Your data matches 454 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
St000232: Set partitions ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
{{1}}
=> 0
{{1,2}}
=> 0
{{1},{2}}
=> 0
{{1,2,3}}
=> 0
{{1,2},{3}}
=> 0
{{1,3},{2}}
=> 0
{{1},{2,3}}
=> 0
{{1},{2},{3}}
=> 0
{{1,2,3,4}}
=> 0
{{1,2,3},{4}}
=> 0
{{1,2,4},{3}}
=> 0
{{1,2},{3,4}}
=> 0
{{1,2},{3},{4}}
=> 0
{{1,3,4},{2}}
=> 0
{{1,3},{2,4}}
=> 1
{{1,3},{2},{4}}
=> 0
{{1,4},{2,3}}
=> 0
{{1},{2,3,4}}
=> 0
{{1},{2,3},{4}}
=> 0
{{1,4},{2},{3}}
=> 0
{{1},{2,4},{3}}
=> 0
{{1},{2},{3,4}}
=> 0
{{1},{2},{3},{4}}
=> 0
Description
The number of crossings of a set partition. This is given by the number of $i < i' < j < j'$ such that $i,j$ are two consecutive entries on one block, and $i',j'$ are consecutive entries in another block.
St000233: Set partitions ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
{{1}}
=> 0
{{1,2}}
=> 0
{{1},{2}}
=> 0
{{1,2,3}}
=> 0
{{1,2},{3}}
=> 0
{{1,3},{2}}
=> 0
{{1},{2,3}}
=> 0
{{1},{2},{3}}
=> 0
{{1,2,3,4}}
=> 0
{{1,2,3},{4}}
=> 0
{{1,2,4},{3}}
=> 0
{{1,2},{3,4}}
=> 0
{{1,2},{3},{4}}
=> 0
{{1,3,4},{2}}
=> 0
{{1,3},{2,4}}
=> 0
{{1,3},{2},{4}}
=> 0
{{1,4},{2,3}}
=> 1
{{1},{2,3,4}}
=> 0
{{1},{2,3},{4}}
=> 0
{{1,4},{2},{3}}
=> 0
{{1},{2,4},{3}}
=> 0
{{1},{2},{3,4}}
=> 0
{{1},{2},{3},{4}}
=> 0
Description
The number of nestings of a set partition. This is given by the number of $i < i' < j' < j$ such that $i,j$ are two consecutive entries on one block, and $i',j'$ are consecutive entries in another block.
Mp00080: Set partitions to permutationPermutations
St000375: Permutations ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
{{1}}
=> [1] => 0
{{1,2}}
=> [2,1] => 0
{{1},{2}}
=> [1,2] => 0
{{1,2,3}}
=> [2,3,1] => 0
{{1,2},{3}}
=> [2,1,3] => 0
{{1,3},{2}}
=> [3,2,1] => 0
{{1},{2,3}}
=> [1,3,2] => 0
{{1},{2},{3}}
=> [1,2,3] => 0
{{1,2,3,4}}
=> [2,3,4,1] => 0
{{1,2,3},{4}}
=> [2,3,1,4] => 0
{{1,2,4},{3}}
=> [2,4,3,1] => 0
{{1,2},{3,4}}
=> [2,1,4,3] => 0
{{1,2},{3},{4}}
=> [2,1,3,4] => 0
{{1,3,4},{2}}
=> [3,2,4,1] => 0
{{1,3},{2,4}}
=> [3,4,1,2] => 0
{{1,3},{2},{4}}
=> [3,2,1,4] => 0
{{1,4},{2,3}}
=> [4,3,2,1] => 1
{{1},{2,3,4}}
=> [1,3,4,2] => 0
{{1},{2,3},{4}}
=> [1,3,2,4] => 0
{{1,4},{2},{3}}
=> [4,2,3,1] => 0
{{1},{2,4},{3}}
=> [1,4,3,2] => 0
{{1},{2},{3,4}}
=> [1,2,4,3] => 0
{{1},{2},{3},{4}}
=> [1,2,3,4] => 0
Description
The number of non weak exceedences of a permutation that are mid-points of a decreasing subsequence of length $3$. Given a permutation $\pi = [\pi_1,\ldots,\pi_n]$, this statistic counts the number of position $j$ such that $\pi_j < j$ and there exist indices $i,k$ with $i < j < k$ and $\pi_i > \pi_j > \pi_k$. See also [[St000213]] and [[St000119]].
Mp00080: Set partitions to permutationPermutations
St000405: Permutations ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
{{1}}
=> [1] => 0
{{1,2}}
=> [2,1] => 0
{{1},{2}}
=> [1,2] => 0
{{1,2,3}}
=> [2,3,1] => 0
{{1,2},{3}}
=> [2,1,3] => 0
{{1,3},{2}}
=> [3,2,1] => 0
{{1},{2,3}}
=> [1,3,2] => 0
{{1},{2},{3}}
=> [1,2,3] => 0
{{1,2,3,4}}
=> [2,3,4,1] => 0
{{1,2,3},{4}}
=> [2,3,1,4] => 0
{{1,2,4},{3}}
=> [2,4,3,1] => 0
{{1,2},{3,4}}
=> [2,1,4,3] => 0
{{1,2},{3},{4}}
=> [2,1,3,4] => 0
{{1,3,4},{2}}
=> [3,2,4,1] => 0
{{1,3},{2,4}}
=> [3,4,1,2] => 0
{{1,3},{2},{4}}
=> [3,2,1,4] => 0
{{1,4},{2,3}}
=> [4,3,2,1] => 0
{{1},{2,3,4}}
=> [1,3,4,2] => 0
{{1},{2,3},{4}}
=> [1,3,2,4] => 1
{{1,4},{2},{3}}
=> [4,2,3,1] => 0
{{1},{2,4},{3}}
=> [1,4,3,2] => 0
{{1},{2},{3,4}}
=> [1,2,4,3] => 0
{{1},{2},{3},{4}}
=> [1,2,3,4] => 0
Description
The number of occurrences of the pattern 1324 in a permutation. There is no explicit formula known for the number of permutations avoiding this pattern (denoted by $S_n(1324)$), but it is shown in [1], improving bounds in [2] and [3] that $$\lim_{n \rightarrow \infty} \sqrt[n]{S_n(1324)} \leq 13.73718.$$
Mp00080: Set partitions to permutationPermutations
St000406: Permutations ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
{{1}}
=> [1] => 0
{{1,2}}
=> [2,1] => 0
{{1},{2}}
=> [1,2] => 0
{{1,2,3}}
=> [2,3,1] => 0
{{1,2},{3}}
=> [2,1,3] => 0
{{1,3},{2}}
=> [3,2,1] => 0
{{1},{2,3}}
=> [1,3,2] => 0
{{1},{2},{3}}
=> [1,2,3] => 0
{{1,2,3,4}}
=> [2,3,4,1] => 0
{{1,2,3},{4}}
=> [2,3,1,4] => 0
{{1,2,4},{3}}
=> [2,4,3,1] => 0
{{1,2},{3,4}}
=> [2,1,4,3] => 0
{{1,2},{3},{4}}
=> [2,1,3,4] => 0
{{1,3,4},{2}}
=> [3,2,4,1] => 1
{{1,3},{2,4}}
=> [3,4,1,2] => 0
{{1,3},{2},{4}}
=> [3,2,1,4] => 0
{{1,4},{2,3}}
=> [4,3,2,1] => 0
{{1},{2,3,4}}
=> [1,3,4,2] => 0
{{1},{2,3},{4}}
=> [1,3,2,4] => 0
{{1,4},{2},{3}}
=> [4,2,3,1] => 0
{{1},{2,4},{3}}
=> [1,4,3,2] => 0
{{1},{2},{3,4}}
=> [1,2,4,3] => 0
{{1},{2},{3},{4}}
=> [1,2,3,4] => 0
Description
The number of occurrences of the pattern 3241 in a permutation.
Mp00080: Set partitions to permutationPermutations
St000407: Permutations ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
{{1}}
=> [1] => 0
{{1,2}}
=> [2,1] => 0
{{1},{2}}
=> [1,2] => 0
{{1,2,3}}
=> [2,3,1] => 0
{{1,2},{3}}
=> [2,1,3] => 0
{{1,3},{2}}
=> [3,2,1] => 0
{{1},{2,3}}
=> [1,3,2] => 0
{{1},{2},{3}}
=> [1,2,3] => 0
{{1,2,3,4}}
=> [2,3,4,1] => 0
{{1,2,3},{4}}
=> [2,3,1,4] => 0
{{1,2,4},{3}}
=> [2,4,3,1] => 0
{{1,2},{3,4}}
=> [2,1,4,3] => 1
{{1,2},{3},{4}}
=> [2,1,3,4] => 0
{{1,3,4},{2}}
=> [3,2,4,1] => 0
{{1,3},{2,4}}
=> [3,4,1,2] => 0
{{1,3},{2},{4}}
=> [3,2,1,4] => 0
{{1,4},{2,3}}
=> [4,3,2,1] => 0
{{1},{2,3,4}}
=> [1,3,4,2] => 0
{{1},{2,3},{4}}
=> [1,3,2,4] => 0
{{1,4},{2},{3}}
=> [4,2,3,1] => 0
{{1},{2,4},{3}}
=> [1,4,3,2] => 0
{{1},{2},{3,4}}
=> [1,2,4,3] => 0
{{1},{2},{3},{4}}
=> [1,2,3,4] => 0
Description
The number of occurrences of the pattern 2143 in a permutation. A permutation $\pi$ avoids this pattern if and only if it is ''vexillary'' as introduced in [1].
Mp00080: Set partitions to permutationPermutations
St000408: Permutations ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
{{1}}
=> [1] => 0
{{1,2}}
=> [2,1] => 0
{{1},{2}}
=> [1,2] => 0
{{1,2,3}}
=> [2,3,1] => 0
{{1,2},{3}}
=> [2,1,3] => 0
{{1,3},{2}}
=> [3,2,1] => 0
{{1},{2,3}}
=> [1,3,2] => 0
{{1},{2},{3}}
=> [1,2,3] => 0
{{1,2,3,4}}
=> [2,3,4,1] => 0
{{1,2,3},{4}}
=> [2,3,1,4] => 0
{{1,2,4},{3}}
=> [2,4,3,1] => 0
{{1,2},{3,4}}
=> [2,1,4,3] => 0
{{1,2},{3},{4}}
=> [2,1,3,4] => 0
{{1,3,4},{2}}
=> [3,2,4,1] => 0
{{1,3},{2,4}}
=> [3,4,1,2] => 0
{{1,3},{2},{4}}
=> [3,2,1,4] => 0
{{1,4},{2,3}}
=> [4,3,2,1] => 0
{{1},{2,3,4}}
=> [1,3,4,2] => 0
{{1},{2,3},{4}}
=> [1,3,2,4] => 0
{{1,4},{2},{3}}
=> [4,2,3,1] => 1
{{1},{2,4},{3}}
=> [1,4,3,2] => 0
{{1},{2},{3,4}}
=> [1,2,4,3] => 0
{{1},{2},{3},{4}}
=> [1,2,3,4] => 0
Description
The number of occurrences of the pattern 4231 in a permutation. It is a necessary condition that a permutation $\pi$ avoids this pattern for the Schubert variety associated to $\pi$ to be smooth [2].
Mp00080: Set partitions to permutationPermutations
St000440: Permutations ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
{{1}}
=> [1] => 0
{{1,2}}
=> [2,1] => 0
{{1},{2}}
=> [1,2] => 0
{{1,2,3}}
=> [2,3,1] => 0
{{1,2},{3}}
=> [2,1,3] => 0
{{1,3},{2}}
=> [3,2,1] => 0
{{1},{2,3}}
=> [1,3,2] => 0
{{1},{2},{3}}
=> [1,2,3] => 0
{{1,2,3,4}}
=> [2,3,4,1] => 0
{{1,2,3},{4}}
=> [2,3,1,4] => 0
{{1,2,4},{3}}
=> [2,4,3,1] => 0
{{1,2},{3,4}}
=> [2,1,4,3] => 0
{{1,2},{3},{4}}
=> [2,1,3,4] => 0
{{1,3,4},{2}}
=> [3,2,4,1] => 0
{{1,3},{2,4}}
=> [3,4,1,2] => 0
{{1,3},{2},{4}}
=> [3,2,1,4] => 0
{{1,4},{2,3}}
=> [4,3,2,1] => 0
{{1},{2,3,4}}
=> [1,3,4,2] => 0
{{1},{2,3},{4}}
=> [1,3,2,4] => 0
{{1,4},{2},{3}}
=> [4,2,3,1] => 1
{{1},{2,4},{3}}
=> [1,4,3,2] => 0
{{1},{2},{3,4}}
=> [1,2,4,3] => 0
{{1},{2},{3},{4}}
=> [1,2,3,4] => 0
Description
The number of occurrences of the pattern 4132 or of the pattern 4231 in a permutation. There is a bijection between permutations avoiding these two pattern and Schröder paths [1,2].
Mp00080: Set partitions to permutationPermutations
St000664: Permutations ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
{{1}}
=> [1] => 0
{{1,2}}
=> [2,1] => 0
{{1},{2}}
=> [1,2] => 0
{{1,2,3}}
=> [2,3,1] => 0
{{1,2},{3}}
=> [2,1,3] => 0
{{1,3},{2}}
=> [3,2,1] => 0
{{1},{2,3}}
=> [1,3,2] => 0
{{1},{2},{3}}
=> [1,2,3] => 0
{{1,2,3,4}}
=> [2,3,4,1] => 0
{{1,2,3},{4}}
=> [2,3,1,4] => 0
{{1,2,4},{3}}
=> [2,4,3,1] => 0
{{1,2},{3,4}}
=> [2,1,4,3] => 0
{{1,2},{3},{4}}
=> [2,1,3,4] => 0
{{1,3,4},{2}}
=> [3,2,4,1] => 0
{{1,3},{2,4}}
=> [3,4,1,2] => 0
{{1,3},{2},{4}}
=> [3,2,1,4] => 0
{{1,4},{2,3}}
=> [4,3,2,1] => 0
{{1},{2,3,4}}
=> [1,3,4,2] => 0
{{1},{2,3},{4}}
=> [1,3,2,4] => 0
{{1,4},{2},{3}}
=> [4,2,3,1] => 0
{{1},{2,4},{3}}
=> [1,4,3,2] => 0
{{1},{2},{3,4}}
=> [1,2,4,3] => 1
{{1},{2},{3},{4}}
=> [1,2,3,4] => 0
Description
The number of right ropes of a permutation. Let $\pi$ be a permutation of length $n$. A raft of $\pi$ is a non-empty maximal sequence of consecutive small ascents, [[St000441]], and a right rope is a large ascent after a raft of $\pi$. See Definition 3.10 and Example 3.11 in [1].
Mp00080: Set partitions to permutationPermutations
St001394: Permutations ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
{{1}}
=> [1] => 0
{{1,2}}
=> [2,1] => 0
{{1},{2}}
=> [1,2] => 0
{{1,2,3}}
=> [2,3,1] => 0
{{1,2},{3}}
=> [2,1,3] => 0
{{1,3},{2}}
=> [3,2,1] => 0
{{1},{2,3}}
=> [1,3,2] => 0
{{1},{2},{3}}
=> [1,2,3] => 0
{{1,2,3,4}}
=> [2,3,4,1] => 0
{{1,2,3},{4}}
=> [2,3,1,4] => 0
{{1,2,4},{3}}
=> [2,4,3,1] => 0
{{1,2},{3,4}}
=> [2,1,4,3] => 0
{{1,2},{3},{4}}
=> [2,1,3,4] => 0
{{1,3,4},{2}}
=> [3,2,4,1] => 0
{{1,3},{2,4}}
=> [3,4,1,2] => 1
{{1,3},{2},{4}}
=> [3,2,1,4] => 0
{{1,4},{2,3}}
=> [4,3,2,1] => 0
{{1},{2,3,4}}
=> [1,3,4,2] => 0
{{1},{2,3},{4}}
=> [1,3,2,4] => 0
{{1,4},{2},{3}}
=> [4,2,3,1] => 0
{{1},{2,4},{3}}
=> [1,4,3,2] => 0
{{1},{2},{3,4}}
=> [1,2,4,3] => 0
{{1},{2},{3},{4}}
=> [1,2,3,4] => 0
Description
The genus of a permutation. The genus $g(\pi)$ of a permutation $\pi\in\mathfrak S_n$ is defined via the relation $$ n+1-2g(\pi) = z(\pi) + z(\pi^{-1} \zeta ), $$ where $\zeta = (1,2,\dots,n)$ is the long cycle and $z(\cdot)$ is the number of cycles in the permutation.
The following 444 statistics, ordered by result quality, also match your data. Click on any of them to see the details.
St001513The number of nested exceedences of a permutation. St001549The number of restricted non-inversions between exceedances. St001847The number of occurrences of the pattern 1432 in a permutation. St001906Half of the difference between the total displacement and the number of inversions and the reflection length of a permutation. St000913The number of ways to refine the partition into singletons. St001208The number of connected components of the quiver of $A/T$ when $T$ is the 1-tilting module corresponding to the permutation in the Auslander algebra $A$ of $K[x]/(x^n)$. St000039The number of crossings of a permutation. St000119The number of occurrences of the pattern 321 in a permutation. St000121The number of occurrences of the contiguous pattern [.,[.,[.,[.,.]]]] in a binary tree. St000122The number of occurrences of the contiguous pattern [.,[.,[[.,.],.]]] in a binary tree. St000123The difference in Coxeter length of a permutation and its image under the Simion-Schmidt map. St000125The number of occurrences of the contiguous pattern [.,[[[.,.],.],. St000217The number of occurrences of the pattern 312 in a permutation. St000218The number of occurrences of the pattern 213 in a permutation. St000223The number of nestings in the permutation. St000317The cycle descent number of a permutation. St000355The number of occurrences of the pattern 21-3. St000359The number of occurrences of the pattern 23-1. St000360The number of occurrences of the pattern 32-1. St000367The number of simsun double descents of a permutation. St000371The number of mid points of decreasing subsequences of length 3 in a permutation. St000373The number of weak exceedences of a permutation that are also mid-points of a decreasing subsequence of length $3$. St000404The number of occurrences of the pattern 3241 or of the pattern 4231 in a permutation. St000431The number of occurrences of the pattern 213 or of the pattern 321 in a permutation. St000687The dimension of $Hom(I,P)$ for the LNakayama algebra of a Dyck path. St000697The number of 3-rim hooks removed from an integer partition to obtain its associated 3-core. St000731The number of double exceedences of a permutation. St000766The number of inversions of an integer composition. St000768The number of peaks in an integer composition. St000769The major index of a composition regarded as a word. St000879The number of long braid edges in the graph of braid moves of a permutation. St000966Number of peaks minus the global dimension of the corresponding LNakayama algebra. St001025Number of simple modules with projective dimension 4 in the Nakayama algebra corresponding to the Dyck path. St001085The number of occurrences of the vincular pattern |21-3 in a permutation. St001086The number of occurrences of the consecutive pattern 132 in a permutation. St001140Number of indecomposable modules with projective and injective dimension at least two in the corresponding Nakayama algebra. St001175The size of a partition minus the hook length of the base cell. St001193The dimension of $Ext_A^1(A/AeA,A)$ in the corresponding Nakayama algebra $A$ such that $eA$ is a minimal faithful projective-injective module. St001292The injective dimension of the tensor product of two copies of the dual of the Nakayama algebra associated to a Dyck path. St001301The first Betti number of the order complex associated with the poset. St001305The number of induced cycles on four vertices in a graph. St001307The number of induced stars on four vertices in a graph. St001309The number of four-cliques in a graph. St001310The number of induced diamond graphs in a graph. St001324The minimal number of occurrences of the chordal-pattern in a linear ordering of the vertices of the graph. St001326The minimal number of occurrences of the interval-pattern in a linear ordering of the vertices of the graph. St001329The minimal number of occurrences of the outerplanar pattern in a linear ordering of the vertices of the graph. St001334The minimal number of occurrences of the 3-colorable pattern in a linear ordering of the vertices of the graph. St001537The number of cyclic crossings of a permutation. St001559The number of transpositions that are smaller or equal to a permutation in Bruhat order while not being inversions. St001578The minimal number of edges to add or remove to make a graph a line graph. St001633The number of simple modules with projective dimension two in the incidence algebra of the poset. St001663The number of occurrences of the Hertzsprung pattern 132 in a permutation. St001687The number of distinct positions of the pattern letter 2 in occurrences of 213 in a permutation. St001705The number of occurrences of the pattern 2413 in a permutation. St001728The number of invisible descents of a permutation. St001744The number of occurrences of the arrow pattern 1-2 with an arrow from 1 to 2 in a permutation. St001745The number of occurrences of the arrow pattern 13 with an arrow from 1 to 2 in a permutation. St001871The number of triconnected components of a graph. St000036The evaluation at 1 of the Kazhdan-Lusztig polynomial with parameters given by the identity and the permutation. St000047The number of standard immaculate tableaux of a given shape. St000183The side length of the Durfee square of an integer partition. St000760The length of the longest strictly decreasing subsequence of parts of an integer composition. St000882The number of connected components of short braid edges in the graph of braid moves of a permutation. St001063Numbers of 3-torsionfree simple modules in the corresponding Nakayama algebra. St001064Number of simple modules in the corresponding Nakayama algebra that are 3-syzygy modules. St001196The global dimension of $A$ minus the global dimension of $eAe$ for the corresponding Nakayama algebra with minimal faithful projective-injective module $eA$. St001493The number of simple modules with maximal even projective dimension in the corresponding Nakayama algebra. St000002The number of occurrences of the pattern 123 in a permutation. St000017The number of inversions of a standard tableau. St000034The maximum defect over any reduced expression for a permutation and any subexpression. St000052The number of valleys of a Dyck path not on the x-axis. St000057The Shynar inversion number of a standard tableau. St000091The descent variation of a composition. St000095The number of triangles of a graph. St000131The number of occurrences of the contiguous pattern [.,[[[[.,.],.],.],. St000142The number of even parts of a partition. St000149The number of cells of the partition whose leg is zero and arm is odd. St000214The number of adjacencies of a permutation. St000220The number of occurrences of the pattern 132 in a permutation. St000237The number of small exceedances. St000252The number of nodes of degree 3 of a binary tree. St000256The number of parts from which one can substract 2 and still get an integer partition. St000292The number of ascents of a binary word. St000303The determinant of the product of the incidence matrix and its transpose of a graph divided by $4$. St000322The skewness of a graph. St000323The minimal crossing number of a graph. St000348The non-inversion sum of a binary word. St000356The number of occurrences of the pattern 13-2. St000357The number of occurrences of the pattern 12-3. St000358The number of occurrences of the pattern 31-2. St000365The number of double ascents of a permutation. St000366The number of double descents of a permutation. St000370The genus of a graph. St000372The number of mid points of increasing subsequences of length 3 in a permutation. St000386The number of factors DDU in a Dyck path. St000423The number of occurrences of the pattern 123 or of the pattern 132 in a permutation. St000427The number of occurrences of the pattern 123 or of the pattern 231 in a permutation. St000428The number of occurrences of the pattern 123 or of the pattern 213 in a permutation. St000430The number of occurrences of the pattern 123 or of the pattern 312 in a permutation. St000433The number of occurrences of the pattern 132 or of the pattern 321 in a permutation. St000447The number of pairs of vertices of a graph with distance 3. St000448The number of pairs of vertices of a graph with distance 2. St000473The number of parts of a partition that are strictly bigger than the number of ones. St000480The number of lower covers of a partition in dominance order. St000534The number of 2-rises of a permutation. St000552The number of cut vertices of a graph. St000583The number of occurrences of the pattern {{1},{2},{3}} such that 3 is minimal, 1, 2 are maximal. St000647The number of big descents of a permutation. St000648The number of 2-excedences of a permutation. St000660The number of rises of length at least 3 of a Dyck path. St000663The number of right floats of a permutation. St000671The maximin edge-connectivity for choosing a subgraph. St000682The Grundy value of Welter's game on a binary word. St000752The Grundy value for the game 'Couples are forever' on an integer partition. St000761The number of ascents in an integer composition. St000864The number of circled entries of the shifted recording tableau of a permutation. St000871The number of very big ascents of a permutation. St000877The depth of the binary word interpreted as a path. St000980The number of boxes weakly below the path and above the diagonal that lie below at least two peaks. St001001The number of indecomposable modules with projective and injective dimension equal to the global dimension of the Nakayama algebra corresponding to the Dyck path. St001021Sum of the differences between projective and codominant dimension of the non-projective indecomposable injective modules in the Nakayama algebra corresponding to the Dyck path. St001022Number of simple modules with projective dimension 3 in the Nakayama algebra corresponding to the Dyck path. St001033The normalized area of the parallelogram polyomino associated with the Dyck path. St001069The coefficient of the monomial xy of the Tutte polynomial of the graph. St001083The number of boxed occurrences of 132 in a permutation. St001084The number of occurrences of the vincular pattern |1-23 in a permutation. St001087The number of occurrences of the vincular pattern |12-3 in a permutation. St001089Number of indecomposable projective non-injective modules minus the number of indecomposable projective non-injective modules with dominant dimension equal to the injective dimension in the corresponding Nakayama algebra. St001092The number of distinct even parts of a partition. St001113Number of indecomposable projective non-injective modules with reflexive Auslander-Reiten sequences in the corresponding Nakayama algebra. St001137Number of simple modules that are 3-regular in the corresponding Nakayama algebra. St001163The number of simple modules with dominant dimension at least three in the corresponding Nakayama algebra. St001167The number of simple modules that appear as the top of an indecomposable non-projective modules that is reflexive in the corresponding Nakayama algebra. St001172The number of 1-rises at odd height of a Dyck path. St001181Number of indecomposable injective modules with grade at least 3 in the corresponding Nakayama algebra. St001186Number of simple modules with grade at least 3 in the corresponding Nakayama algebra. St001214The aft of an integer partition. St001219Number of simple modules S in the corresponding Nakayama algebra such that the Auslander-Reiten sequence ending at S has the property that all modules in the exact sequence are reflexive. St001221The number of simple modules in the corresponding LNakayama algebra that have 2 dimensional second Extension group with the regular module. St001229The vector space dimension of the first extension group between the Jacobson radical J and J^2. St001231The number of simple modules that are non-projective and non-injective with the property that they have projective dimension equal to one and that also the Auslander-Reiten translates of the module and the inverse Auslander-Reiten translate of the module have the same projective dimension. St001234The number of indecomposable three dimensional modules with projective dimension one. St001251The number of parts of a partition that are not congruent 1 modulo 3. St001252Half the sum of the even parts of a partition. St001253The number of non-projective indecomposable reflexive modules in the corresponding Nakayama algebra. St001264The smallest index i such that the i-th simple module has projective dimension equal to the global dimension of the corresponding Nakayama algebra. St001266The largest vector space dimension of an indecomposable non-projective module that is reflexive in the corresponding Nakayama algebra. St001306The number of induced paths on four vertices in a graph. St001308The number of induced paths on three vertices in a graph. St001314The number of tilting modules of arbitrary projective dimension that have no simple modules as a direct summand in the corresponding Nakayama algebra. St001323The independence gap of a graph. St001327The minimal number of occurrences of the split-pattern in a linear ordering of the vertices of the graph. St001328The minimal number of occurrences of the bipartite-pattern in a linear ordering of the vertices of the graph. St001336The minimal number of vertices in a graph whose complement is triangle-free. St001350Half of the Albertson index of a graph. St001377The major index minus the number of inversions of a permutation. St001396Number of triples of incomparable elements in a finite poset. St001411The number of patterns 321 or 3412 in a permutation. St001435The number of missing boxes in the first row. St001438The number of missing boxes of a skew partition. St001465The number of adjacent transpositions in the cycle decomposition of a permutation. St001466The number of transpositions swapping cyclically adjacent numbers in a permutation. St001470The cyclic holeyness of a permutation. St001535The number of cyclic alignments of a permutation. St001550The number of inversions between exceedances where the greater exceedance is linked. St001572The minimal number of edges to remove to make a graph bipartite. St001573The minimal number of edges to remove to make a graph triangle-free. St001577The minimal number of edges to add or remove to make a graph a cograph. St001584The area statistic between a Dyck path and its bounce path. St001588The number of distinct odd parts smaller than the largest even part in an integer partition. St001596The number of two-by-two squares inside a skew partition. St001646The number of edges that can be added without increasing the maximal degree of a graph. St001677The number of non-degenerate subsets of a lattice whose meet is the bottom element. St001682The number of distinct positions of the pattern letter 1 in occurrences of 123 in a permutation. St001683The number of distinct positions of the pattern letter 3 in occurrences of 132 in a permutation. St001685The number of distinct positions of the pattern letter 1 in occurrences of 132 in a permutation. St001689The number of celebrities in a graph. St001727The number of invisible inversions of a permutation. St001730The number of times the path corresponding to a binary word crosses the base line. St001764The number of non-convex subsets of vertices in a graph. St001798The difference of the number of edges in a graph and the number of edges in the complement of the Turán graph. St001810The number of fixed points of a permutation smaller than its largest moved point. St001856The number of edges in the reduced word graph of a permutation. St001862The number of crossings of a signed permutation. St001866The nesting alignments of a signed permutation. St001867The number of alignments of type EN of a signed permutation. St001868The number of alignments of type NE of a signed permutation. St001882The number of occurrences of a type-B 231 pattern in a signed permutation. St000001The number of reduced words for a permutation. St000003The number of standard Young tableaux of the partition. St000031The number of cycles in the cycle decomposition of a permutation. St000078The number of alternating sign matrices whose left key is the permutation. St000092The number of outer peaks of a permutation. St000124The cardinality of the preimage of the Simion-Schmidt map. St000162The number of nontrivial cycles in the cycle decomposition of a permutation. St000182The number of permutations whose cycle type is the given integer partition. St000255The number of reduced Kogan faces with the permutation as type. St000278The size of the preimage of the map 'to partition' from Integer compositions to Integer partitions. St000321The number of integer partitions of n that are dominated by an integer partition. St000345The number of refinements of a partition. St000390The number of runs of ones in a binary word. St000628The balance of a binary word. St000655The length of the minimal rise of a Dyck path. St000701The protection number of a binary tree. St000758The length of the longest staircase fitting into an integer composition. St000764The number of strong records in an integer composition. St000775The multiplicity of the largest eigenvalue in a graph. St000847The number of standard Young tableaux whose descent set is the binary word. St000883The number of longest increasing subsequences of a permutation. St000897The number of different multiplicities of parts of an integer partition. St000899The maximal number of repetitions of an integer composition. St000900The minimal number of repetitions of a part in an integer composition. St000902 The minimal number of repetitions of an integer composition. St000905The number of different multiplicities of parts of an integer composition. St000920The logarithmic height of a Dyck path. St000935The number of ordered refinements of an integer partition. St000999Number of indecomposable projective module with injective dimension equal to the global dimension in the Nakayama algebra corresponding to the Dyck path. St001006Number of simple modules with projective dimension equal to the global dimension of the Nakayama algebra corresponding to the Dyck path. St001013Number of indecomposable injective modules with codominant dimension equal to the global dimension in the Nakayama algebra corresponding to the Dyck path. St001031The height of the bicoloured Motzkin path associated with the Dyck path. St001066The number of simple reflexive modules in the corresponding Nakayama algebra. St001070The absolute value of the derivative of the chromatic polynomial of the graph at 1. St001192The maximal dimension of $Ext_A^2(S,A)$ for a simple module $S$ over the corresponding Nakayama algebra $A$. St001236The dominant dimension of the corresponding Comp-Nakayama algebra. St001238The number of simple modules S such that the Auslander-Reiten translate of S is isomorphic to the Nakayama functor applied to the second syzygy of S. St001271The competition number of a graph. St001282The number of graphs with the same chromatic polynomial. St001286The annihilation number of a graph. St001289The vector space dimension of the n-fold tensor product of D(A), where n is maximal such that this n-fold tensor product is nonzero. St001313The number of Dyck paths above the lattice path given by a binary word. St001359The number of permutations in the equivalence class of a permutation obtained by taking inverses of cycles. St001385The number of conjugacy classes of subgroups with connected subgroups of sizes prescribed by an integer partition. St001393The induced matching number of a graph. St001476The evaluation of the Tutte polynomial of the graph at (x,y) equal to (1,-1). St001481The minimal height of a peak of a Dyck path. St001483The number of simple module modules that appear in the socle of the regular module but have no nontrivial selfextensions with the regular module. St001487The number of inner corners of a skew partition. St001503The largest distance of a vertex to a vertex in a cycle in the resolution quiver of the corresponding Nakayama algebra. St001518The number of graphs with the same ordinary spectrum as the given graph. St001591The number of graphs with the given composition of multiplicities of Laplacian eigenvalues. St001597The Frobenius rank of a skew partition. St001624The breadth of a lattice. St001661Half the permanent of the Identity matrix plus the permutation matrix associated to the permutation. St001681The number of inclusion-wise minimal subsets of a lattice, whose meet is the bottom element. St001722The number of minimal chains with small intervals between a binary word and the top element. St001732The number of peaks visible from the left. St001740The number of graphs with the same symmetric edge polytope as the given graph. St001774The degree of the minimal polynomial of the smallest eigenvalue of a graph. St001775The degree of the minimal polynomial of the largest eigenvalue of a graph. St001776The degree of the minimal polynomial of the largest Laplacian eigenvalue of a graph. St001786The number of total orderings of the north steps of a Dyck path such that steps after the k-th east step are not among the first k positions in the order. St001804The minimal height of the rectangular inner shape in a cylindrical tableau associated to a tableau. St001881The number of factors of a lattice as a Cartesian product of lattices. St001934The number of monotone factorisations of genus zero of a permutation of given cycle type. St001941The evaluation at 1 of the modified Kazhdan--Lusztig R polynomial (as in [1, Section 5. St001261The Castelnuovo-Mumford regularity of a graph. St001872The number of indecomposable injective modules with even projective dimension in the corresponding Nakayama algebra. St000559The number of occurrences of the pattern {{1,3},{2,4}} in a set partition. St000560The number of occurrences of the pattern {{1,2},{3,4}} in a set partition. St000563The number of overlapping pairs of blocks of a set partition. St000516The number of stretching pairs of a permutation. St000709The number of occurrences of 14-2-3 or 14-3-2. St000751The number of occurrences of either of the pattern 2143 or 2143 in a permutation. St000570The Edelman-Greene number of a permutation. St000436The number of occurrences of the pattern 231 or of the pattern 321 in a permutation. St000590The number of occurrences of the pattern {{1},{2,3}} such that 2 is minimal, 1 is maximal, (2,3) are consecutive in a block. St000622The number of occurrences of the patterns 2143 or 4231 in a permutation. St000649The number of 3-excedences of a permutation. St000710The number of big deficiencies of a permutation. St000732The number of double deficiencies of a permutation. St000750The number of occurrences of the pattern 4213 in a permutation. St000779The tier of a permutation. St000800The number of occurrences of the vincular pattern |231 in a permutation. St000802The number of occurrences of the vincular pattern |321 in a permutation. St000803The number of occurrences of the vincular pattern |132 in a permutation. St000872The number of very big descents of a permutation. St000963The 2-shifted major index of a permutation. St001552The number of inversions between excedances and fixed points of a permutation. St001556The number of inversions of the third entry of a permutation. St001162The minimum jump of a permutation. St000842The breadth of a permutation. St000290The major index of a binary word. St000291The number of descents of a binary word. St000293The number of inversions of a binary word. St000347The inversion sum of a binary word. St000353The number of inner valleys of a permutation. St000369The dinv deficit of a Dyck path. St000376The bounce deficit of a Dyck path. St000379The number of Hamiltonian cycles in a graph. St000432The number of occurrences of the pattern 231 or of the pattern 312 in a permutation. St000434The number of occurrences of the pattern 213 or of the pattern 312 in a permutation. St000435The number of occurrences of the pattern 213 or of the pattern 231 in a permutation. St000437The number of occurrences of the pattern 312 or of the pattern 321 in a permutation. St000486The number of cycles of length at least 3 of a permutation. St000554The number of occurrences of the pattern {{1,2},{3}} in a set partition. St000561The number of occurrences of the pattern {{1,2,3}} in a set partition. St000562The number of internal points of a set partition. St000589The number of occurrences of the pattern {{1},{2,3}} such that 1 is maximal, (2,3) are consecutive in a block. St000598The number of occurrences of the pattern {{1},{2,3}} such that 1,2 are minimal, 3 is maximal, (2,3) are consecutive in a block. St000606The number of occurrences of the pattern {{1},{2,3}} such that 1,3 are maximal, (2,3) are consecutive in a block. St000607The number of occurrences of the pattern {{1},{2,3}} such that 2 is minimal, 3 is maximal, (2,3) are consecutive in a block. St000611The number of occurrences of the pattern {{1},{2,3}} such that 1 is maximal. St000613The number of occurrences of the pattern {{1,3},{2}} such that 2 is minimal, 3 is maximal, (1,3) are consecutive in a block. St000650The number of 3-rises of a permutation. St000661The number of rises of length 3 of a Dyck path. St000711The number of big exceedences of a permutation. St000747A variant of the major index of a set partition. St000790The number of pairs of centered tunnels, one strictly containing the other, of a Dyck path. St000791The number of pairs of left tunnels, one strictly containing the other, of a Dyck path. St000799The number of occurrences of the vincular pattern |213 in a permutation. St000801The number of occurrences of the vincular pattern |312 in a permutation. St000804The number of occurrences of the vincular pattern |123 in a permutation. St000837The number of ascents of distance 2 of a permutation. St000866The number of admissible inversions of a permutation in the sense of Shareshian-Wachs. St000875The semilength of the longest Dyck word in the Catalan factorisation of a binary word. St000881The number of short braid edges in the graph of braid moves of a permutation. St000921The number of internal inversions of a binary word. St000931The number of occurrences of the pattern UUU in a Dyck path. St001061The number of indices that are both descents and recoils of a permutation. St001082The number of boxed occurrences of 123 in a permutation. St001130The number of two successive successions in a permutation. St001141The number of occurrences of hills of size 3 in a Dyck path. St001174The Gorenstein dimension of the algebra $A/I$ when $I$ is the tilting module corresponding to the permutation in the Auslander algebra of $K[x]/(x^n)$. St001421Half the length of a longest factor which is its own reverse-complement and begins with a one of a binary word. St001423The number of distinct cubes in a binary word. St001436The index of a given binary word in the lex-order among all its cyclic shifts. St001485The modular major index of a binary word. St001520The number of strict 3-descents. St001731The factorization defect of a permutation. St001811The Castelnuovo-Mumford regularity of a permutation. St001960The number of descents of a permutation minus one if its first entry is not one. St000068The number of minimal elements in a poset. St000243The number of cyclic valleys and cyclic peaks of a permutation. St000640The rank of the largest boolean interval in a poset. St000880The number of connected components of long braid edges in the graph of braid moves of a permutation. St000886The number of permutations with the same antidiagonal sums. St000908The length of the shortest maximal antichain in a poset. St000988The orbit size of a permutation under Foata's bijection. St001220The width of a permutation. St001498The normalised height of a Nakayama algebra with magnitude 1. St001634The trace of the Coxeter matrix of the incidence algebra of a poset. St001719The number of shortest chains of small intervals from the bottom to the top in a lattice. St001720The minimal length of a chain of small intervals in a lattice. St001371The length of the longest Yamanouchi prefix of a binary word. St001651The Frankl number of a lattice. St001803The maximal overlap of the cylindrical tableau associated with a tableau. St001845The number of join irreducibles minus the rank of a lattice. St000914The sum of the values of the Möbius function of a poset. St001195The global dimension of the algebra $A/AfA$ of the corresponding Nakayama algebra $A$ with minimal left faithful projective-injective module $Af$. St001490The number of connected components of a skew partition. St000219The number of occurrences of the pattern 231 in a permutation. St001081The number of minimal length factorizations of a permutation into star transpositions. St000175Degree of the polynomial counting the number of semistandard Young tableaux when stretching the shape. St000205Number of non-integral Gelfand-Tsetlin polytopes with prescribed top row and partition weight. St000206Number of non-integral Gelfand-Tsetlin polytopes with prescribed top row and integer composition weight. St000225Difference between largest and smallest parts in a partition. St000749The smallest integer d such that the restriction of the representation corresponding to a partition of n to the symmetric group on n-d letters has a constituent of odd degree. St000944The 3-degree of an integer partition. St001178Twelve times the variance of the major index among all standard Young tableaux of a partition. St001586The number of odd parts smaller than the largest even part in an integer partition. St000117The number of centered tunnels of a Dyck path. St000143The largest repeated part of a partition. St000150The floored half-sum of the multiplicities of a partition. St000185The weighted size of a partition. St000257The number of distinct parts of a partition that occur at least twice. St000295The length of the border of a binary word. St000296The length of the symmetric border of a binary word. St000319The spin of an integer partition. St000320The dinv adjustment of an integer partition. St000377The dinv defect of an integer partition. St000481The number of upper covers of a partition in dominance order. St000513The number of invariant subsets of size 2 when acting with a permutation of given cycle type. St000547The number of even non-empty partial sums of an integer partition. St000629The defect of a binary word. St000688The global dimension minus the dominant dimension of the LNakayama algebra associated to a Dyck path. St000691The number of changes of a binary word. St000970Number of peaks minus the dominant dimension of the corresponding LNakayama algebra. St000995The largest even part of an integer partition. St001026The maximum of the projective dimensions of the indecomposable non-projective injective modules minus the minimum in the Nakayama algebra corresponding to the Dyck path. St001036The number of inner corners of the parallelogram polyomino associated with the Dyck path. St001037The number of inner corners of the upper path of the parallelogram polyomino associated with the Dyck path. St001091The number of parts in an integer partition whose next smaller part has the same size. St001107The number of times one can erase the first up and the last down step in a Dyck path and still remain a Dyck path. St001164Number of indecomposable injective modules whose socle has projective dimension at most g-1 (g the global dimension) minus the number of indecomposable projective-injective modules. St001280The number of parts of an integer partition that are at least two. St001355Number of non-empty prefixes of a binary word that contain equally many 0's and 1's. St001382The number of boxes in the diagram of a partition that do not lie in its Durfee square. St001392The largest nonnegative integer which is not a part and is smaller than the largest part of the partition. St001414Half the length of the longest odd length palindromic prefix of a binary word. St001420Half the length of a longest factor which is its own reverse-complement of a binary word. St001524The degree of symmetry of a binary word. St001541The Gini index of an integer partition. St001587Half of the largest even part of an integer partition. St001657The number of twos in an integer partition. St001695The natural comajor index of a standard Young tableau. St001698The comajor index of a standard tableau minus the weighted size of its shape. St001699The major index of a standard tableau minus the weighted size of its shape. St001712The number of natural descents of a standard Young tableau. St001910The height of the middle non-run of a Dyck path. St001912The length of the preperiod in Bulgarian solitaire corresponding to an integer partition. St001918The degree of the cyclic sieving polynomial corresponding to an integer partition. St001964The interval resolution global dimension of a poset. St001532The leading coefficient of the Poincare polynomial of the poset cone. St000478Another weight of a partition according to Alladi. St000566The number of ways to select a row of a Ferrers shape and two cells in this row. St000621The number of standard tableaux of shape equal to the given partition such that the minimal cyclic descent is even. St000934The 2-degree of an integer partition. St000936The number of even values of the symmetric group character corresponding to the partition. St000938The number of zeros of the symmetric group character corresponding to the partition. St000940The number of characters of the symmetric group whose value on the partition is zero. St001124The multiplicity of the standard representation in the Kronecker square corresponding to a partition. St000455The second largest eigenvalue of a graph if it is integral. St000512The number of invariant subsets of size 3 when acting with a permutation of given cycle type. St000941The number of characters of the symmetric group whose value on the partition is even. St001035The convexity degree of the parallelogram polyomino associated with the Dyck path. St001502The global dimension minus the dominant dimension of magnitude 1 Nakayama algebras. St000181The number of connected components of the Hasse diagram for the poset. St000699The toughness times the least common multiple of 1,. St001890The maximum magnitude of the Möbius function of a poset. St001876The number of 2-regular simple modules in the incidence algebra of the lattice. St001877Number of indecomposable injective modules with projective dimension 2. St001630The global dimension of the incidence algebra of the lattice over the rational numbers. St001878The projective dimension of the simple modules corresponding to the minimum of L in the incidence algebra of the lattice L. St000506The number of standard desarrangement tableaux of shape equal to the given partition. St001176The size of a partition minus its first part. St001248Sum of the even parts of a partition. St001279The sum of the parts of an integer partition that are at least two. St001384The number of boxes in the diagram of a partition that do not lie in the largest triangle it contains. St001440The number of standard Young tableaux whose major index is congruent one modulo the size of a given integer partition. St001570The minimal number of edges to add to make a graph Hamiltonian. St001714The number of subpartitions of an integer partition that do not dominate the conjugate subpartition. St001767The largest minimal number of arrows pointing to a cell in the Ferrers diagram in any assignment. St001857The number of edges in the reduced word graph of a signed permutation. St001961The sum of the greatest common divisors of all pairs of parts. St000782The indicator function of whether a given perfect matching is an L & P matching. St000084The number of subtrees. St000328The maximum number of child nodes in a tree. St000907The number of maximal antichains of minimal length in a poset. St001875The number of simple modules with projective dimension at most 1. St001926Sparre Andersen's position of the maximum of a signed permutation. St001805The maximal overlap of a cylindrical tableau associated with a semistandard tableau. St000102The charge of a semistandard tableau. St001604The multiplicity of the irreducible representation corresponding to a partition in the relabelling action on polygons.