Processing math: 100%

Your data matches 6 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
St001911: Permutations ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[1] => 0
[1,2] => 0
[2,1] => 0
[1,2,3] => 0
[1,3,2] => 1
[2,1,3] => 1
[2,3,1] => 0
[3,1,2] => 0
[3,2,1] => 1
[1,2,3,4] => 0
[1,2,4,3] => 2
[1,3,2,4] => 3
[1,3,4,2] => 1
[1,4,2,3] => 2
[1,4,3,2] => 4
[2,1,3,4] => 2
[2,1,4,3] => 4
[2,3,1,4] => 2
[2,3,4,1] => 0
[2,4,1,3] => 1
[2,4,3,1] => 3
[3,1,2,4] => 1
[3,1,4,2] => 3
[3,2,1,4] => 4
[3,2,4,1] => 2
[3,4,1,2] => 0
[3,4,2,1] => 2
[4,1,2,3] => 0
[4,1,3,2] => 2
[4,2,1,3] => 3
[4,2,3,1] => 1
[4,3,1,2] => 2
[4,3,2,1] => 4
[1,2,3,4,5] => 0
[1,2,3,5,4] => 3
[1,2,4,3,5] => 5
[1,2,4,5,3] => 2
[1,2,5,3,4] => 4
[1,2,5,4,3] => 7
[1,3,2,4,5] => 5
[1,3,2,5,4] => 8
[1,3,4,2,5] => 4
[1,3,4,5,2] => 1
[1,3,5,2,4] => 3
[1,3,5,4,2] => 6
[1,4,2,3,5] => 4
[1,4,2,5,3] => 7
[1,4,3,2,5] => 9
[1,4,3,5,2] => 6
[1,4,5,2,3] => 2
Description
A descent variant minus the number of inversions. This statistic is defined for general finite crystallographic root system Φ with Weyl group W as follows: Let 2ρ=βΦ+β=αΔbαα be the sum of the positive roots expressed in the simple roots. For wW this statistic is then stat(w)=αΔ:w(α)Φbα(w), where the sum ranges over all descents of w and (w) is the Coxeter length. It was shown in [1], that for irreducible groups, it holds that wWqstat(w)=fαΔ1qbα1qeα, where {eααΔ} are the exponents of the group and f is its index of connection, i.e., the index of the root lattice inside the weight lattice. For a permutation σSn, this becomes stat(σ)=iDes(σ)i(ni)inv(σ).
Matching statistic: St001232
Mp00252: Permutations restrictionPermutations
Mp00127: Permutations left-to-right-maxima to Dyck pathDyck paths
Mp00120: Dyck paths Lalanne-Kreweras involutionDyck paths
St001232: Dyck paths ⟶ ℤResult quality: 18% values known / values provided: 18%distinct values known / distinct values provided: 33%
Values
[1] => [] => []
=> []
=> ? = 0
[1,2] => [1] => [1,0]
=> [1,0]
=> 0
[2,1] => [1] => [1,0]
=> [1,0]
=> 0
[1,2,3] => [1,2] => [1,0,1,0]
=> [1,1,0,0]
=> 0
[1,3,2] => [1,2] => [1,0,1,0]
=> [1,1,0,0]
=> 0
[2,1,3] => [2,1] => [1,1,0,0]
=> [1,0,1,0]
=> 1
[2,3,1] => [2,1] => [1,1,0,0]
=> [1,0,1,0]
=> 1
[3,1,2] => [1,2] => [1,0,1,0]
=> [1,1,0,0]
=> 0
[3,2,1] => [2,1] => [1,1,0,0]
=> [1,0,1,0]
=> 1
[1,2,3,4] => [1,2,3] => [1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> 0
[1,2,4,3] => [1,2,3] => [1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> 0
[1,3,2,4] => [1,3,2] => [1,0,1,1,0,0]
=> [1,1,0,0,1,0]
=> 1
[1,3,4,2] => [1,3,2] => [1,0,1,1,0,0]
=> [1,1,0,0,1,0]
=> 1
[1,4,2,3] => [1,2,3] => [1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> 0
[1,4,3,2] => [1,3,2] => [1,0,1,1,0,0]
=> [1,1,0,0,1,0]
=> 1
[2,1,3,4] => [2,1,3] => [1,1,0,0,1,0]
=> [1,0,1,1,0,0]
=> 2
[2,1,4,3] => [2,1,3] => [1,1,0,0,1,0]
=> [1,0,1,1,0,0]
=> 2
[2,3,1,4] => [2,3,1] => [1,1,0,1,0,0]
=> [1,1,0,1,0,0]
=> 2
[2,3,4,1] => [2,3,1] => [1,1,0,1,0,0]
=> [1,1,0,1,0,0]
=> 2
[2,4,1,3] => [2,1,3] => [1,1,0,0,1,0]
=> [1,0,1,1,0,0]
=> 2
[2,4,3,1] => [2,3,1] => [1,1,0,1,0,0]
=> [1,1,0,1,0,0]
=> 2
[3,1,2,4] => [3,1,2] => [1,1,1,0,0,0]
=> [1,0,1,0,1,0]
=> ? ∊ {3,3,3,3,4,4,4,4}
[3,1,4,2] => [3,1,2] => [1,1,1,0,0,0]
=> [1,0,1,0,1,0]
=> ? ∊ {3,3,3,3,4,4,4,4}
[3,2,1,4] => [3,2,1] => [1,1,1,0,0,0]
=> [1,0,1,0,1,0]
=> ? ∊ {3,3,3,3,4,4,4,4}
[3,2,4,1] => [3,2,1] => [1,1,1,0,0,0]
=> [1,0,1,0,1,0]
=> ? ∊ {3,3,3,3,4,4,4,4}
[3,4,1,2] => [3,1,2] => [1,1,1,0,0,0]
=> [1,0,1,0,1,0]
=> ? ∊ {3,3,3,3,4,4,4,4}
[3,4,2,1] => [3,2,1] => [1,1,1,0,0,0]
=> [1,0,1,0,1,0]
=> ? ∊ {3,3,3,3,4,4,4,4}
[4,1,2,3] => [1,2,3] => [1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> 0
[4,1,3,2] => [1,3,2] => [1,0,1,1,0,0]
=> [1,1,0,0,1,0]
=> 1
[4,2,1,3] => [2,1,3] => [1,1,0,0,1,0]
=> [1,0,1,1,0,0]
=> 2
[4,2,3,1] => [2,3,1] => [1,1,0,1,0,0]
=> [1,1,0,1,0,0]
=> 2
[4,3,1,2] => [3,1,2] => [1,1,1,0,0,0]
=> [1,0,1,0,1,0]
=> ? ∊ {3,3,3,3,4,4,4,4}
[4,3,2,1] => [3,2,1] => [1,1,1,0,0,0]
=> [1,0,1,0,1,0]
=> ? ∊ {3,3,3,3,4,4,4,4}
[1,2,3,4,5] => [1,2,3,4] => [1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> 0
[1,2,3,5,4] => [1,2,3,4] => [1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> 0
[1,2,4,3,5] => [1,2,4,3] => [1,0,1,0,1,1,0,0]
=> [1,1,1,0,0,0,1,0]
=> 1
[1,2,4,5,3] => [1,2,4,3] => [1,0,1,0,1,1,0,0]
=> [1,1,1,0,0,0,1,0]
=> 1
[1,2,5,3,4] => [1,2,3,4] => [1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> 0
[1,2,5,4,3] => [1,2,4,3] => [1,0,1,0,1,1,0,0]
=> [1,1,1,0,0,0,1,0]
=> 1
[1,3,2,4,5] => [1,3,2,4] => [1,0,1,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0]
=> 2
[1,3,2,5,4] => [1,3,2,4] => [1,0,1,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0]
=> 2
[1,3,4,2,5] => [1,3,4,2] => [1,0,1,1,0,1,0,0]
=> [1,1,1,0,0,1,0,0]
=> 2
[1,3,4,5,2] => [1,3,4,2] => [1,0,1,1,0,1,0,0]
=> [1,1,1,0,0,1,0,0]
=> 2
[1,3,5,2,4] => [1,3,2,4] => [1,0,1,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0]
=> 2
[1,3,5,4,2] => [1,3,4,2] => [1,0,1,1,0,1,0,0]
=> [1,1,1,0,0,1,0,0]
=> 2
[1,4,2,3,5] => [1,4,2,3] => [1,0,1,1,1,0,0,0]
=> [1,1,0,0,1,0,1,0]
=> ? ∊ {4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,10,10,10,10,10}
[1,4,2,5,3] => [1,4,2,3] => [1,0,1,1,1,0,0,0]
=> [1,1,0,0,1,0,1,0]
=> ? ∊ {4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,10,10,10,10,10}
[1,4,3,2,5] => [1,4,3,2] => [1,0,1,1,1,0,0,0]
=> [1,1,0,0,1,0,1,0]
=> ? ∊ {4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,10,10,10,10,10}
[1,4,3,5,2] => [1,4,3,2] => [1,0,1,1,1,0,0,0]
=> [1,1,0,0,1,0,1,0]
=> ? ∊ {4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,10,10,10,10,10}
[1,4,5,2,3] => [1,4,2,3] => [1,0,1,1,1,0,0,0]
=> [1,1,0,0,1,0,1,0]
=> ? ∊ {4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,10,10,10,10,10}
[1,4,5,3,2] => [1,4,3,2] => [1,0,1,1,1,0,0,0]
=> [1,1,0,0,1,0,1,0]
=> ? ∊ {4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,10,10,10,10,10}
[1,5,2,3,4] => [1,2,3,4] => [1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> 0
[1,5,2,4,3] => [1,2,4,3] => [1,0,1,0,1,1,0,0]
=> [1,1,1,0,0,0,1,0]
=> 1
[1,5,3,2,4] => [1,3,2,4] => [1,0,1,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0]
=> 2
[1,5,3,4,2] => [1,3,4,2] => [1,0,1,1,0,1,0,0]
=> [1,1,1,0,0,1,0,0]
=> 2
[1,5,4,2,3] => [1,4,2,3] => [1,0,1,1,1,0,0,0]
=> [1,1,0,0,1,0,1,0]
=> ? ∊ {4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,10,10,10,10,10}
[1,5,4,3,2] => [1,4,3,2] => [1,0,1,1,1,0,0,0]
=> [1,1,0,0,1,0,1,0]
=> ? ∊ {4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,10,10,10,10,10}
[2,1,3,4,5] => [2,1,3,4] => [1,1,0,0,1,0,1,0]
=> [1,0,1,1,1,0,0,0]
=> 3
[2,1,3,5,4] => [2,1,3,4] => [1,1,0,0,1,0,1,0]
=> [1,0,1,1,1,0,0,0]
=> 3
[2,1,4,3,5] => [2,1,4,3] => [1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,0]
=> 3
[2,1,4,5,3] => [2,1,4,3] => [1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,0]
=> 3
[2,1,5,3,4] => [2,1,3,4] => [1,1,0,0,1,0,1,0]
=> [1,0,1,1,1,0,0,0]
=> 3
[2,1,5,4,3] => [2,1,4,3] => [1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,0]
=> 3
[2,3,1,4,5] => [2,3,1,4] => [1,1,0,1,0,0,1,0]
=> [1,1,0,1,1,0,0,0]
=> 4
[2,3,1,5,4] => [2,3,1,4] => [1,1,0,1,0,0,1,0]
=> [1,1,0,1,1,0,0,0]
=> 4
[2,3,4,1,5] => [2,3,4,1] => [1,1,0,1,0,1,0,0]
=> [1,1,1,0,1,0,0,0]
=> 3
[2,3,4,5,1] => [2,3,4,1] => [1,1,0,1,0,1,0,0]
=> [1,1,1,0,1,0,0,0]
=> 3
[2,4,1,3,5] => [2,4,1,3] => [1,1,0,1,1,0,0,0]
=> [1,1,0,1,0,0,1,0]
=> ? ∊ {4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,10,10,10,10,10}
[2,4,1,5,3] => [2,4,1,3] => [1,1,0,1,1,0,0,0]
=> [1,1,0,1,0,0,1,0]
=> ? ∊ {4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,10,10,10,10,10}
[2,4,3,1,5] => [2,4,3,1] => [1,1,0,1,1,0,0,0]
=> [1,1,0,1,0,0,1,0]
=> ? ∊ {4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,10,10,10,10,10}
[2,4,3,5,1] => [2,4,3,1] => [1,1,0,1,1,0,0,0]
=> [1,1,0,1,0,0,1,0]
=> ? ∊ {4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,10,10,10,10,10}
[2,4,5,1,3] => [2,4,1,3] => [1,1,0,1,1,0,0,0]
=> [1,1,0,1,0,0,1,0]
=> ? ∊ {4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,10,10,10,10,10}
[2,4,5,3,1] => [2,4,3,1] => [1,1,0,1,1,0,0,0]
=> [1,1,0,1,0,0,1,0]
=> ? ∊ {4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,10,10,10,10,10}
[2,5,4,1,3] => [2,4,1,3] => [1,1,0,1,1,0,0,0]
=> [1,1,0,1,0,0,1,0]
=> ? ∊ {4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,10,10,10,10,10}
[2,5,4,3,1] => [2,4,3,1] => [1,1,0,1,1,0,0,0]
=> [1,1,0,1,0,0,1,0]
=> ? ∊ {4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,10,10,10,10,10}
[3,1,2,4,5] => [3,1,2,4] => [1,1,1,0,0,0,1,0]
=> [1,0,1,0,1,1,0,0]
=> ? ∊ {4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,10,10,10,10,10}
[3,1,2,5,4] => [3,1,2,4] => [1,1,1,0,0,0,1,0]
=> [1,0,1,0,1,1,0,0]
=> ? ∊ {4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,10,10,10,10,10}
[3,1,4,2,5] => [3,1,4,2] => [1,1,1,0,0,1,0,0]
=> [1,0,1,1,0,1,0,0]
=> ? ∊ {4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,10,10,10,10,10}
[3,1,4,5,2] => [3,1,4,2] => [1,1,1,0,0,1,0,0]
=> [1,0,1,1,0,1,0,0]
=> ? ∊ {4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,10,10,10,10,10}
[3,1,5,2,4] => [3,1,2,4] => [1,1,1,0,0,0,1,0]
=> [1,0,1,0,1,1,0,0]
=> ? ∊ {4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,10,10,10,10,10}
[3,1,5,4,2] => [3,1,4,2] => [1,1,1,0,0,1,0,0]
=> [1,0,1,1,0,1,0,0]
=> ? ∊ {4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,10,10,10,10,10}
[3,2,1,4,5] => [3,2,1,4] => [1,1,1,0,0,0,1,0]
=> [1,0,1,0,1,1,0,0]
=> ? ∊ {4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,10,10,10,10,10}
[3,2,1,5,4] => [3,2,1,4] => [1,1,1,0,0,0,1,0]
=> [1,0,1,0,1,1,0,0]
=> ? ∊ {4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,10,10,10,10,10}
[3,2,4,1,5] => [3,2,4,1] => [1,1,1,0,0,1,0,0]
=> [1,0,1,1,0,1,0,0]
=> ? ∊ {4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,10,10,10,10,10}
[3,2,4,5,1] => [3,2,4,1] => [1,1,1,0,0,1,0,0]
=> [1,0,1,1,0,1,0,0]
=> ? ∊ {4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,10,10,10,10,10}
[3,2,5,1,4] => [3,2,1,4] => [1,1,1,0,0,0,1,0]
=> [1,0,1,0,1,1,0,0]
=> ? ∊ {4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,10,10,10,10,10}
[3,2,5,4,1] => [3,2,4,1] => [1,1,1,0,0,1,0,0]
=> [1,0,1,1,0,1,0,0]
=> ? ∊ {4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,10,10,10,10,10}
[3,4,1,2,5] => [3,4,1,2] => [1,1,1,0,1,0,0,0]
=> [1,1,0,1,0,1,0,0]
=> ? ∊ {4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,10,10,10,10,10}
[3,4,1,5,2] => [3,4,1,2] => [1,1,1,0,1,0,0,0]
=> [1,1,0,1,0,1,0,0]
=> ? ∊ {4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,10,10,10,10,10}
[3,4,2,1,5] => [3,4,2,1] => [1,1,1,0,1,0,0,0]
=> [1,1,0,1,0,1,0,0]
=> ? ∊ {4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,10,10,10,10,10}
[3,4,2,5,1] => [3,4,2,1] => [1,1,1,0,1,0,0,0]
=> [1,1,0,1,0,1,0,0]
=> ? ∊ {4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,10,10,10,10,10}
[3,4,5,1,2] => [3,4,1,2] => [1,1,1,0,1,0,0,0]
=> [1,1,0,1,0,1,0,0]
=> ? ∊ {4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,10,10,10,10,10}
[3,4,5,2,1] => [3,4,2,1] => [1,1,1,0,1,0,0,0]
=> [1,1,0,1,0,1,0,0]
=> ? ∊ {4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,10,10,10,10,10}
[3,5,1,2,4] => [3,1,2,4] => [1,1,1,0,0,0,1,0]
=> [1,0,1,0,1,1,0,0]
=> ? ∊ {4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,10,10,10,10,10}
[3,5,1,4,2] => [3,1,4,2] => [1,1,1,0,0,1,0,0]
=> [1,0,1,1,0,1,0,0]
=> ? ∊ {4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,10,10,10,10,10}
[3,5,2,1,4] => [3,2,1,4] => [1,1,1,0,0,0,1,0]
=> [1,0,1,0,1,1,0,0]
=> ? ∊ {4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,10,10,10,10,10}
[3,5,2,4,1] => [3,2,4,1] => [1,1,1,0,0,1,0,0]
=> [1,0,1,1,0,1,0,0]
=> ? ∊ {4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,10,10,10,10,10}
[3,5,4,1,2] => [3,4,1,2] => [1,1,1,0,1,0,0,0]
=> [1,1,0,1,0,1,0,0]
=> ? ∊ {4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,10,10,10,10,10}
[3,5,4,2,1] => [3,4,2,1] => [1,1,1,0,1,0,0,0]
=> [1,1,0,1,0,1,0,0]
=> ? ∊ {4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,10,10,10,10,10}
[4,1,2,3,5] => [4,1,2,3] => [1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> ? ∊ {4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,10,10,10,10,10}
Description
The number of indecomposable modules with projective dimension 2 for Nakayama algebras with global dimension at most 2.
Mp00072: Permutations binary search tree: left to rightBinary trees
Mp00010: Binary trees to ordered tree: left child = left brotherOrdered trees
Mp00046: Ordered trees to graphGraphs
St000422: Graphs ⟶ ℤResult quality: 6% values known / values provided: 6%distinct values known / distinct values provided: 19%
Values
[1] => [.,.]
=> [[]]
=> ([(0,1)],2)
=> 2 = 0 + 2
[1,2] => [.,[.,.]]
=> [[[]]]
=> ([(0,2),(1,2)],3)
=> ? ∊ {0,0} + 2
[2,1] => [[.,.],.]
=> [[],[]]
=> ([(0,2),(1,2)],3)
=> ? ∊ {0,0} + 2
[1,2,3] => [.,[.,[.,.]]]
=> [[[[]]]]
=> ([(0,3),(1,2),(2,3)],4)
=> ? ∊ {0,0,0,1,1,1} + 2
[1,3,2] => [.,[[.,.],.]]
=> [[[],[]]]
=> ([(0,3),(1,3),(2,3)],4)
=> ? ∊ {0,0,0,1,1,1} + 2
[2,1,3] => [[.,.],[.,.]]
=> [[],[[]]]
=> ([(0,3),(1,2),(2,3)],4)
=> ? ∊ {0,0,0,1,1,1} + 2
[2,3,1] => [[.,.],[.,.]]
=> [[],[[]]]
=> ([(0,3),(1,2),(2,3)],4)
=> ? ∊ {0,0,0,1,1,1} + 2
[3,1,2] => [[.,[.,.]],.]
=> [[[]],[]]
=> ([(0,3),(1,2),(2,3)],4)
=> ? ∊ {0,0,0,1,1,1} + 2
[3,2,1] => [[[.,.],.],.]
=> [[],[],[]]
=> ([(0,3),(1,3),(2,3)],4)
=> ? ∊ {0,0,0,1,1,1} + 2
[1,2,3,4] => [.,[.,[.,[.,.]]]]
=> [[[[[]]]]]
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ? ∊ {0,0,0,0,1,1,1,1,2,2,2,2,2,2,3,3,3,3,4,4,4,4} + 2
[1,2,4,3] => [.,[.,[[.,.],.]]]
=> [[[[],[]]]]
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> ? ∊ {0,0,0,0,1,1,1,1,2,2,2,2,2,2,3,3,3,3,4,4,4,4} + 2
[1,3,2,4] => [.,[[.,.],[.,.]]]
=> [[[],[[]]]]
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> ? ∊ {0,0,0,0,1,1,1,1,2,2,2,2,2,2,3,3,3,3,4,4,4,4} + 2
[1,3,4,2] => [.,[[.,.],[.,.]]]
=> [[[],[[]]]]
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> ? ∊ {0,0,0,0,1,1,1,1,2,2,2,2,2,2,3,3,3,3,4,4,4,4} + 2
[1,4,2,3] => [.,[[.,[.,.]],.]]
=> [[[[]],[]]]
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> ? ∊ {0,0,0,0,1,1,1,1,2,2,2,2,2,2,3,3,3,3,4,4,4,4} + 2
[1,4,3,2] => [.,[[[.,.],.],.]]
=> [[[],[],[]]]
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 4 = 2 + 2
[2,1,3,4] => [[.,.],[.,[.,.]]]
=> [[],[[[]]]]
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ? ∊ {0,0,0,0,1,1,1,1,2,2,2,2,2,2,3,3,3,3,4,4,4,4} + 2
[2,1,4,3] => [[.,.],[[.,.],.]]
=> [[],[[],[]]]
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> ? ∊ {0,0,0,0,1,1,1,1,2,2,2,2,2,2,3,3,3,3,4,4,4,4} + 2
[2,3,1,4] => [[.,.],[.,[.,.]]]
=> [[],[[[]]]]
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ? ∊ {0,0,0,0,1,1,1,1,2,2,2,2,2,2,3,3,3,3,4,4,4,4} + 2
[2,3,4,1] => [[.,.],[.,[.,.]]]
=> [[],[[[]]]]
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ? ∊ {0,0,0,0,1,1,1,1,2,2,2,2,2,2,3,3,3,3,4,4,4,4} + 2
[2,4,1,3] => [[.,.],[[.,.],.]]
=> [[],[[],[]]]
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> ? ∊ {0,0,0,0,1,1,1,1,2,2,2,2,2,2,3,3,3,3,4,4,4,4} + 2
[2,4,3,1] => [[.,.],[[.,.],.]]
=> [[],[[],[]]]
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> ? ∊ {0,0,0,0,1,1,1,1,2,2,2,2,2,2,3,3,3,3,4,4,4,4} + 2
[3,1,2,4] => [[.,[.,.]],[.,.]]
=> [[[]],[[]]]
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ? ∊ {0,0,0,0,1,1,1,1,2,2,2,2,2,2,3,3,3,3,4,4,4,4} + 2
[3,1,4,2] => [[.,[.,.]],[.,.]]
=> [[[]],[[]]]
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ? ∊ {0,0,0,0,1,1,1,1,2,2,2,2,2,2,3,3,3,3,4,4,4,4} + 2
[3,2,1,4] => [[[.,.],.],[.,.]]
=> [[],[],[[]]]
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> ? ∊ {0,0,0,0,1,1,1,1,2,2,2,2,2,2,3,3,3,3,4,4,4,4} + 2
[3,2,4,1] => [[[.,.],.],[.,.]]
=> [[],[],[[]]]
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> ? ∊ {0,0,0,0,1,1,1,1,2,2,2,2,2,2,3,3,3,3,4,4,4,4} + 2
[3,4,1,2] => [[.,[.,.]],[.,.]]
=> [[[]],[[]]]
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ? ∊ {0,0,0,0,1,1,1,1,2,2,2,2,2,2,3,3,3,3,4,4,4,4} + 2
[3,4,2,1] => [[[.,.],.],[.,.]]
=> [[],[],[[]]]
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> ? ∊ {0,0,0,0,1,1,1,1,2,2,2,2,2,2,3,3,3,3,4,4,4,4} + 2
[4,1,2,3] => [[.,[.,[.,.]]],.]
=> [[[[]]],[]]
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ? ∊ {0,0,0,0,1,1,1,1,2,2,2,2,2,2,3,3,3,3,4,4,4,4} + 2
[4,1,3,2] => [[.,[[.,.],.]],.]
=> [[[],[]],[]]
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> ? ∊ {0,0,0,0,1,1,1,1,2,2,2,2,2,2,3,3,3,3,4,4,4,4} + 2
[4,2,1,3] => [[[.,.],[.,.]],.]
=> [[],[[]],[]]
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> ? ∊ {0,0,0,0,1,1,1,1,2,2,2,2,2,2,3,3,3,3,4,4,4,4} + 2
[4,2,3,1] => [[[.,.],[.,.]],.]
=> [[],[[]],[]]
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> ? ∊ {0,0,0,0,1,1,1,1,2,2,2,2,2,2,3,3,3,3,4,4,4,4} + 2
[4,3,1,2] => [[[.,[.,.]],.],.]
=> [[[]],[],[]]
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> ? ∊ {0,0,0,0,1,1,1,1,2,2,2,2,2,2,3,3,3,3,4,4,4,4} + 2
[4,3,2,1] => [[[[.,.],.],.],.]
=> [[],[],[],[]]
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 4 = 2 + 2
[1,2,3,4,5] => [.,[.,[.,[.,[.,.]]]]]
=> [[[[[[]]]]]]
=> ([(0,5),(1,4),(2,3),(2,4),(3,5)],6)
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,10,10,10,10,10} + 2
[1,2,3,5,4] => [.,[.,[.,[[.,.],.]]]]
=> [[[[[],[]]]]]
=> ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,10,10,10,10,10} + 2
[1,2,4,3,5] => [.,[.,[[.,.],[.,.]]]]
=> [[[[],[[]]]]]
=> ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,10,10,10,10,10} + 2
[1,2,4,5,3] => [.,[.,[[.,.],[.,.]]]]
=> [[[[],[[]]]]]
=> ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,10,10,10,10,10} + 2
[1,2,5,3,4] => [.,[.,[[.,[.,.]],.]]]
=> [[[[[]],[]]]]
=> ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,10,10,10,10,10} + 2
[1,2,5,4,3] => [.,[.,[[[.,.],.],.]]]
=> [[[[],[],[]]]]
=> ([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,10,10,10,10,10} + 2
[1,3,2,4,5] => [.,[[.,.],[.,[.,.]]]]
=> [[[],[[[]]]]]
=> ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,10,10,10,10,10} + 2
[1,3,2,5,4] => [.,[[.,.],[[.,.],.]]]
=> [[[],[[],[]]]]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> 6 = 4 + 2
[1,3,4,2,5] => [.,[[.,.],[.,[.,.]]]]
=> [[[],[[[]]]]]
=> ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,10,10,10,10,10} + 2
[1,3,4,5,2] => [.,[[.,.],[.,[.,.]]]]
=> [[[],[[[]]]]]
=> ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,10,10,10,10,10} + 2
[1,3,5,2,4] => [.,[[.,.],[[.,.],.]]]
=> [[[],[[],[]]]]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> 6 = 4 + 2
[1,3,5,4,2] => [.,[[.,.],[[.,.],.]]]
=> [[[],[[],[]]]]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> 6 = 4 + 2
[1,4,2,3,5] => [.,[[.,[.,.]],[.,.]]]
=> [[[[]],[[]]]]
=> ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,10,10,10,10,10} + 2
[1,4,2,5,3] => [.,[[.,[.,.]],[.,.]]]
=> [[[[]],[[]]]]
=> ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,10,10,10,10,10} + 2
[1,4,3,2,5] => [.,[[[.,.],.],[.,.]]]
=> [[[],[],[[]]]]
=> ([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,10,10,10,10,10} + 2
[1,4,3,5,2] => [.,[[[.,.],.],[.,.]]]
=> [[[],[],[[]]]]
=> ([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,10,10,10,10,10} + 2
[1,4,5,2,3] => [.,[[.,[.,.]],[.,.]]]
=> [[[[]],[[]]]]
=> ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,10,10,10,10,10} + 2
[1,4,5,3,2] => [.,[[[.,.],.],[.,.]]]
=> [[[],[],[[]]]]
=> ([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,10,10,10,10,10} + 2
[1,5,2,3,4] => [.,[[.,[.,[.,.]]],.]]
=> [[[[[]]],[]]]
=> ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,10,10,10,10,10} + 2
[1,5,2,4,3] => [.,[[.,[[.,.],.]],.]]
=> [[[[],[]],[]]]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> 6 = 4 + 2
[1,5,3,2,4] => [.,[[[.,.],[.,.]],.]]
=> [[[],[[]],[]]]
=> ([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,10,10,10,10,10} + 2
[1,5,3,4,2] => [.,[[[.,.],[.,.]],.]]
=> [[[],[[]],[]]]
=> ([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,10,10,10,10,10} + 2
[1,5,4,2,3] => [.,[[[.,[.,.]],.],.]]
=> [[[[]],[],[]]]
=> ([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,10,10,10,10,10} + 2
[1,5,4,3,2] => [.,[[[[.,.],.],.],.]]
=> [[[],[],[],[]]]
=> ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,10,10,10,10,10} + 2
[3,2,1,5,4] => [[[.,.],.],[[.,.],.]]
=> [[],[],[[],[]]]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> 6 = 4 + 2
[3,2,5,1,4] => [[[.,.],.],[[.,.],.]]
=> [[],[],[[],[]]]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> 6 = 4 + 2
[3,2,5,4,1] => [[[.,.],.],[[.,.],.]]
=> [[],[],[[],[]]]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> 6 = 4 + 2
[3,5,2,1,4] => [[[.,.],.],[[.,.],.]]
=> [[],[],[[],[]]]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> 6 = 4 + 2
[3,5,2,4,1] => [[[.,.],.],[[.,.],.]]
=> [[],[],[[],[]]]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> 6 = 4 + 2
[3,5,4,2,1] => [[[.,.],.],[[.,.],.]]
=> [[],[],[[],[]]]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> 6 = 4 + 2
[5,2,1,4,3] => [[[.,.],[[.,.],.]],.]
=> [[],[[],[]],[]]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> 6 = 4 + 2
[5,2,4,1,3] => [[[.,.],[[.,.],.]],.]
=> [[],[[],[]],[]]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> 6 = 4 + 2
[5,2,4,3,1] => [[[.,.],[[.,.],.]],.]
=> [[],[[],[]],[]]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> 6 = 4 + 2
[5,4,1,3,2] => [[[.,[[.,.],.]],.],.]
=> [[[],[]],[],[]]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> 6 = 4 + 2
[1,2,5,3,4,6] => [.,[.,[[.,[.,.]],[.,.]]]]
=> [[[[[]],[[]]]]]
=> ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7)
=> 8 = 6 + 2
[1,2,5,3,6,4] => [.,[.,[[.,[.,.]],[.,.]]]]
=> [[[[[]],[[]]]]]
=> ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7)
=> 8 = 6 + 2
[1,2,5,6,3,4] => [.,[.,[[.,[.,.]],[.,.]]]]
=> [[[[[]],[[]]]]]
=> ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7)
=> 8 = 6 + 2
[2,1,5,3,4,6] => [[.,.],[[.,[.,.]],[.,.]]]
=> [[],[[[]],[[]]]]
=> ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7)
=> 8 = 6 + 2
[2,1,5,3,6,4] => [[.,.],[[.,[.,.]],[.,.]]]
=> [[],[[[]],[[]]]]
=> ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7)
=> 8 = 6 + 2
[2,1,5,6,3,4] => [[.,.],[[.,[.,.]],[.,.]]]
=> [[],[[[]],[[]]]]
=> ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7)
=> 8 = 6 + 2
[2,5,1,3,4,6] => [[.,.],[[.,[.,.]],[.,.]]]
=> [[],[[[]],[[]]]]
=> ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7)
=> 8 = 6 + 2
[2,5,1,3,6,4] => [[.,.],[[.,[.,.]],[.,.]]]
=> [[],[[[]],[[]]]]
=> ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7)
=> 8 = 6 + 2
[2,5,1,6,3,4] => [[.,.],[[.,[.,.]],[.,.]]]
=> [[],[[[]],[[]]]]
=> ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7)
=> 8 = 6 + 2
[2,5,3,1,4,6] => [[.,.],[[.,[.,.]],[.,.]]]
=> [[],[[[]],[[]]]]
=> ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7)
=> 8 = 6 + 2
[2,5,3,1,6,4] => [[.,.],[[.,[.,.]],[.,.]]]
=> [[],[[[]],[[]]]]
=> ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7)
=> 8 = 6 + 2
[2,5,3,4,1,6] => [[.,.],[[.,[.,.]],[.,.]]]
=> [[],[[[]],[[]]]]
=> ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7)
=> 8 = 6 + 2
[2,5,3,4,6,1] => [[.,.],[[.,[.,.]],[.,.]]]
=> [[],[[[]],[[]]]]
=> ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7)
=> 8 = 6 + 2
[2,5,3,6,1,4] => [[.,.],[[.,[.,.]],[.,.]]]
=> [[],[[[]],[[]]]]
=> ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7)
=> 8 = 6 + 2
[2,5,3,6,4,1] => [[.,.],[[.,[.,.]],[.,.]]]
=> [[],[[[]],[[]]]]
=> ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7)
=> 8 = 6 + 2
[2,5,6,1,3,4] => [[.,.],[[.,[.,.]],[.,.]]]
=> [[],[[[]],[[]]]]
=> ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7)
=> 8 = 6 + 2
[2,5,6,3,1,4] => [[.,.],[[.,[.,.]],[.,.]]]
=> [[],[[[]],[[]]]]
=> ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7)
=> 8 = 6 + 2
[2,5,6,3,4,1] => [[.,.],[[.,[.,.]],[.,.]]]
=> [[],[[[]],[[]]]]
=> ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7)
=> 8 = 6 + 2
[5,3,1,2,4,6] => [[[.,[.,.]],[.,.]],[.,.]]
=> [[[]],[[]],[[]]]
=> ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7)
=> 8 = 6 + 2
[5,3,1,2,6,4] => [[[.,[.,.]],[.,.]],[.,.]]
=> [[[]],[[]],[[]]]
=> ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7)
=> 8 = 6 + 2
[5,3,1,4,2,6] => [[[.,[.,.]],[.,.]],[.,.]]
=> [[[]],[[]],[[]]]
=> ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7)
=> 8 = 6 + 2
[5,3,1,4,6,2] => [[[.,[.,.]],[.,.]],[.,.]]
=> [[[]],[[]],[[]]]
=> ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7)
=> 8 = 6 + 2
[5,3,1,6,2,4] => [[[.,[.,.]],[.,.]],[.,.]]
=> [[[]],[[]],[[]]]
=> ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7)
=> 8 = 6 + 2
[5,3,1,6,4,2] => [[[.,[.,.]],[.,.]],[.,.]]
=> [[[]],[[]],[[]]]
=> ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7)
=> 8 = 6 + 2
[5,3,4,1,2,6] => [[[.,[.,.]],[.,.]],[.,.]]
=> [[[]],[[]],[[]]]
=> ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7)
=> 8 = 6 + 2
[5,3,4,1,6,2] => [[[.,[.,.]],[.,.]],[.,.]]
=> [[[]],[[]],[[]]]
=> ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7)
=> 8 = 6 + 2
[5,3,4,6,1,2] => [[[.,[.,.]],[.,.]],[.,.]]
=> [[[]],[[]],[[]]]
=> ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7)
=> 8 = 6 + 2
[5,3,6,1,2,4] => [[[.,[.,.]],[.,.]],[.,.]]
=> [[[]],[[]],[[]]]
=> ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7)
=> 8 = 6 + 2
[5,3,6,1,4,2] => [[[.,[.,.]],[.,.]],[.,.]]
=> [[[]],[[]],[[]]]
=> ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7)
=> 8 = 6 + 2
[5,3,6,4,1,2] => [[[.,[.,.]],[.,.]],[.,.]]
=> [[[]],[[]],[[]]]
=> ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7)
=> 8 = 6 + 2
[5,6,3,1,2,4] => [[[.,[.,.]],[.,.]],[.,.]]
=> [[[]],[[]],[[]]]
=> ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7)
=> 8 = 6 + 2
[5,6,3,1,4,2] => [[[.,[.,.]],[.,.]],[.,.]]
=> [[[]],[[]],[[]]]
=> ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7)
=> 8 = 6 + 2
[5,6,3,4,1,2] => [[[.,[.,.]],[.,.]],[.,.]]
=> [[[]],[[]],[[]]]
=> ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7)
=> 8 = 6 + 2
Description
The energy of a graph, if it is integral. The energy of a graph is the sum of the absolute values of its eigenvalues. This statistic is only defined for graphs with integral energy. It is known, that the energy is never an odd integer [2]. In fact, it is never the square root of an odd integer [3]. The energy of a graph is the sum of the energies of the connected components of a graph. The energy of the complete graph Kn equals 2n2. For this reason, we do not define the energy of the empty graph.
Mp00252: Permutations restrictionPermutations
Mp00065: Permutations permutation posetPosets
St001879: Posets ⟶ ℤResult quality: 6% values known / values provided: 6%distinct values known / distinct values provided: 29%
Values
[1] => [] => ([],0)
=> ? = 0
[1,2] => [1] => ([],1)
=> ? ∊ {0,0}
[2,1] => [1] => ([],1)
=> ? ∊ {0,0}
[1,2,3] => [1,2] => ([(0,1)],2)
=> ? ∊ {0,0,0,1,1,1}
[1,3,2] => [1,2] => ([(0,1)],2)
=> ? ∊ {0,0,0,1,1,1}
[2,1,3] => [2,1] => ([],2)
=> ? ∊ {0,0,0,1,1,1}
[2,3,1] => [2,1] => ([],2)
=> ? ∊ {0,0,0,1,1,1}
[3,1,2] => [1,2] => ([(0,1)],2)
=> ? ∊ {0,0,0,1,1,1}
[3,2,1] => [2,1] => ([],2)
=> ? ∊ {0,0,0,1,1,1}
[1,2,3,4] => [1,2,3] => ([(0,2),(2,1)],3)
=> 2
[1,2,4,3] => [1,2,3] => ([(0,2),(2,1)],3)
=> 2
[1,3,2,4] => [1,3,2] => ([(0,1),(0,2)],3)
=> ? ∊ {0,0,0,0,1,1,1,1,2,2,2,2,3,3,3,3,4,4,4,4}
[1,3,4,2] => [1,3,2] => ([(0,1),(0,2)],3)
=> ? ∊ {0,0,0,0,1,1,1,1,2,2,2,2,3,3,3,3,4,4,4,4}
[1,4,2,3] => [1,2,3] => ([(0,2),(2,1)],3)
=> 2
[1,4,3,2] => [1,3,2] => ([(0,1),(0,2)],3)
=> ? ∊ {0,0,0,0,1,1,1,1,2,2,2,2,3,3,3,3,4,4,4,4}
[2,1,3,4] => [2,1,3] => ([(0,2),(1,2)],3)
=> ? ∊ {0,0,0,0,1,1,1,1,2,2,2,2,3,3,3,3,4,4,4,4}
[2,1,4,3] => [2,1,3] => ([(0,2),(1,2)],3)
=> ? ∊ {0,0,0,0,1,1,1,1,2,2,2,2,3,3,3,3,4,4,4,4}
[2,3,1,4] => [2,3,1] => ([(1,2)],3)
=> ? ∊ {0,0,0,0,1,1,1,1,2,2,2,2,3,3,3,3,4,4,4,4}
[2,3,4,1] => [2,3,1] => ([(1,2)],3)
=> ? ∊ {0,0,0,0,1,1,1,1,2,2,2,2,3,3,3,3,4,4,4,4}
[2,4,1,3] => [2,1,3] => ([(0,2),(1,2)],3)
=> ? ∊ {0,0,0,0,1,1,1,1,2,2,2,2,3,3,3,3,4,4,4,4}
[2,4,3,1] => [2,3,1] => ([(1,2)],3)
=> ? ∊ {0,0,0,0,1,1,1,1,2,2,2,2,3,3,3,3,4,4,4,4}
[3,1,2,4] => [3,1,2] => ([(1,2)],3)
=> ? ∊ {0,0,0,0,1,1,1,1,2,2,2,2,3,3,3,3,4,4,4,4}
[3,1,4,2] => [3,1,2] => ([(1,2)],3)
=> ? ∊ {0,0,0,0,1,1,1,1,2,2,2,2,3,3,3,3,4,4,4,4}
[3,2,1,4] => [3,2,1] => ([],3)
=> ? ∊ {0,0,0,0,1,1,1,1,2,2,2,2,3,3,3,3,4,4,4,4}
[3,2,4,1] => [3,2,1] => ([],3)
=> ? ∊ {0,0,0,0,1,1,1,1,2,2,2,2,3,3,3,3,4,4,4,4}
[3,4,1,2] => [3,1,2] => ([(1,2)],3)
=> ? ∊ {0,0,0,0,1,1,1,1,2,2,2,2,3,3,3,3,4,4,4,4}
[3,4,2,1] => [3,2,1] => ([],3)
=> ? ∊ {0,0,0,0,1,1,1,1,2,2,2,2,3,3,3,3,4,4,4,4}
[4,1,2,3] => [1,2,3] => ([(0,2),(2,1)],3)
=> 2
[4,1,3,2] => [1,3,2] => ([(0,1),(0,2)],3)
=> ? ∊ {0,0,0,0,1,1,1,1,2,2,2,2,3,3,3,3,4,4,4,4}
[4,2,1,3] => [2,1,3] => ([(0,2),(1,2)],3)
=> ? ∊ {0,0,0,0,1,1,1,1,2,2,2,2,3,3,3,3,4,4,4,4}
[4,2,3,1] => [2,3,1] => ([(1,2)],3)
=> ? ∊ {0,0,0,0,1,1,1,1,2,2,2,2,3,3,3,3,4,4,4,4}
[4,3,1,2] => [3,1,2] => ([(1,2)],3)
=> ? ∊ {0,0,0,0,1,1,1,1,2,2,2,2,3,3,3,3,4,4,4,4}
[4,3,2,1] => [3,2,1] => ([],3)
=> ? ∊ {0,0,0,0,1,1,1,1,2,2,2,2,3,3,3,3,4,4,4,4}
[1,2,3,4,5] => [1,2,3,4] => ([(0,3),(2,1),(3,2)],4)
=> 3
[1,2,3,5,4] => [1,2,3,4] => ([(0,3),(2,1),(3,2)],4)
=> 3
[1,2,4,3,5] => [1,2,4,3] => ([(0,3),(3,1),(3,2)],4)
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,10,10,10,10,10}
[1,2,4,5,3] => [1,2,4,3] => ([(0,3),(3,1),(3,2)],4)
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,10,10,10,10,10}
[1,2,5,3,4] => [1,2,3,4] => ([(0,3),(2,1),(3,2)],4)
=> 3
[1,2,5,4,3] => [1,2,4,3] => ([(0,3),(3,1),(3,2)],4)
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,10,10,10,10,10}
[1,3,2,4,5] => [1,3,2,4] => ([(0,1),(0,2),(1,3),(2,3)],4)
=> 4
[1,3,2,5,4] => [1,3,2,4] => ([(0,1),(0,2),(1,3),(2,3)],4)
=> 4
[1,3,4,2,5] => [1,3,4,2] => ([(0,2),(0,3),(3,1)],4)
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,10,10,10,10,10}
[1,3,4,5,2] => [1,3,4,2] => ([(0,2),(0,3),(3,1)],4)
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,10,10,10,10,10}
[1,3,5,2,4] => [1,3,2,4] => ([(0,1),(0,2),(1,3),(2,3)],4)
=> 4
[1,3,5,4,2] => [1,3,4,2] => ([(0,2),(0,3),(3,1)],4)
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,10,10,10,10,10}
[1,4,2,3,5] => [1,4,2,3] => ([(0,2),(0,3),(3,1)],4)
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,10,10,10,10,10}
[1,4,2,5,3] => [1,4,2,3] => ([(0,2),(0,3),(3,1)],4)
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,10,10,10,10,10}
[1,4,3,2,5] => [1,4,3,2] => ([(0,1),(0,2),(0,3)],4)
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,10,10,10,10,10}
[1,4,3,5,2] => [1,4,3,2] => ([(0,1),(0,2),(0,3)],4)
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,10,10,10,10,10}
[1,4,5,2,3] => [1,4,2,3] => ([(0,2),(0,3),(3,1)],4)
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,10,10,10,10,10}
[1,4,5,3,2] => [1,4,3,2] => ([(0,1),(0,2),(0,3)],4)
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,10,10,10,10,10}
[1,5,2,3,4] => [1,2,3,4] => ([(0,3),(2,1),(3,2)],4)
=> 3
[1,5,2,4,3] => [1,2,4,3] => ([(0,3),(3,1),(3,2)],4)
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,10,10,10,10,10}
[1,5,3,2,4] => [1,3,2,4] => ([(0,1),(0,2),(1,3),(2,3)],4)
=> 4
[1,5,3,4,2] => [1,3,4,2] => ([(0,2),(0,3),(3,1)],4)
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,10,10,10,10,10}
[1,5,4,2,3] => [1,4,2,3] => ([(0,2),(0,3),(3,1)],4)
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,10,10,10,10,10}
[1,5,4,3,2] => [1,4,3,2] => ([(0,1),(0,2),(0,3)],4)
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,10,10,10,10,10}
[2,1,3,4,5] => [2,1,3,4] => ([(0,3),(1,3),(3,2)],4)
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,10,10,10,10,10}
[2,1,3,5,4] => [2,1,3,4] => ([(0,3),(1,3),(3,2)],4)
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,10,10,10,10,10}
[2,1,4,3,5] => [2,1,4,3] => ([(0,2),(0,3),(1,2),(1,3)],4)
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,10,10,10,10,10}
[2,1,4,5,3] => [2,1,4,3] => ([(0,2),(0,3),(1,2),(1,3)],4)
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,10,10,10,10,10}
[2,1,5,3,4] => [2,1,3,4] => ([(0,3),(1,3),(3,2)],4)
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,10,10,10,10,10}
[5,1,2,3,4] => [1,2,3,4] => ([(0,3),(2,1),(3,2)],4)
=> 3
[5,1,3,2,4] => [1,3,2,4] => ([(0,1),(0,2),(1,3),(2,3)],4)
=> 4
[1,2,3,4,5,6] => [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 4
[1,2,3,4,6,5] => [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 4
[1,2,3,6,4,5] => [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 4
[1,2,4,3,5,6] => [1,2,4,3,5] => ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> 5
[1,2,4,3,6,5] => [1,2,4,3,5] => ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> 5
[1,2,4,6,3,5] => [1,2,4,3,5] => ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> 5
[1,2,6,3,4,5] => [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 4
[1,2,6,4,3,5] => [1,2,4,3,5] => ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> 5
[1,3,2,4,5,6] => [1,3,2,4,5] => ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> 5
[1,3,2,4,6,5] => [1,3,2,4,5] => ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> 5
[1,3,2,6,4,5] => [1,3,2,4,5] => ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> 5
[1,3,4,2,5,6] => [1,3,4,2,5] => ([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
=> 6
[1,3,4,2,6,5] => [1,3,4,2,5] => ([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
=> 6
[1,3,4,6,2,5] => [1,3,4,2,5] => ([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
=> 6
[1,3,6,2,4,5] => [1,3,2,4,5] => ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> 5
[1,3,6,4,2,5] => [1,3,4,2,5] => ([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
=> 6
[1,4,2,3,5,6] => [1,4,2,3,5] => ([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
=> 6
[1,4,2,3,6,5] => [1,4,2,3,5] => ([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
=> 6
[1,4,2,6,3,5] => [1,4,2,3,5] => ([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
=> 6
[1,4,3,2,5,6] => [1,4,3,2,5] => ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> 9
[1,4,3,2,6,5] => [1,4,3,2,5] => ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> 9
[1,4,3,6,2,5] => [1,4,3,2,5] => ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> 9
[1,4,6,2,3,5] => [1,4,2,3,5] => ([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
=> 6
[1,4,6,3,2,5] => [1,4,3,2,5] => ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> 9
[1,6,2,3,4,5] => [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 4
[1,6,2,4,3,5] => [1,2,4,3,5] => ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> 5
[1,6,3,2,4,5] => [1,3,2,4,5] => ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> 5
[1,6,3,4,2,5] => [1,3,4,2,5] => ([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
=> 6
[1,6,4,2,3,5] => [1,4,2,3,5] => ([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
=> 6
[1,6,4,3,2,5] => [1,4,3,2,5] => ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> 9
[6,1,2,3,4,5] => [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 4
[6,1,2,4,3,5] => [1,2,4,3,5] => ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> 5
[6,1,3,2,4,5] => [1,3,2,4,5] => ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> 5
[6,1,3,4,2,5] => [1,3,4,2,5] => ([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
=> 6
[6,1,4,2,3,5] => [1,4,2,3,5] => ([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
=> 6
[6,1,4,3,2,5] => [1,4,3,2,5] => ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> 9
Description
The number of indecomposable summands of the top of the first syzygy of the dual of the regular module in the incidence algebra of the lattice.
Matching statistic: St001880
Mp00252: Permutations restrictionPermutations
Mp00065: Permutations permutation posetPosets
St001880: Posets ⟶ ℤResult quality: 6% values known / values provided: 6%distinct values known / distinct values provided: 19%
Values
[1] => [] => ([],0)
=> ? = 0
[1,2] => [1] => ([],1)
=> ? ∊ {0,0}
[2,1] => [1] => ([],1)
=> ? ∊ {0,0}
[1,2,3] => [1,2] => ([(0,1)],2)
=> ? ∊ {0,0,0,1,1,1}
[1,3,2] => [1,2] => ([(0,1)],2)
=> ? ∊ {0,0,0,1,1,1}
[2,1,3] => [2,1] => ([],2)
=> ? ∊ {0,0,0,1,1,1}
[2,3,1] => [2,1] => ([],2)
=> ? ∊ {0,0,0,1,1,1}
[3,1,2] => [1,2] => ([(0,1)],2)
=> ? ∊ {0,0,0,1,1,1}
[3,2,1] => [2,1] => ([],2)
=> ? ∊ {0,0,0,1,1,1}
[1,2,3,4] => [1,2,3] => ([(0,2),(2,1)],3)
=> 3
[1,2,4,3] => [1,2,3] => ([(0,2),(2,1)],3)
=> 3
[1,3,2,4] => [1,3,2] => ([(0,1),(0,2)],3)
=> ? ∊ {0,0,0,0,1,1,1,1,2,2,2,2,2,2,2,2,4,4,4,4}
[1,3,4,2] => [1,3,2] => ([(0,1),(0,2)],3)
=> ? ∊ {0,0,0,0,1,1,1,1,2,2,2,2,2,2,2,2,4,4,4,4}
[1,4,2,3] => [1,2,3] => ([(0,2),(2,1)],3)
=> 3
[1,4,3,2] => [1,3,2] => ([(0,1),(0,2)],3)
=> ? ∊ {0,0,0,0,1,1,1,1,2,2,2,2,2,2,2,2,4,4,4,4}
[2,1,3,4] => [2,1,3] => ([(0,2),(1,2)],3)
=> ? ∊ {0,0,0,0,1,1,1,1,2,2,2,2,2,2,2,2,4,4,4,4}
[2,1,4,3] => [2,1,3] => ([(0,2),(1,2)],3)
=> ? ∊ {0,0,0,0,1,1,1,1,2,2,2,2,2,2,2,2,4,4,4,4}
[2,3,1,4] => [2,3,1] => ([(1,2)],3)
=> ? ∊ {0,0,0,0,1,1,1,1,2,2,2,2,2,2,2,2,4,4,4,4}
[2,3,4,1] => [2,3,1] => ([(1,2)],3)
=> ? ∊ {0,0,0,0,1,1,1,1,2,2,2,2,2,2,2,2,4,4,4,4}
[2,4,1,3] => [2,1,3] => ([(0,2),(1,2)],3)
=> ? ∊ {0,0,0,0,1,1,1,1,2,2,2,2,2,2,2,2,4,4,4,4}
[2,4,3,1] => [2,3,1] => ([(1,2)],3)
=> ? ∊ {0,0,0,0,1,1,1,1,2,2,2,2,2,2,2,2,4,4,4,4}
[3,1,2,4] => [3,1,2] => ([(1,2)],3)
=> ? ∊ {0,0,0,0,1,1,1,1,2,2,2,2,2,2,2,2,4,4,4,4}
[3,1,4,2] => [3,1,2] => ([(1,2)],3)
=> ? ∊ {0,0,0,0,1,1,1,1,2,2,2,2,2,2,2,2,4,4,4,4}
[3,2,1,4] => [3,2,1] => ([],3)
=> ? ∊ {0,0,0,0,1,1,1,1,2,2,2,2,2,2,2,2,4,4,4,4}
[3,2,4,1] => [3,2,1] => ([],3)
=> ? ∊ {0,0,0,0,1,1,1,1,2,2,2,2,2,2,2,2,4,4,4,4}
[3,4,1,2] => [3,1,2] => ([(1,2)],3)
=> ? ∊ {0,0,0,0,1,1,1,1,2,2,2,2,2,2,2,2,4,4,4,4}
[3,4,2,1] => [3,2,1] => ([],3)
=> ? ∊ {0,0,0,0,1,1,1,1,2,2,2,2,2,2,2,2,4,4,4,4}
[4,1,2,3] => [1,2,3] => ([(0,2),(2,1)],3)
=> 3
[4,1,3,2] => [1,3,2] => ([(0,1),(0,2)],3)
=> ? ∊ {0,0,0,0,1,1,1,1,2,2,2,2,2,2,2,2,4,4,4,4}
[4,2,1,3] => [2,1,3] => ([(0,2),(1,2)],3)
=> ? ∊ {0,0,0,0,1,1,1,1,2,2,2,2,2,2,2,2,4,4,4,4}
[4,2,3,1] => [2,3,1] => ([(1,2)],3)
=> ? ∊ {0,0,0,0,1,1,1,1,2,2,2,2,2,2,2,2,4,4,4,4}
[4,3,1,2] => [3,1,2] => ([(1,2)],3)
=> ? ∊ {0,0,0,0,1,1,1,1,2,2,2,2,2,2,2,2,4,4,4,4}
[4,3,2,1] => [3,2,1] => ([],3)
=> ? ∊ {0,0,0,0,1,1,1,1,2,2,2,2,2,2,2,2,4,4,4,4}
[1,2,3,4,5] => [1,2,3,4] => ([(0,3),(2,1),(3,2)],4)
=> 4
[1,2,3,5,4] => [1,2,3,4] => ([(0,3),(2,1),(3,2)],4)
=> 4
[1,2,4,3,5] => [1,2,4,3] => ([(0,3),(3,1),(3,2)],4)
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,10,10,10,10,10}
[1,2,4,5,3] => [1,2,4,3] => ([(0,3),(3,1),(3,2)],4)
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,10,10,10,10,10}
[1,2,5,3,4] => [1,2,3,4] => ([(0,3),(2,1),(3,2)],4)
=> 4
[1,2,5,4,3] => [1,2,4,3] => ([(0,3),(3,1),(3,2)],4)
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,10,10,10,10,10}
[1,3,2,4,5] => [1,3,2,4] => ([(0,1),(0,2),(1,3),(2,3)],4)
=> 4
[1,3,2,5,4] => [1,3,2,4] => ([(0,1),(0,2),(1,3),(2,3)],4)
=> 4
[1,3,4,2,5] => [1,3,4,2] => ([(0,2),(0,3),(3,1)],4)
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,10,10,10,10,10}
[1,3,4,5,2] => [1,3,4,2] => ([(0,2),(0,3),(3,1)],4)
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,10,10,10,10,10}
[1,3,5,2,4] => [1,3,2,4] => ([(0,1),(0,2),(1,3),(2,3)],4)
=> 4
[1,3,5,4,2] => [1,3,4,2] => ([(0,2),(0,3),(3,1)],4)
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,10,10,10,10,10}
[1,4,2,3,5] => [1,4,2,3] => ([(0,2),(0,3),(3,1)],4)
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,10,10,10,10,10}
[1,4,2,5,3] => [1,4,2,3] => ([(0,2),(0,3),(3,1)],4)
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,10,10,10,10,10}
[1,4,3,2,5] => [1,4,3,2] => ([(0,1),(0,2),(0,3)],4)
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,10,10,10,10,10}
[1,4,3,5,2] => [1,4,3,2] => ([(0,1),(0,2),(0,3)],4)
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,10,10,10,10,10}
[1,4,5,2,3] => [1,4,2,3] => ([(0,2),(0,3),(3,1)],4)
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,10,10,10,10,10}
[1,4,5,3,2] => [1,4,3,2] => ([(0,1),(0,2),(0,3)],4)
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,10,10,10,10,10}
[1,5,2,3,4] => [1,2,3,4] => ([(0,3),(2,1),(3,2)],4)
=> 4
[1,5,2,4,3] => [1,2,4,3] => ([(0,3),(3,1),(3,2)],4)
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,10,10,10,10,10}
[1,5,3,2,4] => [1,3,2,4] => ([(0,1),(0,2),(1,3),(2,3)],4)
=> 4
[1,5,3,4,2] => [1,3,4,2] => ([(0,2),(0,3),(3,1)],4)
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,10,10,10,10,10}
[1,5,4,2,3] => [1,4,2,3] => ([(0,2),(0,3),(3,1)],4)
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,10,10,10,10,10}
[1,5,4,3,2] => [1,4,3,2] => ([(0,1),(0,2),(0,3)],4)
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,10,10,10,10,10}
[2,1,3,4,5] => [2,1,3,4] => ([(0,3),(1,3),(3,2)],4)
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,10,10,10,10,10}
[2,1,3,5,4] => [2,1,3,4] => ([(0,3),(1,3),(3,2)],4)
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,10,10,10,10,10}
[2,1,4,3,5] => [2,1,4,3] => ([(0,2),(0,3),(1,2),(1,3)],4)
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,10,10,10,10,10}
[2,1,4,5,3] => [2,1,4,3] => ([(0,2),(0,3),(1,2),(1,3)],4)
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,10,10,10,10,10}
[2,1,5,3,4] => [2,1,3,4] => ([(0,3),(1,3),(3,2)],4)
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,10,10,10,10,10}
[5,1,2,3,4] => [1,2,3,4] => ([(0,3),(2,1),(3,2)],4)
=> 4
[5,1,3,2,4] => [1,3,2,4] => ([(0,1),(0,2),(1,3),(2,3)],4)
=> 4
[1,2,3,4,5,6] => [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 5
[1,2,3,4,6,5] => [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 5
[1,2,3,6,4,5] => [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 5
[1,2,4,3,5,6] => [1,2,4,3,5] => ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> 5
[1,2,4,3,6,5] => [1,2,4,3,5] => ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> 5
[1,2,4,6,3,5] => [1,2,4,3,5] => ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> 5
[1,2,6,3,4,5] => [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 5
[1,2,6,4,3,5] => [1,2,4,3,5] => ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> 5
[1,3,2,4,5,6] => [1,3,2,4,5] => ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> 5
[1,3,2,4,6,5] => [1,3,2,4,5] => ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> 5
[1,3,2,6,4,5] => [1,3,2,4,5] => ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> 5
[1,3,4,2,5,6] => [1,3,4,2,5] => ([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
=> 4
[1,3,4,2,6,5] => [1,3,4,2,5] => ([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
=> 4
[1,3,4,6,2,5] => [1,3,4,2,5] => ([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
=> 4
[1,3,6,2,4,5] => [1,3,2,4,5] => ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> 5
[1,3,6,4,2,5] => [1,3,4,2,5] => ([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
=> 4
[1,4,2,3,5,6] => [1,4,2,3,5] => ([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
=> 4
[1,4,2,3,6,5] => [1,4,2,3,5] => ([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
=> 4
[1,4,2,6,3,5] => [1,4,2,3,5] => ([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
=> 4
[1,4,3,2,5,6] => [1,4,3,2,5] => ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> 1
[1,4,3,2,6,5] => [1,4,3,2,5] => ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> 1
[1,4,3,6,2,5] => [1,4,3,2,5] => ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> 1
[1,4,6,2,3,5] => [1,4,2,3,5] => ([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
=> 4
[1,4,6,3,2,5] => [1,4,3,2,5] => ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> 1
[1,6,2,3,4,5] => [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 5
[1,6,2,4,3,5] => [1,2,4,3,5] => ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> 5
[1,6,3,2,4,5] => [1,3,2,4,5] => ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> 5
[1,6,3,4,2,5] => [1,3,4,2,5] => ([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
=> 4
[1,6,4,2,3,5] => [1,4,2,3,5] => ([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
=> 4
[1,6,4,3,2,5] => [1,4,3,2,5] => ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> 1
[6,1,2,3,4,5] => [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 5
[6,1,2,4,3,5] => [1,2,4,3,5] => ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> 5
[6,1,3,2,4,5] => [1,3,2,4,5] => ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> 5
[6,1,3,4,2,5] => [1,3,4,2,5] => ([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
=> 4
[6,1,4,2,3,5] => [1,4,2,3,5] => ([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
=> 4
[6,1,4,3,2,5] => [1,4,3,2,5] => ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> 1
Description
The number of 2-Gorenstein indecomposable injective modules in the incidence algebra of the lattice.
Matching statistic: St001087
Mp00063: Permutations to alternating sign matrixAlternating sign matrices
Mp00098: Alternating sign matrices link patternPerfect matchings
Mp00283: Perfect matchings non-nesting-exceedence permutationPermutations
St001087: Permutations ⟶ ℤResult quality: 3% values known / values provided: 3%distinct values known / distinct values provided: 19%
Values
[1] => [[1]]
=> [(1,2)]
=> [2,1] => 0
[1,2] => [[1,0],[0,1]]
=> [(1,4),(2,3)]
=> [3,4,2,1] => 0
[2,1] => [[0,1],[1,0]]
=> [(1,2),(3,4)]
=> [2,1,4,3] => 0
[1,2,3] => [[1,0,0],[0,1,0],[0,0,1]]
=> [(1,6),(2,5),(3,4)]
=> [4,5,6,3,2,1] => 1
[1,3,2] => [[1,0,0],[0,0,1],[0,1,0]]
=> [(1,6),(2,3),(4,5)]
=> [3,5,2,6,4,1] => 0
[2,1,3] => [[0,1,0],[1,0,0],[0,0,1]]
=> [(1,2),(3,4),(5,6)]
=> [2,1,4,3,6,5] => 1
[2,3,1] => [[0,0,1],[1,0,0],[0,1,0]]
=> [(1,6),(2,3),(4,5)]
=> [3,5,2,6,4,1] => 0
[3,1,2] => [[0,1,0],[0,0,1],[1,0,0]]
=> [(1,2),(3,4),(5,6)]
=> [2,1,4,3,6,5] => 1
[3,2,1] => [[0,0,1],[0,1,0],[1,0,0]]
=> [(1,4),(2,3),(5,6)]
=> [3,4,2,1,6,5] => 0
[1,2,3,4] => [[1,0,0,0],[0,1,0,0],[0,0,1,0],[0,0,0,1]]
=> [(1,8),(2,7),(3,6),(4,5)]
=> [5,6,7,8,4,3,2,1] => ? ∊ {0,0,0,0,1,1,1,2,2,2,2,2,3,3,3,3,4,4,4,4}
[1,2,4,3] => [[1,0,0,0],[0,1,0,0],[0,0,0,1],[0,0,1,0]]
=> [(1,8),(2,7),(3,4),(5,6)]
=> [4,6,7,3,8,5,2,1] => ? ∊ {0,0,0,0,1,1,1,2,2,2,2,2,3,3,3,3,4,4,4,4}
[1,3,2,4] => [[1,0,0,0],[0,0,1,0],[0,1,0,0],[0,0,0,1]]
=> [(1,8),(2,3),(4,5),(6,7)]
=> [3,5,2,7,4,8,6,1] => ? ∊ {0,0,0,0,1,1,1,2,2,2,2,2,3,3,3,3,4,4,4,4}
[1,3,4,2] => [[1,0,0,0],[0,0,0,1],[0,1,0,0],[0,0,1,0]]
=> [(1,8),(2,7),(3,4),(5,6)]
=> [4,6,7,3,8,5,2,1] => ? ∊ {0,0,0,0,1,1,1,2,2,2,2,2,3,3,3,3,4,4,4,4}
[1,4,2,3] => [[1,0,0,0],[0,0,1,0],[0,0,0,1],[0,1,0,0]]
=> [(1,8),(2,3),(4,5),(6,7)]
=> [3,5,2,7,4,8,6,1] => ? ∊ {0,0,0,0,1,1,1,2,2,2,2,2,3,3,3,3,4,4,4,4}
[1,4,3,2] => [[1,0,0,0],[0,0,0,1],[0,0,1,0],[0,1,0,0]]
=> [(1,8),(2,5),(3,4),(6,7)]
=> [4,5,7,3,2,8,6,1] => ? ∊ {0,0,0,0,1,1,1,2,2,2,2,2,3,3,3,3,4,4,4,4}
[2,1,3,4] => [[0,1,0,0],[1,0,0,0],[0,0,1,0],[0,0,0,1]]
=> [(1,2),(3,6),(4,5),(7,8)]
=> [2,1,5,6,4,3,8,7] => ? ∊ {0,0,0,0,1,1,1,2,2,2,2,2,3,3,3,3,4,4,4,4}
[2,1,4,3] => [[0,1,0,0],[1,0,0,0],[0,0,0,1],[0,0,1,0]]
=> [(1,2),(3,4),(5,6),(7,8)]
=> [2,1,4,3,6,5,8,7] => 2
[2,3,1,4] => [[0,0,1,0],[1,0,0,0],[0,1,0,0],[0,0,0,1]]
=> [(1,8),(2,3),(4,5),(6,7)]
=> [3,5,2,7,4,8,6,1] => ? ∊ {0,0,0,0,1,1,1,2,2,2,2,2,3,3,3,3,4,4,4,4}
[2,3,4,1] => [[0,0,0,1],[1,0,0,0],[0,1,0,0],[0,0,1,0]]
=> [(1,8),(2,3),(4,7),(5,6)]
=> [3,6,2,7,8,5,4,1] => ? ∊ {0,0,0,0,1,1,1,2,2,2,2,2,3,3,3,3,4,4,4,4}
[2,4,1,3] => [[0,0,1,0],[1,0,0,0],[0,0,0,1],[0,1,0,0]]
=> [(1,8),(2,3),(4,5),(6,7)]
=> [3,5,2,7,4,8,6,1] => ? ∊ {0,0,0,0,1,1,1,2,2,2,2,2,3,3,3,3,4,4,4,4}
[2,4,3,1] => [[0,0,0,1],[1,0,0,0],[0,0,1,0],[0,1,0,0]]
=> [(1,8),(2,3),(4,5),(6,7)]
=> [3,5,2,7,4,8,6,1] => ? ∊ {0,0,0,0,1,1,1,2,2,2,2,2,3,3,3,3,4,4,4,4}
[3,1,2,4] => [[0,1,0,0],[0,0,1,0],[1,0,0,0],[0,0,0,1]]
=> [(1,2),(3,6),(4,5),(7,8)]
=> [2,1,5,6,4,3,8,7] => ? ∊ {0,0,0,0,1,1,1,2,2,2,2,2,3,3,3,3,4,4,4,4}
[3,1,4,2] => [[0,1,0,0],[0,0,0,1],[1,0,0,0],[0,0,1,0]]
=> [(1,2),(3,4),(5,6),(7,8)]
=> [2,1,4,3,6,5,8,7] => 2
[3,2,1,4] => [[0,0,1,0],[0,1,0,0],[1,0,0,0],[0,0,0,1]]
=> [(1,6),(2,3),(4,5),(7,8)]
=> [3,5,2,6,4,1,8,7] => ? ∊ {0,0,0,0,1,1,1,2,2,2,2,2,3,3,3,3,4,4,4,4}
[3,2,4,1] => [[0,0,0,1],[0,1,0,0],[1,0,0,0],[0,0,1,0]]
=> [(1,4),(2,3),(5,6),(7,8)]
=> [3,4,2,1,6,5,8,7] => ? ∊ {0,0,0,0,1,1,1,2,2,2,2,2,3,3,3,3,4,4,4,4}
[3,4,1,2] => [[0,0,1,0],[0,0,0,1],[1,0,0,0],[0,1,0,0]]
=> [(1,2),(3,4),(5,6),(7,8)]
=> [2,1,4,3,6,5,8,7] => 2
[3,4,2,1] => [[0,0,0,1],[0,0,1,0],[1,0,0,0],[0,1,0,0]]
=> [(1,4),(2,3),(5,6),(7,8)]
=> [3,4,2,1,6,5,8,7] => ? ∊ {0,0,0,0,1,1,1,2,2,2,2,2,3,3,3,3,4,4,4,4}
[4,1,2,3] => [[0,1,0,0],[0,0,1,0],[0,0,0,1],[1,0,0,0]]
=> [(1,2),(3,8),(4,5),(6,7)]
=> [2,1,5,7,4,8,6,3] => ? ∊ {0,0,0,0,1,1,1,2,2,2,2,2,3,3,3,3,4,4,4,4}
[4,1,3,2] => [[0,1,0,0],[0,0,0,1],[0,0,1,0],[1,0,0,0]]
=> [(1,2),(3,4),(5,8),(6,7)]
=> [2,1,4,3,7,8,6,5] => ? ∊ {0,0,0,0,1,1,1,2,2,2,2,2,3,3,3,3,4,4,4,4}
[4,2,1,3] => [[0,0,1,0],[0,1,0,0],[0,0,0,1],[1,0,0,0]]
=> [(1,8),(2,3),(4,5),(6,7)]
=> [3,5,2,7,4,8,6,1] => ? ∊ {0,0,0,0,1,1,1,2,2,2,2,2,3,3,3,3,4,4,4,4}
[4,2,3,1] => [[0,0,0,1],[0,1,0,0],[0,0,1,0],[1,0,0,0]]
=> [(1,8),(2,3),(4,5),(6,7)]
=> [3,5,2,7,4,8,6,1] => ? ∊ {0,0,0,0,1,1,1,2,2,2,2,2,3,3,3,3,4,4,4,4}
[4,3,1,2] => [[0,0,1,0],[0,0,0,1],[0,1,0,0],[1,0,0,0]]
=> [(1,2),(3,4),(5,8),(6,7)]
=> [2,1,4,3,7,8,6,5] => ? ∊ {0,0,0,0,1,1,1,2,2,2,2,2,3,3,3,3,4,4,4,4}
[4,3,2,1] => [[0,0,0,1],[0,0,1,0],[0,1,0,0],[1,0,0,0]]
=> [(1,4),(2,3),(5,8),(6,7)]
=> [3,4,2,1,7,8,6,5] => 1
[1,2,3,4,5] => [[1,0,0,0,0],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,1,0],[0,0,0,0,1]]
=> [(1,10),(2,9),(3,8),(4,7),(5,6)]
=> [6,7,8,9,10,5,4,3,2,1] => ? ∊ {0,0,0,0,0,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,10,10,10,10,10}
[1,2,3,5,4] => [[1,0,0,0,0],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,0,1],[0,0,0,1,0]]
=> [(1,10),(2,9),(3,8),(4,5),(6,7)]
=> [5,7,8,9,4,10,6,3,2,1] => ? ∊ {0,0,0,0,0,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,10,10,10,10,10}
[1,2,4,3,5] => [[1,0,0,0,0],[0,1,0,0,0],[0,0,0,1,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [(1,10),(2,9),(3,4),(5,6),(7,8)]
=> [4,6,8,3,9,5,10,7,2,1] => ? ∊ {0,0,0,0,0,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,10,10,10,10,10}
[1,2,4,5,3] => [[1,0,0,0,0],[0,1,0,0,0],[0,0,0,0,1],[0,0,1,0,0],[0,0,0,1,0]]
=> [(1,10),(2,9),(3,8),(4,5),(6,7)]
=> [5,7,8,9,4,10,6,3,2,1] => ? ∊ {0,0,0,0,0,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,10,10,10,10,10}
[1,2,5,3,4] => [[1,0,0,0,0],[0,1,0,0,0],[0,0,0,1,0],[0,0,0,0,1],[0,0,1,0,0]]
=> [(1,10),(2,9),(3,4),(5,6),(7,8)]
=> [4,6,8,3,9,5,10,7,2,1] => ? ∊ {0,0,0,0,0,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,10,10,10,10,10}
[1,2,5,4,3] => [[1,0,0,0,0],[0,1,0,0,0],[0,0,0,0,1],[0,0,0,1,0],[0,0,1,0,0]]
=> [(1,10),(2,9),(3,6),(4,5),(7,8)]
=> [5,6,8,9,4,3,10,7,2,1] => ? ∊ {0,0,0,0,0,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,10,10,10,10,10}
[1,3,2,4,5] => [[1,0,0,0,0],[0,0,1,0,0],[0,1,0,0,0],[0,0,0,1,0],[0,0,0,0,1]]
=> [(1,10),(2,3),(4,7),(5,6),(8,9)]
=> [3,6,2,7,9,5,4,10,8,1] => ? ∊ {0,0,0,0,0,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,10,10,10,10,10}
[1,3,2,5,4] => [[1,0,0,0,0],[0,0,1,0,0],[0,1,0,0,0],[0,0,0,0,1],[0,0,0,1,0]]
=> [(1,10),(2,3),(4,5),(6,7),(8,9)]
=> [3,5,2,7,4,9,6,10,8,1] => ? ∊ {0,0,0,0,0,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,10,10,10,10,10}
[1,3,4,2,5] => [[1,0,0,0,0],[0,0,0,1,0],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [(1,10),(2,9),(3,4),(5,6),(7,8)]
=> [4,6,8,3,9,5,10,7,2,1] => ? ∊ {0,0,0,0,0,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,10,10,10,10,10}
[1,3,4,5,2] => [[1,0,0,0,0],[0,0,0,0,1],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,1,0]]
=> [(1,10),(2,9),(3,4),(5,8),(6,7)]
=> [4,7,8,3,9,10,6,5,2,1] => ? ∊ {0,0,0,0,0,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,10,10,10,10,10}
[1,3,5,2,4] => [[1,0,0,0,0],[0,0,0,1,0],[0,1,0,0,0],[0,0,0,0,1],[0,0,1,0,0]]
=> [(1,10),(2,9),(3,4),(5,6),(7,8)]
=> [4,6,8,3,9,5,10,7,2,1] => ? ∊ {0,0,0,0,0,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,10,10,10,10,10}
[1,3,5,4,2] => [[1,0,0,0,0],[0,0,0,0,1],[0,1,0,0,0],[0,0,0,1,0],[0,0,1,0,0]]
=> [(1,10),(2,9),(3,4),(5,6),(7,8)]
=> [4,6,8,3,9,5,10,7,2,1] => ? ∊ {0,0,0,0,0,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,10,10,10,10,10}
[1,4,2,3,5] => [[1,0,0,0,0],[0,0,1,0,0],[0,0,0,1,0],[0,1,0,0,0],[0,0,0,0,1]]
=> [(1,10),(2,3),(4,7),(5,6),(8,9)]
=> [3,6,2,7,9,5,4,10,8,1] => ? ∊ {0,0,0,0,0,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,10,10,10,10,10}
[1,4,2,5,3] => [[1,0,0,0,0],[0,0,1,0,0],[0,0,0,0,1],[0,1,0,0,0],[0,0,0,1,0]]
=> [(1,10),(2,3),(4,5),(6,7),(8,9)]
=> [3,5,2,7,4,9,6,10,8,1] => ? ∊ {0,0,0,0,0,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,10,10,10,10,10}
[1,4,3,2,5] => [[1,0,0,0,0],[0,0,0,1,0],[0,0,1,0,0],[0,1,0,0,0],[0,0,0,0,1]]
=> [(1,10),(2,7),(3,4),(5,6),(8,9)]
=> [4,6,7,3,9,5,2,10,8,1] => ? ∊ {0,0,0,0,0,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,10,10,10,10,10}
[1,4,3,5,2] => [[1,0,0,0,0],[0,0,0,0,1],[0,0,1,0,0],[0,1,0,0,0],[0,0,0,1,0]]
=> [(1,10),(2,5),(3,4),(6,7),(8,9)]
=> [4,5,7,3,2,9,6,10,8,1] => ? ∊ {0,0,0,0,0,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,10,10,10,10,10}
[1,4,5,2,3] => [[1,0,0,0,0],[0,0,0,1,0],[0,0,0,0,1],[0,1,0,0,0],[0,0,1,0,0]]
=> [(1,10),(2,3),(4,5),(6,7),(8,9)]
=> [3,5,2,7,4,9,6,10,8,1] => ? ∊ {0,0,0,0,0,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,10,10,10,10,10}
[1,4,5,3,2] => [[1,0,0,0,0],[0,0,0,0,1],[0,0,0,1,0],[0,1,0,0,0],[0,0,1,0,0]]
=> [(1,10),(2,5),(3,4),(6,7),(8,9)]
=> [4,5,7,3,2,9,6,10,8,1] => ? ∊ {0,0,0,0,0,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,10,10,10,10,10}
[1,5,2,3,4] => [[1,0,0,0,0],[0,0,1,0,0],[0,0,0,1,0],[0,0,0,0,1],[0,1,0,0,0]]
=> [(1,10),(2,3),(4,9),(5,6),(7,8)]
=> [3,6,2,8,9,5,10,7,4,1] => ? ∊ {0,0,0,0,0,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,10,10,10,10,10}
[1,5,2,4,3] => [[1,0,0,0,0],[0,0,1,0,0],[0,0,0,0,1],[0,0,0,1,0],[0,1,0,0,0]]
=> [(1,10),(2,3),(4,5),(6,9),(7,8)]
=> [3,5,2,8,4,9,10,7,6,1] => ? ∊ {0,0,0,0,0,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,10,10,10,10,10}
[1,5,3,2,4] => [[1,0,0,0,0],[0,0,0,1,0],[0,0,1,0,0],[0,0,0,0,1],[0,1,0,0,0]]
=> [(1,10),(2,9),(3,4),(5,6),(7,8)]
=> [4,6,8,3,9,5,10,7,2,1] => ? ∊ {0,0,0,0,0,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,10,10,10,10,10}
[1,5,3,4,2] => [[1,0,0,0,0],[0,0,0,0,1],[0,0,1,0,0],[0,0,0,1,0],[0,1,0,0,0]]
=> [(1,10),(2,9),(3,4),(5,6),(7,8)]
=> [4,6,8,3,9,5,10,7,2,1] => ? ∊ {0,0,0,0,0,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,10,10,10,10,10}
[1,5,4,2,3] => [[1,0,0,0,0],[0,0,0,1,0],[0,0,0,0,1],[0,0,1,0,0],[0,1,0,0,0]]
=> [(1,10),(2,3),(4,5),(6,9),(7,8)]
=> [3,5,2,8,4,9,10,7,6,1] => ? ∊ {0,0,0,0,0,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,10,10,10,10,10}
[1,5,4,3,2] => [[1,0,0,0,0],[0,0,0,0,1],[0,0,0,1,0],[0,0,1,0,0],[0,1,0,0,0]]
=> [(1,10),(2,5),(3,4),(6,9),(7,8)]
=> [4,5,8,3,2,9,10,7,6,1] => ? ∊ {0,0,0,0,0,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,10,10,10,10,10}
[2,1,3,4,5] => [[0,1,0,0,0],[1,0,0,0,0],[0,0,1,0,0],[0,0,0,1,0],[0,0,0,0,1]]
=> [(1,2),(3,8),(4,7),(5,6),(9,10)]
=> [2,1,6,7,8,5,4,3,10,9] => ? ∊ {0,0,0,0,0,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,10,10,10,10,10}
[2,1,3,5,4] => [[0,1,0,0,0],[1,0,0,0,0],[0,0,1,0,0],[0,0,0,0,1],[0,0,0,1,0]]
=> [(1,2),(3,8),(4,5),(6,7),(9,10)]
=> [2,1,5,7,4,8,6,3,10,9] => ? ∊ {0,0,0,0,0,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,10,10,10,10,10}
[2,1,4,3,5] => [[0,1,0,0,0],[1,0,0,0,0],[0,0,0,1,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [(1,2),(3,4),(5,6),(7,8),(9,10)]
=> [2,1,4,3,6,5,8,7,10,9] => 3
[2,1,4,5,3] => [[0,1,0,0,0],[1,0,0,0,0],[0,0,0,0,1],[0,0,1,0,0],[0,0,0,1,0]]
=> [(1,2),(3,8),(4,5),(6,7),(9,10)]
=> [2,1,5,7,4,8,6,3,10,9] => ? ∊ {0,0,0,0,0,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,10,10,10,10,10}
[2,1,5,3,4] => [[0,1,0,0,0],[1,0,0,0,0],[0,0,0,1,0],[0,0,0,0,1],[0,0,1,0,0]]
=> [(1,2),(3,4),(5,6),(7,8),(9,10)]
=> [2,1,4,3,6,5,8,7,10,9] => 3
[2,1,5,4,3] => [[0,1,0,0,0],[1,0,0,0,0],[0,0,0,0,1],[0,0,0,1,0],[0,0,1,0,0]]
=> [(1,2),(3,6),(4,5),(7,8),(9,10)]
=> [2,1,5,6,4,3,8,7,10,9] => ? ∊ {0,0,0,0,0,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,10,10,10,10,10}
[2,3,1,4,5] => [[0,0,1,0,0],[1,0,0,0,0],[0,1,0,0,0],[0,0,0,1,0],[0,0,0,0,1]]
=> [(1,10),(2,3),(4,7),(5,6),(8,9)]
=> [3,6,2,7,9,5,4,10,8,1] => ? ∊ {0,0,0,0,0,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,10,10,10,10,10}
[2,3,1,5,4] => [[0,0,1,0,0],[1,0,0,0,0],[0,1,0,0,0],[0,0,0,0,1],[0,0,0,1,0]]
=> [(1,10),(2,3),(4,5),(6,7),(8,9)]
=> [3,5,2,7,4,9,6,10,8,1] => ? ∊ {0,0,0,0,0,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,10,10,10,10,10}
[3,1,4,2,5] => [[0,1,0,0,0],[0,0,0,1,0],[1,0,0,0,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [(1,2),(3,4),(5,6),(7,8),(9,10)]
=> [2,1,4,3,6,5,8,7,10,9] => 3
[3,1,5,2,4] => [[0,1,0,0,0],[0,0,0,1,0],[1,0,0,0,0],[0,0,0,0,1],[0,0,1,0,0]]
=> [(1,2),(3,4),(5,6),(7,8),(9,10)]
=> [2,1,4,3,6,5,8,7,10,9] => 3
[3,1,5,4,2] => [[0,1,0,0,0],[0,0,0,0,1],[1,0,0,0,0],[0,0,0,1,0],[0,0,1,0,0]]
=> [(1,2),(3,4),(5,6),(7,8),(9,10)]
=> [2,1,4,3,6,5,8,7,10,9] => 3
[3,2,5,4,1] => [[0,0,0,0,1],[0,1,0,0,0],[1,0,0,0,0],[0,0,0,1,0],[0,0,1,0,0]]
=> [(1,2),(3,4),(5,6),(7,8),(9,10)]
=> [2,1,4,3,6,5,8,7,10,9] => 3
[3,4,1,2,5] => [[0,0,1,0,0],[0,0,0,1,0],[1,0,0,0,0],[0,1,0,0,0],[0,0,0,0,1]]
=> [(1,2),(3,4),(5,6),(7,8),(9,10)]
=> [2,1,4,3,6,5,8,7,10,9] => 3
[3,5,1,2,4] => [[0,0,1,0,0],[0,0,0,1,0],[1,0,0,0,0],[0,0,0,0,1],[0,1,0,0,0]]
=> [(1,2),(3,4),(5,6),(7,8),(9,10)]
=> [2,1,4,3,6,5,8,7,10,9] => 3
[3,5,1,4,2] => [[0,0,1,0,0],[0,0,0,0,1],[1,0,0,0,0],[0,0,0,1,0],[0,1,0,0,0]]
=> [(1,2),(3,4),(5,6),(7,8),(9,10)]
=> [2,1,4,3,6,5,8,7,10,9] => 3
[3,5,2,4,1] => [[0,0,0,0,1],[0,0,1,0,0],[1,0,0,0,0],[0,0,0,1,0],[0,1,0,0,0]]
=> [(1,2),(3,4),(5,6),(7,8),(9,10)]
=> [2,1,4,3,6,5,8,7,10,9] => 3
[4,5,1,3,2] => [[0,0,1,0,0],[0,0,0,0,1],[0,0,0,1,0],[1,0,0,0,0],[0,1,0,0,0]]
=> [(1,2),(3,4),(5,6),(7,8),(9,10)]
=> [2,1,4,3,6,5,8,7,10,9] => 3
[4,5,2,3,1] => [[0,0,0,0,1],[0,0,1,0,0],[0,0,0,1,0],[1,0,0,0,0],[0,1,0,0,0]]
=> [(1,2),(3,4),(5,6),(7,8),(9,10)]
=> [2,1,4,3,6,5,8,7,10,9] => 3
Description
The number of occurrences of the vincular pattern |12-3 in a permutation. This is the number of occurrences of the pattern 123, where the first matched entry is the first entry of the permutation and the other two matched entries are consecutive. In other words, this is the number of ascents whose bottom value is strictly larger than the first entry of the permutation.