> [1,0,1,1,0,1,0,0]
=> [5,1,4,2,3] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 3
[1,1,1,1]
=> [1,1,0,1,0,1,0,0]
=> [5,4,1,2,3] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 3
[5]
=> [1,0,1,0,1,0,1,0,1,0]
=> [6,1,2,3,4,5] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> 2
[4,1]
=> [1,0,1,0,1,0,1,1,0,0]
=> [5,1,2,3,6,4] => ([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> 2
[3,2]
=> [1,0,1,1,1,0,0,0]
=> [3,1,4,5,2] => ([(0,4),(1,4),(2,3),(3,4)],5)
=> 2
[3,1,1]
=> [1,0,1,0,1,1,0,1,0,0]
=> [6,1,2,5,3,4] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 3
[2,2,1]
=> [1,1,1,0,0,1,0,0]
=> [2,5,4,1,3] => ([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> ? = 3
[2,1,1,1]
=> [1,0,1,1,0,1,0,1,0,0]
=> [6,1,5,2,3,4] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 3
[1,1,1,1,1]
=> [1,1,0,1,0,1,0,1,0,0]
=> [5,6,1,2,3,4] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ? = 3
[6]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> [7,1,2,3,4,5,6] => ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 2
[5,1]
=> [1,0,1,0,1,0,1,0,1,1,0,0]
=> [6,1,2,3,4,7,5] => ([(0,6),(1,6),(2,6),(3,6),(4,5),(5,6)],7)
=> 2
[4,2]
=> [1,0,1,0,1,1,1,0,0,0]
=> [4,1,2,5,6,3] => ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> 2
[3,3]
=> [1,1,1,0,1,0,0,0]
=> [5,3,4,1,2] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> ? = 3
[3,2,1]
=> [1,0,1,1,1,0,0,1,0,0]
=> [3,1,6,5,2,4] => ([(0,2),(1,4),(1,5),(2,3),(3,4),(3,5),(4,5)],6)
=> ? = 3
[2,2,2]
=> [1,1,1,1,0,0,0,0]
=> [2,3,4,5,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 2
[2,2,1,1]
=> [1,1,1,0,0,1,0,1,0,0]
=> [2,6,5,1,3,4] => ([(0,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 3
[7]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [8,1,2,3,4,5,6,7] => ([(0,7),(1,7),(2,7),(3,7),(4,7),(5,7),(6,7)],8)
=> 2
[6,1]
=> [1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [7,1,2,3,4,5,8,6] => ([(0,7),(1,7),(2,7),(3,7),(4,7),(5,6),(6,7)],8)
=> 2
[5,2]
=> [1,0,1,0,1,0,1,1,1,0,0,0]
=> [5,1,2,3,6,7,4] => ([(0,6),(1,6),(2,6),(3,5),(4,5),(5,6)],7)
=> 2
[4,3]
=> [1,0,1,1,1,0,1,0,0,0]
=> [6,1,4,5,2,3] => ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> ? = 3
[3,3,1]
=> [1,1,1,0,1,0,0,1,0,0]
=> [6,3,5,1,2,4] => ([(0,4),(0,5),(1,2),(1,3),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 3
[3,2,2]
=> [1,0,1,1,1,1,0,0,0,0]
=> [3,1,4,5,6,2] => ([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> 2
[2,2,2,1]
=> [1,1,1,1,0,0,0,1,0,0]
=> [2,3,6,5,1,4] => ([(0,5),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> ? = 3
[8]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [9,1,2,3,4,5,6,7,8] => ([(0,8),(1,8),(2,8),(3,8),(4,8),(5,8),(6,8),(7,8)],9)
=> ? = 2
[7,1]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [8,1,2,3,4,5,6,9,7] => ([(0,8),(1,8),(2,8),(3,8),(4,8),(5,8),(6,7),(7,8)],9)
=> ? = 2
[4,4]
=> [1,1,1,0,1,0,1,0,0,0]
=> [6,5,4,1,2,3] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 4
[3,3,2]
=> [1,1,1,0,1,1,0,0,0,0]
=> [5,3,4,1,6,2] => ([(0,5),(1,2),(1,3),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 2
[2,2,2,2]
=> [1,1,1,1,0,1,0,0,0,0]
=> [6,3,4,5,1,2] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> ? = 2
[9]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [10,1,2,3,4,5,6,7,8,9] => ([(0,9),(1,9),(2,9),(3,9),(4,9),(5,9),(6,9),(7,9),(8,9)],10)
=> ? = 2
[3,3,3]
=> [1,1,1,1,1,0,0,0,0,0]
=> [2,3,4,5,6,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> 2
[3,2,2,2]
=> [1,0,1,1,1,1,0,1,0,0,0,0]
=> [7,1,4,5,6,2,3] => ([(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7)
=> ? = 2
[10]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [11,1,2,3,4,5,6,7,8,9,10] => ([(0,10),(1,10),(2,10),(3,10),(4,10),(5,10),(6,10),(7,10),(8,10),(9,10)],11)
=> ? = 2
[5,5]
=> [1,1,1,0,1,0,1,0,1,0,0,0]
=> [6,7,5,1,2,3,4] => ([(0,4),(0,5),(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7)
=> ? = 4
[4,3,3]
=> [1,0,1,1,1,1,1,0,0,0,0,0]
=> [3,1,4,5,6,7,2] => ([(0,6),(1,6),(2,6),(3,6),(4,5),(5,6)],7)
=> 2
[4,4,3]
=> [1,1,1,0,1,1,1,0,0,0,0,0]
=> [5,3,4,1,6,7,2] => ([(0,6),(1,6),(2,3),(2,4),(2,5),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 2
[6,6]
=> [1,1,1,0,1,0,1,0,1,0,1,0,0,0]
=> [6,7,8,1,2,3,4,5] => ([(0,5),(0,6),(0,7),(1,5),(1,6),(1,7),(2,5),(2,6),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7)],8)
=> ? = 4
[4,4,4]
=> [1,1,1,1,1,0,1,0,0,0,0,0]
=> [7,3,4,5,6,1,2] => ([(0,4),(0,5),(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7)
=> ? = 3
[3,3,3,3]
=> [1,1,1,1,1,1,0,0,0,0,0,0]
=> [2,3,4,5,6,7,1] => ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 2
[4,3,3,3]
=> [1,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> [3,1,4,5,6,7,8,2] => ([(0,7),(1,7),(2,7),(3,7),(4,7),(5,6),(6,7)],8)
=> 2
[4,4,3,3]
=> [1,1,1,0,1,1,1,1,0,0,0,0,0,0]
=> [5,3,4,1,6,7,8,2] => ([(0,7),(1,7),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(6,7)],8)
=> ? = 2
[5,5,5]
=> [1,1,1,1,1,0,1,0,1,0,0,0,0,0]
=> [8,7,4,5,6,1,2,3] => ([(0,3),(0,4),(0,5),(0,6),(0,7),(1,3),(1,4),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,6),(3,7),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 2
[3,3,3,3,3]
=> [1,1,1,1,1,1,0,1,0,0,0,0,0,0]
=> [8,3,4,5,6,7,1,2] => ([(0,5),(0,6),(0,7),(1,5),(1,6),(1,7),(2,5),(2,6),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,7),(6,7)],8)
=> ? = 3
[4,4,4,4]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> [2,3,4,5,6,7,8,1] => ([(0,7),(1,7),(2,7),(3,7),(4,7),(5,7),(6,7)],8)
=> 2
[5,4,4,4]
=> [1,0,1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> [3,1,4,5,6,7,8,9,2] => ([(0,8),(1,8),(2,8),(3,8),(4,8),(5,8),(6,7),(7,8)],9)
=> ? = 2
[]
=> []
=> [1] => ([],1)
=> 1
[3,3,3,3,3,3]
=> [1,1,1,1,1,1,0,1,0,1,0,0,0,0,0,0]
=> [9,8,4,5,6,7,1,2,3] => ([(0,4),(0,5),(0,6),(0,7),(0,8),(1,4),(1,5),(1,6),(1,7),(1,8),(2,4),(2,5),(2,6),(2,7),(2,8),(3,4),(3,5),(3,6),(3,7),(3,8),(4,7),(4,8),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> ? = 3
[3,3,3,3,3,3,3]
=> [1,1,1,1,1,1,0,1,0,1,0,1,0,0,0,0,0,0]
=> [9,10,8,5,6,7,1,2,3,4] => ?
=> ? = 2
[4,4,4,4,4]
=> [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0]
=> [2,3,4,5,6,7,8,9,1] => ([(0,8),(1,8),(2,8),(3,8),(4,8),(5,8),(6,8),(7,8)],9)
=> ? = 2
[4,4,4,4,4,4]
=> [1,1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0,0]
=> [10,3,4,5,6,7,8,9,1,2] => ([(0,7),(0,8),(0,9),(1,7),(1,8),(1,9),(2,7),(2,8),(2,9),(3,7),(3,8),(3,9),(4,7),(4,8),(4,9),(5,7),(5,8),(5,9),(6,7),(6,8),(6,9),(7,9),(8,9)],10)
=> ? = 3
[5,5,5,5]
=> [1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0]
=> [9,3,4,5,6,7,8,1,2] => ([(0,6),(0,7),(0,8),(1,6),(1,7),(1,8),(2,6),(2,7),(2,8),(3,6),(3,7),(3,8),(4,6),(4,7),(4,8),(5,6),(5,7),(5,8),(6,8),(7,8)],9)
=> ? = 2
[6,6,6,6]
=> [1,1,1,1,1,1,1,0,1,0,1,0,0,0,0,0,0,0]
=> [10,9,4,5,6,7,8,1,2,3] => ([(0,5),(0,6),(0,7),(0,8),(0,9),(1,5),(1,6),(1,7),(1,8),(1,9),(2,5),(2,6),(2,7),(2,8),(2,9),(3,5),(3,6),(3,7),(3,8),(3,9),(4,5),(4,6),(4,7),(4,8),(4,9),(5,8),(5,9),(6,8),(6,9),(7,8),(7,9),(8,9)],10)
=> ? = 4
[5,5,5,5,5,5]
=> [1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0]
=> [2,3,4,5,6,7,8,9,10,11,1] => ([(0,10),(1,10),(2,10),(3,10),(4,10),(5,10),(6,10),(7,10),(8,10),(9,10)],11)
=> ? = 2
[5,5,5,5,5]
=> [1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0]
=> [2,3,4,5,6,7,8,9,10,1] => ([(0,9),(1,9),(2,9),(3,9),(4,9),(5,9),(6,9),(7,9),(8,9)],10)
=> ? = 2
[5,4,4,4,4]
=> [1,0,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0]
=> [3,1,4,5,6,7,8,9,10,2] => ([(0,9),(1,9),(2,9),(3,9),(4,9),(5,9),(6,9),(7,8),(8,9)],10)
=> ? = 2
Description
The hat guessing number of a graph.
Suppose that each vertex of a graph corresponds to a player, wearing a hat whose color is arbitrarily chosen from a set of $q$ possible colors. Each player can see the hat colors of his neighbors, but not his own hat color. All of the players are asked to guess their own hat colors simultaneously, according to a predetermined guessing strategy and the hat colors they see, where no communication between them is allowed. The hat guessing number $HG(G)$ of a graph $G$ is the largest integer $q$ such that there exists a guessing strategy guaranteeing at least one correct guess for any hat assignment of $q$ possible colors.
Because it suffices that a single player guesses correctly, the hat guessing number of a graph is the maximum of the hat guessing numbers of its connected components.
Matching statistic: St000805
Mp00230: Integer partitions —parallelogram polyomino⟶ Dyck paths
Mp00093: Dyck paths —to binary word⟶ Binary words
Mp00097: Binary words —delta morphism⟶ Integer compositions
St000805: Integer compositions ⟶ ℤResult quality: 24% ●values known / values provided: 24%●distinct values known / distinct values provided: 50%
Mp00093: Dyck paths —to binary word⟶ Binary words
Mp00097: Binary words —delta morphism⟶ Integer compositions
St000805: Integer compositions ⟶ ℤResult quality: 24% ●values known / values provided: 24%●distinct values known / distinct values provided: 50%
Values
[1]
=> [1,0]
=> 10 => [1,1] => 1 = 2 - 1
[2]
=> [1,0,1,0]
=> 1010 => [1,1,1,1] => 1 = 2 - 1
[1,1]
=> [1,1,0,0]
=> 1100 => [2,2] => 1 = 2 - 1
[3]
=> [1,0,1,0,1,0]
=> 101010 => [1,1,1,1,1,1] => 1 = 2 - 1
[2,1]
=> [1,0,1,1,0,0]
=> 101100 => [1,1,2,2] => 1 = 2 - 1
[1,1,1]
=> [1,1,0,1,0,0]
=> 110100 => [2,1,1,2] => 2 = 3 - 1
[4]
=> [1,0,1,0,1,0,1,0]
=> 10101010 => [1,1,1,1,1,1,1,1] => 1 = 2 - 1
[3,1]
=> [1,0,1,0,1,1,0,0]
=> 10101100 => [1,1,1,1,2,2] => 1 = 2 - 1
[2,2]
=> [1,1,1,0,0,0]
=> 111000 => [3,3] => 1 = 2 - 1
[2,1,1]
=> [1,0,1,1,0,1,0,0]
=> 10110100 => [1,1,2,1,1,2] => 2 = 3 - 1
[1,1,1,1]
=> [1,1,0,1,0,1,0,0]
=> 11010100 => [2,1,1,1,1,2] => 2 = 3 - 1
[5]
=> [1,0,1,0,1,0,1,0,1,0]
=> 1010101010 => [1,1,1,1,1,1,1,1,1,1] => ? = 2 - 1
[4,1]
=> [1,0,1,0,1,0,1,1,0,0]
=> 1010101100 => [1,1,1,1,1,1,2,2] => ? = 2 - 1
[3,2]
=> [1,0,1,1,1,0,0,0]
=> 10111000 => [1,1,3,3] => 1 = 2 - 1
[3,1,1]
=> [1,0,1,0,1,1,0,1,0,0]
=> 1010110100 => [1,1,1,1,2,1,1,2] => ? = 3 - 1
[2,2,1]
=> [1,1,1,0,0,1,0,0]
=> 11100100 => [3,2,1,2] => 2 = 3 - 1
[2,1,1,1]
=> [1,0,1,1,0,1,0,1,0,0]
=> 1011010100 => [1,1,2,1,1,1,1,2] => ? = 3 - 1
[1,1,1,1,1]
=> [1,1,0,1,0,1,0,1,0,0]
=> 1101010100 => [2,1,1,1,1,1,1,2] => ? = 3 - 1
[6]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> 101010101010 => [1,1,1,1,1,1,1,1,1,1,1,1] => ? = 2 - 1
[5,1]
=> [1,0,1,0,1,0,1,0,1,1,0,0]
=> 101010101100 => [1,1,1,1,1,1,1,1,2,2] => ? = 2 - 1
[4,2]
=> [1,0,1,0,1,1,1,0,0,0]
=> 1010111000 => [1,1,1,1,3,3] => ? = 2 - 1
[3,3]
=> [1,1,1,0,1,0,0,0]
=> 11101000 => [3,1,1,3] => 2 = 3 - 1
[3,2,1]
=> [1,0,1,1,1,0,0,1,0,0]
=> 1011100100 => [1,1,3,2,1,2] => ? = 3 - 1
[2,2,2]
=> [1,1,1,1,0,0,0,0]
=> 11110000 => [4,4] => 1 = 2 - 1
[2,2,1,1]
=> [1,1,1,0,0,1,0,1,0,0]
=> 1110010100 => [3,2,1,1,1,2] => ? = 3 - 1
[7]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> 10101010101010 => [1,1,1,1,1,1,1,1,1,1,1,1,1,1] => ? = 2 - 1
[6,1]
=> [1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> 10101010101100 => [1,1,1,1,1,1,1,1,1,1,2,2] => ? = 2 - 1
[5,2]
=> [1,0,1,0,1,0,1,1,1,0,0,0]
=> 101010111000 => [1,1,1,1,1,1,3,3] => ? = 2 - 1
[4,3]
=> [1,0,1,1,1,0,1,0,0,0]
=> 1011101000 => [1,1,3,1,1,3] => ? = 3 - 1
[3,3,1]
=> [1,1,1,0,1,0,0,1,0,0]
=> 1110100100 => [3,1,1,2,1,2] => ? = 3 - 1
[3,2,2]
=> [1,0,1,1,1,1,0,0,0,0]
=> 1011110000 => [1,1,4,4] => ? = 2 - 1
[2,2,2,1]
=> [1,1,1,1,0,0,0,1,0,0]
=> 1111000100 => [4,3,1,2] => ? = 3 - 1
[8]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> 1010101010101010 => [1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1] => ? = 2 - 1
[7,1]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> 1010101010101100 => [1,1,1,1,1,1,1,1,1,1,1,1,2,2] => ? = 2 - 1
[4,4]
=> [1,1,1,0,1,0,1,0,0,0]
=> 1110101000 => [3,1,1,1,1,3] => ? = 4 - 1
[3,3,2]
=> [1,1,1,0,1,1,0,0,0,0]
=> 1110110000 => [3,1,2,4] => ? = 2 - 1
[2,2,2,2]
=> [1,1,1,1,0,1,0,0,0,0]
=> 1111010000 => [4,1,1,4] => ? = 2 - 1
[9]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> 101010101010101010 => [1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1] => ? = 2 - 1
[3,3,3]
=> [1,1,1,1,1,0,0,0,0,0]
=> 1111100000 => [5,5] => ? = 2 - 1
[3,2,2,2]
=> [1,0,1,1,1,1,0,1,0,0,0,0]
=> 101111010000 => [1,1,4,1,1,4] => ? = 2 - 1
[10]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> 10101010101010101010 => [1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1] => ? = 2 - 1
[5,5]
=> [1,1,1,0,1,0,1,0,1,0,0,0]
=> 111010101000 => [3,1,1,1,1,1,1,3] => ? = 4 - 1
[4,3,3]
=> [1,0,1,1,1,1,1,0,0,0,0,0]
=> 101111100000 => [1,1,5,5] => ? = 2 - 1
[4,4,3]
=> [1,1,1,0,1,1,1,0,0,0,0,0]
=> 111011100000 => [3,1,3,5] => ? = 2 - 1
[6,6]
=> [1,1,1,0,1,0,1,0,1,0,1,0,0,0]
=> 11101010101000 => [3,1,1,1,1,1,1,1,1,3] => ? = 4 - 1
[4,4,4]
=> [1,1,1,1,1,0,1,0,0,0,0,0]
=> 111110100000 => [5,1,1,5] => ? = 3 - 1
[3,3,3,3]
=> [1,1,1,1,1,1,0,0,0,0,0,0]
=> 111111000000 => [6,6] => ? = 2 - 1
[4,3,3,3]
=> [1,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> 10111111000000 => [1,1,6,6] => ? = 2 - 1
[4,4,3,3]
=> [1,1,1,0,1,1,1,1,0,0,0,0,0,0]
=> 11101111000000 => [3,1,4,6] => ? = 2 - 1
[5,5,5]
=> [1,1,1,1,1,0,1,0,1,0,0,0,0,0]
=> 11111010100000 => [5,1,1,1,1,5] => ? = 2 - 1
[3,3,3,3,3]
=> [1,1,1,1,1,1,0,1,0,0,0,0,0,0]
=> 11111101000000 => [6,1,1,6] => ? = 3 - 1
[4,4,4,4]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> 11111110000000 => [7,7] => ? = 2 - 1
[5,4,4,4]
=> [1,0,1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> 1011111110000000 => [1,1,7,7] => ? = 2 - 1
[]
=> []
=> => [] => ? = 1 - 1
[3,3,3,3,3,3]
=> [1,1,1,1,1,1,0,1,0,1,0,0,0,0,0,0]
=> 1111110101000000 => [6,1,1,1,1,6] => ? = 3 - 1
[3,3,3,3,3,3,3]
=> [1,1,1,1,1,1,0,1,0,1,0,1,0,0,0,0,0,0]
=> 111111010101000000 => ? => ? = 2 - 1
[4,4,4,4,4]
=> [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0]
=> 1111111100000000 => [8,8] => ? = 2 - 1
[4,4,4,4,4,4]
=> [1,1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0,0]
=> 111111110100000000 => [8,1,1,8] => ? = 3 - 1
[5,5,5,5]
=> [1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0]
=> 1111111010000000 => [7,1,1,7] => ? = 2 - 1
[6,6,6,6]
=> [1,1,1,1,1,1,1,0,1,0,1,0,0,0,0,0,0,0]
=> 111111101010000000 => [7,1,1,1,1,7] => ? = 4 - 1
[5,5,5,5,5,5]
=> [1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0]
=> 11111111110000000000 => [10,10] => ? = 2 - 1
[5,5,5,5,5]
=> [1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0]
=> 111111111000000000 => [9,9] => ? = 2 - 1
[5,4,4,4,4]
=> [1,0,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0]
=> 101111111100000000 => [1,1,8,8] => ? = 2 - 1
Description
The number of peaks of the associated bargraph.
Interpret the composition as the sequence of heights of the bars of a bargraph. This statistic is the number of contiguous subsequences consisting of an up step, a sequence of horizontal steps, and a down step.
Matching statistic: St001960
Mp00230: Integer partitions —parallelogram polyomino⟶ Dyck paths
Mp00120: Dyck paths —Lalanne-Kreweras involution⟶ Dyck paths
Mp00201: Dyck paths —Ringel⟶ Permutations
St001960: Permutations ⟶ ℤResult quality: 24% ●values known / values provided: 24%●distinct values known / distinct values provided: 50%
Mp00120: Dyck paths —Lalanne-Kreweras involution⟶ Dyck paths
Mp00201: Dyck paths —Ringel⟶ Permutations
St001960: Permutations ⟶ ℤResult quality: 24% ●values known / values provided: 24%●distinct values known / distinct values provided: 50%
Values
[1]
=> [1,0]
=> [1,0]
=> [2,1] => 0 = 2 - 2
[2]
=> [1,0,1,0]
=> [1,1,0,0]
=> [2,3,1] => 0 = 2 - 2
[1,1]
=> [1,1,0,0]
=> [1,0,1,0]
=> [3,1,2] => 0 = 2 - 2
[3]
=> [1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> [2,3,4,1] => 0 = 2 - 2
[2,1]
=> [1,0,1,1,0,0]
=> [1,1,0,0,1,0]
=> [2,4,1,3] => 0 = 2 - 2
[1,1,1]
=> [1,1,0,1,0,0]
=> [1,1,0,1,0,0]
=> [4,3,1,2] => 1 = 3 - 2
[4]
=> [1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> [2,3,4,5,1] => 0 = 2 - 2
[3,1]
=> [1,0,1,0,1,1,0,0]
=> [1,1,1,0,0,0,1,0]
=> [2,3,5,1,4] => 0 = 2 - 2
[2,2]
=> [1,1,1,0,0,0]
=> [1,0,1,0,1,0]
=> [4,1,2,3] => 0 = 2 - 2
[2,1,1]
=> [1,0,1,1,0,1,0,0]
=> [1,1,1,0,0,1,0,0]
=> [2,5,4,1,3] => 1 = 3 - 2
[1,1,1,1]
=> [1,1,0,1,0,1,0,0]
=> [1,1,1,0,1,0,0,0]
=> [5,3,4,1,2] => 1 = 3 - 2
[5]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [2,3,4,5,6,1] => ? = 2 - 2
[4,1]
=> [1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,0,0,0,0,1,0]
=> [2,3,4,6,1,5] => ? = 2 - 2
[3,2]
=> [1,0,1,1,1,0,0,0]
=> [1,1,0,0,1,0,1,0]
=> [2,5,1,3,4] => 0 = 2 - 2
[3,1,1]
=> [1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> [2,3,6,5,1,4] => ? = 3 - 2
[2,2,1]
=> [1,1,1,0,0,1,0,0]
=> [1,0,1,1,0,1,0,0]
=> [5,1,4,2,3] => 1 = 3 - 2
[2,1,1,1]
=> [1,0,1,1,0,1,0,1,0,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> [2,6,4,5,1,3] => ? = 3 - 2
[1,1,1,1,1]
=> [1,1,0,1,0,1,0,1,0,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> [6,3,4,5,1,2] => ? = 3 - 2
[6]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0]
=> [2,3,4,5,6,7,1] => ? = 2 - 2
[5,1]
=> [1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> [2,3,4,5,7,1,6] => ? = 2 - 2
[4,2]
=> [1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,0,0,0,1,0,1,0]
=> [2,3,6,1,4,5] => ? = 2 - 2
[3,3]
=> [1,1,1,0,1,0,0,0]
=> [1,1,0,1,0,1,0,0]
=> [5,4,1,2,3] => 1 = 3 - 2
[3,2,1]
=> [1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,0,1,1,0,1,0,0]
=> [2,6,1,5,3,4] => ? = 3 - 2
[2,2,2]
=> [1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> [5,1,2,3,4] => 0 = 2 - 2
[2,2,1,1]
=> [1,1,1,0,0,1,0,1,0,0]
=> [1,0,1,1,1,0,1,0,0,0]
=> [6,1,4,5,2,3] => ? = 3 - 2
[7]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> [2,3,4,5,6,7,8,1] => ? = 2 - 2
[6,1]
=> [1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> [2,3,4,5,6,8,1,7] => ? = 2 - 2
[5,2]
=> [1,0,1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,1,0,0,0,0,1,0,1,0]
=> [2,3,4,7,1,5,6] => ? = 2 - 2
[4,3]
=> [1,0,1,1,1,0,1,0,0,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> [2,6,5,1,3,4] => ? = 3 - 2
[3,3,1]
=> [1,1,1,0,1,0,0,1,0,0]
=> [1,1,0,1,1,0,1,0,0,0]
=> [6,4,1,5,2,3] => ? = 3 - 2
[3,2,2]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,0,1,0,1,0,1,0]
=> [2,6,1,3,4,5] => ? = 2 - 2
[2,2,2,1]
=> [1,1,1,1,0,0,0,1,0,0]
=> [1,0,1,0,1,1,0,1,0,0]
=> [6,1,2,5,3,4] => ? = 3 - 2
[8]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0]
=> [2,3,4,5,6,7,8,9,1] => ? = 2 - 2
[7,1]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> [2,3,4,5,6,7,9,1,8] => ? = 2 - 2
[4,4]
=> [1,1,1,0,1,0,1,0,0,0]
=> [1,1,1,0,1,0,1,0,0,0]
=> [6,5,4,1,2,3] => ? = 4 - 2
[3,3,2]
=> [1,1,1,0,1,1,0,0,0,0]
=> [1,1,0,1,0,1,0,0,1,0]
=> [6,4,1,2,3,5] => ? = 2 - 2
[2,2,2,2]
=> [1,1,1,1,0,1,0,0,0,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> [5,6,1,2,3,4] => ? = 2 - 2
[9]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0]
=> [2,3,4,5,6,7,8,9,10,1] => ? = 2 - 2
[3,3,3]
=> [1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [6,1,2,3,4,5] => ? = 2 - 2
[3,2,2,2]
=> [1,0,1,1,1,1,0,1,0,0,0,0]
=> [1,1,1,0,0,1,0,1,0,1,0,0]
=> [2,6,7,1,3,4,5] => ? = 2 - 2
[10]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0]
=> [2,3,4,5,6,7,8,9,10,11,1] => ? = 2 - 2
[5,5]
=> [1,1,1,0,1,0,1,0,1,0,0,0]
=> [1,1,1,1,0,1,0,1,0,0,0,0]
=> [7,6,4,5,1,2,3] => ? = 4 - 2
[4,3,3]
=> [1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0]
=> [2,7,1,3,4,5,6] => ? = 2 - 2
[4,4,3]
=> [1,1,1,0,1,1,1,0,0,0,0,0]
=> [1,1,0,1,0,1,0,0,1,0,1,0]
=> [7,4,1,2,3,5,6] => ? = 2 - 2
[6,6]
=> [1,1,1,0,1,0,1,0,1,0,1,0,0,0]
=> [1,1,1,1,1,0,1,0,1,0,0,0,0,0]
=> [8,7,4,5,6,1,2,3] => ? = 4 - 2
[4,4,4]
=> [1,1,1,1,1,0,1,0,0,0,0,0]
=> [1,1,0,1,0,1,0,1,0,1,0,0]
=> [7,6,1,2,3,4,5] => ? = 3 - 2
[3,3,3,3]
=> [1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> [7,1,2,3,4,5,6] => ? = 2 - 2
[4,3,3,3]
=> [1,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0,1,0]
=> [2,8,1,3,4,5,6,7] => ? = 2 - 2
[4,4,3,3]
=> [1,1,1,0,1,1,1,1,0,0,0,0,0,0]
=> [1,1,0,1,0,1,0,0,1,0,1,0,1,0]
=> [8,4,1,2,3,5,6,7] => ? = 2 - 2
[5,5,5]
=> [1,1,1,1,1,0,1,0,1,0,0,0,0,0]
=> [1,1,1,0,1,0,1,0,1,0,1,0,0,0]
=> [6,7,8,1,2,3,4,5] => ? = 2 - 2
[3,3,3,3,3]
=> [1,1,1,1,1,1,0,1,0,0,0,0,0,0]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> [8,7,1,2,3,4,5,6] => ? = 3 - 2
[4,4,4,4]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [8,1,2,3,4,5,6,7] => ? = 2 - 2
[5,4,4,4]
=> [1,0,1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [2,9,1,3,4,5,6,7,8] => ? = 2 - 2
[]
=> []
=> []
=> [1] => ? = 1 - 2
[3,3,3,3,3,3]
=> [1,1,1,1,1,1,0,1,0,1,0,0,0,0,0,0]
=> [1,1,1,0,1,0,1,0,1,0,1,0,1,0,0,0]
=> [9,7,8,1,2,3,4,5,6] => ? = 3 - 2
[3,3,3,3,3,3,3]
=> [1,1,1,1,1,1,0,1,0,1,0,1,0,0,0,0,0,0]
=> [1,1,1,1,0,1,0,1,0,1,0,1,0,1,0,0,0,0]
=> [7,8,9,10,1,2,3,4,5,6] => ? = 2 - 2
[4,4,4,4,4]
=> [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [9,1,2,3,4,5,6,7,8] => ? = 2 - 2
[4,4,4,4,4,4]
=> [1,1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0,0]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> [10,9,1,2,3,4,5,6,7,8] => ? = 3 - 2
[5,5,5,5]
=> [1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> [8,9,1,2,3,4,5,6,7] => ? = 2 - 2
[6,6,6,6]
=> [1,1,1,1,1,1,1,0,1,0,1,0,0,0,0,0,0,0]
=> [1,1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0,0]
=> [10,9,8,1,2,3,4,5,6,7] => ? = 4 - 2
[5,5,5,5,5,5]
=> [1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [11,1,2,3,4,5,6,7,8,9,10] => ? = 2 - 2
[5,5,5,5,5]
=> [1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [10,1,2,3,4,5,6,7,8,9] => ? = 2 - 2
[5,4,4,4,4]
=> [1,0,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [2,10,1,3,4,5,6,7,8,9] => ? = 2 - 2
Description
The number of descents of a permutation minus one if its first entry is not one.
This statistic appears in [1, Theorem 2.3] in a gamma-positivity result, see also [2].
Matching statistic: St001556
Mp00043: Integer partitions —to Dyck path⟶ Dyck paths
Mp00199: Dyck paths —prime Dyck path⟶ Dyck paths
Mp00025: Dyck paths —to 132-avoiding permutation⟶ Permutations
St001556: Permutations ⟶ ℤResult quality: 21% ●values known / values provided: 21%●distinct values known / distinct values provided: 50%
Mp00199: Dyck paths —prime Dyck path⟶ Dyck paths
Mp00025: Dyck paths —to 132-avoiding permutation⟶ Permutations
St001556: Permutations ⟶ ℤResult quality: 21% ●values known / values provided: 21%●distinct values known / distinct values provided: 50%
Values
[1]
=> [1,0,1,0]
=> [1,1,0,1,0,0]
=> [2,1,3] => 0 = 2 - 2
[2]
=> [1,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0]
=> [3,1,2,4] => 0 = 2 - 2
[1,1]
=> [1,0,1,1,0,0]
=> [1,1,0,1,1,0,0,0]
=> [2,3,1,4] => 0 = 2 - 2
[3]
=> [1,1,1,0,0,0,1,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> [4,1,2,3,5] => 0 = 2 - 2
[2,1]
=> [1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,0]
=> [3,2,1,4] => 0 = 2 - 2
[1,1,1]
=> [1,0,1,1,1,0,0,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> [2,3,4,1,5] => 1 = 3 - 2
[4]
=> [1,1,1,1,0,0,0,0,1,0]
=> [1,1,1,1,1,0,0,0,0,1,0,0]
=> [5,1,2,3,4,6] => ? = 2 - 2
[3,1]
=> [1,1,0,1,0,0,1,0]
=> [1,1,1,0,1,0,0,1,0,0]
=> [4,2,1,3,5] => 0 = 2 - 2
[2,2]
=> [1,1,0,0,1,1,0,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> [3,4,1,2,5] => 0 = 2 - 2
[2,1,1]
=> [1,0,1,1,0,1,0,0]
=> [1,1,0,1,1,0,1,0,0,0]
=> [3,2,4,1,5] => 1 = 3 - 2
[1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,1,1,1,1,0,0,0,0,0]
=> [2,3,4,5,1,6] => ? = 3 - 2
[5]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> [1,1,1,1,1,1,0,0,0,0,0,1,0,0]
=> [6,1,2,3,4,5,7] => ? = 2 - 2
[4,1]
=> [1,1,1,0,1,0,0,0,1,0]
=> [1,1,1,1,0,1,0,0,0,1,0,0]
=> [5,2,1,3,4,6] => ? = 2 - 2
[3,2]
=> [1,1,0,0,1,0,1,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> [4,3,1,2,5] => 0 = 2 - 2
[3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> [4,2,3,1,5] => 1 = 3 - 2
[2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> [3,4,2,1,5] => 1 = 3 - 2
[2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [1,1,0,1,1,1,0,1,0,0,0,0]
=> [3,2,4,5,1,6] => ? = 3 - 2
[1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,1,0,1,1,1,1,1,0,0,0,0,0,0]
=> [2,3,4,5,6,1,7] => ? = 3 - 2
[6]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,1,0,0]
=> [7,1,2,3,4,5,6,8] => ? = 2 - 2
[5,1]
=> [1,1,1,1,0,1,0,0,0,0,1,0]
=> [1,1,1,1,1,0,1,0,0,0,0,1,0,0]
=> [6,2,1,3,4,5,7] => ? = 2 - 2
[4,2]
=> [1,1,1,0,0,1,0,0,1,0]
=> [1,1,1,1,0,0,1,0,0,1,0,0]
=> [5,3,1,2,4,6] => ? = 2 - 2
[3,3]
=> [1,1,1,0,0,0,1,1,0,0]
=> [1,1,1,1,0,0,0,1,1,0,0,0]
=> [4,5,1,2,3,6] => ? = 3 - 2
[3,2,1]
=> [1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> [4,3,2,1,5] => 1 = 3 - 2
[2,2,2]
=> [1,1,0,0,1,1,1,0,0,0]
=> [1,1,1,0,0,1,1,1,0,0,0,0]
=> [3,4,5,1,2,6] => ? = 2 - 2
[2,2,1,1]
=> [1,0,1,1,0,1,1,0,0,0]
=> [1,1,0,1,1,0,1,1,0,0,0,0]
=> [3,4,2,5,1,6] => ? = 3 - 2
[7]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0,0]
=> [8,1,2,3,4,5,6,7,9] => ? = 2 - 2
[6,1]
=> [1,1,1,1,1,0,1,0,0,0,0,0,1,0]
=> [1,1,1,1,1,1,0,1,0,0,0,0,0,1,0,0]
=> [7,2,1,3,4,5,6,8] => ? = 2 - 2
[5,2]
=> [1,1,1,1,0,0,1,0,0,0,1,0]
=> [1,1,1,1,1,0,0,1,0,0,0,1,0,0]
=> [6,3,1,2,4,5,7] => ? = 2 - 2
[4,3]
=> [1,1,1,0,0,0,1,0,1,0]
=> [1,1,1,1,0,0,0,1,0,1,0,0]
=> [5,4,1,2,3,6] => ? = 3 - 2
[3,3,1]
=> [1,1,0,1,0,0,1,1,0,0]
=> [1,1,1,0,1,0,0,1,1,0,0,0]
=> [4,5,2,1,3,6] => ? = 3 - 2
[3,2,2]
=> [1,1,0,0,1,1,0,1,0,0]
=> [1,1,1,0,0,1,1,0,1,0,0,0]
=> [4,3,5,1,2,6] => ? = 2 - 2
[2,2,2,1]
=> [1,0,1,0,1,1,1,0,0,0]
=> [1,1,0,1,0,1,1,1,0,0,0,0]
=> [3,4,5,2,1,6] => ? = 3 - 2
[8]
=> [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,1,0]
=> [1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,1,0,0]
=> [9,1,2,3,4,5,6,7,8,10] => ? = 2 - 2
[7,1]
=> [1,1,1,1,1,1,0,1,0,0,0,0,0,0,1,0]
=> [1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,1,0,0]
=> [8,2,1,3,4,5,6,7,9] => ? = 2 - 2
[4,4]
=> [1,1,1,1,0,0,0,0,1,1,0,0]
=> [1,1,1,1,1,0,0,0,0,1,1,0,0,0]
=> [5,6,1,2,3,4,7] => ? = 4 - 2
[3,3,2]
=> [1,1,0,0,1,0,1,1,0,0]
=> [1,1,1,0,0,1,0,1,1,0,0,0]
=> [4,5,3,1,2,6] => ? = 2 - 2
[2,2,2,2]
=> [1,1,0,0,1,1,1,1,0,0,0,0]
=> [1,1,1,0,0,1,1,1,1,0,0,0,0,0]
=> [3,4,5,6,1,2,7] => ? = 2 - 2
[9]
=> [1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,1,0]
=> [1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,1,0,0]
=> [10,1,2,3,4,5,6,7,8,9,11] => ? = 2 - 2
[3,3,3]
=> [1,1,1,0,0,0,1,1,1,0,0,0]
=> [1,1,1,1,0,0,0,1,1,1,0,0,0,0]
=> [4,5,6,1,2,3,7] => ? = 2 - 2
[3,2,2,2]
=> [1,1,0,0,1,1,1,0,1,0,0,0]
=> [1,1,1,0,0,1,1,1,0,1,0,0,0,0]
=> [4,3,5,6,1,2,7] => ? = 2 - 2
[10]
=> [1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,1,0]
=> [1,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,1,0,0]
=> [11,1,2,3,4,5,6,7,8,9,10,12] => ? = 2 - 2
[5,5]
=> [1,1,1,1,1,0,0,0,0,0,1,1,0,0]
=> [1,1,1,1,1,1,0,0,0,0,0,1,1,0,0,0]
=> [6,7,1,2,3,4,5,8] => ? = 4 - 2
[4,3,3]
=> [1,1,1,0,0,0,1,1,0,1,0,0]
=> [1,1,1,1,0,0,0,1,1,0,1,0,0,0]
=> [5,4,6,1,2,3,7] => ? = 2 - 2
[4,4,3]
=> [1,1,1,0,0,0,1,0,1,1,0,0]
=> [1,1,1,1,0,0,0,1,0,1,1,0,0,0]
=> [5,6,4,1,2,3,7] => ? = 2 - 2
[6,6]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,1,0,0]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,1,1,0,0,0]
=> [7,8,1,2,3,4,5,6,9] => ? = 4 - 2
[4,4,4]
=> [1,1,1,1,0,0,0,0,1,1,1,0,0,0]
=> [1,1,1,1,1,0,0,0,0,1,1,1,0,0,0,0]
=> [5,6,7,1,2,3,4,8] => ? = 3 - 2
[3,3,3,3]
=> [1,1,1,0,0,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,1,1,1,1,0,0,0,0,0]
=> [4,5,6,7,1,2,3,8] => ? = 2 - 2
[4,3,3,3]
=> [1,1,1,0,0,0,1,1,1,0,1,0,0,0]
=> [1,1,1,1,0,0,0,1,1,1,0,1,0,0,0,0]
=> [5,4,6,7,1,2,3,8] => ? = 2 - 2
[4,4,3,3]
=> [1,1,1,0,0,0,1,1,0,1,1,0,0,0]
=> [1,1,1,1,0,0,0,1,1,0,1,1,0,0,0,0]
=> [5,6,4,7,1,2,3,8] => ? = 2 - 2
[5,5,5]
=> [1,1,1,1,1,0,0,0,0,0,1,1,1,0,0,0]
=> [1,1,1,1,1,1,0,0,0,0,0,1,1,1,0,0,0,0]
=> [6,7,8,1,2,3,4,5,9] => ? = 2 - 2
[3,3,3,3,3]
=> [1,1,1,0,0,0,1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,0,0,0,1,1,1,1,1,0,0,0,0,0,0]
=> [4,5,6,7,8,1,2,3,9] => ? = 3 - 2
[4,4,4,4]
=> [1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0,0]
=> [5,6,7,8,1,2,3,4,9] => ? = 2 - 2
[5,4,4,4]
=> [1,1,1,1,0,0,0,0,1,1,1,0,1,0,0,0]
=> [1,1,1,1,1,0,0,0,0,1,1,1,0,1,0,0,0,0]
=> [6,5,7,8,1,2,3,4,9] => ? = 2 - 2
[]
=> []
=> [1,0]
=> [1] => ? = 1 - 2
[3,3,3,3,3,3]
=> [1,1,1,0,0,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,1,1,1,0,0,0,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> [4,5,6,7,8,9,1,2,3,10] => ? = 3 - 2
[3,3,3,3,3,3,3]
=> [1,1,1,0,0,0,1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> [1,1,1,1,0,0,0,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0]
=> [4,5,6,7,8,9,10,1,2,3,11] => ? = 2 - 2
[4,4,4,4,4]
=> [1,1,1,1,0,0,0,0,1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,1,1,1,1,1,0,0,0,0,0,0]
=> [5,6,7,8,9,1,2,3,4,10] => ? = 2 - 2
[4,4,4,4,4,4]
=> [1,1,1,1,0,0,0,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> [5,6,7,8,9,10,1,2,3,4,11] => ? = 3 - 2
[5,5,5,5]
=> [1,1,1,1,1,0,0,0,0,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1,1,1,0,0,0,0,0,1,1,1,1,0,0,0,0,0]
=> [6,7,8,9,1,2,3,4,5,10] => ? = 2 - 2
[6,6,6,6]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,1,1,1,1,0,0,0,0,0]
=> [7,8,9,10,1,2,3,4,5,6,11] => ? = 4 - 2
[5,5,5,5,5,5]
=> [1,1,1,1,1,0,0,0,0,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,1,1,1,1,1,0,0,0,0,0,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> ? => ? = 2 - 2
[5,5,5,5,5]
=> [1,1,1,1,1,0,0,0,0,0,1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1,1,0,0,0,0,0,1,1,1,1,1,0,0,0,0,0,0]
=> [6,7,8,9,10,1,2,3,4,5,11] => ? = 2 - 2
[5,4,4,4,4]
=> [1,1,1,1,0,0,0,0,1,1,1,1,0,1,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,1,1,1,1,0,1,0,0,0,0,0]
=> [6,5,7,8,9,1,2,3,4,10] => ? = 2 - 2
Description
The number of inversions of the third entry of a permutation.
This is, for a permutation $\pi$ of length $n$,
$$\# \{3 < k \leq n \mid \pi(3) > \pi(k)\}.$$
The number of inversions of the first entry is [[St000054]] and the number of inversions of the second entry is [[St001557]]. The sequence of inversions of all the entries define the [[http://www.findstat.org/Permutations#The_Lehmer_code_and_the_major_code_of_a_permutation|Lehmer code]] of a permutation.
Matching statistic: St000451
Mp00230: Integer partitions —parallelogram polyomino⟶ Dyck paths
Mp00146: Dyck paths —to tunnel matching⟶ Perfect matchings
Mp00283: Perfect matchings —non-nesting-exceedence permutation⟶ Permutations
St000451: Permutations ⟶ ℤResult quality: 16% ●values known / values provided: 16%●distinct values known / distinct values provided: 50%
Mp00146: Dyck paths —to tunnel matching⟶ Perfect matchings
Mp00283: Perfect matchings —non-nesting-exceedence permutation⟶ Permutations
St000451: Permutations ⟶ ℤResult quality: 16% ●values known / values provided: 16%●distinct values known / distinct values provided: 50%
Values
[1]
=> [1,0]
=> [(1,2)]
=> [2,1] => 2
[2]
=> [1,0,1,0]
=> [(1,2),(3,4)]
=> [2,1,4,3] => 2
[1,1]
=> [1,1,0,0]
=> [(1,4),(2,3)]
=> [3,4,2,1] => 2
[3]
=> [1,0,1,0,1,0]
=> [(1,2),(3,4),(5,6)]
=> [2,1,4,3,6,5] => 2
[2,1]
=> [1,0,1,1,0,0]
=> [(1,2),(3,6),(4,5)]
=> [2,1,5,6,4,3] => 2
[1,1,1]
=> [1,1,0,1,0,0]
=> [(1,6),(2,3),(4,5)]
=> [3,5,2,6,4,1] => 3
[4]
=> [1,0,1,0,1,0,1,0]
=> [(1,2),(3,4),(5,6),(7,8)]
=> [2,1,4,3,6,5,8,7] => 2
[3,1]
=> [1,0,1,0,1,1,0,0]
=> [(1,2),(3,4),(5,8),(6,7)]
=> [2,1,4,3,7,8,6,5] => ? = 2
[2,2]
=> [1,1,1,0,0,0]
=> [(1,6),(2,5),(3,4)]
=> [4,5,6,3,2,1] => 2
[2,1,1]
=> [1,0,1,1,0,1,0,0]
=> [(1,2),(3,8),(4,5),(6,7)]
=> [2,1,5,7,4,8,6,3] => ? = 3
[1,1,1,1]
=> [1,1,0,1,0,1,0,0]
=> [(1,8),(2,3),(4,5),(6,7)]
=> [3,5,2,7,4,8,6,1] => ? = 3
[5]
=> [1,0,1,0,1,0,1,0,1,0]
=> [(1,2),(3,4),(5,6),(7,8),(9,10)]
=> [2,1,4,3,6,5,8,7,10,9] => 2
[4,1]
=> [1,0,1,0,1,0,1,1,0,0]
=> [(1,2),(3,4),(5,6),(7,10),(8,9)]
=> [2,1,4,3,6,5,9,10,8,7] => ? = 2
[3,2]
=> [1,0,1,1,1,0,0,0]
=> [(1,2),(3,8),(4,7),(5,6)]
=> [2,1,6,7,8,5,4,3] => ? = 2
[3,1,1]
=> [1,0,1,0,1,1,0,1,0,0]
=> [(1,2),(3,4),(5,10),(6,7),(8,9)]
=> [2,1,4,3,7,9,6,10,8,5] => ? = 3
[2,2,1]
=> [1,1,1,0,0,1,0,0]
=> [(1,8),(2,5),(3,4),(6,7)]
=> [4,5,7,3,2,8,6,1] => ? = 3
[2,1,1,1]
=> [1,0,1,1,0,1,0,1,0,0]
=> [(1,2),(3,10),(4,5),(6,7),(8,9)]
=> [2,1,5,7,4,9,6,10,8,3] => ? = 3
[1,1,1,1,1]
=> [1,1,0,1,0,1,0,1,0,0]
=> [(1,10),(2,3),(4,5),(6,7),(8,9)]
=> [3,5,2,7,4,9,6,10,8,1] => ? = 3
[6]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> [(1,2),(3,4),(5,6),(7,8),(9,10),(11,12)]
=> [2,1,4,3,6,5,8,7,10,9,12,11] => 2
[5,1]
=> [1,0,1,0,1,0,1,0,1,1,0,0]
=> [(1,2),(3,4),(5,6),(7,8),(9,12),(10,11)]
=> [2,1,4,3,6,5,8,7,11,12,10,9] => ? = 2
[4,2]
=> [1,0,1,0,1,1,1,0,0,0]
=> [(1,2),(3,4),(5,10),(6,9),(7,8)]
=> [2,1,4,3,8,9,10,7,6,5] => ? = 2
[3,3]
=> [1,1,1,0,1,0,0,0]
=> [(1,8),(2,7),(3,4),(5,6)]
=> [4,6,7,3,8,5,2,1] => ? = 3
[3,2,1]
=> [1,0,1,1,1,0,0,1,0,0]
=> [(1,2),(3,10),(4,7),(5,6),(8,9)]
=> [2,1,6,7,9,5,4,10,8,3] => ? = 3
[2,2,2]
=> [1,1,1,1,0,0,0,0]
=> [(1,8),(2,7),(3,6),(4,5)]
=> [5,6,7,8,4,3,2,1] => ? = 2
[2,2,1,1]
=> [1,1,1,0,0,1,0,1,0,0]
=> [(1,10),(2,5),(3,4),(6,7),(8,9)]
=> [4,5,7,3,2,9,6,10,8,1] => ? = 3
[7]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [(1,2),(3,4),(5,6),(7,8),(9,10),(11,12),(13,14)]
=> [2,1,4,3,6,5,8,7,10,9,12,11,14,13] => ? = 2
[6,1]
=> [1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [(1,2),(3,4),(5,6),(7,8),(9,10),(11,14),(12,13)]
=> [2,1,4,3,6,5,8,7,10,9,13,14,12,11] => ? = 2
[5,2]
=> [1,0,1,0,1,0,1,1,1,0,0,0]
=> [(1,2),(3,4),(5,6),(7,12),(8,11),(9,10)]
=> [2,1,4,3,6,5,10,11,12,9,8,7] => ? = 2
[4,3]
=> [1,0,1,1,1,0,1,0,0,0]
=> [(1,2),(3,10),(4,9),(5,6),(7,8)]
=> [2,1,6,8,9,5,10,7,4,3] => ? = 3
[3,3,1]
=> [1,1,1,0,1,0,0,1,0,0]
=> [(1,10),(2,7),(3,4),(5,6),(8,9)]
=> [4,6,7,3,9,5,2,10,8,1] => ? = 3
[3,2,2]
=> [1,0,1,1,1,1,0,0,0,0]
=> [(1,2),(3,10),(4,9),(5,8),(6,7)]
=> [2,1,7,8,9,10,6,5,4,3] => ? = 2
[2,2,2,1]
=> [1,1,1,1,0,0,0,1,0,0]
=> [(1,10),(2,7),(3,6),(4,5),(8,9)]
=> [5,6,7,9,4,3,2,10,8,1] => ? = 3
[8]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [(1,2),(3,4),(5,6),(7,8),(9,10),(11,12),(13,14),(15,16)]
=> [2,1,4,3,6,5,8,7,10,9,12,11,14,13,16,15] => ? = 2
[7,1]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [(1,2),(3,4),(5,6),(7,8),(9,10),(11,12),(13,16),(14,15)]
=> [2,1,4,3,6,5,8,7,10,9,12,11,15,16,14,13] => ? = 2
[4,4]
=> [1,1,1,0,1,0,1,0,0,0]
=> [(1,10),(2,9),(3,4),(5,6),(7,8)]
=> [4,6,8,3,9,5,10,7,2,1] => ? = 4
[3,3,2]
=> [1,1,1,0,1,1,0,0,0,0]
=> [(1,10),(2,9),(3,4),(5,8),(6,7)]
=> [4,7,8,3,9,10,6,5,2,1] => ? = 2
[2,2,2,2]
=> [1,1,1,1,0,1,0,0,0,0]
=> [(1,10),(2,9),(3,8),(4,5),(6,7)]
=> [5,7,8,9,4,10,6,3,2,1] => ? = 2
[9]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [(1,2),(3,4),(5,6),(7,8),(9,10),(11,12),(13,14),(15,16),(17,18)]
=> [2,1,4,3,6,5,8,7,10,9,12,11,14,13,16,15,18,17] => ? = 2
[3,3,3]
=> [1,1,1,1,1,0,0,0,0,0]
=> [(1,10),(2,9),(3,8),(4,7),(5,6)]
=> [6,7,8,9,10,5,4,3,2,1] => ? = 2
[3,2,2,2]
=> [1,0,1,1,1,1,0,1,0,0,0,0]
=> [(1,2),(3,12),(4,11),(5,10),(6,7),(8,9)]
=> [2,1,7,9,10,11,6,12,8,5,4,3] => ? = 2
[10]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [(1,2),(3,4),(5,6),(7,8),(9,10),(11,12),(13,14),(15,16),(17,18),(19,20)]
=> [2,1,4,3,6,5,8,7,10,9,12,11,14,13,16,15,18,17,20,19] => ? = 2
[5,5]
=> [1,1,1,0,1,0,1,0,1,0,0,0]
=> [(1,12),(2,11),(3,4),(5,6),(7,8),(9,10)]
=> [4,6,8,3,10,5,11,7,12,9,2,1] => ? = 4
[4,3,3]
=> [1,0,1,1,1,1,1,0,0,0,0,0]
=> [(1,2),(3,12),(4,11),(5,10),(6,9),(7,8)]
=> [2,1,8,9,10,11,12,7,6,5,4,3] => ? = 2
[4,4,3]
=> [1,1,1,0,1,1,1,0,0,0,0,0]
=> [(1,12),(2,11),(3,4),(5,10),(6,9),(7,8)]
=> [4,8,9,3,10,11,12,7,6,5,2,1] => ? = 2
[6,6]
=> [1,1,1,0,1,0,1,0,1,0,1,0,0,0]
=> [(1,14),(2,13),(3,4),(5,6),(7,8),(9,10),(11,12)]
=> [4,6,8,3,10,5,12,7,13,9,14,11,2,1] => ? = 4
[4,4,4]
=> [1,1,1,1,1,0,1,0,0,0,0,0]
=> [(1,12),(2,11),(3,10),(4,9),(5,6),(7,8)]
=> [6,8,9,10,11,5,12,7,4,3,2,1] => ? = 3
[3,3,3,3]
=> [1,1,1,1,1,1,0,0,0,0,0,0]
=> [(1,12),(2,11),(3,10),(4,9),(5,8),(6,7)]
=> [7,8,9,10,11,12,6,5,4,3,2,1] => ? = 2
[4,3,3,3]
=> [1,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> [(1,2),(3,14),(4,13),(5,12),(6,11),(7,10),(8,9)]
=> [2,1,9,10,11,12,13,14,8,7,6,5,4,3] => ? = 2
[4,4,3,3]
=> [1,1,1,0,1,1,1,1,0,0,0,0,0,0]
=> [(1,14),(2,13),(3,4),(5,12),(6,11),(7,10),(8,9)]
=> [4,9,10,3,11,12,13,14,8,7,6,5,2,1] => ? = 2
[5,5,5]
=> [1,1,1,1,1,0,1,0,1,0,0,0,0,0]
=> [(1,14),(2,13),(3,12),(4,11),(5,6),(7,8),(9,10)]
=> [6,8,10,11,12,5,13,7,14,9,4,3,2,1] => ? = 2
[3,3,3,3,3]
=> [1,1,1,1,1,1,0,1,0,0,0,0,0,0]
=> [(1,14),(2,13),(3,12),(4,11),(5,10),(6,7),(8,9)]
=> [7,9,10,11,12,13,6,14,8,5,4,3,2,1] => ? = 3
[4,4,4,4]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> [(1,14),(2,13),(3,12),(4,11),(5,10),(6,9),(7,8)]
=> [8,9,10,11,12,13,14,7,6,5,4,3,2,1] => ? = 2
[5,4,4,4]
=> [1,0,1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> [(1,2),(3,16),(4,15),(5,14),(6,13),(7,12),(8,11),(9,10)]
=> [2,1,10,11,12,13,14,15,16,9,8,7,6,5,4,3] => ? = 2
[]
=> []
=> []
=> ? => ? = 1
[3,3,3,3,3,3]
=> [1,1,1,1,1,1,0,1,0,1,0,0,0,0,0,0]
=> [(1,16),(2,15),(3,14),(4,13),(5,12),(6,7),(8,9),(10,11)]
=> [7,9,11,12,13,14,6,15,8,16,10,5,4,3,2,1] => ? = 3
[3,3,3,3,3,3,3]
=> [1,1,1,1,1,1,0,1,0,1,0,1,0,0,0,0,0,0]
=> [(1,18),(2,17),(3,16),(4,15),(5,14),(6,7),(8,9),(10,11),(12,13)]
=> ? => ? = 2
[4,4,4,4,4]
=> [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0]
=> [(1,16),(2,15),(3,14),(4,13),(5,12),(6,11),(7,10),(8,9)]
=> [9,10,11,12,13,14,15,16,8,7,6,5,4,3,2,1] => ? = 2
[4,4,4,4,4,4]
=> [1,1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0,0]
=> [(1,18),(2,17),(3,16),(4,15),(5,14),(6,13),(7,12),(8,9),(10,11)]
=> [9,11,12,13,14,15,16,17,8,18,10,7,6,5,4,3,2,1] => ? = 3
[5,5,5,5]
=> [1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0]
=> [(1,16),(2,15),(3,14),(4,13),(5,12),(6,11),(7,8),(9,10)]
=> [8,10,11,12,13,14,15,7,16,9,6,5,4,3,2,1] => ? = 2
[6,6,6,6]
=> [1,1,1,1,1,1,1,0,1,0,1,0,0,0,0,0,0,0]
=> [(1,18),(2,17),(3,16),(4,15),(5,14),(6,13),(7,8),(9,10),(11,12)]
=> [8,10,12,13,14,15,16,7,17,9,18,11,6,5,4,3,2,1] => ? = 4
Description
The length of the longest pattern of the form k 1 2...(k-1).
The following 26 statistics, ordered by result quality, also match your data. Click on any of them to see the details.
St000842The breadth of a permutation. St001198The number of simple modules in the algebra $eAe$ with projective dimension at most 1 in the corresponding Nakayama algebra $A$ with minimal faithful projective-injective module $eA$. St001206The maximal dimension of an indecomposable projective $eAe$-module (that is the height of the corresponding Dyck path) of the corresponding Nakayama algebra with minimal faithful projective-injective module $eA$. St000534The number of 2-rises of a permutation. St000036The evaluation at 1 of the Kazhdan-Lusztig polynomial with parameters given by the identity and the permutation. St001603The number of colourings of a polygon such that the multiplicities of a colour are given by a partition. St000408The number of occurrences of the pattern 4231 in a permutation. St000440The number of occurrences of the pattern 4132 or of the pattern 4231 in a permutation. St001896The number of right descents of a signed permutations. St001491The number of indecomposable projective-injective modules in the algebra corresponding to a subset. St001722The number of minimal chains with small intervals between a binary word and the top element. St001162The minimum jump of a permutation. St001344The neighbouring number of a permutation. St000217The number of occurrences of the pattern 312 in a permutation. St000338The number of pixed points of a permutation. St000358The number of occurrences of the pattern 31-2. St000622The number of occurrences of the patterns 2143 or 4231 in a permutation. St000664The number of right ropes of a permutation. St000779The tier of a permutation. St001174The Gorenstein dimension of the algebra $A/I$ when $I$ is the tilting module corresponding to the permutation in the Auslander algebra of $K[x]/(x^n)$. St001551The number of restricted non-inversions between exceedances where the rightmost exceedance is linked. St001559The number of transpositions that are smaller or equal to a permutation in Bruhat order while not being inversions. St001705The number of occurrences of the pattern 2413 in a permutation. St001744The number of occurrences of the arrow pattern 1-2 with an arrow from 1 to 2 in a permutation. St001632The number of indecomposable injective modules $I$ with $dim Ext^1(I,A)=1$ for the incidence algebra A of a poset. St001857The number of edges in the reduced word graph of a signed permutation.
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!