searching the database
Your data matches 101 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
(click to perform a complete search on your data)
Matching statistic: St001484
St001484: Integer partitions ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[1]
=> 1
[2]
=> 1
[1,1]
=> 0
[3]
=> 1
[2,1]
=> 2
[1,1,1]
=> 0
[4]
=> 1
[3,1]
=> 2
[2,2]
=> 0
[2,1,1]
=> 1
[1,1,1,1]
=> 0
[5]
=> 1
[4,1]
=> 2
[3,2]
=> 2
[3,1,1]
=> 1
[2,2,1]
=> 1
[2,1,1,1]
=> 1
[1,1,1,1,1]
=> 0
[6]
=> 1
[5,1]
=> 2
[4,2]
=> 2
[4,1,1]
=> 1
[3,3]
=> 0
[3,2,1]
=> 3
[3,1,1,1]
=> 1
[2,2,2]
=> 0
[2,2,1,1]
=> 0
[2,1,1,1,1]
=> 1
[1,1,1,1,1,1]
=> 0
[7]
=> 1
[6,1]
=> 2
[5,2]
=> 2
[5,1,1]
=> 1
[4,3]
=> 2
[4,2,1]
=> 3
[4,1,1,1]
=> 1
[3,3,1]
=> 1
[3,2,2]
=> 1
[3,2,1,1]
=> 2
[3,1,1,1,1]
=> 1
[2,2,2,1]
=> 1
[2,2,1,1,1]
=> 0
[2,1,1,1,1,1]
=> 1
[1,1,1,1,1,1,1]
=> 0
[8]
=> 1
[7,1]
=> 2
[6,2]
=> 2
[6,1,1]
=> 1
[5,3]
=> 2
[5,2,1]
=> 3
Description
The number of singletons of an integer partition.
A singleton in an integer partition is a part that appear precisely once.
Matching statistic: St000445
(load all 3 compositions to match this statistic)
(load all 3 compositions to match this statistic)
Mp00043: Integer partitions —to Dyck path⟶ Dyck paths
Mp00199: Dyck paths —prime Dyck path⟶ Dyck paths
St000445: Dyck paths ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00199: Dyck paths —prime Dyck path⟶ Dyck paths
St000445: Dyck paths ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[1]
=> [1,0,1,0]
=> [1,1,0,1,0,0]
=> 1
[2]
=> [1,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0]
=> 1
[1,1]
=> [1,0,1,1,0,0]
=> [1,1,0,1,1,0,0,0]
=> 0
[3]
=> [1,1,1,0,0,0,1,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> 1
[2,1]
=> [1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,0]
=> 2
[1,1,1]
=> [1,0,1,1,1,0,0,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> 0
[4]
=> [1,1,1,1,0,0,0,0,1,0]
=> [1,1,1,1,1,0,0,0,0,1,0,0]
=> 1
[3,1]
=> [1,1,0,1,0,0,1,0]
=> [1,1,1,0,1,0,0,1,0,0]
=> 2
[2,2]
=> [1,1,0,0,1,1,0,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> 0
[2,1,1]
=> [1,0,1,1,0,1,0,0]
=> [1,1,0,1,1,0,1,0,0,0]
=> 1
[1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,1,1,1,1,0,0,0,0,0]
=> 0
[5]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> [1,1,1,1,1,1,0,0,0,0,0,1,0,0]
=> 1
[4,1]
=> [1,1,1,0,1,0,0,0,1,0]
=> [1,1,1,1,0,1,0,0,0,1,0,0]
=> 2
[3,2]
=> [1,1,0,0,1,0,1,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> 2
[3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> 1
[2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> 1
[2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [1,1,0,1,1,1,0,1,0,0,0,0]
=> 1
[1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,1,0,1,1,1,1,1,0,0,0,0,0,0]
=> 0
[6]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,1,0,0]
=> 1
[5,1]
=> [1,1,1,1,0,1,0,0,0,0,1,0]
=> [1,1,1,1,1,0,1,0,0,0,0,1,0,0]
=> 2
[4,2]
=> [1,1,1,0,0,1,0,0,1,0]
=> [1,1,1,1,0,0,1,0,0,1,0,0]
=> 2
[4,1,1]
=> [1,1,0,1,1,0,0,0,1,0]
=> [1,1,1,0,1,1,0,0,0,1,0,0]
=> 1
[3,3]
=> [1,1,1,0,0,0,1,1,0,0]
=> [1,1,1,1,0,0,0,1,1,0,0,0]
=> 0
[3,2,1]
=> [1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> 3
[3,1,1,1]
=> [1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,1,1,1,0,0,1,0,0,0]
=> 1
[2,2,2]
=> [1,1,0,0,1,1,1,0,0,0]
=> [1,1,1,0,0,1,1,1,0,0,0,0]
=> 0
[2,2,1,1]
=> [1,0,1,1,0,1,1,0,0,0]
=> [1,1,0,1,1,0,1,1,0,0,0,0]
=> 0
[2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,0,0,0,0]
=> [1,1,0,1,1,1,1,0,1,0,0,0,0,0]
=> 1
[1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,1,0,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> 0
[7]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0,0]
=> 1
[6,1]
=> [1,1,1,1,1,0,1,0,0,0,0,0,1,0]
=> [1,1,1,1,1,1,0,1,0,0,0,0,0,1,0,0]
=> 2
[5,2]
=> [1,1,1,1,0,0,1,0,0,0,1,0]
=> [1,1,1,1,1,0,0,1,0,0,0,1,0,0]
=> 2
[5,1,1]
=> [1,1,1,0,1,1,0,0,0,0,1,0]
=> [1,1,1,1,0,1,1,0,0,0,0,1,0,0]
=> 1
[4,3]
=> [1,1,1,0,0,0,1,0,1,0]
=> [1,1,1,1,0,0,0,1,0,1,0,0]
=> 2
[4,2,1]
=> [1,1,0,1,0,1,0,0,1,0]
=> [1,1,1,0,1,0,1,0,0,1,0,0]
=> 3
[4,1,1,1]
=> [1,0,1,1,1,0,0,0,1,0]
=> [1,1,0,1,1,1,0,0,0,1,0,0]
=> 1
[3,3,1]
=> [1,1,0,1,0,0,1,1,0,0]
=> [1,1,1,0,1,0,0,1,1,0,0,0]
=> 1
[3,2,2]
=> [1,1,0,0,1,1,0,1,0,0]
=> [1,1,1,0,0,1,1,0,1,0,0,0]
=> 1
[3,2,1,1]
=> [1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,1,1,0,1,0,1,0,0,0]
=> 2
[3,1,1,1,1]
=> [1,0,1,1,1,1,0,0,1,0,0,0]
=> [1,1,0,1,1,1,1,0,0,1,0,0,0,0]
=> 1
[2,2,2,1]
=> [1,0,1,0,1,1,1,0,0,0]
=> [1,1,0,1,0,1,1,1,0,0,0,0]
=> 1
[2,2,1,1,1]
=> [1,0,1,1,1,0,1,1,0,0,0,0]
=> [1,1,0,1,1,1,0,1,1,0,0,0,0,0]
=> 0
[2,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,1,0,0,0,0,0]
=> [1,1,0,1,1,1,1,1,0,1,0,0,0,0,0,0]
=> 1
[1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> [1,1,0,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0]
=> 0
[8]
=> [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,1,0]
=> [1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,1,0,0]
=> 1
[7,1]
=> [1,1,1,1,1,1,0,1,0,0,0,0,0,0,1,0]
=> [1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,1,0,0]
=> 2
[6,2]
=> [1,1,1,1,1,0,0,1,0,0,0,0,1,0]
=> [1,1,1,1,1,1,0,0,1,0,0,0,0,1,0,0]
=> 2
[6,1,1]
=> [1,1,1,1,0,1,1,0,0,0,0,0,1,0]
=> [1,1,1,1,1,0,1,1,0,0,0,0,0,1,0,0]
=> 1
[5,3]
=> [1,1,1,1,0,0,0,1,0,0,1,0]
=> [1,1,1,1,1,0,0,0,1,0,0,1,0,0]
=> 2
[5,2,1]
=> [1,1,1,0,1,0,1,0,0,0,1,0]
=> [1,1,1,1,0,1,0,1,0,0,0,1,0,0]
=> 3
Description
The number of rises of length 1 of a Dyck path.
Matching statistic: St001657
Mp00095: Integer partitions —to binary word⟶ Binary words
Mp00178: Binary words —to composition⟶ Integer compositions
Mp00040: Integer compositions —to partition⟶ Integer partitions
St001657: Integer partitions ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00178: Binary words —to composition⟶ Integer compositions
Mp00040: Integer compositions —to partition⟶ Integer partitions
St001657: Integer partitions ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[1]
=> 10 => [1,2] => [2,1]
=> 1
[2]
=> 100 => [1,3] => [3,1]
=> 0
[1,1]
=> 110 => [1,1,2] => [2,1,1]
=> 1
[3]
=> 1000 => [1,4] => [4,1]
=> 0
[2,1]
=> 1010 => [1,2,2] => [2,2,1]
=> 2
[1,1,1]
=> 1110 => [1,1,1,2] => [2,1,1,1]
=> 1
[4]
=> 10000 => [1,5] => [5,1]
=> 0
[3,1]
=> 10010 => [1,3,2] => [3,2,1]
=> 1
[2,2]
=> 1100 => [1,1,3] => [3,1,1]
=> 0
[2,1,1]
=> 10110 => [1,2,1,2] => [2,2,1,1]
=> 2
[1,1,1,1]
=> 11110 => [1,1,1,1,2] => [2,1,1,1,1]
=> 1
[5]
=> 100000 => [1,6] => [6,1]
=> 0
[4,1]
=> 100010 => [1,4,2] => [4,2,1]
=> 1
[3,2]
=> 10100 => [1,2,3] => [3,2,1]
=> 1
[3,1,1]
=> 100110 => [1,3,1,2] => [3,2,1,1]
=> 1
[2,2,1]
=> 11010 => [1,1,2,2] => [2,2,1,1]
=> 2
[2,1,1,1]
=> 101110 => [1,2,1,1,2] => [2,2,1,1,1]
=> 2
[1,1,1,1,1]
=> 111110 => [1,1,1,1,1,2] => [2,1,1,1,1,1]
=> 1
[6]
=> 1000000 => [1,7] => [7,1]
=> 0
[5,1]
=> 1000010 => [1,5,2] => [5,2,1]
=> 1
[4,2]
=> 100100 => [1,3,3] => [3,3,1]
=> 0
[4,1,1]
=> 1000110 => [1,4,1,2] => [4,2,1,1]
=> 1
[3,3]
=> 11000 => [1,1,4] => [4,1,1]
=> 0
[3,2,1]
=> 101010 => [1,2,2,2] => [2,2,2,1]
=> 3
[3,1,1,1]
=> 1001110 => [1,3,1,1,2] => [3,2,1,1,1]
=> 1
[2,2,2]
=> 11100 => [1,1,1,3] => [3,1,1,1]
=> 0
[2,2,1,1]
=> 110110 => [1,1,2,1,2] => [2,2,1,1,1]
=> 2
[2,1,1,1,1]
=> 1011110 => [1,2,1,1,1,2] => [2,2,1,1,1,1]
=> 2
[1,1,1,1,1,1]
=> 1111110 => [1,1,1,1,1,1,2] => [2,1,1,1,1,1,1]
=> 1
[7]
=> 10000000 => [1,8] => [8,1]
=> 0
[6,1]
=> 10000010 => [1,6,2] => [6,2,1]
=> 1
[5,2]
=> 1000100 => [1,4,3] => [4,3,1]
=> 0
[5,1,1]
=> 10000110 => [1,5,1,2] => [5,2,1,1]
=> 1
[4,3]
=> 101000 => [1,2,4] => [4,2,1]
=> 1
[4,2,1]
=> 1001010 => [1,3,2,2] => [3,2,2,1]
=> 2
[4,1,1,1]
=> 10001110 => [1,4,1,1,2] => [4,2,1,1,1]
=> 1
[3,3,1]
=> 110010 => [1,1,3,2] => [3,2,1,1]
=> 1
[3,2,2]
=> 101100 => [1,2,1,3] => [3,2,1,1]
=> 1
[3,2,1,1]
=> 1010110 => [1,2,2,1,2] => [2,2,2,1,1]
=> 3
[3,1,1,1,1]
=> 10011110 => [1,3,1,1,1,2] => [3,2,1,1,1,1]
=> 1
[2,2,2,1]
=> 111010 => [1,1,1,2,2] => [2,2,1,1,1]
=> 2
[2,2,1,1,1]
=> 1101110 => [1,1,2,1,1,2] => [2,2,1,1,1,1]
=> 2
[2,1,1,1,1,1]
=> 10111110 => [1,2,1,1,1,1,2] => [2,2,1,1,1,1,1]
=> 2
[1,1,1,1,1,1,1]
=> 11111110 => [1,1,1,1,1,1,1,2] => [2,1,1,1,1,1,1,1]
=> 1
[8]
=> 100000000 => [1,9] => [9,1]
=> 0
[7,1]
=> 100000010 => [1,7,2] => [7,2,1]
=> 1
[6,2]
=> 10000100 => [1,5,3] => [5,3,1]
=> 0
[6,1,1]
=> 100000110 => [1,6,1,2] => [6,2,1,1]
=> 1
[5,3]
=> 1001000 => [1,3,4] => [4,3,1]
=> 0
[5,2,1]
=> 10001010 => [1,4,2,2] => [4,2,2,1]
=> 2
Description
The number of twos in an integer partition.
The total number of twos in all partitions of n is equal to the total number of singletons [[St001484]] in all partitions of n−1, see [1].
Matching statistic: St000932
(load all 29 compositions to match this statistic)
(load all 29 compositions to match this statistic)
Mp00043: Integer partitions —to Dyck path⟶ Dyck paths
Mp00121: Dyck paths —Cori-Le Borgne involution⟶ Dyck paths
Mp00132: Dyck paths —switch returns and last double rise⟶ Dyck paths
St000932: Dyck paths ⟶ ℤResult quality: 90% ●values known / values provided: 90%●distinct values known / distinct values provided: 100%
Mp00121: Dyck paths —Cori-Le Borgne involution⟶ Dyck paths
Mp00132: Dyck paths —switch returns and last double rise⟶ Dyck paths
St000932: Dyck paths ⟶ ℤResult quality: 90% ●values known / values provided: 90%●distinct values known / distinct values provided: 100%
Values
[1]
=> [1,0,1,0]
=> [1,0,1,0]
=> [1,0,1,0]
=> 1
[2]
=> [1,1,0,0,1,0]
=> [1,1,0,0,1,0]
=> [1,1,0,0,1,0]
=> 0
[1,1]
=> [1,0,1,1,0,0]
=> [1,1,0,1,0,0]
=> [1,0,1,1,0,0]
=> 1
[3]
=> [1,1,1,0,0,0,1,0]
=> [1,1,1,0,0,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> 0
[2,1]
=> [1,0,1,0,1,0]
=> [1,0,1,0,1,0]
=> [1,0,1,0,1,0]
=> 2
[1,1,1]
=> [1,0,1,1,1,0,0,0]
=> [1,1,1,0,1,0,0,0]
=> [1,0,1,1,1,0,0,0]
=> 1
[4]
=> [1,1,1,1,0,0,0,0,1,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> 0
[3,1]
=> [1,1,0,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0]
=> [1,1,0,1,0,0,1,0]
=> 1
[2,2]
=> [1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> [1,1,1,0,0,1,0,0]
=> 0
[2,1,1]
=> [1,0,1,1,0,1,0,0]
=> [1,0,1,1,0,1,0,0]
=> [1,0,1,1,0,1,0,0]
=> 2
[1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> 1
[5]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> [1,1,1,1,1,0,0,1,0,0,0,0]
=> [1,1,0,0,1,1,1,1,0,0,0,0]
=> 0
[4,1]
=> [1,1,1,0,1,0,0,0,1,0]
=> [1,0,1,1,1,0,0,1,0,0]
=> [1,0,1,1,1,0,0,1,0,0]
=> 1
[3,2]
=> [1,1,0,0,1,0,1,0]
=> [1,1,0,0,1,0,1,0]
=> [1,1,0,0,1,0,1,0]
=> 1
[3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [1,1,0,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0]
=> 1
[2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,0,0]
=> [1,0,1,0,1,1,0,0]
=> 2
[2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [1,0,1,1,1,0,1,0,0,0]
=> [1,0,1,1,1,0,1,0,0,0]
=> 2
[1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1,0,1,0,0,0,0,0]
=> [1,0,1,1,1,1,1,0,0,0,0,0]
=> 1
[6]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> [1,1,1,1,1,1,0,0,1,0,0,0,0,0]
=> [1,1,0,0,1,1,1,1,1,0,0,0,0,0]
=> 0
[5,1]
=> [1,1,1,1,0,1,0,0,0,0,1,0]
=> [1,0,1,1,1,1,0,0,1,0,0,0]
=> [1,0,1,1,1,1,0,0,1,0,0,0]
=> 1
[4,2]
=> [1,1,1,0,0,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> 0
[4,1,1]
=> [1,1,0,1,1,0,0,0,1,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> [1,1,0,1,0,0,1,1,0,0]
=> 1
[3,3]
=> [1,1,1,0,0,0,1,1,0,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> 0
[3,2,1]
=> [1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0]
=> 3
[3,1,1,1]
=> [1,0,1,1,1,0,0,1,0,0]
=> [1,1,1,0,1,0,0,0,1,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> 1
[2,2,2]
=> [1,1,0,0,1,1,1,0,0,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> 0
[2,2,1,1]
=> [1,0,1,1,0,1,1,0,0,0]
=> [1,1,0,1,1,0,1,0,0,0]
=> [1,0,1,1,0,1,1,0,0,0]
=> 2
[2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,0,0,0,0]
=> [1,0,1,1,1,1,0,1,0,0,0,0]
=> [1,0,1,1,1,1,0,1,0,0,0,0]
=> 2
[1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,1,1,1,1,1,0,1,0,0,0,0,0,0]
=> [1,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> 1
[7]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> [1,1,1,1,1,1,1,0,0,1,0,0,0,0,0,0]
=> [1,1,0,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> 0
[6,1]
=> [1,1,1,1,1,0,1,0,0,0,0,0,1,0]
=> [1,0,1,1,1,1,1,0,0,1,0,0,0,0]
=> [1,0,1,1,1,1,1,0,0,1,0,0,0,0]
=> 1
[5,2]
=> [1,1,1,1,0,0,1,0,0,0,1,0]
=> [1,1,1,1,0,0,1,0,0,0,1,0]
=> [1,1,0,0,1,1,1,0,0,0,1,0]
=> 0
[5,1,1]
=> [1,1,1,0,1,1,0,0,0,0,1,0]
=> [1,1,0,1,1,1,0,0,1,0,0,0]
=> [1,0,1,1,1,0,0,1,1,0,0,0]
=> 1
[4,3]
=> [1,1,1,0,0,0,1,0,1,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> 1
[4,2,1]
=> [1,1,0,1,0,1,0,0,1,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,0,1,0,0,1,0]
=> 2
[4,1,1,1]
=> [1,0,1,1,1,0,0,0,1,0]
=> [1,1,1,0,1,0,0,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> 1
[3,3,1]
=> [1,1,0,1,0,0,1,1,0,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> 1
[3,2,2]
=> [1,1,0,0,1,1,0,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> [1,1,1,0,1,0,0,1,0,0]
=> 1
[3,2,1,1]
=> [1,0,1,1,0,1,0,1,0,0]
=> [1,0,1,0,1,1,0,1,0,0]
=> [1,0,1,1,0,1,0,1,0,0]
=> 3
[3,1,1,1,1]
=> [1,0,1,1,1,1,0,0,1,0,0,0]
=> [1,1,1,1,0,1,0,0,0,0,1,0]
=> [1,0,1,1,1,1,0,0,0,0,1,0]
=> 1
[2,2,2,1]
=> [1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,0,1,0,1,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> 2
[2,2,1,1,1]
=> [1,0,1,1,1,0,1,1,0,0,0,0]
=> [1,1,0,1,1,1,0,1,0,0,0,0]
=> [1,0,1,1,1,0,1,1,0,0,0,0]
=> 2
[2,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,1,0,0,0,0,0]
=> [1,0,1,1,1,1,1,0,1,0,0,0,0,0]
=> [1,0,1,1,1,1,1,0,1,0,0,0,0,0]
=> 2
[1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> [1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0]
=> [1,0,1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> 1
[8]
=> [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,1,0]
=> [1,1,1,1,1,1,1,1,0,0,1,0,0,0,0,0,0,0]
=> [1,1,0,0,1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> ? ∊ {0,1}
[7,1]
=> [1,1,1,1,1,1,0,1,0,0,0,0,0,0,1,0]
=> [1,0,1,1,1,1,1,1,0,0,1,0,0,0,0,0]
=> [1,0,1,1,1,1,1,1,0,0,1,0,0,0,0,0]
=> 1
[6,2]
=> [1,1,1,1,1,0,0,1,0,0,0,0,1,0]
=> [1,1,1,1,1,0,0,1,0,0,0,0,1,0]
=> [1,1,0,0,1,1,1,1,0,0,0,0,1,0]
=> 0
[6,1,1]
=> [1,1,1,1,0,1,1,0,0,0,0,0,1,0]
=> [1,1,0,1,1,1,1,0,0,1,0,0,0,0]
=> [1,0,1,1,1,1,0,0,1,1,0,0,0,0]
=> 1
[5,3]
=> [1,1,1,1,0,0,0,1,0,0,1,0]
=> [1,1,1,1,0,0,1,0,0,1,0,0]
=> [1,1,0,0,1,1,0,0,1,1,0,0]
=> 0
[5,2,1]
=> [1,1,1,0,1,0,1,0,0,0,1,0]
=> [1,0,1,0,1,1,1,0,0,1,0,0]
=> [1,0,1,1,1,0,1,0,0,1,0,0]
=> 2
[5,1,1,1]
=> [1,1,0,1,1,1,0,0,0,0,1,0]
=> [1,1,1,0,1,1,0,0,1,0,0,0]
=> [1,1,0,1,0,0,1,1,1,0,0,0]
=> 1
[1,1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0]
=> [1,1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0,0]
=> [1,0,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0]
=> ? ∊ {0,1}
[9]
=> [1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,1,0]
=> [1,1,1,1,1,1,1,1,1,0,0,1,0,0,0,0,0,0,0,0]
=> [1,1,0,0,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0]
=> ? ∊ {0,1,1,2}
[8,1]
=> [1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0,1,0]
=> [1,0,1,1,1,1,1,1,1,0,0,1,0,0,0,0,0,0]
=> [1,0,1,1,1,1,1,1,1,0,0,1,0,0,0,0,0,0]
=> ? ∊ {0,1,1,2}
[2,1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0]
=> [1,0,1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0]
=> [1,0,1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0]
=> ? ∊ {0,1,1,2}
[1,1,1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0]
=> [1,1,1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0,0,0]
=> [1,0,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0]
=> ? ∊ {0,1,1,2}
[10]
=> [1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,1,0]
=> [1,1,1,1,1,1,1,1,1,1,0,0,1,0,0,0,0,0,0,0,0,0]
=> [1,1,0,0,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0]
=> ? ∊ {0,0,1,1,1,1,2,2}
[9,1]
=> [1,1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0,0,1,0]
=> [1,0,1,1,1,1,1,1,1,1,0,0,1,0,0,0,0,0,0,0]
=> [1,0,1,1,1,1,1,1,1,1,0,0,1,0,0,0,0,0,0,0]
=> ? ∊ {0,0,1,1,1,1,2,2}
[8,2]
=> [1,1,1,1,1,1,1,0,0,1,0,0,0,0,0,0,1,0]
=> [1,1,1,1,1,1,1,0,0,1,0,0,0,0,0,0,1,0]
=> [1,1,0,0,1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> ? ∊ {0,0,1,1,1,1,2,2}
[8,1,1]
=> [1,1,1,1,1,1,0,1,1,0,0,0,0,0,0,0,1,0]
=> [1,1,0,1,1,1,1,1,1,0,0,1,0,0,0,0,0,0]
=> [1,0,1,1,1,1,1,1,0,0,1,1,0,0,0,0,0,0]
=> ? ∊ {0,0,1,1,1,1,2,2}
[3,1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,0,0,1,0,0,0,0,0,0]
=> [1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0,1,0]
=> [1,0,1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> ? ∊ {0,0,1,1,1,1,2,2}
[2,2,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,0,1,1,0,0,0,0,0,0,0]
=> [1,1,0,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0]
=> [1,0,1,1,1,1,1,1,0,1,1,0,0,0,0,0,0,0]
=> ? ∊ {0,0,1,1,1,1,2,2}
[2,1,1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0,0]
=> [1,0,1,1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0,0]
=> [1,0,1,1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0,0]
=> ? ∊ {0,0,1,1,1,1,2,2}
[1,1,1,1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0]
=> [1,1,1,1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0,0,0,0]
=> [1,0,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0]
=> ? ∊ {0,0,1,1,1,1,2,2}
Description
The number of occurrences of the pattern UDU in a Dyck path.
The number of Dyck paths with statistic value 0 are counted by the Motzkin numbers [1].
Matching statistic: St000441
(load all 4 compositions to match this statistic)
(load all 4 compositions to match this statistic)
Mp00043: Integer partitions —to Dyck path⟶ Dyck paths
Mp00029: Dyck paths —to binary tree: left tree, up step, right tree, down step⟶ Binary trees
Mp00014: Binary trees —to 132-avoiding permutation⟶ Permutations
St000441: Permutations ⟶ ℤResult quality: 82% ●values known / values provided: 82%●distinct values known / distinct values provided: 100%
Mp00029: Dyck paths —to binary tree: left tree, up step, right tree, down step⟶ Binary trees
Mp00014: Binary trees —to 132-avoiding permutation⟶ Permutations
St000441: Permutations ⟶ ℤResult quality: 82% ●values known / values provided: 82%●distinct values known / distinct values provided: 100%
Values
[1]
=> [1,0,1,0]
=> [[.,.],.]
=> [1,2] => 1
[2]
=> [1,1,0,0,1,0]
=> [[.,[.,.]],.]
=> [2,1,3] => 0
[1,1]
=> [1,0,1,1,0,0]
=> [[.,.],[.,.]]
=> [3,1,2] => 1
[3]
=> [1,1,1,0,0,0,1,0]
=> [[.,[.,[.,.]]],.]
=> [3,2,1,4] => 0
[2,1]
=> [1,0,1,0,1,0]
=> [[[.,.],.],.]
=> [1,2,3] => 2
[1,1,1]
=> [1,0,1,1,1,0,0,0]
=> [[.,.],[.,[.,.]]]
=> [4,3,1,2] => 1
[4]
=> [1,1,1,1,0,0,0,0,1,0]
=> [[.,[.,[.,[.,.]]]],.]
=> [4,3,2,1,5] => 0
[3,1]
=> [1,1,0,1,0,0,1,0]
=> [[.,[[.,.],.]],.]
=> [2,3,1,4] => 1
[2,2]
=> [1,1,0,0,1,1,0,0]
=> [[.,[.,.]],[.,.]]
=> [4,2,1,3] => 0
[2,1,1]
=> [1,0,1,1,0,1,0,0]
=> [[.,.],[[.,.],.]]
=> [3,4,1,2] => 2
[1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,0]
=> [[.,.],[.,[.,[.,.]]]]
=> [5,4,3,1,2] => 1
[5]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> [[.,[.,[.,[.,[.,.]]]]],.]
=> [5,4,3,2,1,6] => 0
[4,1]
=> [1,1,1,0,1,0,0,0,1,0]
=> [[.,[.,[[.,.],.]]],.]
=> [3,4,2,1,5] => 1
[3,2]
=> [1,1,0,0,1,0,1,0]
=> [[[.,[.,.]],.],.]
=> [2,1,3,4] => 1
[3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [[[.,.],[.,.]],.]
=> [3,1,2,4] => 1
[2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [[[.,.],.],[.,.]]
=> [4,1,2,3] => 2
[2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [[.,.],[.,[[.,.],.]]]
=> [4,5,3,1,2] => 2
[1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,0,0,0,0]
=> [[.,.],[.,[.,[.,[.,.]]]]]
=> [6,5,4,3,1,2] => 1
[6]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> [[.,[.,[.,[.,[.,[.,.]]]]]],.]
=> [6,5,4,3,2,1,7] => 0
[5,1]
=> [1,1,1,1,0,1,0,0,0,0,1,0]
=> [[.,[.,[.,[[.,.],.]]]],.]
=> [4,5,3,2,1,6] => 1
[4,2]
=> [1,1,1,0,0,1,0,0,1,0]
=> [[.,[[.,[.,.]],.]],.]
=> [3,2,4,1,5] => 0
[4,1,1]
=> [1,1,0,1,1,0,0,0,1,0]
=> [[.,[[.,.],[.,.]]],.]
=> [4,2,3,1,5] => 1
[3,3]
=> [1,1,1,0,0,0,1,1,0,0]
=> [[.,[.,[.,.]]],[.,.]]
=> [5,3,2,1,4] => 0
[3,2,1]
=> [1,0,1,0,1,0,1,0]
=> [[[[.,.],.],.],.]
=> [1,2,3,4] => 3
[3,1,1,1]
=> [1,0,1,1,1,0,0,1,0,0]
=> [[.,.],[[.,[.,.]],.]]
=> [4,3,5,1,2] => 1
[2,2,2]
=> [1,1,0,0,1,1,1,0,0,0]
=> [[.,[.,.]],[.,[.,.]]]
=> [5,4,2,1,3] => 0
[2,2,1,1]
=> [1,0,1,1,0,1,1,0,0,0]
=> [[.,.],[[.,.],[.,.]]]
=> [5,3,4,1,2] => 2
[2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,0,0,0,0]
=> [[.,.],[.,[.,[[.,.],.]]]]
=> [5,6,4,3,1,2] => 2
[1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> [[.,.],[.,[.,[.,[.,[.,.]]]]]]
=> [7,6,5,4,3,1,2] => 1
[7]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> [[.,[.,[.,[.,[.,[.,[.,.]]]]]]],.]
=> [7,6,5,4,3,2,1,8] => 0
[6,1]
=> [1,1,1,1,1,0,1,0,0,0,0,0,1,0]
=> [[.,[.,[.,[.,[[.,.],.]]]]],.]
=> [5,6,4,3,2,1,7] => 1
[5,2]
=> [1,1,1,1,0,0,1,0,0,0,1,0]
=> [[.,[.,[[.,[.,.]],.]]],.]
=> [4,3,5,2,1,6] => 0
[5,1,1]
=> [1,1,1,0,1,1,0,0,0,0,1,0]
=> [[.,[.,[[.,.],[.,.]]]],.]
=> [5,3,4,2,1,6] => 1
[4,3]
=> [1,1,1,0,0,0,1,0,1,0]
=> [[[.,[.,[.,.]]],.],.]
=> [3,2,1,4,5] => 1
[4,2,1]
=> [1,1,0,1,0,1,0,0,1,0]
=> [[.,[[[.,.],.],.]],.]
=> [2,3,4,1,5] => 2
[4,1,1,1]
=> [1,0,1,1,1,0,0,0,1,0]
=> [[[.,.],[.,[.,.]]],.]
=> [4,3,1,2,5] => 1
[3,3,1]
=> [1,1,0,1,0,0,1,1,0,0]
=> [[.,[[.,.],.]],[.,.]]
=> [5,2,3,1,4] => 1
[3,2,2]
=> [1,1,0,0,1,1,0,1,0,0]
=> [[.,[.,.]],[[.,.],.]]
=> [4,5,2,1,3] => 1
[3,2,1,1]
=> [1,0,1,1,0,1,0,1,0,0]
=> [[.,.],[[[.,.],.],.]]
=> [3,4,5,1,2] => 3
[3,1,1,1,1]
=> [1,0,1,1,1,1,0,0,1,0,0,0]
=> [[.,.],[.,[[.,[.,.]],.]]]
=> [5,4,6,3,1,2] => 1
[2,2,2,1]
=> [1,0,1,0,1,1,1,0,0,0]
=> [[[.,.],.],[.,[.,.]]]
=> [5,4,1,2,3] => 2
[2,2,1,1,1]
=> [1,0,1,1,1,0,1,1,0,0,0,0]
=> [[.,.],[.,[[.,.],[.,.]]]]
=> [6,4,5,3,1,2] => 2
[2,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,1,0,0,0,0,0]
=> [[.,.],[.,[.,[.,[[.,.],.]]]]]
=> [6,7,5,4,3,1,2] => ? = 2
[1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> [[.,.],[.,[.,[.,[.,[.,[.,.]]]]]]]
=> [8,7,6,5,4,3,1,2] => 1
[8]
=> [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,1,0]
=> [[.,[.,[.,[.,[.,[.,[.,[.,.]]]]]]]],.]
=> [8,7,6,5,4,3,2,1,9] => 0
[7,1]
=> [1,1,1,1,1,1,0,1,0,0,0,0,0,0,1,0]
=> [[.,[.,[.,[.,[.,[[.,.],.]]]]]],.]
=> [6,7,5,4,3,2,1,8] => 1
[6,2]
=> [1,1,1,1,1,0,0,1,0,0,0,0,1,0]
=> [[.,[.,[.,[[.,[.,.]],.]]]],.]
=> [5,4,6,3,2,1,7] => 0
[6,1,1]
=> [1,1,1,1,0,1,1,0,0,0,0,0,1,0]
=> [[.,[.,[.,[[.,.],[.,.]]]]],.]
=> [6,4,5,3,2,1,7] => ? ∊ {1,1,2}
[5,3]
=> [1,1,1,1,0,0,0,1,0,0,1,0]
=> [[.,[[.,[.,[.,.]]],.]],.]
=> [4,3,2,5,1,6] => 0
[5,2,1]
=> [1,1,1,0,1,0,1,0,0,0,1,0]
=> [[.,[.,[[[.,.],.],.]]],.]
=> [3,4,5,2,1,6] => 2
[5,1,1,1]
=> [1,1,0,1,1,1,0,0,0,0,1,0]
=> [[.,[[.,.],[.,[.,.]]]],.]
=> [5,4,2,3,1,6] => 1
[4,4]
=> [1,1,1,1,0,0,0,0,1,1,0,0]
=> [[.,[.,[.,[.,.]]]],[.,.]]
=> [6,4,3,2,1,5] => 0
[3,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,0,1,0,0,0,0]
=> [[.,.],[.,[.,[[.,[.,.]],.]]]]
=> [6,5,7,4,3,1,2] => ? ∊ {1,1,2}
[2,2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,1,0,0,0,0,0]
=> [[.,.],[.,[.,[[.,.],[.,.]]]]]
=> [7,5,6,4,3,1,2] => ? ∊ {1,1,2}
[7,1,1]
=> [1,1,1,1,1,0,1,1,0,0,0,0,0,0,1,0]
=> [[.,[.,[.,[.,[[.,.],[.,.]]]]]],.]
=> [7,5,6,4,3,2,1,8] => ? ∊ {1,1,1,2,2,3}
[4,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,0,0,1,0,0,0]
=> [[.,.],[.,[[.,[.,[.,.]]],.]]]
=> [6,5,4,7,3,1,2] => ? ∊ {1,1,1,2,2,3}
[3,2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,0,1,0,0,0,0]
=> [[.,.],[.,[.,[[[.,.],.],.]]]]
=> [5,6,7,4,3,1,2] => ? ∊ {1,1,1,2,2,3}
[3,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,0,0,1,0,0,0,0,0]
=> [[.,.],[.,[.,[.,[[.,[.,.]],.]]]]]
=> [7,6,8,5,4,3,1,2] => ? ∊ {1,1,1,2,2,3}
[2,2,2,1,1,1]
=> [1,0,1,1,1,0,1,1,1,0,0,0,0,0]
=> [[.,.],[.,[[.,.],[.,[.,.]]]]]
=> [7,6,4,5,3,1,2] => ? ∊ {1,1,1,2,2,3}
[2,1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0]
=> [[.,.],[.,[.,[.,[.,[.,[[.,.],.]]]]]]]
=> [8,9,7,6,5,4,3,1,2] => ? ∊ {1,1,1,2,2,3}
[8,1,1]
=> [1,1,1,1,1,1,0,1,1,0,0,0,0,0,0,0,1,0]
=> [[.,[.,[.,[.,[.,[[.,.],[.,.]]]]]]],.]
=> [8,6,7,5,4,3,2,1,9] => ? ∊ {0,0,1,1,1,1,1,1,1,2,2,2,2,3,3}
[6,2,1,1]
=> [1,1,1,0,1,1,0,1,0,0,0,0,1,0]
=> [[.,[.,[[.,.],[[.,.],.]]]],.]
=> [5,6,3,4,2,1,7] => ? ∊ {0,0,1,1,1,1,1,1,1,2,2,2,2,3,3}
[6,1,1,1,1]
=> [1,1,0,1,1,1,1,0,0,0,0,0,1,0]
=> [[.,[[.,.],[.,[.,[.,.]]]]],.]
=> [6,5,4,2,3,1,7] => ? ∊ {0,0,1,1,1,1,1,1,1,2,2,2,2,3,3}
[5,5]
=> [1,1,1,1,1,0,0,0,0,0,1,1,0,0]
=> [[.,[.,[.,[.,[.,.]]]]],[.,.]]
=> [7,5,4,3,2,1,6] => ? ∊ {0,0,1,1,1,1,1,1,1,2,2,2,2,3,3}
[5,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,0,0,0,1,0,0]
=> [[.,.],[[.,[.,[.,[.,.]]]],.]]
=> [6,5,4,3,7,1,2] => ? ∊ {0,0,1,1,1,1,1,1,1,2,2,2,2,3,3}
[4,2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,0,0,1,0,0,0]
=> [[.,.],[.,[[.,[[.,.],.]],.]]]
=> [5,6,4,7,3,1,2] => ? ∊ {0,0,1,1,1,1,1,1,1,2,2,2,2,3,3}
[4,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,0,0,0,1,0,0,0,0]
=> [[.,.],[.,[.,[[.,[.,[.,.]]],.]]]]
=> [7,6,5,8,4,3,1,2] => ? ∊ {0,0,1,1,1,1,1,1,1,2,2,2,2,3,3}
[3,3,1,1,1,1]
=> [1,0,1,1,1,1,0,0,1,1,0,0,0,0]
=> [[.,.],[.,[[.,[.,.]],[.,.]]]]
=> [7,5,4,6,3,1,2] => ? ∊ {0,0,1,1,1,1,1,1,1,2,2,2,2,3,3}
[3,2,2,1,1,1]
=> [1,0,1,1,1,0,1,1,0,1,0,0,0,0]
=> [[.,.],[.,[[.,.],[[.,.],.]]]]
=> [6,7,4,5,3,1,2] => ? ∊ {0,0,1,1,1,1,1,1,1,2,2,2,2,3,3}
[3,2,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,1,0,1,0,0,0,0,0]
=> [[.,.],[.,[.,[.,[[[.,.],.],.]]]]]
=> [6,7,8,5,4,3,1,2] => ? ∊ {0,0,1,1,1,1,1,1,1,2,2,2,2,3,3}
[3,1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,0,0,1,0,0,0,0,0,0]
=> [[.,.],[.,[.,[.,[.,[[.,[.,.]],.]]]]]]
=> [8,7,9,6,5,4,3,1,2] => ? ∊ {0,0,1,1,1,1,1,1,1,2,2,2,2,3,3}
[2,2,2,2,2]
=> [1,1,0,0,1,1,1,1,1,0,0,0,0,0]
=> [[.,[.,.]],[.,[.,[.,[.,.]]]]]
=> [7,6,5,4,2,1,3] => ? ∊ {0,0,1,1,1,1,1,1,1,2,2,2,2,3,3}
[2,2,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,0,1,1,0,0,0,0,0,0,0]
=> [[.,.],[.,[.,[.,[.,[[.,.],[.,.]]]]]]]
=> [9,7,8,6,5,4,3,1,2] => ? ∊ {0,0,1,1,1,1,1,1,1,2,2,2,2,3,3}
[2,1,1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0,0]
=> [[.,.],[.,[.,[.,[.,[.,[.,[[.,.],.]]]]]]]]
=> [9,10,8,7,6,5,4,3,1,2] => ? ∊ {0,0,1,1,1,1,1,1,1,2,2,2,2,3,3}
[1,1,1,1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0]
=> [[.,.],[.,[.,[.,[.,[.,[.,[.,[.,[.,.]]]]]]]]]]
=> [11,10,9,8,7,6,5,4,3,1,2] => ? ∊ {0,0,1,1,1,1,1,1,1,2,2,2,2,3,3}
Description
The number of successions of a permutation.
A succession of a permutation π is an index i such that π(i)+1=π(i+1). Successions are also known as ''small ascents'' or ''1-rises''.
Matching statistic: St000214
(load all 5 compositions to match this statistic)
(load all 5 compositions to match this statistic)
Mp00043: Integer partitions —to Dyck path⟶ Dyck paths
Mp00025: Dyck paths —to 132-avoiding permutation⟶ Permutations
Mp00175: Permutations —inverse Foata bijection⟶ Permutations
St000214: Permutations ⟶ ℤResult quality: 80% ●values known / values provided: 80%●distinct values known / distinct values provided: 100%
Mp00025: Dyck paths —to 132-avoiding permutation⟶ Permutations
Mp00175: Permutations —inverse Foata bijection⟶ Permutations
St000214: Permutations ⟶ ℤResult quality: 80% ●values known / values provided: 80%●distinct values known / distinct values provided: 100%
Values
[1]
=> [1,0,1,0]
=> [2,1] => [2,1] => 1
[2]
=> [1,1,0,0,1,0]
=> [3,1,2] => [1,3,2] => 1
[1,1]
=> [1,0,1,1,0,0]
=> [2,3,1] => [2,3,1] => 0
[3]
=> [1,1,1,0,0,0,1,0]
=> [4,1,2,3] => [1,2,4,3] => 1
[2,1]
=> [1,0,1,0,1,0]
=> [3,2,1] => [3,2,1] => 2
[1,1,1]
=> [1,0,1,1,1,0,0,0]
=> [2,3,4,1] => [2,3,4,1] => 0
[4]
=> [1,1,1,1,0,0,0,0,1,0]
=> [5,1,2,3,4] => [1,2,3,5,4] => 1
[3,1]
=> [1,1,0,1,0,0,1,0]
=> [4,2,1,3] => [2,1,4,3] => 2
[2,2]
=> [1,1,0,0,1,1,0,0]
=> [3,4,1,2] => [3,1,4,2] => 0
[2,1,1]
=> [1,0,1,1,0,1,0,0]
=> [3,2,4,1] => [3,2,4,1] => 1
[1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,0]
=> [2,3,4,5,1] => [2,3,4,5,1] => 0
[5]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> [6,1,2,3,4,5] => [1,2,3,4,6,5] => 1
[4,1]
=> [1,1,1,0,1,0,0,0,1,0]
=> [5,2,1,3,4] => [2,1,3,5,4] => 2
[3,2]
=> [1,1,0,0,1,0,1,0]
=> [4,3,1,2] => [1,4,3,2] => 2
[3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [4,2,3,1] => [2,4,3,1] => 1
[2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [3,4,2,1] => [3,4,2,1] => 1
[2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [3,2,4,5,1] => [3,2,4,5,1] => 1
[1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,0,0,0,0]
=> [2,3,4,5,6,1] => [2,3,4,5,6,1] => 0
[6]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> [7,1,2,3,4,5,6] => [1,2,3,4,5,7,6] => 1
[5,1]
=> [1,1,1,1,0,1,0,0,0,0,1,0]
=> [6,2,1,3,4,5] => [2,1,3,4,6,5] => 2
[4,2]
=> [1,1,1,0,0,1,0,0,1,0]
=> [5,3,1,2,4] => [1,3,2,5,4] => 2
[4,1,1]
=> [1,1,0,1,1,0,0,0,1,0]
=> [5,2,3,1,4] => [2,3,1,5,4] => 1
[3,3]
=> [1,1,1,0,0,0,1,1,0,0]
=> [4,5,1,2,3] => [1,4,2,5,3] => 0
[3,2,1]
=> [1,0,1,0,1,0,1,0]
=> [4,3,2,1] => [4,3,2,1] => 3
[3,1,1,1]
=> [1,0,1,1,1,0,0,1,0,0]
=> [4,2,3,5,1] => [2,4,3,5,1] => 1
[2,2,2]
=> [1,1,0,0,1,1,1,0,0,0]
=> [3,4,5,1,2] => [3,4,1,5,2] => 0
[2,2,1,1]
=> [1,0,1,1,0,1,1,0,0,0]
=> [3,4,2,5,1] => [3,4,2,5,1] => 0
[2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,0,0,0,0]
=> [3,2,4,5,6,1] => [3,2,4,5,6,1] => 1
[1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> [2,3,4,5,6,7,1] => [2,3,4,5,6,7,1] => 0
[7]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> [8,1,2,3,4,5,6,7] => [1,2,3,4,5,6,8,7] => 1
[6,1]
=> [1,1,1,1,1,0,1,0,0,0,0,0,1,0]
=> [7,2,1,3,4,5,6] => [2,1,3,4,5,7,6] => ? = 2
[5,2]
=> [1,1,1,1,0,0,1,0,0,0,1,0]
=> [6,3,1,2,4,5] => [1,3,2,4,6,5] => 2
[5,1,1]
=> [1,1,1,0,1,1,0,0,0,0,1,0]
=> [6,2,3,1,4,5] => [2,3,1,4,6,5] => 1
[4,3]
=> [1,1,1,0,0,0,1,0,1,0]
=> [5,4,1,2,3] => [1,2,5,4,3] => 2
[4,2,1]
=> [1,1,0,1,0,1,0,0,1,0]
=> [5,3,2,1,4] => [3,2,1,5,4] => 3
[4,1,1,1]
=> [1,0,1,1,1,0,0,0,1,0]
=> [5,2,3,4,1] => [2,3,5,4,1] => 1
[3,3,1]
=> [1,1,0,1,0,0,1,1,0,0]
=> [4,5,2,1,3] => [4,2,1,5,3] => 1
[3,2,2]
=> [1,1,0,0,1,1,0,1,0,0]
=> [4,3,5,1,2] => [4,3,1,5,2] => 1
[3,2,1,1]
=> [1,0,1,1,0,1,0,1,0,0]
=> [4,3,2,5,1] => [4,3,2,5,1] => 2
[3,1,1,1,1]
=> [1,0,1,1,1,1,0,0,1,0,0,0]
=> [4,2,3,5,6,1] => [2,4,3,5,6,1] => 1
[2,2,2,1]
=> [1,0,1,0,1,1,1,0,0,0]
=> [3,4,5,2,1] => [3,4,5,2,1] => 1
[2,2,1,1,1]
=> [1,0,1,1,1,0,1,1,0,0,0,0]
=> [3,4,2,5,6,1] => [3,4,2,5,6,1] => 0
[2,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,1,0,0,0,0,0]
=> [3,2,4,5,6,7,1] => [3,2,4,5,6,7,1] => 1
[1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> [2,3,4,5,6,7,8,1] => [2,3,4,5,6,7,8,1] => 0
[8]
=> [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,1,0]
=> [9,1,2,3,4,5,6,7,8] => [1,2,3,4,5,6,7,9,8] => 1
[7,1]
=> [1,1,1,1,1,1,0,1,0,0,0,0,0,0,1,0]
=> [8,2,1,3,4,5,6,7] => [2,1,3,4,5,6,8,7] => 2
[6,2]
=> [1,1,1,1,1,0,0,1,0,0,0,0,1,0]
=> [7,3,1,2,4,5,6] => [1,3,2,4,5,7,6] => ? ∊ {1,1,2}
[6,1,1]
=> [1,1,1,1,0,1,1,0,0,0,0,0,1,0]
=> [7,2,3,1,4,5,6] => [2,3,1,4,5,7,6] => ? ∊ {1,1,2}
[5,3]
=> [1,1,1,1,0,0,0,1,0,0,1,0]
=> [6,4,1,2,3,5] => [1,2,4,3,6,5] => 2
[5,2,1]
=> [1,1,1,0,1,0,1,0,0,0,1,0]
=> [6,3,2,1,4,5] => [3,2,1,4,6,5] => 3
[5,1,1,1]
=> [1,1,0,1,1,1,0,0,0,0,1,0]
=> [6,2,3,4,1,5] => [2,3,4,1,6,5] => 1
[4,4]
=> [1,1,1,1,0,0,0,0,1,1,0,0]
=> [5,6,1,2,3,4] => [1,2,5,3,6,4] => 0
[4,3,1]
=> [1,1,0,1,0,0,1,0,1,0]
=> [5,4,2,1,3] => [2,1,5,4,3] => 3
[3,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,0,1,0,0,0,0]
=> [4,2,3,5,6,7,1] => [2,4,3,5,6,7,1] => ? ∊ {1,1,2}
[8,1]
=> [1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0,1,0]
=> [9,2,1,3,4,5,6,7,8] => [2,1,3,4,5,6,7,9,8] => ? ∊ {1,1,1,2,2,2,3}
[7,2]
=> [1,1,1,1,1,1,0,0,1,0,0,0,0,0,1,0]
=> [8,3,1,2,4,5,6,7] => [1,3,2,4,5,6,8,7] => ? ∊ {1,1,1,2,2,2,3}
[7,1,1]
=> [1,1,1,1,1,0,1,1,0,0,0,0,0,0,1,0]
=> [8,2,3,1,4,5,6,7] => [2,3,1,4,5,6,8,7] => ? ∊ {1,1,1,2,2,2,3}
[6,3]
=> [1,1,1,1,1,0,0,0,1,0,0,0,1,0]
=> [7,4,1,2,3,5,6] => [1,2,4,3,5,7,6] => ? ∊ {1,1,1,2,2,2,3}
[6,2,1]
=> [1,1,1,1,0,1,0,1,0,0,0,0,1,0]
=> [7,3,2,1,4,5,6] => [3,2,1,4,5,7,6] => ? ∊ {1,1,1,2,2,2,3}
[4,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,0,0,1,0,0,0]
=> [5,2,3,4,6,7,1] => [2,3,5,4,6,7,1] => ? ∊ {1,1,1,2,2,2,3}
[3,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,0,0,1,0,0,0,0,0]
=> [4,2,3,5,6,7,8,1] => [2,4,3,5,6,7,8,1] => ? ∊ {1,1,1,2,2,2,3}
[9,1]
=> [1,1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0,0,1,0]
=> [10,2,1,3,4,5,6,7,8,9] => [2,1,3,4,5,6,7,8,10,9] => ? ∊ {0,0,1,1,1,1,1,1,2,2,2,2,2,2,3,3}
[8,2]
=> [1,1,1,1,1,1,1,0,0,1,0,0,0,0,0,0,1,0]
=> [9,3,1,2,4,5,6,7,8] => [1,3,2,4,5,6,7,9,8] => ? ∊ {0,0,1,1,1,1,1,1,2,2,2,2,2,2,3,3}
[8,1,1]
=> [1,1,1,1,1,1,0,1,1,0,0,0,0,0,0,0,1,0]
=> [9,2,3,1,4,5,6,7,8] => [2,3,1,4,5,6,7,9,8] => ? ∊ {0,0,1,1,1,1,1,1,2,2,2,2,2,2,3,3}
[7,3]
=> [1,1,1,1,1,1,0,0,0,1,0,0,0,0,1,0]
=> [8,4,1,2,3,5,6,7] => [1,2,4,3,5,6,8,7] => ? ∊ {0,0,1,1,1,1,1,1,2,2,2,2,2,2,3,3}
[7,2,1]
=> [1,1,1,1,1,0,1,0,1,0,0,0,0,0,1,0]
=> [8,3,2,1,4,5,6,7] => [3,2,1,4,5,6,8,7] => ? ∊ {0,0,1,1,1,1,1,1,2,2,2,2,2,2,3,3}
[7,1,1,1]
=> [1,1,1,1,0,1,1,1,0,0,0,0,0,0,1,0]
=> [8,2,3,4,1,5,6,7] => [2,3,4,1,5,6,8,7] => ? ∊ {0,0,1,1,1,1,1,1,2,2,2,2,2,2,3,3}
[6,4]
=> [1,1,1,1,1,0,0,0,0,1,0,0,1,0]
=> [7,5,1,2,3,4,6] => [1,2,3,5,4,7,6] => ? ∊ {0,0,1,1,1,1,1,1,2,2,2,2,2,2,3,3}
[6,3,1]
=> [1,1,1,1,0,1,0,0,1,0,0,0,1,0]
=> [7,4,2,1,3,5,6] => [2,1,4,3,5,7,6] => ? ∊ {0,0,1,1,1,1,1,1,2,2,2,2,2,2,3,3}
[6,2,2]
=> [1,1,1,1,0,0,1,1,0,0,0,0,1,0]
=> [7,3,4,1,2,5,6] => [3,1,4,2,5,7,6] => ? ∊ {0,0,1,1,1,1,1,1,2,2,2,2,2,2,3,3}
[6,2,1,1]
=> [1,1,1,0,1,1,0,1,0,0,0,0,1,0]
=> [7,3,2,4,1,5,6] => [3,2,4,1,5,7,6] => ? ∊ {0,0,1,1,1,1,1,1,2,2,2,2,2,2,3,3}
[5,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,0,0,0,1,0,0]
=> [6,2,3,4,5,7,1] => [2,3,4,6,5,7,1] => ? ∊ {0,0,1,1,1,1,1,1,2,2,2,2,2,2,3,3}
[4,2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,0,0,1,0,0,0]
=> [5,3,2,4,6,7,1] => [3,2,5,4,6,7,1] => ? ∊ {0,0,1,1,1,1,1,1,2,2,2,2,2,2,3,3}
[4,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,0,0,0,1,0,0,0,0]
=> [5,2,3,4,6,7,8,1] => [2,3,5,4,6,7,8,1] => ? ∊ {0,0,1,1,1,1,1,1,2,2,2,2,2,2,3,3}
[3,3,1,1,1,1]
=> [1,0,1,1,1,1,0,0,1,1,0,0,0,0]
=> [4,5,2,3,6,7,1] => [4,2,5,3,6,7,1] => ? ∊ {0,0,1,1,1,1,1,1,2,2,2,2,2,2,3,3}
[3,1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,0,0,1,0,0,0,0,0,0]
=> [4,2,3,5,6,7,8,9,1] => [2,4,3,5,6,7,8,9,1] => ? ∊ {0,0,1,1,1,1,1,1,2,2,2,2,2,2,3,3}
[2,2,2,2,2]
=> [1,1,0,0,1,1,1,1,1,0,0,0,0,0]
=> [3,4,5,6,7,1,2] => [3,4,5,6,1,7,2] => ? ∊ {0,0,1,1,1,1,1,1,2,2,2,2,2,2,3,3}
Description
The number of adjacencies of a permutation.
An adjacency of a permutation π is an index i such that π(i)−1=π(i+1). Adjacencies are also known as ''small descents''.
This can be also described as an occurrence of the bivincular pattern ([2,1], {((0,1),(1,0),(1,1),(1,2),(2,1)}), i.e., the middle row and the middle column are shaded, see [3].
Matching statistic: St001067
(load all 29 compositions to match this statistic)
(load all 29 compositions to match this statistic)
Mp00043: Integer partitions —to Dyck path⟶ Dyck paths
St001067: Dyck paths ⟶ ℤResult quality: 80% ●values known / values provided: 80%●distinct values known / distinct values provided: 100%
St001067: Dyck paths ⟶ ℤResult quality: 80% ●values known / values provided: 80%●distinct values known / distinct values provided: 100%
Values
[1]
=> [1,0,1,0]
=> 1
[2]
=> [1,1,0,0,1,0]
=> 0
[1,1]
=> [1,0,1,1,0,0]
=> 1
[3]
=> [1,1,1,0,0,0,1,0]
=> 0
[2,1]
=> [1,0,1,0,1,0]
=> 2
[1,1,1]
=> [1,0,1,1,1,0,0,0]
=> 1
[4]
=> [1,1,1,1,0,0,0,0,1,0]
=> 0
[3,1]
=> [1,1,0,1,0,0,1,0]
=> 1
[2,2]
=> [1,1,0,0,1,1,0,0]
=> 0
[2,1,1]
=> [1,0,1,1,0,1,0,0]
=> 2
[1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,0]
=> 1
[5]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> 0
[4,1]
=> [1,1,1,0,1,0,0,0,1,0]
=> 1
[3,2]
=> [1,1,0,0,1,0,1,0]
=> 1
[3,1,1]
=> [1,0,1,1,0,0,1,0]
=> 1
[2,2,1]
=> [1,0,1,0,1,1,0,0]
=> 2
[2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> 2
[1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,0,0,0,0]
=> 1
[6]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> 0
[5,1]
=> [1,1,1,1,0,1,0,0,0,0,1,0]
=> 1
[4,2]
=> [1,1,1,0,0,1,0,0,1,0]
=> 0
[4,1,1]
=> [1,1,0,1,1,0,0,0,1,0]
=> 1
[3,3]
=> [1,1,1,0,0,0,1,1,0,0]
=> 0
[3,2,1]
=> [1,0,1,0,1,0,1,0]
=> 3
[3,1,1,1]
=> [1,0,1,1,1,0,0,1,0,0]
=> 1
[2,2,2]
=> [1,1,0,0,1,1,1,0,0,0]
=> 0
[2,2,1,1]
=> [1,0,1,1,0,1,1,0,0,0]
=> 2
[2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,0,0,0,0]
=> 2
[1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> 1
[7]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> ? ∊ {0,1}
[6,1]
=> [1,1,1,1,1,0,1,0,0,0,0,0,1,0]
=> 1
[5,2]
=> [1,1,1,1,0,0,1,0,0,0,1,0]
=> 0
[5,1,1]
=> [1,1,1,0,1,1,0,0,0,0,1,0]
=> 1
[4,3]
=> [1,1,1,0,0,0,1,0,1,0]
=> 1
[4,2,1]
=> [1,1,0,1,0,1,0,0,1,0]
=> 2
[4,1,1,1]
=> [1,0,1,1,1,0,0,0,1,0]
=> 1
[3,3,1]
=> [1,1,0,1,0,0,1,1,0,0]
=> 1
[3,2,2]
=> [1,1,0,0,1,1,0,1,0,0]
=> 1
[3,2,1,1]
=> [1,0,1,1,0,1,0,1,0,0]
=> 3
[3,1,1,1,1]
=> [1,0,1,1,1,1,0,0,1,0,0,0]
=> 1
[2,2,2,1]
=> [1,0,1,0,1,1,1,0,0,0]
=> 2
[2,2,1,1,1]
=> [1,0,1,1,1,0,1,1,0,0,0,0]
=> 2
[2,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,1,0,0,0,0,0]
=> 2
[1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> ? ∊ {0,1}
[8]
=> [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,1,0]
=> ? ∊ {0,1,1,2}
[7,1]
=> [1,1,1,1,1,1,0,1,0,0,0,0,0,0,1,0]
=> ? ∊ {0,1,1,2}
[6,2]
=> [1,1,1,1,1,0,0,1,0,0,0,0,1,0]
=> 0
[6,1,1]
=> [1,1,1,1,0,1,1,0,0,0,0,0,1,0]
=> 1
[5,3]
=> [1,1,1,1,0,0,0,1,0,0,1,0]
=> 0
[5,2,1]
=> [1,1,1,0,1,0,1,0,0,0,1,0]
=> 2
[5,1,1,1]
=> [1,1,0,1,1,1,0,0,0,0,1,0]
=> 1
[4,4]
=> [1,1,1,1,0,0,0,0,1,1,0,0]
=> 0
[4,3,1]
=> [1,1,0,1,0,0,1,0,1,0]
=> 2
[4,2,2]
=> [1,1,0,0,1,1,0,0,1,0]
=> 0
[2,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,0,1,0,0,0,0,0,0]
=> ? ∊ {0,1,1,2}
[1,1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0]
=> ? ∊ {0,1,1,2}
[9]
=> [1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,1,0]
=> ? ∊ {0,0,1,1,1,1,2,2}
[8,1]
=> [1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0,1,0]
=> ? ∊ {0,0,1,1,1,1,2,2}
[7,2]
=> [1,1,1,1,1,1,0,0,1,0,0,0,0,0,1,0]
=> ? ∊ {0,0,1,1,1,1,2,2}
[7,1,1]
=> [1,1,1,1,1,0,1,1,0,0,0,0,0,0,1,0]
=> ? ∊ {0,0,1,1,1,1,2,2}
[3,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,0,0,1,0,0,0,0,0]
=> ? ∊ {0,0,1,1,1,1,2,2}
[2,2,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,1,1,0,0,0,0,0,0]
=> ? ∊ {0,0,1,1,1,1,2,2}
[2,1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0]
=> ? ∊ {0,0,1,1,1,1,2,2}
[1,1,1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0]
=> ? ∊ {0,0,1,1,1,1,2,2}
[10]
=> [1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,1,0]
=> ? ∊ {0,0,0,1,1,1,1,1,1,2,2,2,2,3}
[9,1]
=> [1,1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0,0,1,0]
=> ? ∊ {0,0,0,1,1,1,1,1,1,2,2,2,2,3}
[8,2]
=> [1,1,1,1,1,1,1,0,0,1,0,0,0,0,0,0,1,0]
=> ? ∊ {0,0,0,1,1,1,1,1,1,2,2,2,2,3}
[8,1,1]
=> [1,1,1,1,1,1,0,1,1,0,0,0,0,0,0,0,1,0]
=> ? ∊ {0,0,0,1,1,1,1,1,1,2,2,2,2,3}
[7,3]
=> [1,1,1,1,1,1,0,0,0,1,0,0,0,0,1,0]
=> ? ∊ {0,0,0,1,1,1,1,1,1,2,2,2,2,3}
[7,2,1]
=> [1,1,1,1,1,0,1,0,1,0,0,0,0,0,1,0]
=> ? ∊ {0,0,0,1,1,1,1,1,1,2,2,2,2,3}
[7,1,1,1]
=> [1,1,1,1,0,1,1,1,0,0,0,0,0,0,1,0]
=> ? ∊ {0,0,0,1,1,1,1,1,1,2,2,2,2,3}
[4,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,0,0,0,1,0,0,0,0]
=> ? ∊ {0,0,0,1,1,1,1,1,1,2,2,2,2,3}
[3,2,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,1,0,1,0,0,0,0,0]
=> ? ∊ {0,0,0,1,1,1,1,1,1,2,2,2,2,3}
[3,1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,0,0,1,0,0,0,0,0,0]
=> ? ∊ {0,0,0,1,1,1,1,1,1,2,2,2,2,3}
[2,2,2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,1,1,0,0,0,0,0,0]
=> ? ∊ {0,0,0,1,1,1,1,1,1,2,2,2,2,3}
[2,2,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,0,1,1,0,0,0,0,0,0,0]
=> ? ∊ {0,0,0,1,1,1,1,1,1,2,2,2,2,3}
[2,1,1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0,0]
=> ? ∊ {0,0,0,1,1,1,1,1,1,2,2,2,2,3}
[1,1,1,1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0]
=> ? ∊ {0,0,0,1,1,1,1,1,1,2,2,2,2,3}
Description
The number of simple modules of dominant dimension at least two in the corresponding Nakayama algebra.
Matching statistic: St001189
(load all 13 compositions to match this statistic)
(load all 13 compositions to match this statistic)
Mp00043: Integer partitions —to Dyck path⟶ Dyck paths
Mp00030: Dyck paths —zeta map⟶ Dyck paths
St001189: Dyck paths ⟶ ℤResult quality: 80% ●values known / values provided: 80%●distinct values known / distinct values provided: 100%
Mp00030: Dyck paths —zeta map⟶ Dyck paths
St001189: Dyck paths ⟶ ℤResult quality: 80% ●values known / values provided: 80%●distinct values known / distinct values provided: 100%
Values
[1]
=> [1,0,1,0]
=> [1,1,0,0]
=> 1
[2]
=> [1,1,0,0,1,0]
=> [1,1,0,1,0,0]
=> 0
[1,1]
=> [1,0,1,1,0,0]
=> [1,0,1,1,0,0]
=> 1
[3]
=> [1,1,1,0,0,0,1,0]
=> [1,0,1,1,0,1,0,0]
=> 0
[2,1]
=> [1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> 2
[1,1,1]
=> [1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,0,0]
=> 1
[4]
=> [1,1,1,1,0,0,0,0,1,0]
=> [1,0,1,0,1,1,0,1,0,0]
=> 0
[3,1]
=> [1,1,0,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0]
=> 1
[2,2]
=> [1,1,0,0,1,1,0,0]
=> [1,1,0,1,0,1,0,0]
=> 0
[2,1,1]
=> [1,0,1,1,0,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> 2
[1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> 1
[5]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> [1,0,1,0,1,0,1,1,0,1,0,0]
=> 0
[4,1]
=> [1,1,1,0,1,0,0,0,1,0]
=> [1,1,0,0,1,1,0,1,0,0]
=> 1
[3,2]
=> [1,1,0,0,1,0,1,0]
=> [1,1,1,0,1,0,0,0]
=> 1
[3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,0,0]
=> 1
[2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [1,0,1,1,1,0,0,0]
=> 2
[2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> 2
[1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,1,0,0]
=> 1
[6]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> 0
[5,1]
=> [1,1,1,1,0,1,0,0,0,0,1,0]
=> [1,1,0,0,1,0,1,1,0,1,0,0]
=> 1
[4,2]
=> [1,1,1,0,0,1,0,0,1,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> 0
[4,1,1]
=> [1,1,0,1,1,0,0,0,1,0]
=> [1,0,1,1,1,0,0,1,0,0]
=> 1
[3,3]
=> [1,1,1,0,0,0,1,1,0,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> 0
[3,2,1]
=> [1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> 3
[3,1,1,1]
=> [1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,1,0,0,1,1,0,0]
=> 1
[2,2,2]
=> [1,1,0,0,1,1,1,0,0,0]
=> [1,0,1,1,0,1,0,1,0,0]
=> 0
[2,2,1,1]
=> [1,0,1,1,0,1,1,0,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> 2
[2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,0,0,0,0]
=> [1,1,0,0,1,0,1,0,1,1,0,0]
=> 2
[1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> 1
[7]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> ? ∊ {0,1}
[6,1]
=> [1,1,1,1,1,0,1,0,0,0,0,0,1,0]
=> [1,1,0,0,1,0,1,0,1,1,0,1,0,0]
=> 1
[5,2]
=> [1,1,1,1,0,0,1,0,0,0,1,0]
=> [1,1,0,1,0,0,1,1,0,1,0,0]
=> 0
[5,1,1]
=> [1,1,1,0,1,1,0,0,0,0,1,0]
=> [1,0,1,1,0,0,1,1,0,1,0,0]
=> 1
[4,3]
=> [1,1,1,0,0,0,1,0,1,0]
=> [1,0,1,1,1,0,1,0,0,0]
=> 1
[4,2,1]
=> [1,1,0,1,0,1,0,0,1,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> 2
[4,1,1,1]
=> [1,0,1,1,1,0,0,0,1,0]
=> [1,0,1,1,0,1,1,0,0,0]
=> 1
[3,3,1]
=> [1,1,0,1,0,0,1,1,0,0]
=> [1,1,1,0,1,0,0,1,0,0]
=> 1
[3,2,2]
=> [1,1,0,0,1,1,0,1,0,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> 1
[3,2,1,1]
=> [1,0,1,1,0,1,0,1,0,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> 3
[3,1,1,1,1]
=> [1,0,1,1,1,1,0,0,1,0,0,0]
=> [1,1,0,1,0,0,1,0,1,1,0,0]
=> 1
[2,2,2,1]
=> [1,0,1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> 2
[2,2,1,1,1]
=> [1,0,1,1,1,0,1,1,0,0,0,0]
=> [1,0,1,1,0,0,1,0,1,1,0,0]
=> 2
[2,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,1,0,0,0,0,0]
=> [1,1,0,0,1,0,1,0,1,0,1,1,0,0]
=> 2
[1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> ? ∊ {0,1}
[8]
=> [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> ? ∊ {0,1,1,2}
[7,1]
=> [1,1,1,1,1,1,0,1,0,0,0,0,0,0,1,0]
=> [1,1,0,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> ? ∊ {0,1,1,2}
[6,2]
=> [1,1,1,1,1,0,0,1,0,0,0,0,1,0]
=> [1,1,0,1,0,0,1,0,1,1,0,1,0,0]
=> 0
[6,1,1]
=> [1,1,1,1,0,1,1,0,0,0,0,0,1,0]
=> [1,0,1,1,0,0,1,0,1,1,0,1,0,0]
=> 1
[5,3]
=> [1,1,1,1,0,0,0,1,0,0,1,0]
=> [1,0,1,1,0,1,1,0,0,1,0,0]
=> 0
[5,2,1]
=> [1,1,1,0,1,0,1,0,0,0,1,0]
=> [1,1,1,0,0,0,1,1,0,1,0,0]
=> 2
[5,1,1,1]
=> [1,1,0,1,1,1,0,0,0,0,1,0]
=> [1,0,1,0,1,1,1,0,0,1,0,0]
=> 1
[4,4]
=> [1,1,1,1,0,0,0,0,1,1,0,0]
=> [1,0,1,1,0,1,0,1,0,1,0,0]
=> 0
[4,3,1]
=> [1,1,0,1,0,0,1,0,1,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> 2
[4,2,2]
=> [1,1,0,0,1,1,0,0,1,0]
=> [1,1,1,0,1,0,1,0,0,0]
=> 0
[2,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,0,1,0,0,0,0,0,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> ? ∊ {0,1,1,2}
[1,1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> ? ∊ {0,1,1,2}
[9]
=> [1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> ? ∊ {0,0,1,1,1,1,2,2}
[8,1]
=> [1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0,1,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> ? ∊ {0,0,1,1,1,1,2,2}
[7,2]
=> [1,1,1,1,1,1,0,0,1,0,0,0,0,0,1,0]
=> [1,1,0,1,0,0,1,0,1,0,1,1,0,1,0,0]
=> ? ∊ {0,0,1,1,1,1,2,2}
[7,1,1]
=> [1,1,1,1,1,0,1,1,0,0,0,0,0,0,1,0]
=> [1,0,1,1,0,0,1,0,1,0,1,1,0,1,0,0]
=> ? ∊ {0,0,1,1,1,1,2,2}
[3,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,0,0,1,0,0,0,0,0]
=> [1,1,0,1,0,0,1,0,1,0,1,0,1,1,0,0]
=> ? ∊ {0,0,1,1,1,1,2,2}
[2,2,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,1,1,0,0,0,0,0,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0,1,1,0,0]
=> ? ∊ {0,0,1,1,1,1,2,2}
[2,1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> ? ∊ {0,0,1,1,1,1,2,2}
[1,1,1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> ? ∊ {0,0,1,1,1,1,2,2}
[10]
=> [1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> ? ∊ {0,0,0,1,1,1,1,1,1,2,2,2,2,3}
[9,1]
=> [1,1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0,0,1,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> ? ∊ {0,0,0,1,1,1,1,1,1,2,2,2,2,3}
[8,2]
=> [1,1,1,1,1,1,1,0,0,1,0,0,0,0,0,0,1,0]
=> [1,1,0,1,0,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> ? ∊ {0,0,0,1,1,1,1,1,1,2,2,2,2,3}
[8,1,1]
=> [1,1,1,1,1,1,0,1,1,0,0,0,0,0,0,0,1,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> ? ∊ {0,0,0,1,1,1,1,1,1,2,2,2,2,3}
[7,3]
=> [1,1,1,1,1,1,0,0,0,1,0,0,0,0,1,0]
=> [1,0,1,1,0,1,0,0,1,0,1,1,0,1,0,0]
=> ? ∊ {0,0,0,1,1,1,1,1,1,2,2,2,2,3}
[7,2,1]
=> [1,1,1,1,1,0,1,0,1,0,0,0,0,0,1,0]
=> [1,1,1,0,0,0,1,0,1,0,1,1,0,1,0,0]
=> ? ∊ {0,0,0,1,1,1,1,1,1,2,2,2,2,3}
[7,1,1,1]
=> [1,1,1,1,0,1,1,1,0,0,0,0,0,0,1,0]
=> [1,0,1,0,1,1,0,0,1,0,1,1,0,1,0,0]
=> ? ∊ {0,0,0,1,1,1,1,1,1,2,2,2,2,3}
[4,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,0,0,0,1,0,0,0,0]
=> [1,0,1,1,0,1,0,0,1,0,1,0,1,1,0,0]
=> ? ∊ {0,0,0,1,1,1,1,1,1,2,2,2,2,3}
[3,2,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,1,0,1,0,0,0,0,0]
=> [1,1,1,0,0,0,1,0,1,0,1,0,1,1,0,0]
=> ? ∊ {0,0,0,1,1,1,1,1,1,2,2,2,2,3}
[3,1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,0,0,1,0,0,0,0,0,0]
=> [1,1,0,1,0,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> ? ∊ {0,0,0,1,1,1,1,1,1,2,2,2,2,3}
[2,2,2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,1,1,0,0,0,0,0,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0,1,1,0,0]
=> ? ∊ {0,0,0,1,1,1,1,1,1,2,2,2,2,3}
[2,2,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,0,1,1,0,0,0,0,0,0,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> ? ∊ {0,0,0,1,1,1,1,1,1,2,2,2,2,3}
[2,1,1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> ? ∊ {0,0,0,1,1,1,1,1,1,2,2,2,2,3}
[1,1,1,1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> ? ∊ {0,0,0,1,1,1,1,1,1,2,2,2,2,3}
Description
The number of simple modules with dominant and codominant dimension equal to zero in the Nakayama algebra corresponding to the Dyck path.
Matching statistic: St000502
(load all 3 compositions to match this statistic)
(load all 3 compositions to match this statistic)
Mp00043: Integer partitions —to Dyck path⟶ Dyck paths
Mp00032: Dyck paths —inverse zeta map⟶ Dyck paths
Mp00138: Dyck paths —to noncrossing partition⟶ Set partitions
St000502: Set partitions ⟶ ℤResult quality: 80% ●values known / values provided: 80%●distinct values known / distinct values provided: 100%
Mp00032: Dyck paths —inverse zeta map⟶ Dyck paths
Mp00138: Dyck paths —to noncrossing partition⟶ Set partitions
St000502: Set partitions ⟶ ℤResult quality: 80% ●values known / values provided: 80%●distinct values known / distinct values provided: 100%
Values
[1]
=> [1,0,1,0]
=> [1,1,0,0]
=> {{1,2}}
=> 1
[2]
=> [1,1,0,0,1,0]
=> [1,1,0,1,0,0]
=> {{1,3},{2}}
=> 0
[1,1]
=> [1,0,1,1,0,0]
=> [1,0,1,1,0,0]
=> {{1},{2,3}}
=> 1
[3]
=> [1,1,1,0,0,0,1,0]
=> [1,1,0,1,0,1,0,0]
=> {{1,4},{2},{3}}
=> 0
[2,1]
=> [1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> {{1,2,3}}
=> 2
[1,1,1]
=> [1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,0,0]
=> {{1},{2},{3,4}}
=> 1
[4]
=> [1,1,1,1,0,0,0,0,1,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> {{1,5},{2},{3},{4}}
=> 0
[3,1]
=> [1,1,0,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0]
=> {{1,4},{2,3}}
=> 1
[2,2]
=> [1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,1,0,0]
=> {{1},{2,4},{3}}
=> 0
[2,1,1]
=> [1,0,1,1,0,1,0,0]
=> [1,1,1,0,0,0,1,0]
=> {{1,2,3},{4}}
=> 2
[1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> {{1},{2},{3},{4,5}}
=> 1
[5]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> [1,1,0,1,0,1,0,1,0,1,0,0]
=> {{1,6},{2},{3},{4},{5}}
=> 0
[4,1]
=> [1,1,1,0,1,0,0,0,1,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> {{1,5},{2,3},{4}}
=> 1
[3,2]
=> [1,1,0,0,1,0,1,0]
=> [1,1,1,0,1,0,0,0]
=> {{1,2,4},{3}}
=> 1
[3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,0,0]
=> {{1,3,4},{2}}
=> 1
[2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [1,0,1,1,1,0,0,0]
=> {{1},{2,3,4}}
=> 2
[2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [1,1,1,0,0,0,1,0,1,0]
=> {{1,2,3},{4},{5}}
=> 2
[1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,1,0,0]
=> {{1},{2},{3},{4},{5,6}}
=> 1
[6]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> {{1,7},{2},{3},{4},{5},{6}}
=> 0
[5,1]
=> [1,1,1,1,0,1,0,0,0,0,1,0]
=> [1,1,1,0,0,1,0,1,0,1,0,0]
=> {{1,6},{2,3},{4},{5}}
=> 1
[4,2]
=> [1,1,1,0,0,1,0,0,1,0]
=> [1,1,1,0,1,0,0,1,0,0]
=> {{1,5},{2,4},{3}}
=> 0
[4,1,1]
=> [1,1,0,1,1,0,0,0,1,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> {{1,5},{2},{3,4}}
=> 1
[3,3]
=> [1,1,1,0,0,0,1,1,0,0]
=> [1,0,1,1,0,1,0,1,0,0]
=> {{1},{2,5},{3},{4}}
=> 0
[3,2,1]
=> [1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> {{1,2,3,4}}
=> 3
[3,1,1,1]
=> [1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,1,1,0,0,0,1,0]
=> {{1,3,4},{2},{5}}
=> 1
[2,2,2]
=> [1,1,0,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,0,1,0,0]
=> {{1},{2},{3,5},{4}}
=> 0
[2,2,1,1]
=> [1,0,1,1,0,1,1,0,0,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> {{1},{2,3,4},{5}}
=> 2
[2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,0,0,0,0]
=> [1,1,1,0,0,0,1,0,1,0,1,0]
=> {{1,2,3},{4},{5},{6}}
=> 2
[1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> {{1},{2},{3},{4},{5},{6,7}}
=> 1
[7]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> {{1,8},{2},{3},{4},{5},{6},{7}}
=> ? ∊ {0,1}
[6,1]
=> [1,1,1,1,1,0,1,0,0,0,0,0,1,0]
=> [1,1,1,0,0,1,0,1,0,1,0,1,0,0]
=> {{1,7},{2,3},{4},{5},{6}}
=> 1
[5,2]
=> [1,1,1,1,0,0,1,0,0,0,1,0]
=> [1,1,1,0,1,0,0,1,0,1,0,0]
=> {{1,6},{2,4},{3},{5}}
=> 0
[5,1,1]
=> [1,1,1,0,1,1,0,0,0,0,1,0]
=> [1,1,0,1,1,0,0,1,0,1,0,0]
=> {{1,6},{2},{3,4},{5}}
=> 1
[4,3]
=> [1,1,1,0,0,0,1,0,1,0]
=> [1,1,1,0,1,0,1,0,0,0]
=> {{1,2,5},{3},{4}}
=> 1
[4,2,1]
=> [1,1,0,1,0,1,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> {{1,4,5},{2,3}}
=> 2
[4,1,1,1]
=> [1,0,1,1,1,0,0,0,1,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> {{1,4,5},{2},{3}}
=> 1
[3,3,1]
=> [1,1,0,1,0,0,1,1,0,0]
=> [1,0,1,1,1,0,0,1,0,0]
=> {{1},{2,5},{3,4}}
=> 1
[3,2,2]
=> [1,1,0,0,1,1,0,1,0,0]
=> [1,1,1,0,1,0,0,0,1,0]
=> {{1,2,4},{3},{5}}
=> 1
[3,2,1,1]
=> [1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> {{1,2},{3,4,5}}
=> 3
[3,1,1,1,1]
=> [1,0,1,1,1,1,0,0,1,0,0,0]
=> [1,1,0,1,1,0,0,0,1,0,1,0]
=> {{1,3,4},{2},{5},{6}}
=> 1
[2,2,2,1]
=> [1,0,1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> {{1},{2},{3,4,5}}
=> 2
[2,2,1,1,1]
=> [1,0,1,1,1,0,1,1,0,0,0,0]
=> [1,0,1,1,1,0,0,0,1,0,1,0]
=> {{1},{2,3,4},{5},{6}}
=> 2
[2,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,1,0,0,0,0,0]
=> [1,1,1,0,0,0,1,0,1,0,1,0,1,0]
=> {{1,2,3},{4},{5},{6},{7}}
=> 2
[1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> {{1},{2},{3},{4},{5},{6},{7,8}}
=> ? ∊ {0,1}
[8]
=> [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,1,0]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> {{1,9},{2},{3},{4},{5},{6},{7},{8}}
=> ? ∊ {0,1,1,2}
[7,1]
=> [1,1,1,1,1,1,0,1,0,0,0,0,0,0,1,0]
=> [1,1,1,0,0,1,0,1,0,1,0,1,0,1,0,0]
=> {{1,8},{2,3},{4},{5},{6},{7}}
=> ? ∊ {0,1,1,2}
[6,2]
=> [1,1,1,1,1,0,0,1,0,0,0,0,1,0]
=> [1,1,1,0,1,0,0,1,0,1,0,1,0,0]
=> {{1,7},{2,4},{3},{5},{6}}
=> 0
[6,1,1]
=> [1,1,1,1,0,1,1,0,0,0,0,0,1,0]
=> [1,1,0,1,1,0,0,1,0,1,0,1,0,0]
=> {{1,7},{2},{3,4},{5},{6}}
=> 1
[5,3]
=> [1,1,1,1,0,0,0,1,0,0,1,0]
=> [1,1,1,0,1,0,1,0,0,1,0,0]
=> {{1,6},{2,5},{3},{4}}
=> 0
[5,2,1]
=> [1,1,1,0,1,0,1,0,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,1,0,0]
=> {{1,6},{2,3},{4,5}}
=> 2
[5,1,1,1]
=> [1,1,0,1,1,1,0,0,0,0,1,0]
=> [1,1,0,1,0,1,1,0,0,1,0,0]
=> {{1,6},{2},{3},{4,5}}
=> 1
[4,4]
=> [1,1,1,1,0,0,0,0,1,1,0,0]
=> [1,0,1,1,0,1,0,1,0,1,0,0]
=> {{1},{2,6},{3},{4},{5}}
=> 0
[4,3,1]
=> [1,1,0,1,0,0,1,0,1,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> {{1,2,5},{3,4}}
=> 2
[4,2,2]
=> [1,1,0,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,1,0,0,0]
=> {{1,3,5},{2},{4}}
=> 0
[2,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,0,1,0,0,0,0,0,0]
=> [1,1,1,0,0,0,1,0,1,0,1,0,1,0,1,0]
=> {{1,2,3},{4},{5},{6},{7},{8}}
=> ? ∊ {0,1,1,2}
[1,1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> {{1},{2},{3},{4},{5},{6},{7},{8,9}}
=> ? ∊ {0,1,1,2}
[9]
=> [1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,1,0]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> {{1,10},{2},{3},{4},{5},{6},{7},{8},{9}}
=> ? ∊ {0,0,1,1,1,1,2,2}
[8,1]
=> [1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0,1,0]
=> [1,1,1,0,0,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> {{1,9},{2,3},{4},{5},{6},{7},{8}}
=> ? ∊ {0,0,1,1,1,1,2,2}
[7,2]
=> [1,1,1,1,1,1,0,0,1,0,0,0,0,0,1,0]
=> [1,1,1,0,1,0,0,1,0,1,0,1,0,1,0,0]
=> {{1,8},{2,4},{3},{5},{6},{7}}
=> ? ∊ {0,0,1,1,1,1,2,2}
[7,1,1]
=> [1,1,1,1,1,0,1,1,0,0,0,0,0,0,1,0]
=> [1,1,0,1,1,0,0,1,0,1,0,1,0,1,0,0]
=> {{1,8},{2},{3,4},{5},{6},{7}}
=> ? ∊ {0,0,1,1,1,1,2,2}
[3,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,0,0,1,0,0,0,0,0]
=> [1,1,0,1,1,0,0,0,1,0,1,0,1,0,1,0]
=> {{1,3,4},{2},{5},{6},{7},{8}}
=> ? ∊ {0,0,1,1,1,1,2,2}
[2,2,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,1,1,0,0,0,0,0,0]
=> [1,0,1,1,1,0,0,0,1,0,1,0,1,0,1,0]
=> {{1},{2,3,4},{5},{6},{7},{8}}
=> ? ∊ {0,0,1,1,1,1,2,2}
[2,1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0]
=> [1,1,1,0,0,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> {{1,2,3},{4},{5},{6},{7},{8},{9}}
=> ? ∊ {0,0,1,1,1,1,2,2}
[1,1,1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> {{1},{2},{3},{4},{5},{6},{7},{8},{9,10}}
=> ? ∊ {0,0,1,1,1,1,2,2}
[10]
=> [1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,1,0]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> {{1,11},{2},{3},{4},{5},{6},{7},{8},{9},{10}}
=> ? ∊ {0,0,0,1,1,1,1,1,1,2,2,2,2,3}
[9,1]
=> [1,1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0,0,1,0]
=> [1,1,1,0,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> {{1,10},{2,3},{4},{5},{6},{7},{8},{9}}
=> ? ∊ {0,0,0,1,1,1,1,1,1,2,2,2,2,3}
[8,2]
=> [1,1,1,1,1,1,1,0,0,1,0,0,0,0,0,0,1,0]
=> [1,1,1,0,1,0,0,1,0,1,0,1,0,1,0,1,0,0]
=> {{1,9},{2,4},{3},{5},{6},{7},{8}}
=> ? ∊ {0,0,0,1,1,1,1,1,1,2,2,2,2,3}
[8,1,1]
=> [1,1,1,1,1,1,0,1,1,0,0,0,0,0,0,0,1,0]
=> [1,1,0,1,1,0,0,1,0,1,0,1,0,1,0,1,0,0]
=> {{1,9},{2},{3,4},{5},{6},{7},{8}}
=> ? ∊ {0,0,0,1,1,1,1,1,1,2,2,2,2,3}
[7,3]
=> [1,1,1,1,1,1,0,0,0,1,0,0,0,0,1,0]
=> [1,1,1,0,1,0,1,0,0,1,0,1,0,1,0,0]
=> {{1,8},{2,5},{3},{4},{6},{7}}
=> ? ∊ {0,0,0,1,1,1,1,1,1,2,2,2,2,3}
[7,2,1]
=> [1,1,1,1,1,0,1,0,1,0,0,0,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,1,0,1,0,1,0,0]
=> {{1,8},{2,3},{4,5},{6},{7}}
=> ? ∊ {0,0,0,1,1,1,1,1,1,2,2,2,2,3}
[7,1,1,1]
=> [1,1,1,1,0,1,1,1,0,0,0,0,0,0,1,0]
=> [1,1,0,1,0,1,1,0,0,1,0,1,0,1,0,0]
=> {{1,8},{2},{3},{4,5},{6},{7}}
=> ? ∊ {0,0,0,1,1,1,1,1,1,2,2,2,2,3}
[4,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,0,0,0,1,0,0,0,0]
=> [1,1,0,1,0,1,1,0,0,0,1,0,1,0,1,0]
=> {{1,4,5},{2},{3},{6},{7},{8}}
=> ? ∊ {0,0,0,1,1,1,1,1,1,2,2,2,2,3}
[3,2,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,1,0,1,0,0,0,0,0]
=> [1,1,0,0,1,1,1,0,0,0,1,0,1,0,1,0]
=> {{1,2},{3,4,5},{6},{7},{8}}
=> ? ∊ {0,0,0,1,1,1,1,1,1,2,2,2,2,3}
[3,1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,0,0,1,0,0,0,0,0,0]
=> [1,1,0,1,1,0,0,0,1,0,1,0,1,0,1,0,1,0]
=> {{1,3,4},{2},{5},{6},{7},{8},{9}}
=> ? ∊ {0,0,0,1,1,1,1,1,1,2,2,2,2,3}
[2,2,2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,1,1,0,0,0,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0,1,0,1,0,1,0]
=> {{1},{2},{3,4,5},{6},{7},{8}}
=> ? ∊ {0,0,0,1,1,1,1,1,1,2,2,2,2,3}
[2,2,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,0,1,1,0,0,0,0,0,0,0]
=> [1,0,1,1,1,0,0,0,1,0,1,0,1,0,1,0,1,0]
=> {{1},{2,3,4},{5},{6},{7},{8},{9}}
=> ? ∊ {0,0,0,1,1,1,1,1,1,2,2,2,2,3}
[2,1,1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0,0]
=> [1,1,1,0,0,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> {{1,2,3},{4},{5},{6},{7},{8},{9},{10}}
=> ? ∊ {0,0,0,1,1,1,1,1,1,2,2,2,2,3}
[1,1,1,1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> {{1},{2},{3},{4},{5},{6},{7},{8},{9},{10,11}}
=> ? ∊ {0,0,0,1,1,1,1,1,1,2,2,2,2,3}
Description
The number of successions of a set partitions.
This is the number of indices i such that i and i+1 belonging to the same block.
Matching statistic: St001061
(load all 5 compositions to match this statistic)
(load all 5 compositions to match this statistic)
Mp00043: Integer partitions —to Dyck path⟶ Dyck paths
Mp00030: Dyck paths —zeta map⟶ Dyck paths
Mp00031: Dyck paths —to 312-avoiding permutation⟶ Permutations
St001061: Permutations ⟶ ℤResult quality: 71% ●values known / values provided: 71%●distinct values known / distinct values provided: 100%
Mp00030: Dyck paths —zeta map⟶ Dyck paths
Mp00031: Dyck paths —to 312-avoiding permutation⟶ Permutations
St001061: Permutations ⟶ ℤResult quality: 71% ●values known / values provided: 71%●distinct values known / distinct values provided: 100%
Values
[1]
=> [1,0,1,0]
=> [1,1,0,0]
=> [2,1] => 1
[2]
=> [1,1,0,0,1,0]
=> [1,1,0,1,0,0]
=> [2,3,1] => 0
[1,1]
=> [1,0,1,1,0,0]
=> [1,0,1,1,0,0]
=> [1,3,2] => 1
[3]
=> [1,1,1,0,0,0,1,0]
=> [1,0,1,1,0,1,0,0]
=> [1,3,4,2] => 0
[2,1]
=> [1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> [3,2,1] => 2
[1,1,1]
=> [1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,0,0]
=> [1,2,4,3] => 1
[4]
=> [1,1,1,1,0,0,0,0,1,0]
=> [1,0,1,0,1,1,0,1,0,0]
=> [1,2,4,5,3] => 0
[3,1]
=> [1,1,0,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0]
=> [3,2,4,1] => 1
[2,2]
=> [1,1,0,0,1,1,0,0]
=> [1,1,0,1,0,1,0,0]
=> [2,3,4,1] => 0
[2,1,1]
=> [1,0,1,1,0,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> [2,1,4,3] => 2
[1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> [1,2,3,5,4] => 1
[5]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> [1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,2,3,5,6,4] => 0
[4,1]
=> [1,1,1,0,1,0,0,0,1,0]
=> [1,1,0,0,1,1,0,1,0,0]
=> [2,1,4,5,3] => 1
[3,2]
=> [1,1,0,0,1,0,1,0]
=> [1,1,1,0,1,0,0,0]
=> [3,4,2,1] => 1
[3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,0,0]
=> [2,4,3,1] => 1
[2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [1,0,1,1,1,0,0,0]
=> [1,4,3,2] => 2
[2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> [2,1,3,5,4] => 2
[1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,2,3,4,6,5] => 1
[6]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,2,3,4,6,7,5] => 0
[5,1]
=> [1,1,1,1,0,1,0,0,0,0,1,0]
=> [1,1,0,0,1,0,1,1,0,1,0,0]
=> [2,1,3,5,6,4] => 1
[4,2]
=> [1,1,1,0,0,1,0,0,1,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> [2,4,3,5,1] => 0
[4,1,1]
=> [1,1,0,1,1,0,0,0,1,0]
=> [1,0,1,1,1,0,0,1,0,0]
=> [1,4,3,5,2] => 1
[3,3]
=> [1,1,1,0,0,0,1,1,0,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> [2,3,4,5,1] => 0
[3,2,1]
=> [1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> [4,3,2,1] => 3
[3,1,1,1]
=> [1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,1,0,0,1,1,0,0]
=> [2,3,1,5,4] => 1
[2,2,2]
=> [1,1,0,0,1,1,1,0,0,0]
=> [1,0,1,1,0,1,0,1,0,0]
=> [1,3,4,5,2] => 0
[2,2,1,1]
=> [1,0,1,1,0,1,1,0,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> [1,3,2,5,4] => 2
[2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,0,0,0,0]
=> [1,1,0,0,1,0,1,0,1,1,0,0]
=> [2,1,3,4,6,5] => 2
[1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,2,3,4,5,7,6] => 1
[7]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,2,3,4,5,7,8,6] => ? ∊ {0,1,1,2}
[6,1]
=> [1,1,1,1,1,0,1,0,0,0,0,0,1,0]
=> [1,1,0,0,1,0,1,0,1,1,0,1,0,0]
=> [2,1,3,4,6,7,5] => ? ∊ {0,1,1,2}
[5,2]
=> [1,1,1,1,0,0,1,0,0,0,1,0]
=> [1,1,0,1,0,0,1,1,0,1,0,0]
=> [2,3,1,5,6,4] => 0
[5,1,1]
=> [1,1,1,0,1,1,0,0,0,0,1,0]
=> [1,0,1,1,0,0,1,1,0,1,0,0]
=> [1,3,2,5,6,4] => 1
[4,3]
=> [1,1,1,0,0,0,1,0,1,0]
=> [1,0,1,1,1,0,1,0,0,0]
=> [1,4,5,3,2] => 1
[4,2,1]
=> [1,1,0,1,0,1,0,0,1,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> [4,3,2,5,1] => 2
[4,1,1,1]
=> [1,0,1,1,1,0,0,0,1,0]
=> [1,0,1,1,0,1,1,0,0,0]
=> [1,3,5,4,2] => 1
[3,3,1]
=> [1,1,0,1,0,0,1,1,0,0]
=> [1,1,1,0,1,0,0,1,0,0]
=> [3,4,2,5,1] => 1
[3,2,2]
=> [1,1,0,0,1,1,0,1,0,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> [3,2,4,5,1] => 1
[3,2,1,1]
=> [1,0,1,1,0,1,0,1,0,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> [3,2,1,5,4] => 3
[3,1,1,1,1]
=> [1,0,1,1,1,1,0,0,1,0,0,0]
=> [1,1,0,1,0,0,1,0,1,1,0,0]
=> [2,3,1,4,6,5] => 1
[2,2,2,1]
=> [1,0,1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> [1,2,5,4,3] => 2
[2,2,1,1,1]
=> [1,0,1,1,1,0,1,1,0,0,0,0]
=> [1,0,1,1,0,0,1,0,1,1,0,0]
=> [1,3,2,4,6,5] => 2
[2,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,1,0,0,0,0,0]
=> [1,1,0,0,1,0,1,0,1,0,1,1,0,0]
=> [2,1,3,4,5,7,6] => ? ∊ {0,1,1,2}
[1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,2,3,4,5,6,8,7] => ? ∊ {0,1,1,2}
[8]
=> [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,2,3,4,5,6,8,9,7] => ? ∊ {0,0,1,1,1,2}
[7,1]
=> [1,1,1,1,1,1,0,1,0,0,0,0,0,0,1,0]
=> [1,1,0,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [2,1,3,4,5,7,8,6] => ? ∊ {0,0,1,1,1,2}
[6,2]
=> [1,1,1,1,1,0,0,1,0,0,0,0,1,0]
=> [1,1,0,1,0,0,1,0,1,1,0,1,0,0]
=> [2,3,1,4,6,7,5] => ? ∊ {0,0,1,1,1,2}
[6,1,1]
=> [1,1,1,1,0,1,1,0,0,0,0,0,1,0]
=> [1,0,1,1,0,0,1,0,1,1,0,1,0,0]
=> [1,3,2,4,6,7,5] => 1
[5,3]
=> [1,1,1,1,0,0,0,1,0,0,1,0]
=> [1,0,1,1,0,1,1,0,0,1,0,0]
=> [1,3,5,4,6,2] => 0
[5,2,1]
=> [1,1,1,0,1,0,1,0,0,0,1,0]
=> [1,1,1,0,0,0,1,1,0,1,0,0]
=> [3,2,1,5,6,4] => 2
[5,1,1,1]
=> [1,1,0,1,1,1,0,0,0,0,1,0]
=> [1,0,1,0,1,1,1,0,0,1,0,0]
=> [1,2,5,4,6,3] => 1
[4,4]
=> [1,1,1,1,0,0,0,0,1,1,0,0]
=> [1,0,1,1,0,1,0,1,0,1,0,0]
=> [1,3,4,5,6,2] => 0
[4,3,1]
=> [1,1,0,1,0,0,1,0,1,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> [4,3,5,2,1] => 2
[4,2,2]
=> [1,1,0,0,1,1,0,0,1,0]
=> [1,1,1,0,1,0,1,0,0,0]
=> [3,4,5,2,1] => 0
[4,2,1,1]
=> [1,0,1,1,0,1,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> [3,2,5,4,1] => 2
[4,1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,1,0,0]
=> [1,0,1,1,0,1,0,0,1,1,0,0]
=> [1,3,4,2,6,5] => 1
[3,3,2]
=> [1,1,0,0,1,0,1,1,0,0]
=> [1,1,0,1,1,0,1,0,0,0]
=> [2,4,5,3,1] => 1
[3,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,0,1,0,0,0,0]
=> [1,1,0,1,0,0,1,0,1,0,1,1,0,0]
=> [2,3,1,4,5,7,6] => ? ∊ {0,0,1,1,1,2}
[2,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,0,1,0,0,0,0,0,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [2,1,3,4,5,6,8,7] => ? ∊ {0,0,1,1,1,2}
[1,1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,2,3,4,5,6,7,9,8] => ? ∊ {0,0,1,1,1,2}
[9]
=> [1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,2,3,4,5,6,7,9,10,8] => ? ∊ {0,0,1,1,1,1,2,2,2,3}
[8,1]
=> [1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0,1,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [2,1,3,4,5,6,8,9,7] => ? ∊ {0,0,1,1,1,1,2,2,2,3}
[7,2]
=> [1,1,1,1,1,1,0,0,1,0,0,0,0,0,1,0]
=> [1,1,0,1,0,0,1,0,1,0,1,1,0,1,0,0]
=> [2,3,1,4,5,7,8,6] => ? ∊ {0,0,1,1,1,1,2,2,2,3}
[7,1,1]
=> [1,1,1,1,1,0,1,1,0,0,0,0,0,0,1,0]
=> [1,0,1,1,0,0,1,0,1,0,1,1,0,1,0,0]
=> [1,3,2,4,5,7,8,6] => ? ∊ {0,0,1,1,1,1,2,2,2,3}
[6,2,1]
=> [1,1,1,1,0,1,0,1,0,0,0,0,1,0]
=> [1,1,1,0,0,0,1,0,1,1,0,1,0,0]
=> [3,2,1,4,6,7,5] => ? ∊ {0,0,1,1,1,1,2,2,2,3}
[3,2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,0,1,0,0,0,0]
=> [1,1,1,0,0,0,1,0,1,0,1,1,0,0]
=> [3,2,1,4,5,7,6] => ? ∊ {0,0,1,1,1,1,2,2,2,3}
[3,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,0,0,1,0,0,0,0,0]
=> [1,1,0,1,0,0,1,0,1,0,1,0,1,1,0,0]
=> [2,3,1,4,5,6,8,7] => ? ∊ {0,0,1,1,1,1,2,2,2,3}
[2,2,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,1,1,0,0,0,0,0,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0,1,1,0,0]
=> [1,3,2,4,5,6,8,7] => ? ∊ {0,0,1,1,1,1,2,2,2,3}
[2,1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [2,1,3,4,5,6,7,9,8] => ? ∊ {0,0,1,1,1,1,2,2,2,3}
[1,1,1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,2,3,4,5,6,7,8,10,9] => ? ∊ {0,0,1,1,1,1,2,2,2,3}
[10]
=> [1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,2,3,4,5,6,7,8,10,11,9] => ? ∊ {0,0,0,0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3}
[9,1]
=> [1,1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0,0,1,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [2,1,3,4,5,6,7,9,10,8] => ? ∊ {0,0,0,0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3}
[8,2]
=> [1,1,1,1,1,1,1,0,0,1,0,0,0,0,0,0,1,0]
=> [1,1,0,1,0,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [2,3,1,4,5,6,8,9,7] => ? ∊ {0,0,0,0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3}
[8,1,1]
=> [1,1,1,1,1,1,0,1,1,0,0,0,0,0,0,0,1,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,3,2,4,5,6,8,9,7] => ? ∊ {0,0,0,0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3}
[7,3]
=> [1,1,1,1,1,1,0,0,0,1,0,0,0,0,1,0]
=> [1,0,1,1,0,1,0,0,1,0,1,1,0,1,0,0]
=> [1,3,4,2,5,7,8,6] => ? ∊ {0,0,0,0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3}
[7,2,1]
=> [1,1,1,1,1,0,1,0,1,0,0,0,0,0,1,0]
=> [1,1,1,0,0,0,1,0,1,0,1,1,0,1,0,0]
=> [3,2,1,4,5,7,8,6] => ? ∊ {0,0,0,0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3}
[7,1,1,1]
=> [1,1,1,1,0,1,1,1,0,0,0,0,0,0,1,0]
=> [1,0,1,0,1,1,0,0,1,0,1,1,0,1,0,0]
=> [1,2,4,3,5,7,8,6] => ? ∊ {0,0,0,0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3}
[6,3,1]
=> [1,1,1,1,0,1,0,0,1,0,0,0,1,0]
=> [1,1,1,0,0,1,0,0,1,1,0,1,0,0]
=> [3,2,4,1,6,7,5] => ? ∊ {0,0,0,0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3}
[6,2,2]
=> [1,1,1,1,0,0,1,1,0,0,0,0,1,0]
=> [1,1,0,1,0,1,0,0,1,1,0,1,0,0]
=> [2,3,4,1,6,7,5] => ? ∊ {0,0,0,0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3}
[6,2,1,1]
=> [1,1,1,0,1,1,0,1,0,0,0,0,1,0]
=> [1,1,0,0,1,1,0,0,1,1,0,1,0,0]
=> [2,1,4,3,6,7,5] => ? ∊ {0,0,0,0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3}
[4,2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,0,0,1,0,0,0]
=> [1,1,1,0,0,1,0,0,1,0,1,1,0,0]
=> [3,2,4,1,5,7,6] => ? ∊ {0,0,0,0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3}
[4,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,0,0,0,1,0,0,0,0]
=> [1,0,1,1,0,1,0,0,1,0,1,0,1,1,0,0]
=> [1,3,4,2,5,6,8,7] => ? ∊ {0,0,0,0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3}
[3,3,1,1,1,1]
=> [1,0,1,1,1,1,0,0,1,1,0,0,0,0]
=> [1,1,0,1,0,1,0,0,1,0,1,1,0,0]
=> [2,3,4,1,5,7,6] => ? ∊ {0,0,0,0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3}
[3,2,2,1,1,1]
=> [1,0,1,1,1,0,1,1,0,1,0,0,0,0]
=> [1,1,0,0,1,1,0,0,1,0,1,1,0,0]
=> [2,1,4,3,5,7,6] => ? ∊ {0,0,0,0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3}
[3,2,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,1,0,1,0,0,0,0,0]
=> [1,1,1,0,0,0,1,0,1,0,1,0,1,1,0,0]
=> [3,2,1,4,5,6,8,7] => ? ∊ {0,0,0,0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3}
[3,1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,0,0,1,0,0,0,0,0,0]
=> [1,1,0,1,0,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [2,3,1,4,5,6,7,9,8] => ? ∊ {0,0,0,0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3}
[2,2,2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,1,1,0,0,0,0,0,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0,1,1,0,0]
=> [1,2,4,3,5,6,8,7] => ? ∊ {0,0,0,0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3}
[2,2,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,0,1,1,0,0,0,0,0,0,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,3,2,4,5,6,7,9,8] => ? ∊ {0,0,0,0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3}
[2,1,1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [2,1,3,4,5,6,7,8,10,9] => ? ∊ {0,0,0,0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3}
[1,1,1,1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,2,3,4,5,6,7,8,9,11,10] => ? ∊ {0,0,0,0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3}
Description
The number of indices that are both descents and recoils of a permutation.
The following 91 statistics, ordered by result quality, also match your data. Click on any of them to see the details.
St001640The number of ascent tops in the permutation such that all smaller elements appear before. St001399The distinguishing number of a poset. St000864The number of circled entries of the shifted recording tableau of a permutation. St000247The number of singleton blocks of a set partition. St001223Number of indecomposable projective non-injective modules P such that the modules X and Y in a an Auslander-Reiten sequence ending at P are torsionless. St001233The number of indecomposable 2-dimensional modules with projective dimension one. St001024Maximum of dominant dimensions of the simple modules in the Nakayama algebra corresponding to the Dyck path. St001210Gives the maximal vector space dimension of the first Ext-group between an indecomposable module X and the regular module A, when A is the Nakayama algebra corresponding to the Dyck path. St001290The first natural number n such that the tensor product of n copies of D(A) is zero for the corresponding Nakayama algebra A. St000931The number of occurrences of the pattern UUU in a Dyck path. St001126Number of simple module that are 1-regular in the corresponding Nakayama algebra. St001216The number of indecomposable injective modules in the corresponding Nakayama algebra that have non-vanishing second Ext-group with the regular module. St001066The number of simple reflexive modules in the corresponding Nakayama algebra. St001652The length of a longest interval of consecutive numbers. St001662The length of the longest factor of consecutive numbers in a permutation. St000444The length of the maximal rise of a Dyck path. St000969We make a CNakayama algebra out of the LNakayama algebra (corresponding to the Dyck path) [c0,c1,...,cn−1] by adding c0 to cn−1. St000698The number of 2-rim hooks removed from an integer partition to obtain its associated 2-core. St001247The number of parts of a partition that are not congruent 2 modulo 3. St001250The number of parts of a partition that are not congruent 0 modulo 3. St000681The Grundy value of Chomp on Ferrers diagrams. St001207The Lowey length of the algebra A/T when T is the 1-tilting module corresponding to the permutation in the Auslander algebra of K[x]/(xn). St000658The number of rises of length 2 of a Dyck path. St001139The number of occurrences of hills of size 2 in a Dyck path. St001604The multiplicity of the irreducible representation corresponding to a partition in the relabelling action on polygons. St000668The least common multiple of the parts of the partition. St000993The multiplicity of the largest part of an integer partition. St001568The smallest positive integer that does not appear twice in the partition. St000454The largest eigenvalue of a graph if it is integral. St000731The number of double exceedences of a permutation. St001491The number of indecomposable projective-injective modules in the algebra corresponding to a subset. St000707The product of the factorials of the parts. St000708The product of the parts of an integer partition. St000929The constant term of the character polynomial of an integer partition. St000933The number of multipartitions of sizes given by an integer partition. St000996The number of exclusive left-to-right maxima of a permutation. St000654The first descent of a permutation. St001199The dominant dimension of eAe for the corresponding Nakayama algebra A with minimal faithful projective-injective module eA. St000665The number of rafts of a permutation. St001115The number of even descents of a permutation. St001603The number of colourings of a polygon such that the multiplicities of a colour are given by a partition. St001605The number of colourings of a cycle such that the multiplicities of colours are given by a partition. St000989The number of final rises of a permutation. St001948The number of augmented double ascents of a permutation. St000338The number of pixed points of a permutation. St000732The number of double deficiencies of a permutation. St001219Number of simple modules S in the corresponding Nakayama algebra such that the Auslander-Reiten sequence ending at S has the property that all modules in the exact sequence are reflexive. St001231The number of simple modules that are non-projective and non-injective with the property that they have projective dimension equal to one and that also the Auslander-Reiten translates of the module and the inverse Auslander-Reiten translate of the module have the same projective dimension. St001234The number of indecomposable three dimensional modules with projective dimension one. St000193The row of the unique '1' in the first column of the alternating sign matrix. St000314The number of left-to-right-maxima of a permutation. St000678The number of up steps after the last double rise of a Dyck path. St000887The maximal number of nonzero entries on a diagonal of a permutation matrix. St000990The first ascent of a permutation. St001184Number of indecomposable injective modules with grade at least 1 in the corresponding Nakayama algebra. St001185The number of indecomposable injective modules of grade at least 2 in the corresponding Nakayama algebra. St001192The maximal dimension of Ext2A(S,A) for a simple module S over the corresponding Nakayama algebra A. St001202Call a CNakayama algebra (a Nakayama algebra with a cyclic quiver) with Kupisch series L=[c0,c1,...,cn−1] such that n=c0<ci for all i>0 a special CNakayama algebra. St001238The number of simple modules S such that the Auslander-Reiten translate of S is isomorphic to the Nakayama functor applied to the second syzygy of S. St001297The number of indecomposable non-injective projective modules minus the number of indecomposable non-injective projective modules that have reflexive Auslander-Reiten sequences in the corresponding Nakayama algebra. St001226The number of integers i such that the radical of the i-th indecomposable projective module has vanishing first extension group with the Jacobson radical J in the corresponding Nakayama algebra. St001239The largest vector space dimension of the double dual of a simple module in the corresponding Nakayama algebra. St001240The number of indecomposable modules e_i J^2 that have injective dimension at most one in the corresponding Nakayama algebra St001632The number of indecomposable injective modules I with dimExt1(I,A)=1 for the incidence algebra A of a poset. St000741The Colin de Verdière graph invariant. St000772The multiplicity of the largest distance Laplacian eigenvalue in a connected graph. St001629The coefficient of the integer composition in the quasisymmetric expansion of the relabelling action of the symmetric group on cycles. St001125The number of simple modules that satisfy the 2-regular condition in the corresponding Nakayama algebra. St001222Number of simple modules in the corresponding LNakayama algebra that have a unique 2-extension with the regular module. St001276The number of 2-regular indecomposable modules in the corresponding Nakayama algebra. St000782The indicator function of whether a given perfect matching is an L & P matching. St000771The largest multiplicity of a distance Laplacian eigenvalue in a connected graph. St001198The number of simple modules in the algebra eAe with projective dimension at most 1 in the corresponding Nakayama algebra A with minimal faithful projective-injective module eA. St001206The maximal dimension of an indecomposable projective eAe-module (that is the height of the corresponding Dyck path) of the corresponding Nakayama algebra with minimal faithful projective-injective module eA. St001230The number of simple modules with injective dimension equal to the dominant dimension equal to one and the dual property. St001274The number of indecomposable injective modules with projective dimension equal to two. St001423The number of distinct cubes in a binary word. St001630The global dimension of the incidence algebra of the lattice over the rational numbers. St001730The number of times the path corresponding to a binary word crosses the base line. St001876The number of 2-regular simple modules in the incidence algebra of the lattice. St001877Number of indecomposable injective modules with projective dimension 2. St001878The projective dimension of the simple modules corresponding to the minimum of L in the incidence algebra of the lattice L. St000455The second largest eigenvalue of a graph if it is integral. St001000Number of indecomposable modules with projective dimension equal to the global dimension in the Nakayama algebra corresponding to the Dyck path. St001267The length of the Lyndon factorization of the binary word. St001355Number of non-empty prefixes of a binary word that contain equally many 0's and 1's. St001431Half of the Loewy length minus one of a modified stable Auslander algebra of the Nakayama algebra corresponding to the Dyck path. St001462The number of factors of a standard tableaux under concatenation. St001553The number of indecomposable summands of the square of the Jacobson radical as a bimodule in the Nakayama algebra corresponding to the Dyck path. St001904The length of the initial strictly increasing segment of a parking function. St001937The size of the center of a parking function.
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!