Your data matches 15 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
Matching statistic: St001450
St001450: Plane partitions ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[[1]]
=> 1
[[1],[1]]
=> 1
[[2]]
=> 2
[[1,1]]
=> 1
[[1],[1],[1]]
=> 1
[[2],[1]]
=> 1
[[1,1],[1]]
=> 1
[[3]]
=> 3
[[2,1]]
=> 1
[[1,1,1]]
=> 1
[[1],[1],[1],[1]]
=> 1
[[2],[1],[1]]
=> 1
[[2],[2]]
=> 2
[[1,1],[1],[1]]
=> 1
[[1,1],[1,1]]
=> 1
[[3],[1]]
=> 1
[[2,1],[1]]
=> 1
[[1,1,1],[1]]
=> 1
[[4]]
=> 4
[[3,1]]
=> 1
[[2,2]]
=> 2
[[2,1,1]]
=> 1
[[1,1,1,1]]
=> 1
[[1],[1],[1],[1],[1]]
=> 1
[[2],[1],[1],[1]]
=> 1
[[2],[2],[1]]
=> 1
[[1,1],[1],[1],[1]]
=> 1
[[1,1],[1,1],[1]]
=> 1
[[3],[1],[1]]
=> 1
[[3],[2]]
=> 2
[[2,1],[1],[1]]
=> 1
[[2,1],[2]]
=> 2
[[2,1],[1,1]]
=> 1
[[1,1,1],[1],[1]]
=> 1
[[1,1,1],[1,1]]
=> 1
[[4],[1]]
=> 1
[[3,1],[1]]
=> 1
[[2,2],[1]]
=> 1
[[2,1,1],[1]]
=> 1
[[1,1,1,1],[1]]
=> 1
[[5]]
=> 5
[[4,1]]
=> 1
[[3,2]]
=> 2
[[3,1,1]]
=> 1
[[2,2,1]]
=> 1
[[2,1,1,1]]
=> 1
[[1,1,1,1,1]]
=> 1
[[1],[1],[1],[1],[1],[1]]
=> 1
[[2],[1],[1],[1],[1]]
=> 1
[[2],[2],[1],[1]]
=> 1
Description
The minimum height of a plane partition.
Matching statistic: St000627
Mp00311: Plane partitions to partitionInteger partitions
Mp00202: Integer partitions first row removalInteger partitions
Mp00095: Integer partitions to binary wordBinary words
St000627: Binary words ⟶ ℤResult quality: 30% values known / values provided: 88%distinct values known / distinct values provided: 30%
Values
[[1]]
=> [1]
=> []
=> => ? = 1
[[1],[1]]
=> [1,1]
=> [1]
=> 10 => 1
[[2]]
=> [2]
=> []
=> => ? ∊ {1,2}
[[1,1]]
=> [2]
=> []
=> => ? ∊ {1,2}
[[1],[1],[1]]
=> [1,1,1]
=> [1,1]
=> 110 => 1
[[2],[1]]
=> [2,1]
=> [1]
=> 10 => 1
[[1,1],[1]]
=> [2,1]
=> [1]
=> 10 => 1
[[3]]
=> [3]
=> []
=> => ? ∊ {1,1,3}
[[2,1]]
=> [3]
=> []
=> => ? ∊ {1,1,3}
[[1,1,1]]
=> [3]
=> []
=> => ? ∊ {1,1,3}
[[1],[1],[1],[1]]
=> [1,1,1,1]
=> [1,1,1]
=> 1110 => 1
[[2],[1],[1]]
=> [2,1,1]
=> [1,1]
=> 110 => 1
[[2],[2]]
=> [2,2]
=> [2]
=> 100 => 1
[[1,1],[1],[1]]
=> [2,1,1]
=> [1,1]
=> 110 => 1
[[1,1],[1,1]]
=> [2,2]
=> [2]
=> 100 => 1
[[3],[1]]
=> [3,1]
=> [1]
=> 10 => 1
[[2,1],[1]]
=> [3,1]
=> [1]
=> 10 => 1
[[1,1,1],[1]]
=> [3,1]
=> [1]
=> 10 => 1
[[4]]
=> [4]
=> []
=> => ? ∊ {1,1,2,2,4}
[[3,1]]
=> [4]
=> []
=> => ? ∊ {1,1,2,2,4}
[[2,2]]
=> [4]
=> []
=> => ? ∊ {1,1,2,2,4}
[[2,1,1]]
=> [4]
=> []
=> => ? ∊ {1,1,2,2,4}
[[1,1,1,1]]
=> [4]
=> []
=> => ? ∊ {1,1,2,2,4}
[[1],[1],[1],[1],[1]]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> 11110 => 1
[[2],[1],[1],[1]]
=> [2,1,1,1]
=> [1,1,1]
=> 1110 => 1
[[2],[2],[1]]
=> [2,2,1]
=> [2,1]
=> 1010 => 2
[[1,1],[1],[1],[1]]
=> [2,1,1,1]
=> [1,1,1]
=> 1110 => 1
[[1,1],[1,1],[1]]
=> [2,2,1]
=> [2,1]
=> 1010 => 2
[[3],[1],[1]]
=> [3,1,1]
=> [1,1]
=> 110 => 1
[[3],[2]]
=> [3,2]
=> [2]
=> 100 => 1
[[2,1],[1],[1]]
=> [3,1,1]
=> [1,1]
=> 110 => 1
[[2,1],[2]]
=> [3,2]
=> [2]
=> 100 => 1
[[2,1],[1,1]]
=> [3,2]
=> [2]
=> 100 => 1
[[1,1,1],[1],[1]]
=> [3,1,1]
=> [1,1]
=> 110 => 1
[[1,1,1],[1,1]]
=> [3,2]
=> [2]
=> 100 => 1
[[4],[1]]
=> [4,1]
=> [1]
=> 10 => 1
[[3,1],[1]]
=> [4,1]
=> [1]
=> 10 => 1
[[2,2],[1]]
=> [4,1]
=> [1]
=> 10 => 1
[[2,1,1],[1]]
=> [4,1]
=> [1]
=> 10 => 1
[[1,1,1,1],[1]]
=> [4,1]
=> [1]
=> 10 => 1
[[5]]
=> [5]
=> []
=> => ? ∊ {1,1,1,1,1,2,5}
[[4,1]]
=> [5]
=> []
=> => ? ∊ {1,1,1,1,1,2,5}
[[3,2]]
=> [5]
=> []
=> => ? ∊ {1,1,1,1,1,2,5}
[[3,1,1]]
=> [5]
=> []
=> => ? ∊ {1,1,1,1,1,2,5}
[[2,2,1]]
=> [5]
=> []
=> => ? ∊ {1,1,1,1,1,2,5}
[[2,1,1,1]]
=> [5]
=> []
=> => ? ∊ {1,1,1,1,1,2,5}
[[1,1,1,1,1]]
=> [5]
=> []
=> => ? ∊ {1,1,1,1,1,2,5}
[[1],[1],[1],[1],[1],[1]]
=> [1,1,1,1,1,1]
=> [1,1,1,1,1]
=> 111110 => 1
[[2],[1],[1],[1],[1]]
=> [2,1,1,1,1]
=> [1,1,1,1]
=> 11110 => 1
[[2],[2],[1],[1]]
=> [2,2,1,1]
=> [2,1,1]
=> 10110 => 1
[[2],[2],[2]]
=> [2,2,2]
=> [2,2]
=> 1100 => 1
[[1,1],[1],[1],[1],[1]]
=> [2,1,1,1,1]
=> [1,1,1,1]
=> 11110 => 1
[[1,1],[1,1],[1],[1]]
=> [2,2,1,1]
=> [2,1,1]
=> 10110 => 1
[[1,1],[1,1],[1,1]]
=> [2,2,2]
=> [2,2]
=> 1100 => 1
[[3],[1],[1],[1]]
=> [3,1,1,1]
=> [1,1,1]
=> 1110 => 1
[[3],[2],[1]]
=> [3,2,1]
=> [2,1]
=> 1010 => 2
[[3],[3]]
=> [3,3]
=> [3]
=> 1000 => 1
[[2,1],[1],[1],[1]]
=> [3,1,1,1]
=> [1,1,1]
=> 1110 => 1
[[2,1],[2],[1]]
=> [3,2,1]
=> [2,1]
=> 1010 => 2
[[2,1],[1,1],[1]]
=> [3,2,1]
=> [2,1]
=> 1010 => 2
[[2,1],[2,1]]
=> [3,3]
=> [3]
=> 1000 => 1
[[1,1,1],[1],[1],[1]]
=> [3,1,1,1]
=> [1,1,1]
=> 1110 => 1
[[1,1,1],[1,1],[1]]
=> [3,2,1]
=> [2,1]
=> 1010 => 2
[[1,1,1],[1,1,1]]
=> [3,3]
=> [3]
=> 1000 => 1
[[4],[1],[1]]
=> [4,1,1]
=> [1,1]
=> 110 => 1
[[4],[2]]
=> [4,2]
=> [2]
=> 100 => 1
[[3,1],[1],[1]]
=> [4,1,1]
=> [1,1]
=> 110 => 1
[[3,1],[2]]
=> [4,2]
=> [2]
=> 100 => 1
[[6]]
=> [6]
=> []
=> => ? ∊ {1,1,1,1,1,2,2,2,3,3,6}
[[5,1]]
=> [6]
=> []
=> => ? ∊ {1,1,1,1,1,2,2,2,3,3,6}
[[4,2]]
=> [6]
=> []
=> => ? ∊ {1,1,1,1,1,2,2,2,3,3,6}
[[4,1,1]]
=> [6]
=> []
=> => ? ∊ {1,1,1,1,1,2,2,2,3,3,6}
[[3,3]]
=> [6]
=> []
=> => ? ∊ {1,1,1,1,1,2,2,2,3,3,6}
[[3,2,1]]
=> [6]
=> []
=> => ? ∊ {1,1,1,1,1,2,2,2,3,3,6}
[[3,1,1,1]]
=> [6]
=> []
=> => ? ∊ {1,1,1,1,1,2,2,2,3,3,6}
[[2,2,2]]
=> [6]
=> []
=> => ? ∊ {1,1,1,1,1,2,2,2,3,3,6}
[[2,2,1,1]]
=> [6]
=> []
=> => ? ∊ {1,1,1,1,1,2,2,2,3,3,6}
[[2,1,1,1,1]]
=> [6]
=> []
=> => ? ∊ {1,1,1,1,1,2,2,2,3,3,6}
[[1,1,1,1,1,1]]
=> [6]
=> []
=> => ? ∊ {1,1,1,1,1,2,2,2,3,3,6}
[[7]]
=> [7]
=> []
=> => ? ∊ {1,1,1,1,1,1,1,1,1,2,2,3,3,3,7}
[[6,1]]
=> [7]
=> []
=> => ? ∊ {1,1,1,1,1,1,1,1,1,2,2,3,3,3,7}
[[5,2]]
=> [7]
=> []
=> => ? ∊ {1,1,1,1,1,1,1,1,1,2,2,3,3,3,7}
[[5,1,1]]
=> [7]
=> []
=> => ? ∊ {1,1,1,1,1,1,1,1,1,2,2,3,3,3,7}
[[4,3]]
=> [7]
=> []
=> => ? ∊ {1,1,1,1,1,1,1,1,1,2,2,3,3,3,7}
[[4,2,1]]
=> [7]
=> []
=> => ? ∊ {1,1,1,1,1,1,1,1,1,2,2,3,3,3,7}
[[4,1,1,1]]
=> [7]
=> []
=> => ? ∊ {1,1,1,1,1,1,1,1,1,2,2,3,3,3,7}
[[3,3,1]]
=> [7]
=> []
=> => ? ∊ {1,1,1,1,1,1,1,1,1,2,2,3,3,3,7}
[[3,2,2]]
=> [7]
=> []
=> => ? ∊ {1,1,1,1,1,1,1,1,1,2,2,3,3,3,7}
[[3,2,1,1]]
=> [7]
=> []
=> => ? ∊ {1,1,1,1,1,1,1,1,1,2,2,3,3,3,7}
[[3,1,1,1,1]]
=> [7]
=> []
=> => ? ∊ {1,1,1,1,1,1,1,1,1,2,2,3,3,3,7}
[[2,2,2,1]]
=> [7]
=> []
=> => ? ∊ {1,1,1,1,1,1,1,1,1,2,2,3,3,3,7}
[[2,2,1,1,1]]
=> [7]
=> []
=> => ? ∊ {1,1,1,1,1,1,1,1,1,2,2,3,3,3,7}
[[2,1,1,1,1,1]]
=> [7]
=> []
=> => ? ∊ {1,1,1,1,1,1,1,1,1,2,2,3,3,3,7}
[[1,1,1,1,1,1,1]]
=> [7]
=> []
=> => ? ∊ {1,1,1,1,1,1,1,1,1,2,2,3,3,3,7}
[[8]]
=> [8]
=> []
=> => ? ∊ {1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,4,4,8}
[[7,1]]
=> [8]
=> []
=> => ? ∊ {1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,4,4,8}
[[6,2]]
=> [8]
=> []
=> => ? ∊ {1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,4,4,8}
[[6,1,1]]
=> [8]
=> []
=> => ? ∊ {1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,4,4,8}
[[5,3]]
=> [8]
=> []
=> => ? ∊ {1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,4,4,8}
[[5,2,1]]
=> [8]
=> []
=> => ? ∊ {1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,4,4,8}
Description
The exponent of a binary word. This is the largest number $e$ such that $w$ is the concatenation of $e$ identical factors. This statistic is also called '''frequency'''.
Matching statistic: St001481
Mp00311: Plane partitions to partitionInteger partitions
Mp00202: Integer partitions first row removalInteger partitions
Mp00043: Integer partitions to Dyck pathDyck paths
St001481: Dyck paths ⟶ ℤResult quality: 20% values known / values provided: 85%distinct values known / distinct values provided: 20%
Values
[[1]]
=> [1]
=> []
=> []
=> ? = 1
[[1],[1]]
=> [1,1]
=> [1]
=> [1,0,1,0]
=> 1
[[2]]
=> [2]
=> []
=> []
=> ? ∊ {1,2}
[[1,1]]
=> [2]
=> []
=> []
=> ? ∊ {1,2}
[[1],[1],[1]]
=> [1,1,1]
=> [1,1]
=> [1,0,1,1,0,0]
=> 1
[[2],[1]]
=> [2,1]
=> [1]
=> [1,0,1,0]
=> 1
[[1,1],[1]]
=> [2,1]
=> [1]
=> [1,0,1,0]
=> 1
[[3]]
=> [3]
=> []
=> []
=> ? ∊ {1,1,3}
[[2,1]]
=> [3]
=> []
=> []
=> ? ∊ {1,1,3}
[[1,1,1]]
=> [3]
=> []
=> []
=> ? ∊ {1,1,3}
[[1],[1],[1],[1]]
=> [1,1,1,1]
=> [1,1,1]
=> [1,0,1,1,1,0,0,0]
=> 1
[[2],[1],[1]]
=> [2,1,1]
=> [1,1]
=> [1,0,1,1,0,0]
=> 1
[[2],[2]]
=> [2,2]
=> [2]
=> [1,1,0,0,1,0]
=> 1
[[1,1],[1],[1]]
=> [2,1,1]
=> [1,1]
=> [1,0,1,1,0,0]
=> 1
[[1,1],[1,1]]
=> [2,2]
=> [2]
=> [1,1,0,0,1,0]
=> 1
[[3],[1]]
=> [3,1]
=> [1]
=> [1,0,1,0]
=> 1
[[2,1],[1]]
=> [3,1]
=> [1]
=> [1,0,1,0]
=> 1
[[1,1,1],[1]]
=> [3,1]
=> [1]
=> [1,0,1,0]
=> 1
[[4]]
=> [4]
=> []
=> []
=> ? ∊ {1,1,2,2,4}
[[3,1]]
=> [4]
=> []
=> []
=> ? ∊ {1,1,2,2,4}
[[2,2]]
=> [4]
=> []
=> []
=> ? ∊ {1,1,2,2,4}
[[2,1,1]]
=> [4]
=> []
=> []
=> ? ∊ {1,1,2,2,4}
[[1,1,1,1]]
=> [4]
=> []
=> []
=> ? ∊ {1,1,2,2,4}
[[1],[1],[1],[1],[1]]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,0]
=> 1
[[2],[1],[1],[1]]
=> [2,1,1,1]
=> [1,1,1]
=> [1,0,1,1,1,0,0,0]
=> 1
[[2],[2],[1]]
=> [2,2,1]
=> [2,1]
=> [1,0,1,0,1,0]
=> 1
[[1,1],[1],[1],[1]]
=> [2,1,1,1]
=> [1,1,1]
=> [1,0,1,1,1,0,0,0]
=> 1
[[1,1],[1,1],[1]]
=> [2,2,1]
=> [2,1]
=> [1,0,1,0,1,0]
=> 1
[[3],[1],[1]]
=> [3,1,1]
=> [1,1]
=> [1,0,1,1,0,0]
=> 1
[[3],[2]]
=> [3,2]
=> [2]
=> [1,1,0,0,1,0]
=> 1
[[2,1],[1],[1]]
=> [3,1,1]
=> [1,1]
=> [1,0,1,1,0,0]
=> 1
[[2,1],[2]]
=> [3,2]
=> [2]
=> [1,1,0,0,1,0]
=> 1
[[2,1],[1,1]]
=> [3,2]
=> [2]
=> [1,1,0,0,1,0]
=> 1
[[1,1,1],[1],[1]]
=> [3,1,1]
=> [1,1]
=> [1,0,1,1,0,0]
=> 1
[[1,1,1],[1,1]]
=> [3,2]
=> [2]
=> [1,1,0,0,1,0]
=> 1
[[4],[1]]
=> [4,1]
=> [1]
=> [1,0,1,0]
=> 1
[[3,1],[1]]
=> [4,1]
=> [1]
=> [1,0,1,0]
=> 1
[[2,2],[1]]
=> [4,1]
=> [1]
=> [1,0,1,0]
=> 1
[[2,1,1],[1]]
=> [4,1]
=> [1]
=> [1,0,1,0]
=> 1
[[1,1,1,1],[1]]
=> [4,1]
=> [1]
=> [1,0,1,0]
=> 1
[[5]]
=> [5]
=> []
=> []
=> ? ∊ {1,1,1,2,2,2,5}
[[4,1]]
=> [5]
=> []
=> []
=> ? ∊ {1,1,1,2,2,2,5}
[[3,2]]
=> [5]
=> []
=> []
=> ? ∊ {1,1,1,2,2,2,5}
[[3,1,1]]
=> [5]
=> []
=> []
=> ? ∊ {1,1,1,2,2,2,5}
[[2,2,1]]
=> [5]
=> []
=> []
=> ? ∊ {1,1,1,2,2,2,5}
[[2,1,1,1]]
=> [5]
=> []
=> []
=> ? ∊ {1,1,1,2,2,2,5}
[[1,1,1,1,1]]
=> [5]
=> []
=> []
=> ? ∊ {1,1,1,2,2,2,5}
[[1],[1],[1],[1],[1],[1]]
=> [1,1,1,1,1,1]
=> [1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,0,0,0,0]
=> 1
[[2],[1],[1],[1],[1]]
=> [2,1,1,1,1]
=> [1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,0]
=> 1
[[2],[2],[1],[1]]
=> [2,2,1,1]
=> [2,1,1]
=> [1,0,1,1,0,1,0,0]
=> 1
[[2],[2],[2]]
=> [2,2,2]
=> [2,2]
=> [1,1,0,0,1,1,0,0]
=> 2
[[1,1],[1],[1],[1],[1]]
=> [2,1,1,1,1]
=> [1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,0]
=> 1
[[1,1],[1,1],[1],[1]]
=> [2,2,1,1]
=> [2,1,1]
=> [1,0,1,1,0,1,0,0]
=> 1
[[1,1],[1,1],[1,1]]
=> [2,2,2]
=> [2,2]
=> [1,1,0,0,1,1,0,0]
=> 2
[[3],[1],[1],[1]]
=> [3,1,1,1]
=> [1,1,1]
=> [1,0,1,1,1,0,0,0]
=> 1
[[3],[2],[1]]
=> [3,2,1]
=> [2,1]
=> [1,0,1,0,1,0]
=> 1
[[3],[3]]
=> [3,3]
=> [3]
=> [1,1,1,0,0,0,1,0]
=> 1
[[2,1],[1],[1],[1]]
=> [3,1,1,1]
=> [1,1,1]
=> [1,0,1,1,1,0,0,0]
=> 1
[[2,1],[2],[1]]
=> [3,2,1]
=> [2,1]
=> [1,0,1,0,1,0]
=> 1
[[2,1],[1,1],[1]]
=> [3,2,1]
=> [2,1]
=> [1,0,1,0,1,0]
=> 1
[[2,1],[2,1]]
=> [3,3]
=> [3]
=> [1,1,1,0,0,0,1,0]
=> 1
[[1,1,1],[1],[1],[1]]
=> [3,1,1,1]
=> [1,1,1]
=> [1,0,1,1,1,0,0,0]
=> 1
[[1,1,1],[1,1],[1]]
=> [3,2,1]
=> [2,1]
=> [1,0,1,0,1,0]
=> 1
[[1,1,1],[1,1,1]]
=> [3,3]
=> [3]
=> [1,1,1,0,0,0,1,0]
=> 1
[[4],[1],[1]]
=> [4,1,1]
=> [1,1]
=> [1,0,1,1,0,0]
=> 1
[[4],[2]]
=> [4,2]
=> [2]
=> [1,1,0,0,1,0]
=> 1
[[3,1],[1],[1]]
=> [4,1,1]
=> [1,1]
=> [1,0,1,1,0,0]
=> 1
[[3,1],[2]]
=> [4,2]
=> [2]
=> [1,1,0,0,1,0]
=> 1
[[6]]
=> [6]
=> []
=> []
=> ? ∊ {1,1,1,2,2,2,2,2,3,3,6}
[[5,1]]
=> [6]
=> []
=> []
=> ? ∊ {1,1,1,2,2,2,2,2,3,3,6}
[[4,2]]
=> [6]
=> []
=> []
=> ? ∊ {1,1,1,2,2,2,2,2,3,3,6}
[[4,1,1]]
=> [6]
=> []
=> []
=> ? ∊ {1,1,1,2,2,2,2,2,3,3,6}
[[3,3]]
=> [6]
=> []
=> []
=> ? ∊ {1,1,1,2,2,2,2,2,3,3,6}
[[3,2,1]]
=> [6]
=> []
=> []
=> ? ∊ {1,1,1,2,2,2,2,2,3,3,6}
[[3,1,1,1]]
=> [6]
=> []
=> []
=> ? ∊ {1,1,1,2,2,2,2,2,3,3,6}
[[2,2,2]]
=> [6]
=> []
=> []
=> ? ∊ {1,1,1,2,2,2,2,2,3,3,6}
[[2,2,1,1]]
=> [6]
=> []
=> []
=> ? ∊ {1,1,1,2,2,2,2,2,3,3,6}
[[2,1,1,1,1]]
=> [6]
=> []
=> []
=> ? ∊ {1,1,1,2,2,2,2,2,3,3,6}
[[1,1,1,1,1,1]]
=> [6]
=> []
=> []
=> ? ∊ {1,1,1,2,2,2,2,2,3,3,6}
[[1],[1],[1],[1],[1],[1],[1]]
=> [1,1,1,1,1,1,1]
=> [1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,7}
[[7]]
=> [7]
=> []
=> []
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,7}
[[6,1]]
=> [7]
=> []
=> []
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,7}
[[5,2]]
=> [7]
=> []
=> []
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,7}
[[5,1,1]]
=> [7]
=> []
=> []
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,7}
[[4,3]]
=> [7]
=> []
=> []
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,7}
[[4,2,1]]
=> [7]
=> []
=> []
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,7}
[[4,1,1,1]]
=> [7]
=> []
=> []
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,7}
[[3,3,1]]
=> [7]
=> []
=> []
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,7}
[[3,2,2]]
=> [7]
=> []
=> []
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,7}
[[3,2,1,1]]
=> [7]
=> []
=> []
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,7}
[[3,1,1,1,1]]
=> [7]
=> []
=> []
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,7}
[[2,2,2,1]]
=> [7]
=> []
=> []
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,7}
[[2,2,1,1,1]]
=> [7]
=> []
=> []
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,7}
[[2,1,1,1,1,1]]
=> [7]
=> []
=> []
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,7}
[[1,1,1,1,1,1,1]]
=> [7]
=> []
=> []
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,7}
[[1],[1],[1],[1],[1],[1],[1],[1]]
=> [1,1,1,1,1,1,1,1]
=> [1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> ? ∊ {1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,4,4,8}
[[2],[1],[1],[1],[1],[1],[1]]
=> [2,1,1,1,1,1,1]
=> [1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> ? ∊ {1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,4,4,8}
[[1,1],[1],[1],[1],[1],[1],[1]]
=> [2,1,1,1,1,1,1]
=> [1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> ? ∊ {1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,4,4,8}
[[8]]
=> [8]
=> []
=> []
=> ? ∊ {1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,4,4,8}
[[7,1]]
=> [8]
=> []
=> []
=> ? ∊ {1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,4,4,8}
Description
The minimal height of a peak of a Dyck path.
Matching statistic: St001487
Mp00311: Plane partitions to partitionInteger partitions
Mp00202: Integer partitions first row removalInteger partitions
Mp00179: Integer partitions to skew partitionSkew partitions
St001487: Skew partitions ⟶ ℤResult quality: 10% values known / values provided: 74%distinct values known / distinct values provided: 10%
Values
[[1]]
=> [1]
=> []
=> [[],[]]
=> ? = 1
[[1],[1]]
=> [1,1]
=> [1]
=> [[1],[]]
=> 1
[[2]]
=> [2]
=> []
=> [[],[]]
=> ? ∊ {1,2}
[[1,1]]
=> [2]
=> []
=> [[],[]]
=> ? ∊ {1,2}
[[1],[1],[1]]
=> [1,1,1]
=> [1,1]
=> [[1,1],[]]
=> 1
[[2],[1]]
=> [2,1]
=> [1]
=> [[1],[]]
=> 1
[[1,1],[1]]
=> [2,1]
=> [1]
=> [[1],[]]
=> 1
[[3]]
=> [3]
=> []
=> [[],[]]
=> ? ∊ {1,1,3}
[[2,1]]
=> [3]
=> []
=> [[],[]]
=> ? ∊ {1,1,3}
[[1,1,1]]
=> [3]
=> []
=> [[],[]]
=> ? ∊ {1,1,3}
[[1],[1],[1],[1]]
=> [1,1,1,1]
=> [1,1,1]
=> [[1,1,1],[]]
=> 1
[[2],[1],[1]]
=> [2,1,1]
=> [1,1]
=> [[1,1],[]]
=> 1
[[2],[2]]
=> [2,2]
=> [2]
=> [[2],[]]
=> 1
[[1,1],[1],[1]]
=> [2,1,1]
=> [1,1]
=> [[1,1],[]]
=> 1
[[1,1],[1,1]]
=> [2,2]
=> [2]
=> [[2],[]]
=> 1
[[3],[1]]
=> [3,1]
=> [1]
=> [[1],[]]
=> 1
[[2,1],[1]]
=> [3,1]
=> [1]
=> [[1],[]]
=> 1
[[1,1,1],[1]]
=> [3,1]
=> [1]
=> [[1],[]]
=> 1
[[4]]
=> [4]
=> []
=> [[],[]]
=> ? ∊ {1,1,2,2,4}
[[3,1]]
=> [4]
=> []
=> [[],[]]
=> ? ∊ {1,1,2,2,4}
[[2,2]]
=> [4]
=> []
=> [[],[]]
=> ? ∊ {1,1,2,2,4}
[[2,1,1]]
=> [4]
=> []
=> [[],[]]
=> ? ∊ {1,1,2,2,4}
[[1,1,1,1]]
=> [4]
=> []
=> [[],[]]
=> ? ∊ {1,1,2,2,4}
[[1],[1],[1],[1],[1]]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> [[1,1,1,1],[]]
=> 1
[[2],[1],[1],[1]]
=> [2,1,1,1]
=> [1,1,1]
=> [[1,1,1],[]]
=> 1
[[2],[2],[1]]
=> [2,2,1]
=> [2,1]
=> [[2,1],[]]
=> 1
[[1,1],[1],[1],[1]]
=> [2,1,1,1]
=> [1,1,1]
=> [[1,1,1],[]]
=> 1
[[1,1],[1,1],[1]]
=> [2,2,1]
=> [2,1]
=> [[2,1],[]]
=> 1
[[3],[1],[1]]
=> [3,1,1]
=> [1,1]
=> [[1,1],[]]
=> 1
[[3],[2]]
=> [3,2]
=> [2]
=> [[2],[]]
=> 1
[[2,1],[1],[1]]
=> [3,1,1]
=> [1,1]
=> [[1,1],[]]
=> 1
[[2,1],[2]]
=> [3,2]
=> [2]
=> [[2],[]]
=> 1
[[2,1],[1,1]]
=> [3,2]
=> [2]
=> [[2],[]]
=> 1
[[1,1,1],[1],[1]]
=> [3,1,1]
=> [1,1]
=> [[1,1],[]]
=> 1
[[1,1,1],[1,1]]
=> [3,2]
=> [2]
=> [[2],[]]
=> 1
[[4],[1]]
=> [4,1]
=> [1]
=> [[1],[]]
=> 1
[[3,1],[1]]
=> [4,1]
=> [1]
=> [[1],[]]
=> 1
[[2,2],[1]]
=> [4,1]
=> [1]
=> [[1],[]]
=> 1
[[2,1,1],[1]]
=> [4,1]
=> [1]
=> [[1],[]]
=> 1
[[1,1,1,1],[1]]
=> [4,1]
=> [1]
=> [[1],[]]
=> 1
[[5]]
=> [5]
=> []
=> [[],[]]
=> ? ∊ {1,1,1,2,2,2,5}
[[4,1]]
=> [5]
=> []
=> [[],[]]
=> ? ∊ {1,1,1,2,2,2,5}
[[3,2]]
=> [5]
=> []
=> [[],[]]
=> ? ∊ {1,1,1,2,2,2,5}
[[3,1,1]]
=> [5]
=> []
=> [[],[]]
=> ? ∊ {1,1,1,2,2,2,5}
[[2,2,1]]
=> [5]
=> []
=> [[],[]]
=> ? ∊ {1,1,1,2,2,2,5}
[[2,1,1,1]]
=> [5]
=> []
=> [[],[]]
=> ? ∊ {1,1,1,2,2,2,5}
[[1,1,1,1,1]]
=> [5]
=> []
=> [[],[]]
=> ? ∊ {1,1,1,2,2,2,5}
[[1],[1],[1],[1],[1],[1]]
=> [1,1,1,1,1,1]
=> [1,1,1,1,1]
=> [[1,1,1,1,1],[]]
=> 1
[[2],[1],[1],[1],[1]]
=> [2,1,1,1,1]
=> [1,1,1,1]
=> [[1,1,1,1],[]]
=> 1
[[2],[2],[1],[1]]
=> [2,2,1,1]
=> [2,1,1]
=> [[2,1,1],[]]
=> 1
[[2],[2],[2]]
=> [2,2,2]
=> [2,2]
=> [[2,2],[]]
=> 1
[[1,1],[1],[1],[1],[1]]
=> [2,1,1,1,1]
=> [1,1,1,1]
=> [[1,1,1,1],[]]
=> 1
[[1,1],[1,1],[1],[1]]
=> [2,2,1,1]
=> [2,1,1]
=> [[2,1,1],[]]
=> 1
[[1,1],[1,1],[1,1]]
=> [2,2,2]
=> [2,2]
=> [[2,2],[]]
=> 1
[[3],[1],[1],[1]]
=> [3,1,1,1]
=> [1,1,1]
=> [[1,1,1],[]]
=> 1
[[3],[2],[1]]
=> [3,2,1]
=> [2,1]
=> [[2,1],[]]
=> 1
[[3],[3]]
=> [3,3]
=> [3]
=> [[3],[]]
=> 1
[[2,1],[1],[1],[1]]
=> [3,1,1,1]
=> [1,1,1]
=> [[1,1,1],[]]
=> 1
[[2,1],[2],[1]]
=> [3,2,1]
=> [2,1]
=> [[2,1],[]]
=> 1
[[2,1],[1,1],[1]]
=> [3,2,1]
=> [2,1]
=> [[2,1],[]]
=> 1
[[2,1],[2,1]]
=> [3,3]
=> [3]
=> [[3],[]]
=> 1
[[1,1,1],[1],[1],[1]]
=> [3,1,1,1]
=> [1,1,1]
=> [[1,1,1],[]]
=> 1
[[1,1,1],[1,1],[1]]
=> [3,2,1]
=> [2,1]
=> [[2,1],[]]
=> 1
[[1,1,1],[1,1,1]]
=> [3,3]
=> [3]
=> [[3],[]]
=> 1
[[4],[1],[1]]
=> [4,1,1]
=> [1,1]
=> [[1,1],[]]
=> 1
[[4],[2]]
=> [4,2]
=> [2]
=> [[2],[]]
=> 1
[[3,1],[1],[1]]
=> [4,1,1]
=> [1,1]
=> [[1,1],[]]
=> 1
[[3,1],[2]]
=> [4,2]
=> [2]
=> [[2],[]]
=> 1
[[6]]
=> [6]
=> []
=> [[],[]]
=> ? ∊ {1,2,2,2,2,2,2,2,3,3,6}
[[5,1]]
=> [6]
=> []
=> [[],[]]
=> ? ∊ {1,2,2,2,2,2,2,2,3,3,6}
[[4,2]]
=> [6]
=> []
=> [[],[]]
=> ? ∊ {1,2,2,2,2,2,2,2,3,3,6}
[[4,1,1]]
=> [6]
=> []
=> [[],[]]
=> ? ∊ {1,2,2,2,2,2,2,2,3,3,6}
[[3,3]]
=> [6]
=> []
=> [[],[]]
=> ? ∊ {1,2,2,2,2,2,2,2,3,3,6}
[[3,2,1]]
=> [6]
=> []
=> [[],[]]
=> ? ∊ {1,2,2,2,2,2,2,2,3,3,6}
[[3,1,1,1]]
=> [6]
=> []
=> [[],[]]
=> ? ∊ {1,2,2,2,2,2,2,2,3,3,6}
[[2,2,2]]
=> [6]
=> []
=> [[],[]]
=> ? ∊ {1,2,2,2,2,2,2,2,3,3,6}
[[2,2,1,1]]
=> [6]
=> []
=> [[],[]]
=> ? ∊ {1,2,2,2,2,2,2,2,3,3,6}
[[2,1,1,1,1]]
=> [6]
=> []
=> [[],[]]
=> ? ∊ {1,2,2,2,2,2,2,2,3,3,6}
[[1,1,1,1,1,1]]
=> [6]
=> []
=> [[],[]]
=> ? ∊ {1,2,2,2,2,2,2,2,3,3,6}
[[1],[1],[1],[1],[1],[1],[1]]
=> [1,1,1,1,1,1,1]
=> [1,1,1,1,1,1]
=> [[1,1,1,1,1,1],[]]
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,7}
[[7]]
=> [7]
=> []
=> [[],[]]
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,7}
[[6,1]]
=> [7]
=> []
=> [[],[]]
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,7}
[[5,2]]
=> [7]
=> []
=> [[],[]]
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,7}
[[5,1,1]]
=> [7]
=> []
=> [[],[]]
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,7}
[[4,3]]
=> [7]
=> []
=> [[],[]]
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,7}
[[4,2,1]]
=> [7]
=> []
=> [[],[]]
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,7}
[[4,1,1,1]]
=> [7]
=> []
=> [[],[]]
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,7}
[[3,3,1]]
=> [7]
=> []
=> [[],[]]
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,7}
[[3,2,2]]
=> [7]
=> []
=> [[],[]]
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,7}
[[3,2,1,1]]
=> [7]
=> []
=> [[],[]]
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,7}
[[3,1,1,1,1]]
=> [7]
=> []
=> [[],[]]
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,7}
[[2,2,2,1]]
=> [7]
=> []
=> [[],[]]
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,7}
[[2,2,1,1,1]]
=> [7]
=> []
=> [[],[]]
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,7}
[[2,1,1,1,1,1]]
=> [7]
=> []
=> [[],[]]
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,7}
[[1,1,1,1,1,1,1]]
=> [7]
=> []
=> [[],[]]
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,7}
[[1],[1],[1],[1],[1],[1],[1],[1]]
=> [1,1,1,1,1,1,1,1]
=> [1,1,1,1,1,1,1]
=> [[1,1,1,1,1,1,1],[]]
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,4,4,8}
[[2],[1],[1],[1],[1],[1],[1]]
=> [2,1,1,1,1,1,1]
=> [1,1,1,1,1,1]
=> [[1,1,1,1,1,1],[]]
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,4,4,8}
[[2],[2],[1],[1],[1],[1]]
=> [2,2,1,1,1,1]
=> [2,1,1,1,1]
=> [[2,1,1,1,1],[]]
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,4,4,8}
[[2],[2],[2],[1],[1]]
=> [2,2,2,1,1]
=> [2,2,1,1]
=> [[2,2,1,1],[]]
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,4,4,8}
[[2],[2],[2],[2]]
=> [2,2,2,2]
=> [2,2,2]
=> [[2,2,2],[]]
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,4,4,8}
Description
The number of inner corners of a skew partition.
Matching statistic: St001490
Mp00311: Plane partitions to partitionInteger partitions
Mp00202: Integer partitions first row removalInteger partitions
Mp00179: Integer partitions to skew partitionSkew partitions
St001490: Skew partitions ⟶ ℤResult quality: 10% values known / values provided: 74%distinct values known / distinct values provided: 10%
Values
[[1]]
=> [1]
=> []
=> [[],[]]
=> ? = 1
[[1],[1]]
=> [1,1]
=> [1]
=> [[1],[]]
=> 1
[[2]]
=> [2]
=> []
=> [[],[]]
=> ? ∊ {1,2}
[[1,1]]
=> [2]
=> []
=> [[],[]]
=> ? ∊ {1,2}
[[1],[1],[1]]
=> [1,1,1]
=> [1,1]
=> [[1,1],[]]
=> 1
[[2],[1]]
=> [2,1]
=> [1]
=> [[1],[]]
=> 1
[[1,1],[1]]
=> [2,1]
=> [1]
=> [[1],[]]
=> 1
[[3]]
=> [3]
=> []
=> [[],[]]
=> ? ∊ {1,1,3}
[[2,1]]
=> [3]
=> []
=> [[],[]]
=> ? ∊ {1,1,3}
[[1,1,1]]
=> [3]
=> []
=> [[],[]]
=> ? ∊ {1,1,3}
[[1],[1],[1],[1]]
=> [1,1,1,1]
=> [1,1,1]
=> [[1,1,1],[]]
=> 1
[[2],[1],[1]]
=> [2,1,1]
=> [1,1]
=> [[1,1],[]]
=> 1
[[2],[2]]
=> [2,2]
=> [2]
=> [[2],[]]
=> 1
[[1,1],[1],[1]]
=> [2,1,1]
=> [1,1]
=> [[1,1],[]]
=> 1
[[1,1],[1,1]]
=> [2,2]
=> [2]
=> [[2],[]]
=> 1
[[3],[1]]
=> [3,1]
=> [1]
=> [[1],[]]
=> 1
[[2,1],[1]]
=> [3,1]
=> [1]
=> [[1],[]]
=> 1
[[1,1,1],[1]]
=> [3,1]
=> [1]
=> [[1],[]]
=> 1
[[4]]
=> [4]
=> []
=> [[],[]]
=> ? ∊ {1,1,2,2,4}
[[3,1]]
=> [4]
=> []
=> [[],[]]
=> ? ∊ {1,1,2,2,4}
[[2,2]]
=> [4]
=> []
=> [[],[]]
=> ? ∊ {1,1,2,2,4}
[[2,1,1]]
=> [4]
=> []
=> [[],[]]
=> ? ∊ {1,1,2,2,4}
[[1,1,1,1]]
=> [4]
=> []
=> [[],[]]
=> ? ∊ {1,1,2,2,4}
[[1],[1],[1],[1],[1]]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> [[1,1,1,1],[]]
=> 1
[[2],[1],[1],[1]]
=> [2,1,1,1]
=> [1,1,1]
=> [[1,1,1],[]]
=> 1
[[2],[2],[1]]
=> [2,2,1]
=> [2,1]
=> [[2,1],[]]
=> 1
[[1,1],[1],[1],[1]]
=> [2,1,1,1]
=> [1,1,1]
=> [[1,1,1],[]]
=> 1
[[1,1],[1,1],[1]]
=> [2,2,1]
=> [2,1]
=> [[2,1],[]]
=> 1
[[3],[1],[1]]
=> [3,1,1]
=> [1,1]
=> [[1,1],[]]
=> 1
[[3],[2]]
=> [3,2]
=> [2]
=> [[2],[]]
=> 1
[[2,1],[1],[1]]
=> [3,1,1]
=> [1,1]
=> [[1,1],[]]
=> 1
[[2,1],[2]]
=> [3,2]
=> [2]
=> [[2],[]]
=> 1
[[2,1],[1,1]]
=> [3,2]
=> [2]
=> [[2],[]]
=> 1
[[1,1,1],[1],[1]]
=> [3,1,1]
=> [1,1]
=> [[1,1],[]]
=> 1
[[1,1,1],[1,1]]
=> [3,2]
=> [2]
=> [[2],[]]
=> 1
[[4],[1]]
=> [4,1]
=> [1]
=> [[1],[]]
=> 1
[[3,1],[1]]
=> [4,1]
=> [1]
=> [[1],[]]
=> 1
[[2,2],[1]]
=> [4,1]
=> [1]
=> [[1],[]]
=> 1
[[2,1,1],[1]]
=> [4,1]
=> [1]
=> [[1],[]]
=> 1
[[1,1,1,1],[1]]
=> [4,1]
=> [1]
=> [[1],[]]
=> 1
[[5]]
=> [5]
=> []
=> [[],[]]
=> ? ∊ {1,1,1,2,2,2,5}
[[4,1]]
=> [5]
=> []
=> [[],[]]
=> ? ∊ {1,1,1,2,2,2,5}
[[3,2]]
=> [5]
=> []
=> [[],[]]
=> ? ∊ {1,1,1,2,2,2,5}
[[3,1,1]]
=> [5]
=> []
=> [[],[]]
=> ? ∊ {1,1,1,2,2,2,5}
[[2,2,1]]
=> [5]
=> []
=> [[],[]]
=> ? ∊ {1,1,1,2,2,2,5}
[[2,1,1,1]]
=> [5]
=> []
=> [[],[]]
=> ? ∊ {1,1,1,2,2,2,5}
[[1,1,1,1,1]]
=> [5]
=> []
=> [[],[]]
=> ? ∊ {1,1,1,2,2,2,5}
[[1],[1],[1],[1],[1],[1]]
=> [1,1,1,1,1,1]
=> [1,1,1,1,1]
=> [[1,1,1,1,1],[]]
=> 1
[[2],[1],[1],[1],[1]]
=> [2,1,1,1,1]
=> [1,1,1,1]
=> [[1,1,1,1],[]]
=> 1
[[2],[2],[1],[1]]
=> [2,2,1,1]
=> [2,1,1]
=> [[2,1,1],[]]
=> 1
[[2],[2],[2]]
=> [2,2,2]
=> [2,2]
=> [[2,2],[]]
=> 1
[[1,1],[1],[1],[1],[1]]
=> [2,1,1,1,1]
=> [1,1,1,1]
=> [[1,1,1,1],[]]
=> 1
[[1,1],[1,1],[1],[1]]
=> [2,2,1,1]
=> [2,1,1]
=> [[2,1,1],[]]
=> 1
[[1,1],[1,1],[1,1]]
=> [2,2,2]
=> [2,2]
=> [[2,2],[]]
=> 1
[[3],[1],[1],[1]]
=> [3,1,1,1]
=> [1,1,1]
=> [[1,1,1],[]]
=> 1
[[3],[2],[1]]
=> [3,2,1]
=> [2,1]
=> [[2,1],[]]
=> 1
[[3],[3]]
=> [3,3]
=> [3]
=> [[3],[]]
=> 1
[[2,1],[1],[1],[1]]
=> [3,1,1,1]
=> [1,1,1]
=> [[1,1,1],[]]
=> 1
[[2,1],[2],[1]]
=> [3,2,1]
=> [2,1]
=> [[2,1],[]]
=> 1
[[2,1],[1,1],[1]]
=> [3,2,1]
=> [2,1]
=> [[2,1],[]]
=> 1
[[2,1],[2,1]]
=> [3,3]
=> [3]
=> [[3],[]]
=> 1
[[1,1,1],[1],[1],[1]]
=> [3,1,1,1]
=> [1,1,1]
=> [[1,1,1],[]]
=> 1
[[1,1,1],[1,1],[1]]
=> [3,2,1]
=> [2,1]
=> [[2,1],[]]
=> 1
[[1,1,1],[1,1,1]]
=> [3,3]
=> [3]
=> [[3],[]]
=> 1
[[4],[1],[1]]
=> [4,1,1]
=> [1,1]
=> [[1,1],[]]
=> 1
[[4],[2]]
=> [4,2]
=> [2]
=> [[2],[]]
=> 1
[[3,1],[1],[1]]
=> [4,1,1]
=> [1,1]
=> [[1,1],[]]
=> 1
[[3,1],[2]]
=> [4,2]
=> [2]
=> [[2],[]]
=> 1
[[6]]
=> [6]
=> []
=> [[],[]]
=> ? ∊ {1,2,2,2,2,2,2,2,3,3,6}
[[5,1]]
=> [6]
=> []
=> [[],[]]
=> ? ∊ {1,2,2,2,2,2,2,2,3,3,6}
[[4,2]]
=> [6]
=> []
=> [[],[]]
=> ? ∊ {1,2,2,2,2,2,2,2,3,3,6}
[[4,1,1]]
=> [6]
=> []
=> [[],[]]
=> ? ∊ {1,2,2,2,2,2,2,2,3,3,6}
[[3,3]]
=> [6]
=> []
=> [[],[]]
=> ? ∊ {1,2,2,2,2,2,2,2,3,3,6}
[[3,2,1]]
=> [6]
=> []
=> [[],[]]
=> ? ∊ {1,2,2,2,2,2,2,2,3,3,6}
[[3,1,1,1]]
=> [6]
=> []
=> [[],[]]
=> ? ∊ {1,2,2,2,2,2,2,2,3,3,6}
[[2,2,2]]
=> [6]
=> []
=> [[],[]]
=> ? ∊ {1,2,2,2,2,2,2,2,3,3,6}
[[2,2,1,1]]
=> [6]
=> []
=> [[],[]]
=> ? ∊ {1,2,2,2,2,2,2,2,3,3,6}
[[2,1,1,1,1]]
=> [6]
=> []
=> [[],[]]
=> ? ∊ {1,2,2,2,2,2,2,2,3,3,6}
[[1,1,1,1,1,1]]
=> [6]
=> []
=> [[],[]]
=> ? ∊ {1,2,2,2,2,2,2,2,3,3,6}
[[1],[1],[1],[1],[1],[1],[1]]
=> [1,1,1,1,1,1,1]
=> [1,1,1,1,1,1]
=> [[1,1,1,1,1,1],[]]
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,7}
[[7]]
=> [7]
=> []
=> [[],[]]
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,7}
[[6,1]]
=> [7]
=> []
=> [[],[]]
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,7}
[[5,2]]
=> [7]
=> []
=> [[],[]]
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,7}
[[5,1,1]]
=> [7]
=> []
=> [[],[]]
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,7}
[[4,3]]
=> [7]
=> []
=> [[],[]]
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,7}
[[4,2,1]]
=> [7]
=> []
=> [[],[]]
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,7}
[[4,1,1,1]]
=> [7]
=> []
=> [[],[]]
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,7}
[[3,3,1]]
=> [7]
=> []
=> [[],[]]
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,7}
[[3,2,2]]
=> [7]
=> []
=> [[],[]]
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,7}
[[3,2,1,1]]
=> [7]
=> []
=> [[],[]]
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,7}
[[3,1,1,1,1]]
=> [7]
=> []
=> [[],[]]
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,7}
[[2,2,2,1]]
=> [7]
=> []
=> [[],[]]
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,7}
[[2,2,1,1,1]]
=> [7]
=> []
=> [[],[]]
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,7}
[[2,1,1,1,1,1]]
=> [7]
=> []
=> [[],[]]
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,7}
[[1,1,1,1,1,1,1]]
=> [7]
=> []
=> [[],[]]
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,7}
[[1],[1],[1],[1],[1],[1],[1],[1]]
=> [1,1,1,1,1,1,1,1]
=> [1,1,1,1,1,1,1]
=> [[1,1,1,1,1,1,1],[]]
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,4,4,8}
[[2],[1],[1],[1],[1],[1],[1]]
=> [2,1,1,1,1,1,1]
=> [1,1,1,1,1,1]
=> [[1,1,1,1,1,1],[]]
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,4,4,8}
[[2],[2],[1],[1],[1],[1]]
=> [2,2,1,1,1,1]
=> [2,1,1,1,1]
=> [[2,1,1,1,1],[]]
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,4,4,8}
[[2],[2],[2],[1],[1]]
=> [2,2,2,1,1]
=> [2,2,1,1]
=> [[2,2,1,1],[]]
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,4,4,8}
[[2],[2],[2],[2]]
=> [2,2,2,2]
=> [2,2,2]
=> [[2,2,2],[]]
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,4,4,8}
Description
The number of connected components of a skew partition.
Matching statistic: St000667
Mp00311: Plane partitions to partitionInteger partitions
Mp00202: Integer partitions first row removalInteger partitions
Mp00202: Integer partitions first row removalInteger partitions
St000667: Integer partitions ⟶ ℤResult quality: 30% values known / values provided: 57%distinct values known / distinct values provided: 30%
Values
[[1]]
=> [1]
=> []
=> ?
=> ? = 1
[[1],[1]]
=> [1,1]
=> [1]
=> []
=> ? ∊ {1,1,2}
[[2]]
=> [2]
=> []
=> ?
=> ? ∊ {1,1,2}
[[1,1]]
=> [2]
=> []
=> ?
=> ? ∊ {1,1,2}
[[1],[1],[1]]
=> [1,1,1]
=> [1,1]
=> [1]
=> 1
[[2],[1]]
=> [2,1]
=> [1]
=> []
=> ? ∊ {1,1,1,1,3}
[[1,1],[1]]
=> [2,1]
=> [1]
=> []
=> ? ∊ {1,1,1,1,3}
[[3]]
=> [3]
=> []
=> ?
=> ? ∊ {1,1,1,1,3}
[[2,1]]
=> [3]
=> []
=> ?
=> ? ∊ {1,1,1,1,3}
[[1,1,1]]
=> [3]
=> []
=> ?
=> ? ∊ {1,1,1,1,3}
[[1],[1],[1],[1]]
=> [1,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[[2],[1],[1]]
=> [2,1,1]
=> [1,1]
=> [1]
=> 1
[[2],[2]]
=> [2,2]
=> [2]
=> []
=> ? ∊ {1,1,1,1,1,1,1,2,2,4}
[[1,1],[1],[1]]
=> [2,1,1]
=> [1,1]
=> [1]
=> 1
[[1,1],[1,1]]
=> [2,2]
=> [2]
=> []
=> ? ∊ {1,1,1,1,1,1,1,2,2,4}
[[3],[1]]
=> [3,1]
=> [1]
=> []
=> ? ∊ {1,1,1,1,1,1,1,2,2,4}
[[2,1],[1]]
=> [3,1]
=> [1]
=> []
=> ? ∊ {1,1,1,1,1,1,1,2,2,4}
[[1,1,1],[1]]
=> [3,1]
=> [1]
=> []
=> ? ∊ {1,1,1,1,1,1,1,2,2,4}
[[4]]
=> [4]
=> []
=> ?
=> ? ∊ {1,1,1,1,1,1,1,2,2,4}
[[3,1]]
=> [4]
=> []
=> ?
=> ? ∊ {1,1,1,1,1,1,1,2,2,4}
[[2,2]]
=> [4]
=> []
=> ?
=> ? ∊ {1,1,1,1,1,1,1,2,2,4}
[[2,1,1]]
=> [4]
=> []
=> ?
=> ? ∊ {1,1,1,1,1,1,1,2,2,4}
[[1,1,1,1]]
=> [4]
=> []
=> ?
=> ? ∊ {1,1,1,1,1,1,1,2,2,4}
[[1],[1],[1],[1],[1]]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 1
[[2],[1],[1],[1]]
=> [2,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[[2],[2],[1]]
=> [2,2,1]
=> [2,1]
=> [1]
=> 1
[[1,1],[1],[1],[1]]
=> [2,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[[1,1],[1,1],[1]]
=> [2,2,1]
=> [2,1]
=> [1]
=> 1
[[3],[1],[1]]
=> [3,1,1]
=> [1,1]
=> [1]
=> 1
[[3],[2]]
=> [3,2]
=> [2]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,5}
[[2,1],[1],[1]]
=> [3,1,1]
=> [1,1]
=> [1]
=> 1
[[2,1],[2]]
=> [3,2]
=> [2]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,5}
[[2,1],[1,1]]
=> [3,2]
=> [2]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,5}
[[1,1,1],[1],[1]]
=> [3,1,1]
=> [1,1]
=> [1]
=> 1
[[1,1,1],[1,1]]
=> [3,2]
=> [2]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,5}
[[4],[1]]
=> [4,1]
=> [1]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,5}
[[3,1],[1]]
=> [4,1]
=> [1]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,5}
[[2,2],[1]]
=> [4,1]
=> [1]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,5}
[[2,1,1],[1]]
=> [4,1]
=> [1]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,5}
[[1,1,1,1],[1]]
=> [4,1]
=> [1]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,5}
[[5]]
=> [5]
=> []
=> ?
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,5}
[[4,1]]
=> [5]
=> []
=> ?
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,5}
[[3,2]]
=> [5]
=> []
=> ?
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,5}
[[3,1,1]]
=> [5]
=> []
=> ?
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,5}
[[2,2,1]]
=> [5]
=> []
=> ?
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,5}
[[2,1,1,1]]
=> [5]
=> []
=> ?
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,5}
[[1,1,1,1,1]]
=> [5]
=> []
=> ?
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,5}
[[1],[1],[1],[1],[1],[1]]
=> [1,1,1,1,1,1]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> 1
[[2],[1],[1],[1],[1]]
=> [2,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 1
[[2],[2],[1],[1]]
=> [2,2,1,1]
=> [2,1,1]
=> [1,1]
=> 1
[[2],[2],[2]]
=> [2,2,2]
=> [2,2]
=> [2]
=> 2
[[1,1],[1],[1],[1],[1]]
=> [2,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 1
[[1,1],[1,1],[1],[1]]
=> [2,2,1,1]
=> [2,1,1]
=> [1,1]
=> 1
[[1,1],[1,1],[1,1]]
=> [2,2,2]
=> [2,2]
=> [2]
=> 2
[[3],[1],[1],[1]]
=> [3,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[[3],[2],[1]]
=> [3,2,1]
=> [2,1]
=> [1]
=> 1
[[3],[3]]
=> [3,3]
=> [3]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,3,3,6}
[[2,1],[1],[1],[1]]
=> [3,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[[2,1],[2],[1]]
=> [3,2,1]
=> [2,1]
=> [1]
=> 1
[[2,1],[1,1],[1]]
=> [3,2,1]
=> [2,1]
=> [1]
=> 1
[[2,1],[2,1]]
=> [3,3]
=> [3]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,3,3,6}
[[1,1,1],[1],[1],[1]]
=> [3,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[[1,1,1],[1,1],[1]]
=> [3,2,1]
=> [2,1]
=> [1]
=> 1
[[1,1,1],[1,1,1]]
=> [3,3]
=> [3]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,3,3,6}
[[4],[1],[1]]
=> [4,1,1]
=> [1,1]
=> [1]
=> 1
[[4],[2]]
=> [4,2]
=> [2]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,3,3,6}
[[3,1],[1],[1]]
=> [4,1,1]
=> [1,1]
=> [1]
=> 1
[[3,1],[2]]
=> [4,2]
=> [2]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,3,3,6}
[[3,1],[1,1]]
=> [4,2]
=> [2]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,3,3,6}
[[2,2],[1],[1]]
=> [4,1,1]
=> [1,1]
=> [1]
=> 1
[[2,2],[2]]
=> [4,2]
=> [2]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,3,3,6}
[[2,2],[1,1]]
=> [4,2]
=> [2]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,3,3,6}
[[2,1,1],[1],[1]]
=> [4,1,1]
=> [1,1]
=> [1]
=> 1
[[2,1,1],[2]]
=> [4,2]
=> [2]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,3,3,6}
[[2,1,1],[1,1]]
=> [4,2]
=> [2]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,3,3,6}
[[1,1,1,1],[1],[1]]
=> [4,1,1]
=> [1,1]
=> [1]
=> 1
[[1,1,1,1],[1,1]]
=> [4,2]
=> [2]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,3,3,6}
[[5],[1]]
=> [5,1]
=> [1]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,3,3,6}
[[4,1],[1]]
=> [5,1]
=> [1]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,3,3,6}
[[3,2],[1]]
=> [5,1]
=> [1]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,3,3,6}
[[3,1,1],[1]]
=> [5,1]
=> [1]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,3,3,6}
[[1],[1],[1],[1],[1],[1],[1]]
=> [1,1,1,1,1,1,1]
=> [1,1,1,1,1,1]
=> [1,1,1,1,1]
=> 1
[[2],[1],[1],[1],[1],[1]]
=> [2,1,1,1,1,1]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> 1
[[2],[2],[1],[1],[1]]
=> [2,2,1,1,1]
=> [2,1,1,1]
=> [1,1,1]
=> 1
[[2],[2],[2],[1]]
=> [2,2,2,1]
=> [2,2,1]
=> [2,1]
=> 1
[[1,1],[1],[1],[1],[1],[1]]
=> [2,1,1,1,1,1]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> 1
[[1,1],[1,1],[1],[1],[1]]
=> [2,2,1,1,1]
=> [2,1,1,1]
=> [1,1,1]
=> 1
[[1,1],[1,1],[1,1],[1]]
=> [2,2,2,1]
=> [2,2,1]
=> [2,1]
=> 1
[[3],[1],[1],[1],[1]]
=> [3,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 1
[[3],[2],[1],[1]]
=> [3,2,1,1]
=> [2,1,1]
=> [1,1]
=> 1
[[3],[2],[2]]
=> [3,2,2]
=> [2,2]
=> [2]
=> 2
[[3],[3],[1]]
=> [3,3,1]
=> [3,1]
=> [1]
=> 1
[[2,1],[1],[1],[1],[1]]
=> [3,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 1
[[2,1],[2],[1],[1]]
=> [3,2,1,1]
=> [2,1,1]
=> [1,1]
=> 1
[[2,1],[2],[2]]
=> [3,2,2]
=> [2,2]
=> [2]
=> 2
[[2,1],[1,1],[1],[1]]
=> [3,2,1,1]
=> [2,1,1]
=> [1,1]
=> 1
[[2,1],[1,1],[1,1]]
=> [3,2,2]
=> [2,2]
=> [2]
=> 2
[[2,1],[2,1],[1]]
=> [3,3,1]
=> [3,1]
=> [1]
=> 1
[[1,1,1],[1],[1],[1],[1]]
=> [3,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 1
[[1,1,1],[1,1],[1],[1]]
=> [3,2,1,1]
=> [2,1,1]
=> [1,1]
=> 1
Description
The greatest common divisor of the parts of the partition.
Matching statistic: St000781
Mp00311: Plane partitions to partitionInteger partitions
Mp00202: Integer partitions first row removalInteger partitions
Mp00202: Integer partitions first row removalInteger partitions
St000781: Integer partitions ⟶ ℤResult quality: 10% values known / values provided: 57%distinct values known / distinct values provided: 10%
Values
[[1]]
=> [1]
=> []
=> ?
=> ? = 1
[[1],[1]]
=> [1,1]
=> [1]
=> []
=> ? ∊ {1,1,2}
[[2]]
=> [2]
=> []
=> ?
=> ? ∊ {1,1,2}
[[1,1]]
=> [2]
=> []
=> ?
=> ? ∊ {1,1,2}
[[1],[1],[1]]
=> [1,1,1]
=> [1,1]
=> [1]
=> 1
[[2],[1]]
=> [2,1]
=> [1]
=> []
=> ? ∊ {1,1,1,1,3}
[[1,1],[1]]
=> [2,1]
=> [1]
=> []
=> ? ∊ {1,1,1,1,3}
[[3]]
=> [3]
=> []
=> ?
=> ? ∊ {1,1,1,1,3}
[[2,1]]
=> [3]
=> []
=> ?
=> ? ∊ {1,1,1,1,3}
[[1,1,1]]
=> [3]
=> []
=> ?
=> ? ∊ {1,1,1,1,3}
[[1],[1],[1],[1]]
=> [1,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[[2],[1],[1]]
=> [2,1,1]
=> [1,1]
=> [1]
=> 1
[[2],[2]]
=> [2,2]
=> [2]
=> []
=> ? ∊ {1,1,1,1,1,1,1,2,2,4}
[[1,1],[1],[1]]
=> [2,1,1]
=> [1,1]
=> [1]
=> 1
[[1,1],[1,1]]
=> [2,2]
=> [2]
=> []
=> ? ∊ {1,1,1,1,1,1,1,2,2,4}
[[3],[1]]
=> [3,1]
=> [1]
=> []
=> ? ∊ {1,1,1,1,1,1,1,2,2,4}
[[2,1],[1]]
=> [3,1]
=> [1]
=> []
=> ? ∊ {1,1,1,1,1,1,1,2,2,4}
[[1,1,1],[1]]
=> [3,1]
=> [1]
=> []
=> ? ∊ {1,1,1,1,1,1,1,2,2,4}
[[4]]
=> [4]
=> []
=> ?
=> ? ∊ {1,1,1,1,1,1,1,2,2,4}
[[3,1]]
=> [4]
=> []
=> ?
=> ? ∊ {1,1,1,1,1,1,1,2,2,4}
[[2,2]]
=> [4]
=> []
=> ?
=> ? ∊ {1,1,1,1,1,1,1,2,2,4}
[[2,1,1]]
=> [4]
=> []
=> ?
=> ? ∊ {1,1,1,1,1,1,1,2,2,4}
[[1,1,1,1]]
=> [4]
=> []
=> ?
=> ? ∊ {1,1,1,1,1,1,1,2,2,4}
[[1],[1],[1],[1],[1]]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 1
[[2],[1],[1],[1]]
=> [2,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[[2],[2],[1]]
=> [2,2,1]
=> [2,1]
=> [1]
=> 1
[[1,1],[1],[1],[1]]
=> [2,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[[1,1],[1,1],[1]]
=> [2,2,1]
=> [2,1]
=> [1]
=> 1
[[3],[1],[1]]
=> [3,1,1]
=> [1,1]
=> [1]
=> 1
[[3],[2]]
=> [3,2]
=> [2]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,5}
[[2,1],[1],[1]]
=> [3,1,1]
=> [1,1]
=> [1]
=> 1
[[2,1],[2]]
=> [3,2]
=> [2]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,5}
[[2,1],[1,1]]
=> [3,2]
=> [2]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,5}
[[1,1,1],[1],[1]]
=> [3,1,1]
=> [1,1]
=> [1]
=> 1
[[1,1,1],[1,1]]
=> [3,2]
=> [2]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,5}
[[4],[1]]
=> [4,1]
=> [1]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,5}
[[3,1],[1]]
=> [4,1]
=> [1]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,5}
[[2,2],[1]]
=> [4,1]
=> [1]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,5}
[[2,1,1],[1]]
=> [4,1]
=> [1]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,5}
[[1,1,1,1],[1]]
=> [4,1]
=> [1]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,5}
[[5]]
=> [5]
=> []
=> ?
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,5}
[[4,1]]
=> [5]
=> []
=> ?
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,5}
[[3,2]]
=> [5]
=> []
=> ?
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,5}
[[3,1,1]]
=> [5]
=> []
=> ?
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,5}
[[2,2,1]]
=> [5]
=> []
=> ?
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,5}
[[2,1,1,1]]
=> [5]
=> []
=> ?
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,5}
[[1,1,1,1,1]]
=> [5]
=> []
=> ?
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,5}
[[1],[1],[1],[1],[1],[1]]
=> [1,1,1,1,1,1]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> 1
[[2],[1],[1],[1],[1]]
=> [2,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 1
[[2],[2],[1],[1]]
=> [2,2,1,1]
=> [2,1,1]
=> [1,1]
=> 1
[[2],[2],[2]]
=> [2,2,2]
=> [2,2]
=> [2]
=> 1
[[1,1],[1],[1],[1],[1]]
=> [2,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 1
[[1,1],[1,1],[1],[1]]
=> [2,2,1,1]
=> [2,1,1]
=> [1,1]
=> 1
[[1,1],[1,1],[1,1]]
=> [2,2,2]
=> [2,2]
=> [2]
=> 1
[[3],[1],[1],[1]]
=> [3,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[[3],[2],[1]]
=> [3,2,1]
=> [2,1]
=> [1]
=> 1
[[3],[3]]
=> [3,3]
=> [3]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,6}
[[2,1],[1],[1],[1]]
=> [3,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[[2,1],[2],[1]]
=> [3,2,1]
=> [2,1]
=> [1]
=> 1
[[2,1],[1,1],[1]]
=> [3,2,1]
=> [2,1]
=> [1]
=> 1
[[2,1],[2,1]]
=> [3,3]
=> [3]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,6}
[[1,1,1],[1],[1],[1]]
=> [3,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[[1,1,1],[1,1],[1]]
=> [3,2,1]
=> [2,1]
=> [1]
=> 1
[[1,1,1],[1,1,1]]
=> [3,3]
=> [3]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,6}
[[4],[1],[1]]
=> [4,1,1]
=> [1,1]
=> [1]
=> 1
[[4],[2]]
=> [4,2]
=> [2]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,6}
[[3,1],[1],[1]]
=> [4,1,1]
=> [1,1]
=> [1]
=> 1
[[3,1],[2]]
=> [4,2]
=> [2]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,6}
[[3,1],[1,1]]
=> [4,2]
=> [2]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,6}
[[2,2],[1],[1]]
=> [4,1,1]
=> [1,1]
=> [1]
=> 1
[[2,2],[2]]
=> [4,2]
=> [2]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,6}
[[2,2],[1,1]]
=> [4,2]
=> [2]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,6}
[[2,1,1],[1],[1]]
=> [4,1,1]
=> [1,1]
=> [1]
=> 1
[[2,1,1],[2]]
=> [4,2]
=> [2]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,6}
[[2,1,1],[1,1]]
=> [4,2]
=> [2]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,6}
[[1,1,1,1],[1],[1]]
=> [4,1,1]
=> [1,1]
=> [1]
=> 1
[[1,1,1,1],[1,1]]
=> [4,2]
=> [2]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,6}
[[5],[1]]
=> [5,1]
=> [1]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,6}
[[4,1],[1]]
=> [5,1]
=> [1]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,6}
[[3,2],[1]]
=> [5,1]
=> [1]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,6}
[[3,1,1],[1]]
=> [5,1]
=> [1]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,6}
[[1],[1],[1],[1],[1],[1],[1]]
=> [1,1,1,1,1,1,1]
=> [1,1,1,1,1,1]
=> [1,1,1,1,1]
=> 1
[[2],[1],[1],[1],[1],[1]]
=> [2,1,1,1,1,1]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> 1
[[2],[2],[1],[1],[1]]
=> [2,2,1,1,1]
=> [2,1,1,1]
=> [1,1,1]
=> 1
[[2],[2],[2],[1]]
=> [2,2,2,1]
=> [2,2,1]
=> [2,1]
=> 1
[[1,1],[1],[1],[1],[1],[1]]
=> [2,1,1,1,1,1]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> 1
[[1,1],[1,1],[1],[1],[1]]
=> [2,2,1,1,1]
=> [2,1,1,1]
=> [1,1,1]
=> 1
[[1,1],[1,1],[1,1],[1]]
=> [2,2,2,1]
=> [2,2,1]
=> [2,1]
=> 1
[[3],[1],[1],[1],[1]]
=> [3,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 1
[[3],[2],[1],[1]]
=> [3,2,1,1]
=> [2,1,1]
=> [1,1]
=> 1
[[3],[2],[2]]
=> [3,2,2]
=> [2,2]
=> [2]
=> 1
[[3],[3],[1]]
=> [3,3,1]
=> [3,1]
=> [1]
=> 1
[[2,1],[1],[1],[1],[1]]
=> [3,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 1
[[2,1],[2],[1],[1]]
=> [3,2,1,1]
=> [2,1,1]
=> [1,1]
=> 1
[[2,1],[2],[2]]
=> [3,2,2]
=> [2,2]
=> [2]
=> 1
[[2,1],[1,1],[1],[1]]
=> [3,2,1,1]
=> [2,1,1]
=> [1,1]
=> 1
[[2,1],[1,1],[1,1]]
=> [3,2,2]
=> [2,2]
=> [2]
=> 1
[[2,1],[2,1],[1]]
=> [3,3,1]
=> [3,1]
=> [1]
=> 1
[[1,1,1],[1],[1],[1],[1]]
=> [3,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 1
[[1,1,1],[1,1],[1],[1]]
=> [3,2,1,1]
=> [2,1,1]
=> [1,1]
=> 1
Description
The number of proper colouring schemes of a Ferrers diagram. A colouring of a Ferrers diagram is proper if no two cells in a row or in a column have the same colour. The minimal number of colours needed is the maximum of the length and the first part of the partition, because we can restrict a latin square to the shape. We can associate to each colouring the integer partition recording how often each colour is used, see [1]. This statistic is the number of distinct such integer partitions that occur.
Matching statistic: St001432
Mp00311: Plane partitions to partitionInteger partitions
Mp00202: Integer partitions first row removalInteger partitions
Mp00202: Integer partitions first row removalInteger partitions
St001432: Integer partitions ⟶ ℤResult quality: 20% values known / values provided: 57%distinct values known / distinct values provided: 20%
Values
[[1]]
=> [1]
=> []
=> ?
=> ? = 1
[[1],[1]]
=> [1,1]
=> [1]
=> []
=> ? ∊ {1,1,2}
[[2]]
=> [2]
=> []
=> ?
=> ? ∊ {1,1,2}
[[1,1]]
=> [2]
=> []
=> ?
=> ? ∊ {1,1,2}
[[1],[1],[1]]
=> [1,1,1]
=> [1,1]
=> [1]
=> 1
[[2],[1]]
=> [2,1]
=> [1]
=> []
=> ? ∊ {1,1,1,1,3}
[[1,1],[1]]
=> [2,1]
=> [1]
=> []
=> ? ∊ {1,1,1,1,3}
[[3]]
=> [3]
=> []
=> ?
=> ? ∊ {1,1,1,1,3}
[[2,1]]
=> [3]
=> []
=> ?
=> ? ∊ {1,1,1,1,3}
[[1,1,1]]
=> [3]
=> []
=> ?
=> ? ∊ {1,1,1,1,3}
[[1],[1],[1],[1]]
=> [1,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[[2],[1],[1]]
=> [2,1,1]
=> [1,1]
=> [1]
=> 1
[[2],[2]]
=> [2,2]
=> [2]
=> []
=> ? ∊ {1,1,1,1,1,1,1,2,2,4}
[[1,1],[1],[1]]
=> [2,1,1]
=> [1,1]
=> [1]
=> 1
[[1,1],[1,1]]
=> [2,2]
=> [2]
=> []
=> ? ∊ {1,1,1,1,1,1,1,2,2,4}
[[3],[1]]
=> [3,1]
=> [1]
=> []
=> ? ∊ {1,1,1,1,1,1,1,2,2,4}
[[2,1],[1]]
=> [3,1]
=> [1]
=> []
=> ? ∊ {1,1,1,1,1,1,1,2,2,4}
[[1,1,1],[1]]
=> [3,1]
=> [1]
=> []
=> ? ∊ {1,1,1,1,1,1,1,2,2,4}
[[4]]
=> [4]
=> []
=> ?
=> ? ∊ {1,1,1,1,1,1,1,2,2,4}
[[3,1]]
=> [4]
=> []
=> ?
=> ? ∊ {1,1,1,1,1,1,1,2,2,4}
[[2,2]]
=> [4]
=> []
=> ?
=> ? ∊ {1,1,1,1,1,1,1,2,2,4}
[[2,1,1]]
=> [4]
=> []
=> ?
=> ? ∊ {1,1,1,1,1,1,1,2,2,4}
[[1,1,1,1]]
=> [4]
=> []
=> ?
=> ? ∊ {1,1,1,1,1,1,1,2,2,4}
[[1],[1],[1],[1],[1]]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 1
[[2],[1],[1],[1]]
=> [2,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[[2],[2],[1]]
=> [2,2,1]
=> [2,1]
=> [1]
=> 1
[[1,1],[1],[1],[1]]
=> [2,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[[1,1],[1,1],[1]]
=> [2,2,1]
=> [2,1]
=> [1]
=> 1
[[3],[1],[1]]
=> [3,1,1]
=> [1,1]
=> [1]
=> 1
[[3],[2]]
=> [3,2]
=> [2]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,5}
[[2,1],[1],[1]]
=> [3,1,1]
=> [1,1]
=> [1]
=> 1
[[2,1],[2]]
=> [3,2]
=> [2]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,5}
[[2,1],[1,1]]
=> [3,2]
=> [2]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,5}
[[1,1,1],[1],[1]]
=> [3,1,1]
=> [1,1]
=> [1]
=> 1
[[1,1,1],[1,1]]
=> [3,2]
=> [2]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,5}
[[4],[1]]
=> [4,1]
=> [1]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,5}
[[3,1],[1]]
=> [4,1]
=> [1]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,5}
[[2,2],[1]]
=> [4,1]
=> [1]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,5}
[[2,1,1],[1]]
=> [4,1]
=> [1]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,5}
[[1,1,1,1],[1]]
=> [4,1]
=> [1]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,5}
[[5]]
=> [5]
=> []
=> ?
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,5}
[[4,1]]
=> [5]
=> []
=> ?
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,5}
[[3,2]]
=> [5]
=> []
=> ?
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,5}
[[3,1,1]]
=> [5]
=> []
=> ?
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,5}
[[2,2,1]]
=> [5]
=> []
=> ?
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,5}
[[2,1,1,1]]
=> [5]
=> []
=> ?
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,5}
[[1,1,1,1,1]]
=> [5]
=> []
=> ?
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,5}
[[1],[1],[1],[1],[1],[1]]
=> [1,1,1,1,1,1]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> 1
[[2],[1],[1],[1],[1]]
=> [2,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 1
[[2],[2],[1],[1]]
=> [2,2,1,1]
=> [2,1,1]
=> [1,1]
=> 1
[[2],[2],[2]]
=> [2,2,2]
=> [2,2]
=> [2]
=> 1
[[1,1],[1],[1],[1],[1]]
=> [2,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 1
[[1,1],[1,1],[1],[1]]
=> [2,2,1,1]
=> [2,1,1]
=> [1,1]
=> 1
[[1,1],[1,1],[1,1]]
=> [2,2,2]
=> [2,2]
=> [2]
=> 1
[[3],[1],[1],[1]]
=> [3,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[[3],[2],[1]]
=> [3,2,1]
=> [2,1]
=> [1]
=> 1
[[3],[3]]
=> [3,3]
=> [3]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,6}
[[2,1],[1],[1],[1]]
=> [3,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[[2,1],[2],[1]]
=> [3,2,1]
=> [2,1]
=> [1]
=> 1
[[2,1],[1,1],[1]]
=> [3,2,1]
=> [2,1]
=> [1]
=> 1
[[2,1],[2,1]]
=> [3,3]
=> [3]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,6}
[[1,1,1],[1],[1],[1]]
=> [3,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[[1,1,1],[1,1],[1]]
=> [3,2,1]
=> [2,1]
=> [1]
=> 1
[[1,1,1],[1,1,1]]
=> [3,3]
=> [3]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,6}
[[4],[1],[1]]
=> [4,1,1]
=> [1,1]
=> [1]
=> 1
[[4],[2]]
=> [4,2]
=> [2]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,6}
[[3,1],[1],[1]]
=> [4,1,1]
=> [1,1]
=> [1]
=> 1
[[3,1],[2]]
=> [4,2]
=> [2]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,6}
[[3,1],[1,1]]
=> [4,2]
=> [2]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,6}
[[2,2],[1],[1]]
=> [4,1,1]
=> [1,1]
=> [1]
=> 1
[[2,2],[2]]
=> [4,2]
=> [2]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,6}
[[2,2],[1,1]]
=> [4,2]
=> [2]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,6}
[[2,1,1],[1],[1]]
=> [4,1,1]
=> [1,1]
=> [1]
=> 1
[[2,1,1],[2]]
=> [4,2]
=> [2]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,6}
[[2,1,1],[1,1]]
=> [4,2]
=> [2]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,6}
[[1,1,1,1],[1],[1]]
=> [4,1,1]
=> [1,1]
=> [1]
=> 1
[[1,1,1,1],[1,1]]
=> [4,2]
=> [2]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,6}
[[5],[1]]
=> [5,1]
=> [1]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,6}
[[4,1],[1]]
=> [5,1]
=> [1]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,6}
[[3,2],[1]]
=> [5,1]
=> [1]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,6}
[[3,1,1],[1]]
=> [5,1]
=> [1]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,6}
[[1],[1],[1],[1],[1],[1],[1]]
=> [1,1,1,1,1,1,1]
=> [1,1,1,1,1,1]
=> [1,1,1,1,1]
=> 1
[[2],[1],[1],[1],[1],[1]]
=> [2,1,1,1,1,1]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> 1
[[2],[2],[1],[1],[1]]
=> [2,2,1,1,1]
=> [2,1,1,1]
=> [1,1,1]
=> 1
[[2],[2],[2],[1]]
=> [2,2,2,1]
=> [2,2,1]
=> [2,1]
=> 2
[[1,1],[1],[1],[1],[1],[1]]
=> [2,1,1,1,1,1]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> 1
[[1,1],[1,1],[1],[1],[1]]
=> [2,2,1,1,1]
=> [2,1,1,1]
=> [1,1,1]
=> 1
[[1,1],[1,1],[1,1],[1]]
=> [2,2,2,1]
=> [2,2,1]
=> [2,1]
=> 2
[[3],[1],[1],[1],[1]]
=> [3,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 1
[[3],[2],[1],[1]]
=> [3,2,1,1]
=> [2,1,1]
=> [1,1]
=> 1
[[3],[2],[2]]
=> [3,2,2]
=> [2,2]
=> [2]
=> 1
[[3],[3],[1]]
=> [3,3,1]
=> [3,1]
=> [1]
=> 1
[[2,1],[1],[1],[1],[1]]
=> [3,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 1
[[2,1],[2],[1],[1]]
=> [3,2,1,1]
=> [2,1,1]
=> [1,1]
=> 1
[[2,1],[2],[2]]
=> [3,2,2]
=> [2,2]
=> [2]
=> 1
[[2,1],[1,1],[1],[1]]
=> [3,2,1,1]
=> [2,1,1]
=> [1,1]
=> 1
[[2,1],[1,1],[1,1]]
=> [3,2,2]
=> [2,2]
=> [2]
=> 1
[[2,1],[2,1],[1]]
=> [3,3,1]
=> [3,1]
=> [1]
=> 1
[[1,1,1],[1],[1],[1],[1]]
=> [3,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 1
[[1,1,1],[1,1],[1],[1]]
=> [3,2,1,1]
=> [2,1,1]
=> [1,1]
=> 1
Description
The order dimension of the partition. Given a partition $\lambda$, let $I(\lambda)$ be the principal order ideal in the Young lattice generated by $\lambda$. The order dimension of a partition is defined as the order dimension of the poset $I(\lambda)$.
Matching statistic: St001571
Mp00311: Plane partitions to partitionInteger partitions
Mp00202: Integer partitions first row removalInteger partitions
Mp00202: Integer partitions first row removalInteger partitions
St001571: Integer partitions ⟶ ℤResult quality: 30% values known / values provided: 57%distinct values known / distinct values provided: 30%
Values
[[1]]
=> [1]
=> []
=> ?
=> ? = 1
[[1],[1]]
=> [1,1]
=> [1]
=> []
=> ? ∊ {1,1,2}
[[2]]
=> [2]
=> []
=> ?
=> ? ∊ {1,1,2}
[[1,1]]
=> [2]
=> []
=> ?
=> ? ∊ {1,1,2}
[[1],[1],[1]]
=> [1,1,1]
=> [1,1]
=> [1]
=> 1
[[2],[1]]
=> [2,1]
=> [1]
=> []
=> ? ∊ {1,1,1,1,3}
[[1,1],[1]]
=> [2,1]
=> [1]
=> []
=> ? ∊ {1,1,1,1,3}
[[3]]
=> [3]
=> []
=> ?
=> ? ∊ {1,1,1,1,3}
[[2,1]]
=> [3]
=> []
=> ?
=> ? ∊ {1,1,1,1,3}
[[1,1,1]]
=> [3]
=> []
=> ?
=> ? ∊ {1,1,1,1,3}
[[1],[1],[1],[1]]
=> [1,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[[2],[1],[1]]
=> [2,1,1]
=> [1,1]
=> [1]
=> 1
[[2],[2]]
=> [2,2]
=> [2]
=> []
=> ? ∊ {1,1,1,1,1,1,1,2,2,4}
[[1,1],[1],[1]]
=> [2,1,1]
=> [1,1]
=> [1]
=> 1
[[1,1],[1,1]]
=> [2,2]
=> [2]
=> []
=> ? ∊ {1,1,1,1,1,1,1,2,2,4}
[[3],[1]]
=> [3,1]
=> [1]
=> []
=> ? ∊ {1,1,1,1,1,1,1,2,2,4}
[[2,1],[1]]
=> [3,1]
=> [1]
=> []
=> ? ∊ {1,1,1,1,1,1,1,2,2,4}
[[1,1,1],[1]]
=> [3,1]
=> [1]
=> []
=> ? ∊ {1,1,1,1,1,1,1,2,2,4}
[[4]]
=> [4]
=> []
=> ?
=> ? ∊ {1,1,1,1,1,1,1,2,2,4}
[[3,1]]
=> [4]
=> []
=> ?
=> ? ∊ {1,1,1,1,1,1,1,2,2,4}
[[2,2]]
=> [4]
=> []
=> ?
=> ? ∊ {1,1,1,1,1,1,1,2,2,4}
[[2,1,1]]
=> [4]
=> []
=> ?
=> ? ∊ {1,1,1,1,1,1,1,2,2,4}
[[1,1,1,1]]
=> [4]
=> []
=> ?
=> ? ∊ {1,1,1,1,1,1,1,2,2,4}
[[1],[1],[1],[1],[1]]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 1
[[2],[1],[1],[1]]
=> [2,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[[2],[2],[1]]
=> [2,2,1]
=> [2,1]
=> [1]
=> 1
[[1,1],[1],[1],[1]]
=> [2,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[[1,1],[1,1],[1]]
=> [2,2,1]
=> [2,1]
=> [1]
=> 1
[[3],[1],[1]]
=> [3,1,1]
=> [1,1]
=> [1]
=> 1
[[3],[2]]
=> [3,2]
=> [2]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,5}
[[2,1],[1],[1]]
=> [3,1,1]
=> [1,1]
=> [1]
=> 1
[[2,1],[2]]
=> [3,2]
=> [2]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,5}
[[2,1],[1,1]]
=> [3,2]
=> [2]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,5}
[[1,1,1],[1],[1]]
=> [3,1,1]
=> [1,1]
=> [1]
=> 1
[[1,1,1],[1,1]]
=> [3,2]
=> [2]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,5}
[[4],[1]]
=> [4,1]
=> [1]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,5}
[[3,1],[1]]
=> [4,1]
=> [1]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,5}
[[2,2],[1]]
=> [4,1]
=> [1]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,5}
[[2,1,1],[1]]
=> [4,1]
=> [1]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,5}
[[1,1,1,1],[1]]
=> [4,1]
=> [1]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,5}
[[5]]
=> [5]
=> []
=> ?
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,5}
[[4,1]]
=> [5]
=> []
=> ?
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,5}
[[3,2]]
=> [5]
=> []
=> ?
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,5}
[[3,1,1]]
=> [5]
=> []
=> ?
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,5}
[[2,2,1]]
=> [5]
=> []
=> ?
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,5}
[[2,1,1,1]]
=> [5]
=> []
=> ?
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,5}
[[1,1,1,1,1]]
=> [5]
=> []
=> ?
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,5}
[[1],[1],[1],[1],[1],[1]]
=> [1,1,1,1,1,1]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> 1
[[2],[1],[1],[1],[1]]
=> [2,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 1
[[2],[2],[1],[1]]
=> [2,2,1,1]
=> [2,1,1]
=> [1,1]
=> 1
[[2],[2],[2]]
=> [2,2,2]
=> [2,2]
=> [2]
=> 2
[[1,1],[1],[1],[1],[1]]
=> [2,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 1
[[1,1],[1,1],[1],[1]]
=> [2,2,1,1]
=> [2,1,1]
=> [1,1]
=> 1
[[1,1],[1,1],[1,1]]
=> [2,2,2]
=> [2,2]
=> [2]
=> 2
[[3],[1],[1],[1]]
=> [3,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[[3],[2],[1]]
=> [3,2,1]
=> [2,1]
=> [1]
=> 1
[[3],[3]]
=> [3,3]
=> [3]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,3,3,6}
[[2,1],[1],[1],[1]]
=> [3,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[[2,1],[2],[1]]
=> [3,2,1]
=> [2,1]
=> [1]
=> 1
[[2,1],[1,1],[1]]
=> [3,2,1]
=> [2,1]
=> [1]
=> 1
[[2,1],[2,1]]
=> [3,3]
=> [3]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,3,3,6}
[[1,1,1],[1],[1],[1]]
=> [3,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[[1,1,1],[1,1],[1]]
=> [3,2,1]
=> [2,1]
=> [1]
=> 1
[[1,1,1],[1,1,1]]
=> [3,3]
=> [3]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,3,3,6}
[[4],[1],[1]]
=> [4,1,1]
=> [1,1]
=> [1]
=> 1
[[4],[2]]
=> [4,2]
=> [2]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,3,3,6}
[[3,1],[1],[1]]
=> [4,1,1]
=> [1,1]
=> [1]
=> 1
[[3,1],[2]]
=> [4,2]
=> [2]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,3,3,6}
[[3,1],[1,1]]
=> [4,2]
=> [2]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,3,3,6}
[[2,2],[1],[1]]
=> [4,1,1]
=> [1,1]
=> [1]
=> 1
[[2,2],[2]]
=> [4,2]
=> [2]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,3,3,6}
[[2,2],[1,1]]
=> [4,2]
=> [2]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,3,3,6}
[[2,1,1],[1],[1]]
=> [4,1,1]
=> [1,1]
=> [1]
=> 1
[[2,1,1],[2]]
=> [4,2]
=> [2]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,3,3,6}
[[2,1,1],[1,1]]
=> [4,2]
=> [2]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,3,3,6}
[[1,1,1,1],[1],[1]]
=> [4,1,1]
=> [1,1]
=> [1]
=> 1
[[1,1,1,1],[1,1]]
=> [4,2]
=> [2]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,3,3,6}
[[5],[1]]
=> [5,1]
=> [1]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,3,3,6}
[[4,1],[1]]
=> [5,1]
=> [1]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,3,3,6}
[[3,2],[1]]
=> [5,1]
=> [1]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,3,3,6}
[[3,1,1],[1]]
=> [5,1]
=> [1]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,3,3,6}
[[1],[1],[1],[1],[1],[1],[1]]
=> [1,1,1,1,1,1,1]
=> [1,1,1,1,1,1]
=> [1,1,1,1,1]
=> 1
[[2],[1],[1],[1],[1],[1]]
=> [2,1,1,1,1,1]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> 1
[[2],[2],[1],[1],[1]]
=> [2,2,1,1,1]
=> [2,1,1,1]
=> [1,1,1]
=> 1
[[2],[2],[2],[1]]
=> [2,2,2,1]
=> [2,2,1]
=> [2,1]
=> 1
[[1,1],[1],[1],[1],[1],[1]]
=> [2,1,1,1,1,1]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> 1
[[1,1],[1,1],[1],[1],[1]]
=> [2,2,1,1,1]
=> [2,1,1,1]
=> [1,1,1]
=> 1
[[1,1],[1,1],[1,1],[1]]
=> [2,2,2,1]
=> [2,2,1]
=> [2,1]
=> 1
[[3],[1],[1],[1],[1]]
=> [3,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 1
[[3],[2],[1],[1]]
=> [3,2,1,1]
=> [2,1,1]
=> [1,1]
=> 1
[[3],[2],[2]]
=> [3,2,2]
=> [2,2]
=> [2]
=> 2
[[3],[3],[1]]
=> [3,3,1]
=> [3,1]
=> [1]
=> 1
[[2,1],[1],[1],[1],[1]]
=> [3,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 1
[[2,1],[2],[1],[1]]
=> [3,2,1,1]
=> [2,1,1]
=> [1,1]
=> 1
[[2,1],[2],[2]]
=> [3,2,2]
=> [2,2]
=> [2]
=> 2
[[2,1],[1,1],[1],[1]]
=> [3,2,1,1]
=> [2,1,1]
=> [1,1]
=> 1
[[2,1],[1,1],[1,1]]
=> [3,2,2]
=> [2,2]
=> [2]
=> 2
[[2,1],[2,1],[1]]
=> [3,3,1]
=> [3,1]
=> [1]
=> 1
[[1,1,1],[1],[1],[1],[1]]
=> [3,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 1
[[1,1,1],[1,1],[1],[1]]
=> [3,2,1,1]
=> [2,1,1]
=> [1,1]
=> 1
Description
The Cartan determinant of the integer partition. Let $p=[p_1,...,p_r]$ be a given integer partition with highest part t. Let $A=K[x]/(x^t)$ be the finite dimensional algebra over the field $K$ and $M$ the direct sum of the indecomposable $A$-modules of vector space dimension $p_i$ for each $i$. Then the Cartan determinant of $p$ is the Cartan determinant of the endomorphism algebra of $M$ over $A$. Explicitly, this is the determinant of the matrix $\left(\min(\bar p_i, \bar p_j)\right)_{i,j}$, where $\bar p$ is the set of distinct parts of the partition.
Matching statistic: St001899
Mp00311: Plane partitions to partitionInteger partitions
Mp00202: Integer partitions first row removalInteger partitions
Mp00202: Integer partitions first row removalInteger partitions
St001899: Integer partitions ⟶ ℤResult quality: 50% values known / values provided: 57%distinct values known / distinct values provided: 50%
Values
[[1]]
=> [1]
=> []
=> ?
=> ? = 1
[[1],[1]]
=> [1,1]
=> [1]
=> []
=> ? ∊ {1,1,2}
[[2]]
=> [2]
=> []
=> ?
=> ? ∊ {1,1,2}
[[1,1]]
=> [2]
=> []
=> ?
=> ? ∊ {1,1,2}
[[1],[1],[1]]
=> [1,1,1]
=> [1,1]
=> [1]
=> 1
[[2],[1]]
=> [2,1]
=> [1]
=> []
=> ? ∊ {1,1,1,1,3}
[[1,1],[1]]
=> [2,1]
=> [1]
=> []
=> ? ∊ {1,1,1,1,3}
[[3]]
=> [3]
=> []
=> ?
=> ? ∊ {1,1,1,1,3}
[[2,1]]
=> [3]
=> []
=> ?
=> ? ∊ {1,1,1,1,3}
[[1,1,1]]
=> [3]
=> []
=> ?
=> ? ∊ {1,1,1,1,3}
[[1],[1],[1],[1]]
=> [1,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[[2],[1],[1]]
=> [2,1,1]
=> [1,1]
=> [1]
=> 1
[[2],[2]]
=> [2,2]
=> [2]
=> []
=> ? ∊ {1,1,1,1,1,1,1,2,2,4}
[[1,1],[1],[1]]
=> [2,1,1]
=> [1,1]
=> [1]
=> 1
[[1,1],[1,1]]
=> [2,2]
=> [2]
=> []
=> ? ∊ {1,1,1,1,1,1,1,2,2,4}
[[3],[1]]
=> [3,1]
=> [1]
=> []
=> ? ∊ {1,1,1,1,1,1,1,2,2,4}
[[2,1],[1]]
=> [3,1]
=> [1]
=> []
=> ? ∊ {1,1,1,1,1,1,1,2,2,4}
[[1,1,1],[1]]
=> [3,1]
=> [1]
=> []
=> ? ∊ {1,1,1,1,1,1,1,2,2,4}
[[4]]
=> [4]
=> []
=> ?
=> ? ∊ {1,1,1,1,1,1,1,2,2,4}
[[3,1]]
=> [4]
=> []
=> ?
=> ? ∊ {1,1,1,1,1,1,1,2,2,4}
[[2,2]]
=> [4]
=> []
=> ?
=> ? ∊ {1,1,1,1,1,1,1,2,2,4}
[[2,1,1]]
=> [4]
=> []
=> ?
=> ? ∊ {1,1,1,1,1,1,1,2,2,4}
[[1,1,1,1]]
=> [4]
=> []
=> ?
=> ? ∊ {1,1,1,1,1,1,1,2,2,4}
[[1],[1],[1],[1],[1]]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 1
[[2],[1],[1],[1]]
=> [2,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[[2],[2],[1]]
=> [2,2,1]
=> [2,1]
=> [1]
=> 1
[[1,1],[1],[1],[1]]
=> [2,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[[1,1],[1,1],[1]]
=> [2,2,1]
=> [2,1]
=> [1]
=> 1
[[3],[1],[1]]
=> [3,1,1]
=> [1,1]
=> [1]
=> 1
[[3],[2]]
=> [3,2]
=> [2]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,5}
[[2,1],[1],[1]]
=> [3,1,1]
=> [1,1]
=> [1]
=> 1
[[2,1],[2]]
=> [3,2]
=> [2]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,5}
[[2,1],[1,1]]
=> [3,2]
=> [2]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,5}
[[1,1,1],[1],[1]]
=> [3,1,1]
=> [1,1]
=> [1]
=> 1
[[1,1,1],[1,1]]
=> [3,2]
=> [2]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,5}
[[4],[1]]
=> [4,1]
=> [1]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,5}
[[3,1],[1]]
=> [4,1]
=> [1]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,5}
[[2,2],[1]]
=> [4,1]
=> [1]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,5}
[[2,1,1],[1]]
=> [4,1]
=> [1]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,5}
[[1,1,1,1],[1]]
=> [4,1]
=> [1]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,5}
[[5]]
=> [5]
=> []
=> ?
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,5}
[[4,1]]
=> [5]
=> []
=> ?
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,5}
[[3,2]]
=> [5]
=> []
=> ?
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,5}
[[3,1,1]]
=> [5]
=> []
=> ?
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,5}
[[2,2,1]]
=> [5]
=> []
=> ?
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,5}
[[2,1,1,1]]
=> [5]
=> []
=> ?
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,5}
[[1,1,1,1,1]]
=> [5]
=> []
=> ?
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,5}
[[1],[1],[1],[1],[1],[1]]
=> [1,1,1,1,1,1]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> 1
[[2],[1],[1],[1],[1]]
=> [2,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 1
[[2],[2],[1],[1]]
=> [2,2,1,1]
=> [2,1,1]
=> [1,1]
=> 1
[[2],[2],[2]]
=> [2,2,2]
=> [2,2]
=> [2]
=> 1
[[1,1],[1],[1],[1],[1]]
=> [2,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 1
[[1,1],[1,1],[1],[1]]
=> [2,2,1,1]
=> [2,1,1]
=> [1,1]
=> 1
[[1,1],[1,1],[1,1]]
=> [2,2,2]
=> [2,2]
=> [2]
=> 1
[[3],[1],[1],[1]]
=> [3,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[[3],[2],[1]]
=> [3,2,1]
=> [2,1]
=> [1]
=> 1
[[3],[3]]
=> [3,3]
=> [3]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,6}
[[2,1],[1],[1],[1]]
=> [3,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[[2,1],[2],[1]]
=> [3,2,1]
=> [2,1]
=> [1]
=> 1
[[2,1],[1,1],[1]]
=> [3,2,1]
=> [2,1]
=> [1]
=> 1
[[2,1],[2,1]]
=> [3,3]
=> [3]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,6}
[[1,1,1],[1],[1],[1]]
=> [3,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[[1,1,1],[1,1],[1]]
=> [3,2,1]
=> [2,1]
=> [1]
=> 1
[[1,1,1],[1,1,1]]
=> [3,3]
=> [3]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,6}
[[4],[1],[1]]
=> [4,1,1]
=> [1,1]
=> [1]
=> 1
[[4],[2]]
=> [4,2]
=> [2]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,6}
[[3,1],[1],[1]]
=> [4,1,1]
=> [1,1]
=> [1]
=> 1
[[3,1],[2]]
=> [4,2]
=> [2]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,6}
[[3,1],[1,1]]
=> [4,2]
=> [2]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,6}
[[2,2],[1],[1]]
=> [4,1,1]
=> [1,1]
=> [1]
=> 1
[[2,2],[2]]
=> [4,2]
=> [2]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,6}
[[2,2],[1,1]]
=> [4,2]
=> [2]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,6}
[[2,1,1],[1],[1]]
=> [4,1,1]
=> [1,1]
=> [1]
=> 1
[[2,1,1],[2]]
=> [4,2]
=> [2]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,6}
[[2,1,1],[1,1]]
=> [4,2]
=> [2]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,6}
[[1,1,1,1],[1],[1]]
=> [4,1,1]
=> [1,1]
=> [1]
=> 1
[[1,1,1,1],[1,1]]
=> [4,2]
=> [2]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,6}
[[5],[1]]
=> [5,1]
=> [1]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,6}
[[4,1],[1]]
=> [5,1]
=> [1]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,6}
[[3,2],[1]]
=> [5,1]
=> [1]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,6}
[[3,1,1],[1]]
=> [5,1]
=> [1]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,6}
[[1],[1],[1],[1],[1],[1],[1]]
=> [1,1,1,1,1,1,1]
=> [1,1,1,1,1,1]
=> [1,1,1,1,1]
=> 1
[[2],[1],[1],[1],[1],[1]]
=> [2,1,1,1,1,1]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> 1
[[2],[2],[1],[1],[1]]
=> [2,2,1,1,1]
=> [2,1,1,1]
=> [1,1,1]
=> 1
[[2],[2],[2],[1]]
=> [2,2,2,1]
=> [2,2,1]
=> [2,1]
=> 2
[[1,1],[1],[1],[1],[1],[1]]
=> [2,1,1,1,1,1]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> 1
[[1,1],[1,1],[1],[1],[1]]
=> [2,2,1,1,1]
=> [2,1,1,1]
=> [1,1,1]
=> 1
[[1,1],[1,1],[1,1],[1]]
=> [2,2,2,1]
=> [2,2,1]
=> [2,1]
=> 2
[[3],[1],[1],[1],[1]]
=> [3,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 1
[[3],[2],[1],[1]]
=> [3,2,1,1]
=> [2,1,1]
=> [1,1]
=> 1
[[3],[2],[2]]
=> [3,2,2]
=> [2,2]
=> [2]
=> 1
[[3],[3],[1]]
=> [3,3,1]
=> [3,1]
=> [1]
=> 1
[[2,1],[1],[1],[1],[1]]
=> [3,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 1
[[2,1],[2],[1],[1]]
=> [3,2,1,1]
=> [2,1,1]
=> [1,1]
=> 1
[[2,1],[2],[2]]
=> [3,2,2]
=> [2,2]
=> [2]
=> 1
[[2,1],[1,1],[1],[1]]
=> [3,2,1,1]
=> [2,1,1]
=> [1,1]
=> 1
[[2,1],[1,1],[1,1]]
=> [3,2,2]
=> [2,2]
=> [2]
=> 1
[[2,1],[2,1],[1]]
=> [3,3,1]
=> [3,1]
=> [1]
=> 1
[[1,1,1],[1],[1],[1],[1]]
=> [3,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 1
[[1,1,1],[1,1],[1],[1]]
=> [3,2,1,1]
=> [2,1,1]
=> [1,1]
=> 1
Description
The total number of irreducible representations contained in the higher Lie character for an integer partition.
The following 5 statistics, ordered by result quality, also match your data. Click on any of them to see the details.
St001900The number of distinct irreducible representations contained in the higher Lie character for an integer partition. St001901The largest multiplicity of an irreducible representation contained in the higher Lie character for an integer partition. St001934The number of monotone factorisations of genus zero of a permutation of given cycle type. St001128The exponens consonantiae of a partition. St001264The smallest index i such that the i-th simple module has projective dimension equal to the global dimension of the corresponding Nakayama algebra.