Your data matches 67 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
St000085: Ordered trees ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[[]]
=> 1
[[],[]]
=> 2
[[[]]]
=> 1
[[],[],[]]
=> 6
[[],[[]]]
=> 3
[[[]],[]]
=> 3
[[[],[]]]
=> 2
[[[[]]]]
=> 1
[[],[],[],[]]
=> 24
[[],[],[[]]]
=> 12
[[],[[]],[]]
=> 12
[[],[[],[]]]
=> 8
[[],[[[]]]]
=> 4
[[[]],[],[]]
=> 12
[[[]],[[]]]
=> 6
[[[],[]],[]]
=> 8
[[[[]]],[]]
=> 4
[[[],[],[]]]
=> 6
[[[],[[]]]]
=> 3
[[[[]],[]]]
=> 3
[[[[],[]]]]
=> 2
[[[[[]]]]]
=> 1
Description
The number of linear extensions of the tree. We use Knuth's hook length formula for trees [pg.70, 1]. For an ordered tree $T$ on $n$ vertices, the number of linear extensions is $$ \frac{n!}{\prod_{v\in T}|T_v|}, $$ where $T_v$ is the number of vertices of the subtree rooted at $v$.
Mp00047: Ordered trees to posetPosets
St000100: Posets ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[[]]
=> ([(0,1)],2)
=> 1
[[],[]]
=> ([(0,2),(1,2)],3)
=> 2
[[[]]]
=> ([(0,2),(2,1)],3)
=> 1
[[],[],[]]
=> ([(0,3),(1,3),(2,3)],4)
=> 6
[[],[[]]]
=> ([(0,3),(1,2),(2,3)],4)
=> 3
[[[]],[]]
=> ([(0,3),(1,2),(2,3)],4)
=> 3
[[[],[]]]
=> ([(0,3),(1,3),(3,2)],4)
=> 2
[[[[]]]]
=> ([(0,3),(2,1),(3,2)],4)
=> 1
[[],[],[],[]]
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 24
[[],[],[[]]]
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> 12
[[],[[]],[]]
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> 12
[[],[[],[]]]
=> ([(0,4),(1,3),(2,3),(3,4)],5)
=> 8
[[],[[[]]]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> 4
[[[]],[],[]]
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> 12
[[[]],[[]]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> 6
[[[],[]],[]]
=> ([(0,4),(1,3),(2,3),(3,4)],5)
=> 8
[[[[]]],[]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> 4
[[[],[],[]]]
=> ([(0,4),(1,4),(2,4),(4,3)],5)
=> 6
[[[],[[]]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> 3
[[[[]],[]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> 3
[[[[],[]]]]
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> 2
[[[[[]]]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1
Description
The number of linear extensions of a poset.
Matching statistic: St000063
Mp00051: Ordered trees to Dyck pathDyck paths
Mp00027: Dyck paths to partitionInteger partitions
St000063: Integer partitions ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[[]]
=> [1,0]
=> []
=> 1
[[],[]]
=> [1,0,1,0]
=> [1]
=> 2
[[[]]]
=> [1,1,0,0]
=> []
=> 1
[[],[],[]]
=> [1,0,1,0,1,0]
=> [2,1]
=> 6
[[],[[]]]
=> [1,0,1,1,0,0]
=> [1,1]
=> 3
[[[]],[]]
=> [1,1,0,0,1,0]
=> [2]
=> 3
[[[],[]]]
=> [1,1,0,1,0,0]
=> [1]
=> 2
[[[[]]]]
=> [1,1,1,0,0,0]
=> []
=> 1
[[],[],[],[]]
=> [1,0,1,0,1,0,1,0]
=> [3,2,1]
=> 24
[[],[],[[]]]
=> [1,0,1,0,1,1,0,0]
=> [2,2,1]
=> 12
[[],[[]],[]]
=> [1,0,1,1,0,0,1,0]
=> [3,1,1]
=> 12
[[],[[],[]]]
=> [1,0,1,1,0,1,0,0]
=> [2,1,1]
=> 8
[[],[[[]]]]
=> [1,0,1,1,1,0,0,0]
=> [1,1,1]
=> 4
[[[]],[],[]]
=> [1,1,0,0,1,0,1,0]
=> [3,2]
=> 12
[[[]],[[]]]
=> [1,1,0,0,1,1,0,0]
=> [2,2]
=> 6
[[[],[]],[]]
=> [1,1,0,1,0,0,1,0]
=> [3,1]
=> 8
[[[[]]],[]]
=> [1,1,1,0,0,0,1,0]
=> [3]
=> 4
[[[],[],[]]]
=> [1,1,0,1,0,1,0,0]
=> [2,1]
=> 6
[[[],[[]]]]
=> [1,1,0,1,1,0,0,0]
=> [1,1]
=> 3
[[[[]],[]]]
=> [1,1,1,0,0,1,0,0]
=> [2]
=> 3
[[[[],[]]]]
=> [1,1,1,0,1,0,0,0]
=> [1]
=> 2
[[[[[]]]]]
=> [1,1,1,1,0,0,0,0]
=> []
=> 1
Description
The number of linear extensions of a certain poset defined for an integer partition. The poset is constructed in David Speyer's answer to Matt Fayers' question [3]. The value at the partition $\lambda$ also counts cover-inclusive Dyck tilings of $\lambda\setminus\mu$, summed over all $\mu$, as noticed by Philippe Nadeau in a comment. This statistic arises in the homogeneous Garnir relations for the universal graded Specht modules for cyclotomic quiver Hecke algebras.
Mp00049: Ordered trees to binary tree: left brother = left childBinary trees
Mp00014: Binary trees to 132-avoiding permutationPermutations
St000110: Permutations ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[[]]
=> [.,.]
=> [1] => 1
[[],[]]
=> [[.,.],.]
=> [1,2] => 1
[[[]]]
=> [.,[.,.]]
=> [2,1] => 2
[[],[],[]]
=> [[[.,.],.],.]
=> [1,2,3] => 1
[[],[[]]]
=> [[.,.],[.,.]]
=> [3,1,2] => 3
[[[]],[]]
=> [[.,[.,.]],.]
=> [2,1,3] => 2
[[[],[]]]
=> [.,[[.,.],.]]
=> [2,3,1] => 3
[[[[]]]]
=> [.,[.,[.,.]]]
=> [3,2,1] => 6
[[],[],[],[]]
=> [[[[.,.],.],.],.]
=> [1,2,3,4] => 1
[[],[],[[]]]
=> [[[.,.],.],[.,.]]
=> [4,1,2,3] => 4
[[],[[]],[]]
=> [[[.,.],[.,.]],.]
=> [3,1,2,4] => 3
[[],[[],[]]]
=> [[.,.],[[.,.],.]]
=> [3,4,1,2] => 6
[[],[[[]]]]
=> [[.,.],[.,[.,.]]]
=> [4,3,1,2] => 12
[[[]],[],[]]
=> [[[.,[.,.]],.],.]
=> [2,1,3,4] => 2
[[[]],[[]]]
=> [[.,[.,.]],[.,.]]
=> [4,2,1,3] => 8
[[[],[]],[]]
=> [[.,[[.,.],.]],.]
=> [2,3,1,4] => 3
[[[[]]],[]]
=> [[.,[.,[.,.]]],.]
=> [3,2,1,4] => 6
[[[],[],[]]]
=> [.,[[[.,.],.],.]]
=> [2,3,4,1] => 4
[[[],[[]]]]
=> [.,[[.,.],[.,.]]]
=> [4,2,3,1] => 12
[[[[]],[]]]
=> [.,[[.,[.,.]],.]]
=> [3,2,4,1] => 8
[[[[],[]]]]
=> [.,[.,[[.,.],.]]]
=> [3,4,2,1] => 12
[[[[[]]]]]
=> [.,[.,[.,[.,.]]]]
=> [4,3,2,1] => 24
Description
The number of permutations less than or equal to a permutation in left weak order. This is the same as the number of permutations less than or equal to the given permutation in right weak order.
Matching statistic: St000071
Mp00047: Ordered trees to posetPosets
Mp00195: Posets order idealsLattices
Mp00193: Lattices to posetPosets
St000071: Posets ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[[]]
=> ([(0,1)],2)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 1
[[],[]]
=> ([(0,2),(1,2)],3)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> 2
[[[]]]
=> ([(0,2),(2,1)],3)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> 1
[[],[],[]]
=> ([(0,3),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(0,4),(2,6),(2,7),(3,5),(3,7),(4,5),(4,6),(5,8),(6,8),(7,8),(8,1)],9)
=> ([(0,2),(0,3),(0,4),(2,6),(2,7),(3,5),(3,7),(4,5),(4,6),(5,8),(6,8),(7,8),(8,1)],9)
=> 6
[[],[[]]]
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7)
=> ([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7)
=> 3
[[[]],[]]
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7)
=> ([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7)
=> 3
[[[],[]]]
=> ([(0,3),(1,3),(3,2)],4)
=> ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
=> ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
=> 2
[[[[]]]]
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1
[[],[],[],[]]
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,2),(0,3),(0,4),(0,5),(2,9),(2,10),(2,11),(3,7),(3,8),(3,11),(4,6),(4,8),(4,10),(5,6),(5,7),(5,9),(6,12),(6,15),(7,12),(7,13),(8,12),(8,14),(9,13),(9,15),(10,14),(10,15),(11,13),(11,14),(12,16),(13,16),(14,16),(15,16),(16,1)],17)
=> ([(0,2),(0,3),(0,4),(0,5),(2,9),(2,10),(2,11),(3,7),(3,8),(3,11),(4,6),(4,8),(4,10),(5,6),(5,7),(5,9),(6,12),(6,15),(7,12),(7,13),(8,12),(8,14),(9,13),(9,15),(10,14),(10,15),(11,13),(11,14),(12,16),(13,16),(14,16),(15,16),(16,1)],17)
=> 24
[[],[],[[]]]
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,3),(0,4),(0,5),(2,9),(2,10),(3,6),(3,8),(4,6),(4,7),(5,2),(5,7),(5,8),(6,11),(7,9),(7,11),(8,10),(8,11),(9,12),(10,12),(11,12),(12,1)],13)
=> ([(0,3),(0,4),(0,5),(2,9),(2,10),(3,6),(3,8),(4,6),(4,7),(5,2),(5,7),(5,8),(6,11),(7,9),(7,11),(8,10),(8,11),(9,12),(10,12),(11,12),(12,1)],13)
=> 12
[[],[[]],[]]
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,3),(0,4),(0,5),(2,9),(2,10),(3,6),(3,8),(4,6),(4,7),(5,2),(5,7),(5,8),(6,11),(7,9),(7,11),(8,10),(8,11),(9,12),(10,12),(11,12),(12,1)],13)
=> ([(0,3),(0,4),(0,5),(2,9),(2,10),(3,6),(3,8),(4,6),(4,7),(5,2),(5,7),(5,8),(6,11),(7,9),(7,11),(8,10),(8,11),(9,12),(10,12),(11,12),(12,1)],13)
=> 12
[[],[[],[]]]
=> ([(0,4),(1,3),(2,3),(3,4)],5)
=> ([(0,3),(0,4),(0,5),(2,9),(3,7),(3,8),(4,6),(4,8),(5,6),(5,7),(6,10),(7,10),(8,2),(8,10),(9,1),(10,9)],11)
=> ([(0,3),(0,4),(0,5),(2,9),(3,7),(3,8),(4,6),(4,8),(5,6),(5,7),(6,10),(7,10),(8,2),(8,10),(9,1),(10,9)],11)
=> 8
[[],[[[]]]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(0,3),(0,5),(2,8),(3,6),(4,2),(4,7),(5,4),(5,6),(6,7),(7,8),(8,1)],9)
=> ([(0,3),(0,5),(2,8),(3,6),(4,2),(4,7),(5,4),(5,6),(6,7),(7,8),(8,1)],9)
=> 4
[[[]],[],[]]
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,3),(0,4),(0,5),(2,9),(2,10),(3,6),(3,8),(4,6),(4,7),(5,2),(5,7),(5,8),(6,11),(7,9),(7,11),(8,10),(8,11),(9,12),(10,12),(11,12),(12,1)],13)
=> ([(0,3),(0,4),(0,5),(2,9),(2,10),(3,6),(3,8),(4,6),(4,7),(5,2),(5,7),(5,8),(6,11),(7,9),(7,11),(8,10),(8,11),(9,12),(10,12),(11,12),(12,1)],13)
=> 12
[[[]],[[]]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(2,8),(3,7),(4,3),(4,6),(5,2),(5,6),(6,7),(6,8),(7,9),(8,9),(9,1)],10)
=> ([(0,4),(0,5),(2,8),(3,7),(4,3),(4,6),(5,2),(5,6),(6,7),(6,8),(7,9),(8,9),(9,1)],10)
=> 6
[[[],[]],[]]
=> ([(0,4),(1,3),(2,3),(3,4)],5)
=> ([(0,3),(0,4),(0,5),(2,9),(3,7),(3,8),(4,6),(4,8),(5,6),(5,7),(6,10),(7,10),(8,2),(8,10),(9,1),(10,9)],11)
=> ([(0,3),(0,4),(0,5),(2,9),(3,7),(3,8),(4,6),(4,8),(5,6),(5,7),(6,10),(7,10),(8,2),(8,10),(9,1),(10,9)],11)
=> 8
[[[[]]],[]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(0,3),(0,5),(2,8),(3,6),(4,2),(4,7),(5,4),(5,6),(6,7),(7,8),(8,1)],9)
=> ([(0,3),(0,5),(2,8),(3,6),(4,2),(4,7),(5,4),(5,6),(6,7),(7,8),(8,1)],9)
=> 4
[[[],[],[]]]
=> ([(0,4),(1,4),(2,4),(4,3)],5)
=> ([(0,2),(0,3),(0,4),(2,7),(2,8),(3,6),(3,8),(4,6),(4,7),(5,1),(6,9),(7,9),(8,9),(9,5)],10)
=> ([(0,2),(0,3),(0,4),(2,7),(2,8),(3,6),(3,8),(4,6),(4,7),(5,1),(6,9),(7,9),(8,9),(9,5)],10)
=> 6
[[[],[[]]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ([(0,3),(0,5),(1,7),(3,6),(4,2),(5,1),(5,6),(6,7),(7,4)],8)
=> ([(0,3),(0,5),(1,7),(3,6),(4,2),(5,1),(5,6),(6,7),(7,4)],8)
=> 3
[[[[]],[]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ([(0,3),(0,5),(1,7),(3,6),(4,2),(5,1),(5,6),(6,7),(7,4)],8)
=> ([(0,3),(0,5),(1,7),(3,6),(4,2),(5,1),(5,6),(6,7),(7,4)],8)
=> 3
[[[[],[]]]]
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> ([(0,2),(0,3),(2,6),(3,6),(4,1),(5,4),(6,5)],7)
=> ([(0,2),(0,3),(2,6),(3,6),(4,1),(5,4),(6,5)],7)
=> 2
[[[[[]]]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 1
Description
The number of maximal chains in a poset.
Matching statistic: St001855
Mp00050: Ordered trees to binary tree: right brother = right childBinary trees
Mp00014: Binary trees to 132-avoiding permutationPermutations
Mp00170: Permutations to signed permutationSigned permutations
St001855: Signed permutations ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[[]]
=> [.,.]
=> [1] => [1] => 1
[[],[]]
=> [.,[.,.]]
=> [2,1] => [2,1] => 2
[[[]]]
=> [[.,.],.]
=> [1,2] => [1,2] => 1
[[],[],[]]
=> [.,[.,[.,.]]]
=> [3,2,1] => [3,2,1] => 6
[[],[[]]]
=> [.,[[.,.],.]]
=> [2,3,1] => [2,3,1] => 3
[[[]],[]]
=> [[.,.],[.,.]]
=> [3,1,2] => [3,1,2] => 3
[[[],[]]]
=> [[.,[.,.]],.]
=> [2,1,3] => [2,1,3] => 2
[[[[]]]]
=> [[[.,.],.],.]
=> [1,2,3] => [1,2,3] => 1
[[],[],[],[]]
=> [.,[.,[.,[.,.]]]]
=> [4,3,2,1] => [4,3,2,1] => 24
[[],[],[[]]]
=> [.,[.,[[.,.],.]]]
=> [3,4,2,1] => [3,4,2,1] => 12
[[],[[]],[]]
=> [.,[[.,.],[.,.]]]
=> [4,2,3,1] => [4,2,3,1] => 12
[[],[[],[]]]
=> [.,[[.,[.,.]],.]]
=> [3,2,4,1] => [3,2,4,1] => 8
[[],[[[]]]]
=> [.,[[[.,.],.],.]]
=> [2,3,4,1] => [2,3,4,1] => 4
[[[]],[],[]]
=> [[.,.],[.,[.,.]]]
=> [4,3,1,2] => [4,3,1,2] => 12
[[[]],[[]]]
=> [[.,.],[[.,.],.]]
=> [3,4,1,2] => [3,4,1,2] => 6
[[[],[]],[]]
=> [[.,[.,.]],[.,.]]
=> [4,2,1,3] => [4,2,1,3] => 8
[[[[]]],[]]
=> [[[.,.],.],[.,.]]
=> [4,1,2,3] => [4,1,2,3] => 4
[[[],[],[]]]
=> [[.,[.,[.,.]]],.]
=> [3,2,1,4] => [3,2,1,4] => 6
[[[],[[]]]]
=> [[.,[[.,.],.]],.]
=> [2,3,1,4] => [2,3,1,4] => 3
[[[[]],[]]]
=> [[[.,.],[.,.]],.]
=> [3,1,2,4] => [3,1,2,4] => 3
[[[[],[]]]]
=> [[[.,[.,.]],.],.]
=> [2,1,3,4] => [2,1,3,4] => 2
[[[[[]]]]]
=> [[[[.,.],.],.],.]
=> [1,2,3,4] => [1,2,3,4] => 1
Description
The number of signed permutations less than or equal to a signed permutation in left weak order.
Mp00047: Ordered trees to posetPosets
Mp00307: Posets promotion cycle typeInteger partitions
St000228: Integer partitions ⟶ ℤResult quality: 75% values known / values provided: 82%distinct values known / distinct values provided: 75%
Values
[[]]
=> ([(0,1)],2)
=> [1]
=> 1
[[],[]]
=> ([(0,2),(1,2)],3)
=> [2]
=> 2
[[[]]]
=> ([(0,2),(2,1)],3)
=> [1]
=> 1
[[],[],[]]
=> ([(0,3),(1,3),(2,3)],4)
=> [3,3]
=> 6
[[],[[]]]
=> ([(0,3),(1,2),(2,3)],4)
=> [3]
=> 3
[[[]],[]]
=> ([(0,3),(1,2),(2,3)],4)
=> [3]
=> 3
[[[],[]]]
=> ([(0,3),(1,3),(3,2)],4)
=> [2]
=> 2
[[[[]]]]
=> ([(0,3),(2,1),(3,2)],4)
=> [1]
=> 1
[[],[],[],[]]
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> [4,4,4,4,4,4]
=> ? ∊ {12,12,12,24}
[[],[],[[]]]
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> [4,4,4]
=> ? ∊ {12,12,12,24}
[[],[[]],[]]
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> [4,4,4]
=> ? ∊ {12,12,12,24}
[[],[[],[]]]
=> ([(0,4),(1,3),(2,3),(3,4)],5)
=> [8]
=> 8
[[],[[[]]]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> [4]
=> 4
[[[]],[],[]]
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> [4,4,4]
=> ? ∊ {12,12,12,24}
[[[]],[[]]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> [4,2]
=> 6
[[[],[]],[]]
=> ([(0,4),(1,3),(2,3),(3,4)],5)
=> [8]
=> 8
[[[[]]],[]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> [4]
=> 4
[[[],[],[]]]
=> ([(0,4),(1,4),(2,4),(4,3)],5)
=> [3,3]
=> 6
[[[],[[]]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> [3]
=> 3
[[[[]],[]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> [3]
=> 3
[[[[],[]]]]
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> [2]
=> 2
[[[[[]]]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> [1]
=> 1
Description
The size of a partition. This statistic is the constant statistic of the level sets.
Matching statistic: St000909
Mp00047: Ordered trees to posetPosets
Mp00195: Posets order idealsLattices
Mp00193: Lattices to posetPosets
St000909: Posets ⟶ ℤResult quality: 62% values known / values provided: 64%distinct values known / distinct values provided: 62%
Values
[[]]
=> ([(0,1)],2)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 1
[[],[]]
=> ([(0,2),(1,2)],3)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> 2
[[[]]]
=> ([(0,2),(2,1)],3)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> 1
[[],[],[]]
=> ([(0,3),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(0,4),(2,6),(2,7),(3,5),(3,7),(4,5),(4,6),(5,8),(6,8),(7,8),(8,1)],9)
=> ([(0,2),(0,3),(0,4),(2,6),(2,7),(3,5),(3,7),(4,5),(4,6),(5,8),(6,8),(7,8),(8,1)],9)
=> 6
[[],[[]]]
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7)
=> ([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7)
=> 3
[[[]],[]]
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7)
=> ([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7)
=> 3
[[[],[]]]
=> ([(0,3),(1,3),(3,2)],4)
=> ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
=> ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
=> 2
[[[[]]]]
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1
[[],[],[],[]]
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,2),(0,3),(0,4),(0,5),(2,9),(2,10),(2,11),(3,7),(3,8),(3,11),(4,6),(4,8),(4,10),(5,6),(5,7),(5,9),(6,12),(6,15),(7,12),(7,13),(8,12),(8,14),(9,13),(9,15),(10,14),(10,15),(11,13),(11,14),(12,16),(13,16),(14,16),(15,16),(16,1)],17)
=> ([(0,2),(0,3),(0,4),(0,5),(2,9),(2,10),(2,11),(3,7),(3,8),(3,11),(4,6),(4,8),(4,10),(5,6),(5,7),(5,9),(6,12),(6,15),(7,12),(7,13),(8,12),(8,14),(9,13),(9,15),(10,14),(10,15),(11,13),(11,14),(12,16),(13,16),(14,16),(15,16),(16,1)],17)
=> ? ∊ {6,6,8,8,12,12,12,24}
[[],[],[[]]]
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,3),(0,4),(0,5),(2,9),(2,10),(3,6),(3,8),(4,6),(4,7),(5,2),(5,7),(5,8),(6,11),(7,9),(7,11),(8,10),(8,11),(9,12),(10,12),(11,12),(12,1)],13)
=> ([(0,3),(0,4),(0,5),(2,9),(2,10),(3,6),(3,8),(4,6),(4,7),(5,2),(5,7),(5,8),(6,11),(7,9),(7,11),(8,10),(8,11),(9,12),(10,12),(11,12),(12,1)],13)
=> ? ∊ {6,6,8,8,12,12,12,24}
[[],[[]],[]]
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,3),(0,4),(0,5),(2,9),(2,10),(3,6),(3,8),(4,6),(4,7),(5,2),(5,7),(5,8),(6,11),(7,9),(7,11),(8,10),(8,11),(9,12),(10,12),(11,12),(12,1)],13)
=> ([(0,3),(0,4),(0,5),(2,9),(2,10),(3,6),(3,8),(4,6),(4,7),(5,2),(5,7),(5,8),(6,11),(7,9),(7,11),(8,10),(8,11),(9,12),(10,12),(11,12),(12,1)],13)
=> ? ∊ {6,6,8,8,12,12,12,24}
[[],[[],[]]]
=> ([(0,4),(1,3),(2,3),(3,4)],5)
=> ([(0,3),(0,4),(0,5),(2,9),(3,7),(3,8),(4,6),(4,8),(5,6),(5,7),(6,10),(7,10),(8,2),(8,10),(9,1),(10,9)],11)
=> ([(0,3),(0,4),(0,5),(2,9),(3,7),(3,8),(4,6),(4,8),(5,6),(5,7),(6,10),(7,10),(8,2),(8,10),(9,1),(10,9)],11)
=> ? ∊ {6,6,8,8,12,12,12,24}
[[],[[[]]]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(0,3),(0,5),(2,8),(3,6),(4,2),(4,7),(5,4),(5,6),(6,7),(7,8),(8,1)],9)
=> ([(0,3),(0,5),(2,8),(3,6),(4,2),(4,7),(5,4),(5,6),(6,7),(7,8),(8,1)],9)
=> 4
[[[]],[],[]]
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,3),(0,4),(0,5),(2,9),(2,10),(3,6),(3,8),(4,6),(4,7),(5,2),(5,7),(5,8),(6,11),(7,9),(7,11),(8,10),(8,11),(9,12),(10,12),(11,12),(12,1)],13)
=> ([(0,3),(0,4),(0,5),(2,9),(2,10),(3,6),(3,8),(4,6),(4,7),(5,2),(5,7),(5,8),(6,11),(7,9),(7,11),(8,10),(8,11),(9,12),(10,12),(11,12),(12,1)],13)
=> ? ∊ {6,6,8,8,12,12,12,24}
[[[]],[[]]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(2,8),(3,7),(4,3),(4,6),(5,2),(5,6),(6,7),(6,8),(7,9),(8,9),(9,1)],10)
=> ([(0,4),(0,5),(2,8),(3,7),(4,3),(4,6),(5,2),(5,6),(6,7),(6,8),(7,9),(8,9),(9,1)],10)
=> ? ∊ {6,6,8,8,12,12,12,24}
[[[],[]],[]]
=> ([(0,4),(1,3),(2,3),(3,4)],5)
=> ([(0,3),(0,4),(0,5),(2,9),(3,7),(3,8),(4,6),(4,8),(5,6),(5,7),(6,10),(7,10),(8,2),(8,10),(9,1),(10,9)],11)
=> ([(0,3),(0,4),(0,5),(2,9),(3,7),(3,8),(4,6),(4,8),(5,6),(5,7),(6,10),(7,10),(8,2),(8,10),(9,1),(10,9)],11)
=> ? ∊ {6,6,8,8,12,12,12,24}
[[[[]]],[]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(0,3),(0,5),(2,8),(3,6),(4,2),(4,7),(5,4),(5,6),(6,7),(7,8),(8,1)],9)
=> ([(0,3),(0,5),(2,8),(3,6),(4,2),(4,7),(5,4),(5,6),(6,7),(7,8),(8,1)],9)
=> 4
[[[],[],[]]]
=> ([(0,4),(1,4),(2,4),(4,3)],5)
=> ([(0,2),(0,3),(0,4),(2,7),(2,8),(3,6),(3,8),(4,6),(4,7),(5,1),(6,9),(7,9),(8,9),(9,5)],10)
=> ([(0,2),(0,3),(0,4),(2,7),(2,8),(3,6),(3,8),(4,6),(4,7),(5,1),(6,9),(7,9),(8,9),(9,5)],10)
=> ? ∊ {6,6,8,8,12,12,12,24}
[[[],[[]]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ([(0,3),(0,5),(1,7),(3,6),(4,2),(5,1),(5,6),(6,7),(7,4)],8)
=> ([(0,3),(0,5),(1,7),(3,6),(4,2),(5,1),(5,6),(6,7),(7,4)],8)
=> 3
[[[[]],[]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ([(0,3),(0,5),(1,7),(3,6),(4,2),(5,1),(5,6),(6,7),(7,4)],8)
=> ([(0,3),(0,5),(1,7),(3,6),(4,2),(5,1),(5,6),(6,7),(7,4)],8)
=> 3
[[[[],[]]]]
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> ([(0,2),(0,3),(2,6),(3,6),(4,1),(5,4),(6,5)],7)
=> ([(0,2),(0,3),(2,6),(3,6),(4,1),(5,4),(6,5)],7)
=> 2
[[[[[]]]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 1
Description
The number of maximal chains of maximal size in a poset.
Mp00051: Ordered trees to Dyck pathDyck paths
Mp00099: Dyck paths bounce pathDyck paths
Mp00101: Dyck paths decomposition reverseDyck paths
St001232: Dyck paths ⟶ ℤResult quality: 50% values known / values provided: 59%distinct values known / distinct values provided: 50%
Values
[[]]
=> [1,0]
=> [1,0]
=> [1,0]
=> 0 = 1 - 1
[[],[]]
=> [1,0,1,0]
=> [1,0,1,0]
=> [1,1,0,0]
=> 0 = 1 - 1
[[[]]]
=> [1,1,0,0]
=> [1,1,0,0]
=> [1,0,1,0]
=> 1 = 2 - 1
[[],[],[]]
=> [1,0,1,0,1,0]
=> [1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> 0 = 1 - 1
[[],[[]]]
=> [1,0,1,1,0,0]
=> [1,0,1,1,0,0]
=> [1,1,0,1,0,0]
=> 2 = 3 - 1
[[[]],[]]
=> [1,1,0,0,1,0]
=> [1,1,0,0,1,0]
=> [1,1,0,0,1,0]
=> 1 = 2 - 1
[[[],[]]]
=> [1,1,0,1,0,0]
=> [1,0,1,1,0,0]
=> [1,1,0,1,0,0]
=> 2 = 3 - 1
[[[[]]]]
=> [1,1,1,0,0,0]
=> [1,1,1,0,0,0]
=> [1,0,1,0,1,0]
=> ? = 6 - 1
[[],[],[],[]]
=> [1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> 0 = 1 - 1
[[],[],[[]]]
=> [1,0,1,0,1,1,0,0]
=> [1,0,1,0,1,1,0,0]
=> [1,1,1,0,1,0,0,0]
=> 3 = 4 - 1
[[],[[]],[]]
=> [1,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0]
=> 2 = 3 - 1
[[],[[],[]]]
=> [1,0,1,1,0,1,0,0]
=> [1,0,1,0,1,1,0,0]
=> [1,1,1,0,1,0,0,0]
=> 3 = 4 - 1
[[],[[[]]]]
=> [1,0,1,1,1,0,0,0]
=> [1,0,1,1,1,0,0,0]
=> [1,1,0,1,0,1,0,0]
=> ? ∊ {6,6,8,8,12,12,12,24} - 1
[[[]],[],[]]
=> [1,1,0,0,1,0,1,0]
=> [1,1,0,0,1,0,1,0]
=> [1,1,1,0,0,0,1,0]
=> 1 = 2 - 1
[[[]],[[]]]
=> [1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> [1,1,0,1,0,0,1,0]
=> ? ∊ {6,6,8,8,12,12,12,24} - 1
[[[],[]],[]]
=> [1,1,0,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0]
=> 2 = 3 - 1
[[[[]]],[]]
=> [1,1,1,0,0,0,1,0]
=> [1,1,1,0,0,0,1,0]
=> [1,1,0,0,1,0,1,0]
=> ? ∊ {6,6,8,8,12,12,12,24} - 1
[[[],[],[]]]
=> [1,1,0,1,0,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> [1,1,0,1,0,0,1,0]
=> ? ∊ {6,6,8,8,12,12,12,24} - 1
[[[],[[]]]]
=> [1,1,0,1,1,0,0,0]
=> [1,0,1,1,1,0,0,0]
=> [1,1,0,1,0,1,0,0]
=> ? ∊ {6,6,8,8,12,12,12,24} - 1
[[[[]],[]]]
=> [1,1,1,0,0,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> [1,1,0,1,0,0,1,0]
=> ? ∊ {6,6,8,8,12,12,12,24} - 1
[[[[],[]]]]
=> [1,1,1,0,1,0,0,0]
=> [1,0,1,1,1,0,0,0]
=> [1,1,0,1,0,1,0,0]
=> ? ∊ {6,6,8,8,12,12,12,24} - 1
[[[[[]]]]]
=> [1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> ? ∊ {6,6,8,8,12,12,12,24} - 1
Description
The number of indecomposable modules with projective dimension 2 for Nakayama algebras with global dimension at most 2.
Mp00047: Ordered trees to posetPosets
Mp00198: Posets incomparability graphGraphs
St000454: Graphs ⟶ ℤResult quality: 50% values known / values provided: 50%distinct values known / distinct values provided: 50%
Values
[[]]
=> ([(0,1)],2)
=> ([],2)
=> 0 = 1 - 1
[[],[]]
=> ([(0,2),(1,2)],3)
=> ([(1,2)],3)
=> 1 = 2 - 1
[[[]]]
=> ([(0,2),(2,1)],3)
=> ([],3)
=> 0 = 1 - 1
[[],[],[]]
=> ([(0,3),(1,3),(2,3)],4)
=> ([(1,2),(1,3),(2,3)],4)
=> 2 = 3 - 1
[[],[[]]]
=> ([(0,3),(1,2),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> ? ∊ {3,6} - 1
[[[]],[]]
=> ([(0,3),(1,2),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> ? ∊ {3,6} - 1
[[[],[]]]
=> ([(0,3),(1,3),(3,2)],4)
=> ([(2,3)],4)
=> 1 = 2 - 1
[[[[]]]]
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> 0 = 1 - 1
[[],[],[],[]]
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3 = 4 - 1
[[],[],[[]]]
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {4,6,6,8,8,12,12,12,24} - 1
[[],[[]],[]]
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {4,6,6,8,8,12,12,12,24} - 1
[[],[[],[]]]
=> ([(0,4),(1,3),(2,3),(3,4)],5)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {4,6,6,8,8,12,12,12,24} - 1
[[],[[[]]]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> ? ∊ {4,6,6,8,8,12,12,12,24} - 1
[[[]],[],[]]
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {4,6,6,8,8,12,12,12,24} - 1
[[[]],[[]]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4)],5)
=> 2 = 3 - 1
[[[],[]],[]]
=> ([(0,4),(1,3),(2,3),(3,4)],5)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {4,6,6,8,8,12,12,12,24} - 1
[[[[]]],[]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> ? ∊ {4,6,6,8,8,12,12,12,24} - 1
[[[],[],[]]]
=> ([(0,4),(1,4),(2,4),(4,3)],5)
=> ([(2,3),(2,4),(3,4)],5)
=> 2 = 3 - 1
[[[],[[]]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ([(2,4),(3,4)],5)
=> ? ∊ {4,6,6,8,8,12,12,12,24} - 1
[[[[]],[]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ([(2,4),(3,4)],5)
=> ? ∊ {4,6,6,8,8,12,12,12,24} - 1
[[[[],[]]]]
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> ([(3,4)],5)
=> 1 = 2 - 1
[[[[[]]]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> 0 = 1 - 1
Description
The largest eigenvalue of a graph if it is integral. If a graph is $d$-regular, then its largest eigenvalue equals $d$. One can show that the largest eigenvalue always lies between the average degree and the maximal degree. This statistic is undefined if the largest eigenvalue of the graph is not integral.
The following 57 statistics, ordered by result quality, also match your data. Click on any of them to see the details.
St001877Number of indecomposable injective modules with projective dimension 2. St000777The number of distinct eigenvalues of the distance Laplacian of a connected graph. St001633The number of simple modules with projective dimension two in the incidence algebra of the poset. St000803The number of occurrences of the vincular pattern |132 in a permutation. St001330The hat guessing number of a graph. St001876The number of 2-regular simple modules in the incidence algebra of the lattice. St000298The order dimension or Dushnik-Miller dimension of a poset. St000307The number of rowmotion orbits of a poset. St000633The size of the automorphism group of a poset. St000640The rank of the largest boolean interval in a poset. St000845The maximal number of elements covered by an element in a poset. St000846The maximal number of elements covering an element of a poset. St000910The number of maximal chains of minimal length in a poset. St001105The number of greedy linear extensions of a poset. St001106The number of supergreedy linear extensions of a poset. St001268The size of the largest ordinal summand in the poset. St001399The distinguishing number of a poset. St001779The order of promotion on the set of linear extensions of a poset. St001942The number of loops of the quiver corresponding to the reduced incidence algebra of a poset. St000632The jump number of the poset. St000848The balance constant multiplied with the number of linear extensions of a poset. St000849The number of 1/3-balanced pairs in a poset. St000850The number of 1/2-balanced pairs in a poset. St001397Number of pairs of incomparable elements in a finite poset. St001398Number of subsets of size 3 of elements in a poset that form a "v". St000907The number of maximal antichains of minimal length in a poset. St001964The interval resolution global dimension of a poset. St000264The girth of a graph, which is not a tree. St000699The toughness times the least common multiple of 1,. St000771The largest multiplicity of a distance Laplacian eigenvalue in a connected graph. St000772The multiplicity of the largest distance Laplacian eigenvalue in a connected graph. St001645The pebbling number of a connected graph. St000259The diameter of a connected graph. St000260The radius of a connected graph. St000302The determinant of the distance matrix of a connected graph. St000455The second largest eigenvalue of a graph if it is integral. St000466The Gutman (or modified Schultz) index of a connected graph. St000467The hyper-Wiener index of a connected graph. St001879The number of indecomposable summands of the top of the first syzygy of the dual of the regular module in the incidence algebra of the lattice. St000422The energy of a graph, if it is integral. St001880The number of 2-Gorenstein indecomposable injective modules in the incidence algebra of the lattice. St000736The last entry in the first row of a semistandard tableau. St001000Number of indecomposable modules with projective dimension equal to the global dimension in the Nakayama algebra corresponding to the Dyck path. St001208The number of connected components of the quiver of $A/T$ when $T$ is the 1-tilting module corresponding to the permutation in the Auslander algebra $A$ of $K[x]/(x^n)$. St001491The number of indecomposable projective-injective modules in the algebra corresponding to a subset. St001569The maximal modular displacement of a permutation. St001722The number of minimal chains with small intervals between a binary word and the top element. St001816Eigenvalues of the top-to-random operator acting on a simple module. St000075The orbit size of a standard tableau under promotion. St000112The sum of the entries reduced by the index of their row in a semistandard tableau. St000177The number of free tiles in the pattern. St000178Number of free entries. St001235The global dimension of the corresponding Comp-Nakayama algebra. St001520The number of strict 3-descents. St001582The grades of the simple modules corresponding to the points in the poset of the symmetric group under the Bruhat order. St001811The Castelnuovo-Mumford regularity of a permutation. St001948The number of augmented double ascents of a permutation.