searching the database
Your data matches 86 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
(click to perform a complete search on your data)
Matching statistic: St001411
St001411: Permutations ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[1] => 0
[1,2] => 0
[2,1] => 0
[1,2,3] => 0
[1,3,2] => 0
[2,1,3] => 0
[2,3,1] => 0
[3,1,2] => 0
[3,2,1] => 1
[1,2,3,4] => 0
[1,2,4,3] => 0
[1,3,2,4] => 0
[1,3,4,2] => 0
[1,4,2,3] => 0
[1,4,3,2] => 1
[2,1,3,4] => 0
[2,1,4,3] => 0
[2,3,1,4] => 0
[2,3,4,1] => 0
[2,4,1,3] => 0
[2,4,3,1] => 1
[3,1,2,4] => 0
[3,1,4,2] => 0
[3,2,1,4] => 1
[3,2,4,1] => 1
[3,4,1,2] => 1
[3,4,2,1] => 2
[4,1,2,3] => 0
[4,1,3,2] => 1
[4,2,1,3] => 1
[4,2,3,1] => 2
[4,3,1,2] => 2
[4,3,2,1] => 4
[1,2,3,4,5] => 0
[1,2,3,5,4] => 0
[1,2,4,3,5] => 0
[1,2,4,5,3] => 0
[1,2,5,3,4] => 0
[1,2,5,4,3] => 1
[1,3,2,4,5] => 0
[1,3,2,5,4] => 0
[1,3,4,2,5] => 0
[1,3,4,5,2] => 0
[1,3,5,2,4] => 0
[1,3,5,4,2] => 1
[1,4,2,3,5] => 0
[1,4,2,5,3] => 0
[1,4,3,2,5] => 1
[1,4,3,5,2] => 1
[1,4,5,2,3] => 1
Description
The number of patterns 321 or 3412 in a permutation.
A permutation is '''boolean''' if its principal order ideal in the (strong) Bruhat order is boolean.
It is shown in [1, Theorem 5.3] that a permutation is boolean if and only if it avoids the two patterns 321 and 3412.
Matching statistic: St000940
Mp00170: Permutations —to signed permutation⟶ Signed permutations
Mp00194: Signed permutations —Foata-Han inverse⟶ Signed permutations
Mp00169: Signed permutations —odd cycle type⟶ Integer partitions
St000940: Integer partitions ⟶ ℤResult quality: 40% ●values known / values provided: 40%●distinct values known / distinct values provided: 40%
Mp00194: Signed permutations —Foata-Han inverse⟶ Signed permutations
Mp00169: Signed permutations —odd cycle type⟶ Integer partitions
St000940: Integer partitions ⟶ ℤResult quality: 40% ●values known / values provided: 40%●distinct values known / distinct values provided: 40%
Values
[1] => [1] => [1] => []
=> ? = 0
[1,2] => [1,2] => [1,2] => []
=> ? = 0
[2,1] => [2,1] => [-2,1] => [2]
=> 0
[1,2,3] => [1,2,3] => [1,2,3] => []
=> ? ∊ {0,0}
[1,3,2] => [1,3,2] => [-3,1,2] => [3]
=> 0
[2,1,3] => [2,1,3] => [-2,1,3] => [2]
=> 0
[2,3,1] => [2,3,1] => [-3,-2,1] => [2,1]
=> 1
[3,1,2] => [3,1,2] => [3,1,2] => []
=> ? ∊ {0,0}
[3,2,1] => [3,2,1] => [2,-3,1] => [3]
=> 0
[1,2,3,4] => [1,2,3,4] => [1,2,3,4] => []
=> ? ∊ {0,0,0,0,0,0,1,2,4}
[1,2,4,3] => [1,2,4,3] => [-4,1,2,3] => [4]
=> 1
[1,3,2,4] => [1,3,2,4] => [-3,1,2,4] => [3]
=> 0
[1,3,4,2] => [1,3,4,2] => [-4,-3,1,2] => []
=> ? ∊ {0,0,0,0,0,0,1,2,4}
[1,4,2,3] => [1,4,2,3] => [4,1,2,3] => []
=> ? ∊ {0,0,0,0,0,0,1,2,4}
[1,4,3,2] => [1,4,3,2] => [3,-4,1,2] => [2]
=> 0
[2,1,3,4] => [2,1,3,4] => [-2,1,3,4] => [2]
=> 0
[2,1,4,3] => [2,1,4,3] => [-4,-2,1,3] => [3,1]
=> 2
[2,3,1,4] => [2,3,1,4] => [-3,-2,1,4] => [2,1]
=> 1
[2,3,4,1] => [2,3,4,1] => [-4,-3,-2,1] => [2]
=> 0
[2,4,1,3] => [2,4,1,3] => [2,-4,1,3] => [4]
=> 1
[2,4,3,1] => [2,4,3,1] => [3,-4,-2,1] => []
=> ? ∊ {0,0,0,0,0,0,1,2,4}
[3,1,2,4] => [3,1,2,4] => [3,1,2,4] => []
=> ? ∊ {0,0,0,0,0,0,1,2,4}
[3,1,4,2] => [3,1,4,2] => [4,-3,1,2] => [4]
=> 1
[3,2,1,4] => [3,2,1,4] => [2,-3,1,4] => [3]
=> 0
[3,2,4,1] => [3,2,4,1] => [2,-4,-3,1] => [3,1]
=> 2
[3,4,1,2] => [3,4,1,2] => [3,4,1,2] => []
=> ? ∊ {0,0,0,0,0,0,1,2,4}
[3,4,2,1] => [3,4,2,1] => [2,4,-3,1] => [1]
=> ? ∊ {0,0,0,0,0,0,1,2,4}
[4,1,2,3] => [4,1,2,3] => [1,-4,2,3] => [3]
=> 0
[4,1,3,2] => [4,1,3,2] => [-3,-4,1,2] => [2,2]
=> 0
[4,2,1,3] => [4,2,1,3] => [-2,-4,1,3] => []
=> ? ∊ {0,0,0,0,0,0,1,2,4}
[4,2,3,1] => [4,2,3,1] => [2,3,-4,1] => [4]
=> 1
[4,3,1,2] => [4,3,1,2] => [-4,3,1,2] => [4]
=> 1
[4,3,2,1] => [4,3,2,1] => [-3,2,-4,1] => []
=> ? ∊ {0,0,0,0,0,0,1,2,4}
[1,2,3,4,5] => [1,2,3,4,5] => [1,2,3,4,5] => []
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,7,7,7,7,10}
[1,2,3,5,4] => [1,2,3,5,4] => [-5,1,2,3,4] => [5]
=> 2
[1,2,4,3,5] => [1,2,4,3,5] => [-4,1,2,3,5] => [4]
=> 1
[1,2,4,5,3] => [1,2,4,5,3] => [-5,-4,1,2,3] => [3,2]
=> 1
[1,2,5,3,4] => [1,2,5,3,4] => [5,1,2,3,4] => []
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,7,7,7,7,10}
[1,2,5,4,3] => [1,2,5,4,3] => [4,-5,1,2,3] => [5]
=> 2
[1,3,2,4,5] => [1,3,2,4,5] => [-3,1,2,4,5] => [3]
=> 0
[1,3,2,5,4] => [1,3,2,5,4] => [-5,-3,1,2,4] => []
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,7,7,7,7,10}
[1,3,4,2,5] => [1,3,4,2,5] => [-4,-3,1,2,5] => []
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,7,7,7,7,10}
[1,3,4,5,2] => [1,3,4,5,2] => [-5,-4,-3,1,2] => [1]
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,7,7,7,7,10}
[1,3,5,2,4] => [1,3,5,2,4] => [3,-5,1,2,4] => [3]
=> 0
[1,3,5,4,2] => [1,3,5,4,2] => [4,-5,-3,1,2] => [2,1]
=> 1
[1,4,2,3,5] => [1,4,2,3,5] => [4,1,2,3,5] => []
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,7,7,7,7,10}
[1,4,2,5,3] => [1,4,2,5,3] => [5,-4,1,2,3] => [2]
=> 0
[1,4,3,2,5] => [1,4,3,2,5] => [3,-4,1,2,5] => [2]
=> 0
[1,4,3,5,2] => [1,4,3,5,2] => [3,-5,-4,1,2] => [3,2]
=> 1
[1,4,5,2,3] => [1,4,5,2,3] => [4,5,1,2,3] => []
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,7,7,7,7,10}
[1,4,5,3,2] => [1,4,5,3,2] => [3,5,-4,1,2] => [3]
=> 0
[1,5,2,3,4] => [1,5,2,3,4] => [1,-5,2,3,4] => [4]
=> 1
[1,5,2,4,3] => [1,5,2,4,3] => [-4,-5,1,2,3] => []
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,7,7,7,7,10}
[1,5,3,2,4] => [1,5,3,2,4] => [-3,-5,1,2,4] => [3,2]
=> 1
[1,5,3,4,2] => [1,5,3,4,2] => [3,4,-5,1,2] => [5]
=> 2
[1,5,4,2,3] => [1,5,4,2,3] => [-5,4,1,2,3] => [3]
=> 0
[1,5,4,3,2] => [1,5,4,3,2] => [-4,3,-5,1,2] => [3,2]
=> 1
[2,1,3,4,5] => [2,1,3,4,5] => [-2,1,3,4,5] => [2]
=> 0
[2,1,3,5,4] => [2,1,3,5,4] => [-5,-2,1,3,4] => [4,1]
=> 3
[2,1,4,3,5] => [2,1,4,3,5] => [-4,-2,1,3,5] => [3,1]
=> 2
[2,1,4,5,3] => [2,1,4,5,3] => [-5,-4,-2,1,3] => [5]
=> 2
[2,1,5,3,4] => [2,1,5,3,4] => [2,-5,1,3,4] => [5]
=> 2
[2,1,5,4,3] => [2,1,5,4,3] => [4,-5,-2,1,3] => []
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,7,7,7,7,10}
[2,3,1,4,5] => [2,3,1,4,5] => [-3,-2,1,4,5] => [2,1]
=> 1
[2,3,1,5,4] => [2,3,1,5,4] => [-5,-3,-2,1,4] => [3]
=> 0
[2,3,4,1,5] => [2,3,4,1,5] => [-4,-3,-2,1,5] => [2]
=> 0
[2,3,4,5,1] => [2,3,4,5,1] => [-5,-4,-3,-2,1] => [2,1]
=> 1
[2,3,5,1,4] => [2,3,5,1,4] => [3,-5,-2,1,4] => []
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,7,7,7,7,10}
[2,3,5,4,1] => [2,3,5,4,1] => [4,-5,-3,-2,1] => [1]
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,7,7,7,7,10}
[2,4,1,3,5] => [2,4,1,3,5] => [2,-4,1,3,5] => [4]
=> 1
[2,4,1,5,3] => [2,4,1,5,3] => [2,-5,-4,1,3] => []
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,7,7,7,7,10}
[2,4,3,1,5] => [2,4,3,1,5] => [3,-4,-2,1,5] => []
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,7,7,7,7,10}
[2,4,3,5,1] => [2,4,3,5,1] => [3,-5,-4,-2,1] => [5]
=> 2
[2,4,5,1,3] => [2,4,5,1,3] => [2,5,-4,1,3] => [5]
=> 2
[2,4,5,3,1] => [2,4,5,3,1] => [3,5,-4,-2,1] => []
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,7,7,7,7,10}
[2,5,1,3,4] => [2,5,1,3,4] => [-2,-5,1,3,4] => []
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,7,7,7,7,10}
[2,5,1,4,3] => [2,5,1,4,3] => [2,4,-5,1,3] => [2]
=> 0
[2,5,3,1,4] => [2,5,3,1,4] => [2,3,-5,1,4] => [5]
=> 2
[3,1,2,4,5] => [3,1,2,4,5] => [3,1,2,4,5] => []
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,7,7,7,7,10}
[3,1,5,2,4] => [3,1,5,2,4] => [3,5,1,2,4] => []
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,7,7,7,7,10}
[3,2,5,1,4] => [3,2,5,1,4] => [2,5,-3,1,4] => [1]
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,7,7,7,7,10}
[3,2,5,4,1] => [3,2,5,4,1] => [2,4,-5,-3,1] => []
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,7,7,7,7,10}
[3,4,1,2,5] => [3,4,1,2,5] => [3,4,1,2,5] => []
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,7,7,7,7,10}
[3,4,1,5,2] => [3,4,1,5,2] => [4,5,-3,1,2] => [1]
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,7,7,7,7,10}
[3,4,2,1,5] => [3,4,2,1,5] => [2,4,-3,1,5] => [1]
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,7,7,7,7,10}
[3,4,2,5,1] => [3,4,2,5,1] => [2,5,-4,-3,1] => []
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,7,7,7,7,10}
[3,4,5,1,2] => [3,4,5,1,2] => [3,4,5,1,2] => []
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,7,7,7,7,10}
[3,5,2,1,4] => [3,5,2,1,4] => [-3,2,-5,1,4] => []
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,7,7,7,7,10}
[4,1,2,5,3] => [4,1,2,5,3] => [1,-5,-4,2,3] => []
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,7,7,7,7,10}
[4,1,5,3,2] => [4,1,5,3,2] => [-5,3,-4,1,2] => []
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,7,7,7,7,10}
[4,2,1,3,5] => [4,2,1,3,5] => [-2,-4,1,3,5] => []
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,7,7,7,7,10}
[4,2,5,1,3] => [4,2,5,1,3] => [-5,2,-4,1,3] => []
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,7,7,7,7,10}
[4,2,5,3,1] => [4,2,5,3,1] => [2,3,5,-4,1] => [1]
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,7,7,7,7,10}
[4,3,1,5,2] => [4,3,1,5,2] => [-3,5,-4,1,2] => []
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,7,7,7,7,10}
[4,3,2,1,5] => [4,3,2,1,5] => [-3,2,-4,1,5] => []
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,7,7,7,7,10}
[4,3,2,5,1] => [4,3,2,5,1] => [-3,2,-5,-4,1] => [1]
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,7,7,7,7,10}
[4,5,1,2,3] => [4,5,1,2,3] => [-5,1,-4,2,3] => []
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,7,7,7,7,10}
[4,5,3,1,2] => [4,5,3,1,2] => [-5,-4,3,1,2] => []
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,7,7,7,7,10}
[5,1,2,3,4] => [5,1,2,3,4] => [1,5,2,3,4] => []
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,7,7,7,7,10}
[5,1,3,4,2] => [5,1,3,4,2] => [-3,4,-5,1,2] => []
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,7,7,7,7,10}
Description
The number of characters of the symmetric group whose value on the partition is zero.
The maximal value for any given size is recorded in [2].
Matching statistic: St000941
(load all 2 compositions to match this statistic)
(load all 2 compositions to match this statistic)
Mp00170: Permutations —to signed permutation⟶ Signed permutations
Mp00194: Signed permutations —Foata-Han inverse⟶ Signed permutations
Mp00169: Signed permutations —odd cycle type⟶ Integer partitions
St000941: Integer partitions ⟶ ℤResult quality: 40% ●values known / values provided: 40%●distinct values known / distinct values provided: 40%
Mp00194: Signed permutations —Foata-Han inverse⟶ Signed permutations
Mp00169: Signed permutations —odd cycle type⟶ Integer partitions
St000941: Integer partitions ⟶ ℤResult quality: 40% ●values known / values provided: 40%●distinct values known / distinct values provided: 40%
Values
[1] => [1] => [1] => []
=> ? = 0
[1,2] => [1,2] => [1,2] => []
=> ? = 0
[2,1] => [2,1] => [-2,1] => [2]
=> 0
[1,2,3] => [1,2,3] => [1,2,3] => []
=> ? ∊ {0,0}
[1,3,2] => [1,3,2] => [-3,1,2] => [3]
=> 0
[2,1,3] => [2,1,3] => [-2,1,3] => [2]
=> 0
[2,3,1] => [2,3,1] => [-3,-2,1] => [2,1]
=> 1
[3,1,2] => [3,1,2] => [3,1,2] => []
=> ? ∊ {0,0}
[3,2,1] => [3,2,1] => [2,-3,1] => [3]
=> 0
[1,2,3,4] => [1,2,3,4] => [1,2,3,4] => []
=> ? ∊ {0,0,0,0,0,0,0,2,4}
[1,2,4,3] => [1,2,4,3] => [-4,1,2,3] => [4]
=> 1
[1,3,2,4] => [1,3,2,4] => [-3,1,2,4] => [3]
=> 0
[1,3,4,2] => [1,3,4,2] => [-4,-3,1,2] => []
=> ? ∊ {0,0,0,0,0,0,0,2,4}
[1,4,2,3] => [1,4,2,3] => [4,1,2,3] => []
=> ? ∊ {0,0,0,0,0,0,0,2,4}
[1,4,3,2] => [1,4,3,2] => [3,-4,1,2] => [2]
=> 0
[2,1,3,4] => [2,1,3,4] => [-2,1,3,4] => [2]
=> 0
[2,1,4,3] => [2,1,4,3] => [-4,-2,1,3] => [3,1]
=> 2
[2,3,1,4] => [2,3,1,4] => [-3,-2,1,4] => [2,1]
=> 1
[2,3,4,1] => [2,3,4,1] => [-4,-3,-2,1] => [2]
=> 0
[2,4,1,3] => [2,4,1,3] => [2,-4,1,3] => [4]
=> 1
[2,4,3,1] => [2,4,3,1] => [3,-4,-2,1] => []
=> ? ∊ {0,0,0,0,0,0,0,2,4}
[3,1,2,4] => [3,1,2,4] => [3,1,2,4] => []
=> ? ∊ {0,0,0,0,0,0,0,2,4}
[3,1,4,2] => [3,1,4,2] => [4,-3,1,2] => [4]
=> 1
[3,2,1,4] => [3,2,1,4] => [2,-3,1,4] => [3]
=> 0
[3,2,4,1] => [3,2,4,1] => [2,-4,-3,1] => [3,1]
=> 2
[3,4,1,2] => [3,4,1,2] => [3,4,1,2] => []
=> ? ∊ {0,0,0,0,0,0,0,2,4}
[3,4,2,1] => [3,4,2,1] => [2,4,-3,1] => [1]
=> ? ∊ {0,0,0,0,0,0,0,2,4}
[4,1,2,3] => [4,1,2,3] => [1,-4,2,3] => [3]
=> 0
[4,1,3,2] => [4,1,3,2] => [-3,-4,1,2] => [2,2]
=> 1
[4,2,1,3] => [4,2,1,3] => [-2,-4,1,3] => []
=> ? ∊ {0,0,0,0,0,0,0,2,4}
[4,2,3,1] => [4,2,3,1] => [2,3,-4,1] => [4]
=> 1
[4,3,1,2] => [4,3,1,2] => [-4,3,1,2] => [4]
=> 1
[4,3,2,1] => [4,3,2,1] => [-3,2,-4,1] => []
=> ? ∊ {0,0,0,0,0,0,0,2,4}
[1,2,3,4,5] => [1,2,3,4,5] => [1,2,3,4,5] => []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,2,2,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,7,7,7,7,10}
[1,2,3,5,4] => [1,2,3,5,4] => [-5,1,2,3,4] => [5]
=> 2
[1,2,4,3,5] => [1,2,4,3,5] => [-4,1,2,3,5] => [4]
=> 1
[1,2,4,5,3] => [1,2,4,5,3] => [-5,-4,1,2,3] => [3,2]
=> 1
[1,2,5,3,4] => [1,2,5,3,4] => [5,1,2,3,4] => []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,2,2,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,7,7,7,7,10}
[1,2,5,4,3] => [1,2,5,4,3] => [4,-5,1,2,3] => [5]
=> 2
[1,3,2,4,5] => [1,3,2,4,5] => [-3,1,2,4,5] => [3]
=> 0
[1,3,2,5,4] => [1,3,2,5,4] => [-5,-3,1,2,4] => []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,2,2,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,7,7,7,7,10}
[1,3,4,2,5] => [1,3,4,2,5] => [-4,-3,1,2,5] => []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,2,2,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,7,7,7,7,10}
[1,3,4,5,2] => [1,3,4,5,2] => [-5,-4,-3,1,2] => [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,2,2,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,7,7,7,7,10}
[1,3,5,2,4] => [1,3,5,2,4] => [3,-5,1,2,4] => [3]
=> 0
[1,3,5,4,2] => [1,3,5,4,2] => [4,-5,-3,1,2] => [2,1]
=> 1
[1,4,2,3,5] => [1,4,2,3,5] => [4,1,2,3,5] => []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,2,2,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,7,7,7,7,10}
[1,4,2,5,3] => [1,4,2,5,3] => [5,-4,1,2,3] => [2]
=> 0
[1,4,3,2,5] => [1,4,3,2,5] => [3,-4,1,2,5] => [2]
=> 0
[1,4,3,5,2] => [1,4,3,5,2] => [3,-5,-4,1,2] => [3,2]
=> 1
[1,4,5,2,3] => [1,4,5,2,3] => [4,5,1,2,3] => []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,2,2,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,7,7,7,7,10}
[1,4,5,3,2] => [1,4,5,3,2] => [3,5,-4,1,2] => [3]
=> 0
[1,5,2,3,4] => [1,5,2,3,4] => [1,-5,2,3,4] => [4]
=> 1
[1,5,2,4,3] => [1,5,2,4,3] => [-4,-5,1,2,3] => []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,2,2,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,7,7,7,7,10}
[1,5,3,2,4] => [1,5,3,2,4] => [-3,-5,1,2,4] => [3,2]
=> 1
[1,5,3,4,2] => [1,5,3,4,2] => [3,4,-5,1,2] => [5]
=> 2
[1,5,4,2,3] => [1,5,4,2,3] => [-5,4,1,2,3] => [3]
=> 0
[1,5,4,3,2] => [1,5,4,3,2] => [-4,3,-5,1,2] => [3,2]
=> 1
[2,1,3,4,5] => [2,1,3,4,5] => [-2,1,3,4,5] => [2]
=> 0
[2,1,3,5,4] => [2,1,3,5,4] => [-5,-2,1,3,4] => [4,1]
=> 3
[2,1,4,3,5] => [2,1,4,3,5] => [-4,-2,1,3,5] => [3,1]
=> 2
[2,1,4,5,3] => [2,1,4,5,3] => [-5,-4,-2,1,3] => [5]
=> 2
[2,1,5,3,4] => [2,1,5,3,4] => [2,-5,1,3,4] => [5]
=> 2
[2,1,5,4,3] => [2,1,5,4,3] => [4,-5,-2,1,3] => []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,2,2,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,7,7,7,7,10}
[2,3,1,4,5] => [2,3,1,4,5] => [-3,-2,1,4,5] => [2,1]
=> 1
[2,3,1,5,4] => [2,3,1,5,4] => [-5,-3,-2,1,4] => [3]
=> 0
[2,3,4,1,5] => [2,3,4,1,5] => [-4,-3,-2,1,5] => [2]
=> 0
[2,3,4,5,1] => [2,3,4,5,1] => [-5,-4,-3,-2,1] => [2,1]
=> 1
[2,3,5,1,4] => [2,3,5,1,4] => [3,-5,-2,1,4] => []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,2,2,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,7,7,7,7,10}
[2,3,5,4,1] => [2,3,5,4,1] => [4,-5,-3,-2,1] => [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,2,2,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,7,7,7,7,10}
[2,4,1,3,5] => [2,4,1,3,5] => [2,-4,1,3,5] => [4]
=> 1
[2,4,1,5,3] => [2,4,1,5,3] => [2,-5,-4,1,3] => []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,2,2,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,7,7,7,7,10}
[2,4,3,1,5] => [2,4,3,1,5] => [3,-4,-2,1,5] => []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,2,2,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,7,7,7,7,10}
[2,4,3,5,1] => [2,4,3,5,1] => [3,-5,-4,-2,1] => [5]
=> 2
[2,4,5,1,3] => [2,4,5,1,3] => [2,5,-4,1,3] => [5]
=> 2
[2,4,5,3,1] => [2,4,5,3,1] => [3,5,-4,-2,1] => []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,2,2,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,7,7,7,7,10}
[2,5,1,3,4] => [2,5,1,3,4] => [-2,-5,1,3,4] => []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,2,2,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,7,7,7,7,10}
[2,5,1,4,3] => [2,5,1,4,3] => [2,4,-5,1,3] => [2]
=> 0
[2,5,3,1,4] => [2,5,3,1,4] => [2,3,-5,1,4] => [5]
=> 2
[3,1,2,4,5] => [3,1,2,4,5] => [3,1,2,4,5] => []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,2,2,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,7,7,7,7,10}
[3,1,5,2,4] => [3,1,5,2,4] => [3,5,1,2,4] => []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,2,2,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,7,7,7,7,10}
[3,2,5,1,4] => [3,2,5,1,4] => [2,5,-3,1,4] => [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,2,2,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,7,7,7,7,10}
[3,2,5,4,1] => [3,2,5,4,1] => [2,4,-5,-3,1] => []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,2,2,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,7,7,7,7,10}
[3,4,1,2,5] => [3,4,1,2,5] => [3,4,1,2,5] => []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,2,2,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,7,7,7,7,10}
[3,4,1,5,2] => [3,4,1,5,2] => [4,5,-3,1,2] => [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,2,2,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,7,7,7,7,10}
[3,4,2,1,5] => [3,4,2,1,5] => [2,4,-3,1,5] => [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,2,2,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,7,7,7,7,10}
[3,4,2,5,1] => [3,4,2,5,1] => [2,5,-4,-3,1] => []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,2,2,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,7,7,7,7,10}
[3,4,5,1,2] => [3,4,5,1,2] => [3,4,5,1,2] => []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,2,2,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,7,7,7,7,10}
[3,5,2,1,4] => [3,5,2,1,4] => [-3,2,-5,1,4] => []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,2,2,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,7,7,7,7,10}
[4,1,2,5,3] => [4,1,2,5,3] => [1,-5,-4,2,3] => []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,2,2,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,7,7,7,7,10}
[4,1,5,3,2] => [4,1,5,3,2] => [-5,3,-4,1,2] => []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,2,2,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,7,7,7,7,10}
[4,2,1,3,5] => [4,2,1,3,5] => [-2,-4,1,3,5] => []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,2,2,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,7,7,7,7,10}
[4,2,5,1,3] => [4,2,5,1,3] => [-5,2,-4,1,3] => []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,2,2,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,7,7,7,7,10}
[4,2,5,3,1] => [4,2,5,3,1] => [2,3,5,-4,1] => [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,2,2,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,7,7,7,7,10}
[4,3,1,5,2] => [4,3,1,5,2] => [-3,5,-4,1,2] => []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,2,2,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,7,7,7,7,10}
[4,3,2,1,5] => [4,3,2,1,5] => [-3,2,-4,1,5] => []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,2,2,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,7,7,7,7,10}
[4,3,2,5,1] => [4,3,2,5,1] => [-3,2,-5,-4,1] => [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,2,2,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,7,7,7,7,10}
[4,5,1,2,3] => [4,5,1,2,3] => [-5,1,-4,2,3] => []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,2,2,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,7,7,7,7,10}
[4,5,3,1,2] => [4,5,3,1,2] => [-5,-4,3,1,2] => []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,2,2,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,7,7,7,7,10}
[5,1,2,3,4] => [5,1,2,3,4] => [1,5,2,3,4] => []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,2,2,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,7,7,7,7,10}
[5,1,3,4,2] => [5,1,3,4,2] => [-3,4,-5,1,2] => []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,2,2,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,7,7,7,7,10}
Description
The number of characters of the symmetric group whose value on the partition is even.
Matching statistic: St000771
(load all 18 compositions to match this statistic)
(load all 18 compositions to match this statistic)
Mp00068: Permutations —Simion-Schmidt map⟶ Permutations
Mp00310: Permutations —toric promotion⟶ Permutations
Mp00160: Permutations —graph of inversions⟶ Graphs
St000771: Graphs ⟶ ℤResult quality: 33% ●values known / values provided: 39%●distinct values known / distinct values provided: 33%
Mp00310: Permutations —toric promotion⟶ Permutations
Mp00160: Permutations —graph of inversions⟶ Graphs
St000771: Graphs ⟶ ℤResult quality: 33% ●values known / values provided: 39%●distinct values known / distinct values provided: 33%
Values
[1] => [1] => [1] => ([],1)
=> 1 = 0 + 1
[1,2] => [1,2] => [1,2] => ([],2)
=> ? = 0 + 1
[2,1] => [2,1] => [2,1] => ([(0,1)],2)
=> 1 = 0 + 1
[1,2,3] => [1,3,2] => [2,3,1] => ([(0,2),(1,2)],3)
=> 1 = 0 + 1
[1,3,2] => [1,3,2] => [2,3,1] => ([(0,2),(1,2)],3)
=> 1 = 0 + 1
[2,1,3] => [2,1,3] => [3,1,2] => ([(0,2),(1,2)],3)
=> 1 = 0 + 1
[2,3,1] => [2,3,1] => [1,3,2] => ([(1,2)],3)
=> ? ∊ {0,0,1} + 1
[3,1,2] => [3,1,2] => [2,1,3] => ([(1,2)],3)
=> ? ∊ {0,0,1} + 1
[3,2,1] => [3,2,1] => [1,2,3] => ([],3)
=> ? ∊ {0,0,1} + 1
[1,2,3,4] => [1,4,3,2] => [3,1,2,4] => ([(1,3),(2,3)],4)
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,2,4} + 1
[1,2,4,3] => [1,4,3,2] => [3,1,2,4] => ([(1,3),(2,3)],4)
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,2,4} + 1
[1,3,2,4] => [1,4,3,2] => [3,1,2,4] => ([(1,3),(2,3)],4)
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,2,4} + 1
[1,3,4,2] => [1,4,3,2] => [3,1,2,4] => ([(1,3),(2,3)],4)
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,2,4} + 1
[1,4,2,3] => [1,4,3,2] => [3,1,2,4] => ([(1,3),(2,3)],4)
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,2,4} + 1
[1,4,3,2] => [1,4,3,2] => [3,1,2,4] => ([(1,3),(2,3)],4)
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,2,4} + 1
[2,1,3,4] => [2,1,4,3] => [4,1,3,2] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> 1 = 0 + 1
[2,1,4,3] => [2,1,4,3] => [4,1,3,2] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> 1 = 0 + 1
[2,3,1,4] => [2,4,1,3] => [4,3,2,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 3 = 2 + 1
[2,3,4,1] => [2,4,3,1] => [1,4,3,2] => ([(1,2),(1,3),(2,3)],4)
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,2,4} + 1
[2,4,1,3] => [2,4,1,3] => [4,3,2,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 3 = 2 + 1
[2,4,3,1] => [2,4,3,1] => [1,4,3,2] => ([(1,2),(1,3),(2,3)],4)
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,2,4} + 1
[3,1,2,4] => [3,1,4,2] => [1,2,3,4] => ([],4)
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,2,4} + 1
[3,1,4,2] => [3,1,4,2] => [1,2,3,4] => ([],4)
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,2,4} + 1
[3,2,1,4] => [3,2,1,4] => [1,2,4,3] => ([(2,3)],4)
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,2,4} + 1
[3,2,4,1] => [3,2,4,1] => [2,1,4,3] => ([(0,3),(1,2)],4)
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,2,4} + 1
[3,4,1,2] => [3,4,1,2] => [2,3,1,4] => ([(1,3),(2,3)],4)
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,2,4} + 1
[3,4,2,1] => [3,4,2,1] => [2,1,3,4] => ([(2,3)],4)
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,2,4} + 1
[4,1,2,3] => [4,1,3,2] => [3,2,4,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> 1 = 0 + 1
[4,1,3,2] => [4,1,3,2] => [3,2,4,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> 1 = 0 + 1
[4,2,1,3] => [4,2,1,3] => [1,3,4,2] => ([(1,3),(2,3)],4)
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,2,4} + 1
[4,2,3,1] => [4,2,3,1] => [3,1,4,2] => ([(0,3),(1,2),(2,3)],4)
=> 1 = 0 + 1
[4,3,1,2] => [4,3,1,2] => [3,2,1,4] => ([(1,2),(1,3),(2,3)],4)
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,2,4} + 1
[4,3,2,1] => [4,3,2,1] => [1,3,2,4] => ([(2,3)],4)
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,2,4} + 1
[1,2,3,4,5] => [1,5,4,3,2] => [4,1,3,2,5] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,7,7,7,7,10} + 1
[1,2,3,5,4] => [1,5,4,3,2] => [4,1,3,2,5] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,7,7,7,7,10} + 1
[1,2,4,3,5] => [1,5,4,3,2] => [4,1,3,2,5] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,7,7,7,7,10} + 1
[1,2,4,5,3] => [1,5,4,3,2] => [4,1,3,2,5] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,7,7,7,7,10} + 1
[1,2,5,3,4] => [1,5,4,3,2] => [4,1,3,2,5] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,7,7,7,7,10} + 1
[1,2,5,4,3] => [1,5,4,3,2] => [4,1,3,2,5] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,7,7,7,7,10} + 1
[1,3,2,4,5] => [1,5,4,3,2] => [4,1,3,2,5] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,7,7,7,7,10} + 1
[1,3,2,5,4] => [1,5,4,3,2] => [4,1,3,2,5] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,7,7,7,7,10} + 1
[1,3,4,2,5] => [1,5,4,3,2] => [4,1,3,2,5] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,7,7,7,7,10} + 1
[1,3,4,5,2] => [1,5,4,3,2] => [4,1,3,2,5] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,7,7,7,7,10} + 1
[1,3,5,2,4] => [1,5,4,3,2] => [4,1,3,2,5] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,7,7,7,7,10} + 1
[1,3,5,4,2] => [1,5,4,3,2] => [4,1,3,2,5] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,7,7,7,7,10} + 1
[1,4,2,3,5] => [1,5,4,3,2] => [4,1,3,2,5] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,7,7,7,7,10} + 1
[1,4,2,5,3] => [1,5,4,3,2] => [4,1,3,2,5] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,7,7,7,7,10} + 1
[1,4,3,2,5] => [1,5,4,3,2] => [4,1,3,2,5] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,7,7,7,7,10} + 1
[1,4,3,5,2] => [1,5,4,3,2] => [4,1,3,2,5] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,7,7,7,7,10} + 1
[1,4,5,2,3] => [1,5,4,3,2] => [4,1,3,2,5] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,7,7,7,7,10} + 1
[1,4,5,3,2] => [1,5,4,3,2] => [4,1,3,2,5] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,7,7,7,7,10} + 1
[1,5,2,3,4] => [1,5,4,3,2] => [4,1,3,2,5] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,7,7,7,7,10} + 1
[1,5,2,4,3] => [1,5,4,3,2] => [4,1,3,2,5] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,7,7,7,7,10} + 1
[1,5,3,2,4] => [1,5,4,3,2] => [4,1,3,2,5] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,7,7,7,7,10} + 1
[1,5,3,4,2] => [1,5,4,3,2] => [4,1,3,2,5] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,7,7,7,7,10} + 1
[1,5,4,2,3] => [1,5,4,3,2] => [4,1,3,2,5] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,7,7,7,7,10} + 1
[1,5,4,3,2] => [1,5,4,3,2] => [4,1,3,2,5] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,7,7,7,7,10} + 1
[2,1,3,4,5] => [2,1,5,4,3] => [5,1,4,3,2] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2 = 1 + 1
[2,1,3,5,4] => [2,1,5,4,3] => [5,1,4,3,2] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2 = 1 + 1
[2,1,4,3,5] => [2,1,5,4,3] => [5,1,4,3,2] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2 = 1 + 1
[2,1,4,5,3] => [2,1,5,4,3] => [5,1,4,3,2] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2 = 1 + 1
[2,1,5,3,4] => [2,1,5,4,3] => [5,1,4,3,2] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2 = 1 + 1
[2,1,5,4,3] => [2,1,5,4,3] => [5,1,4,3,2] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2 = 1 + 1
[2,3,1,4,5] => [2,5,1,4,3] => [5,4,3,1,2] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3 = 2 + 1
[2,3,1,5,4] => [2,5,1,4,3] => [5,4,3,1,2] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3 = 2 + 1
[2,3,4,1,5] => [2,5,4,1,3] => [5,4,3,2,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4 = 3 + 1
[2,3,4,5,1] => [2,5,4,3,1] => [1,5,4,3,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,7,7,7,7,10} + 1
[2,3,5,1,4] => [2,5,4,1,3] => [5,4,3,2,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4 = 3 + 1
[2,3,5,4,1] => [2,5,4,3,1] => [1,5,4,3,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,7,7,7,7,10} + 1
[2,4,1,3,5] => [2,5,1,4,3] => [5,4,3,1,2] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3 = 2 + 1
[2,4,1,5,3] => [2,5,1,4,3] => [5,4,3,1,2] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3 = 2 + 1
[2,4,3,1,5] => [2,5,4,1,3] => [5,4,3,2,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4 = 3 + 1
[2,4,3,5,1] => [2,5,4,3,1] => [1,5,4,3,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,7,7,7,7,10} + 1
[2,4,5,1,3] => [2,5,4,1,3] => [5,4,3,2,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4 = 3 + 1
[2,4,5,3,1] => [2,5,4,3,1] => [1,5,4,3,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,7,7,7,7,10} + 1
[2,5,1,3,4] => [2,5,1,4,3] => [5,4,3,1,2] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3 = 2 + 1
[2,5,1,4,3] => [2,5,1,4,3] => [5,4,3,1,2] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3 = 2 + 1
[2,5,3,1,4] => [2,5,4,1,3] => [5,4,3,2,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4 = 3 + 1
[2,5,3,4,1] => [2,5,4,3,1] => [1,5,4,3,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,7,7,7,7,10} + 1
[2,5,4,1,3] => [2,5,4,1,3] => [5,4,3,2,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4 = 3 + 1
[3,2,4,1,5] => [3,2,5,1,4] => [2,5,4,3,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2 = 1 + 1
[3,2,5,1,4] => [3,2,5,1,4] => [2,5,4,3,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2 = 1 + 1
[3,4,1,2,5] => [3,5,1,4,2] => [2,4,3,5,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 2 = 1 + 1
[3,4,1,5,2] => [3,5,1,4,2] => [2,4,3,5,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 2 = 1 + 1
[3,4,2,5,1] => [3,5,2,4,1] => [2,4,1,5,3] => ([(0,4),(1,3),(2,3),(2,4)],5)
=> 1 = 0 + 1
[3,5,1,2,4] => [3,5,1,4,2] => [2,4,3,5,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 2 = 1 + 1
[3,5,1,4,2] => [3,5,1,4,2] => [2,4,3,5,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 2 = 1 + 1
[3,5,2,4,1] => [3,5,2,4,1] => [2,4,1,5,3] => ([(0,4),(1,3),(2,3),(2,4)],5)
=> 1 = 0 + 1
[4,2,3,1,5] => [4,2,5,1,3] => [3,5,4,2,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2 = 1 + 1
[4,2,3,5,1] => [4,2,5,3,1] => [3,1,5,4,2] => ([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> 1 = 0 + 1
[4,2,5,1,3] => [4,2,5,1,3] => [3,5,4,2,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2 = 1 + 1
[4,2,5,3,1] => [4,2,5,3,1] => [3,1,5,4,2] => ([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> 1 = 0 + 1
[4,5,1,2,3] => [4,5,1,3,2] => [3,4,2,5,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1 = 0 + 1
[4,5,1,3,2] => [4,5,1,3,2] => [3,4,2,5,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1 = 0 + 1
[4,5,2,1,3] => [4,5,2,1,3] => [3,1,4,5,2] => ([(0,4),(1,4),(2,3),(3,4)],5)
=> 1 = 0 + 1
[4,5,2,3,1] => [4,5,2,3,1] => [3,4,1,5,2] => ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> 1 = 0 + 1
[5,2,3,1,4] => [5,2,4,1,3] => [4,5,3,2,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3 = 2 + 1
[5,2,3,4,1] => [5,2,4,3,1] => [4,1,5,3,2] => ([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> 1 = 0 + 1
[5,2,4,1,3] => [5,2,4,1,3] => [4,5,3,2,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3 = 2 + 1
[5,2,4,3,1] => [5,2,4,3,1] => [4,1,5,3,2] => ([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> 1 = 0 + 1
Description
The largest multiplicity of a distance Laplacian eigenvalue in a connected graph.
The distance Laplacian of a graph is the (symmetric) matrix with row and column sums 0, which has the negative distances between two vertices as its off-diagonal entries. This statistic is the largest multiplicity of an eigenvalue.
For example, the cycle on four vertices has distance Laplacian
(4−1−2−1−14−1−2−2−14−1−1−2−14).
Its eigenvalues are 0,4,4,6, so the statistic is 2.
The path on four vertices has eigenvalues 0,4.7…,6,9.2… and therefore statistic 1.
Matching statistic: St001964
(load all 11 compositions to match this statistic)
(load all 11 compositions to match this statistic)
Mp00254: Permutations —Inverse fireworks map⟶ Permutations
Mp00067: Permutations —Foata bijection⟶ Permutations
Mp00065: Permutations —permutation poset⟶ Posets
St001964: Posets ⟶ ℤResult quality: 27% ●values known / values provided: 33%●distinct values known / distinct values provided: 27%
Mp00067: Permutations —Foata bijection⟶ Permutations
Mp00065: Permutations —permutation poset⟶ Posets
St001964: Posets ⟶ ℤResult quality: 27% ●values known / values provided: 33%●distinct values known / distinct values provided: 27%
Values
[1] => [1] => [1] => ([],1)
=> 0
[1,2] => [1,2] => [1,2] => ([(0,1)],2)
=> 0
[2,1] => [2,1] => [2,1] => ([],2)
=> 0
[1,2,3] => [1,2,3] => [1,2,3] => ([(0,2),(2,1)],3)
=> 0
[1,3,2] => [1,3,2] => [3,1,2] => ([(1,2)],3)
=> ? ∊ {0,1}
[2,1,3] => [2,1,3] => [2,1,3] => ([(0,2),(1,2)],3)
=> 0
[2,3,1] => [1,3,2] => [3,1,2] => ([(1,2)],3)
=> ? ∊ {0,1}
[3,1,2] => [3,1,2] => [1,3,2] => ([(0,1),(0,2)],3)
=> 0
[3,2,1] => [3,2,1] => [3,2,1] => ([],3)
=> 0
[1,2,3,4] => [1,2,3,4] => [1,2,3,4] => ([(0,3),(2,1),(3,2)],4)
=> 0
[1,2,4,3] => [1,2,4,3] => [4,1,2,3] => ([(1,2),(2,3)],4)
=> 0
[1,3,2,4] => [1,3,2,4] => [3,1,2,4] => ([(0,3),(1,2),(2,3)],4)
=> 0
[1,3,4,2] => [1,2,4,3] => [4,1,2,3] => ([(1,2),(2,3)],4)
=> 0
[1,4,2,3] => [1,4,2,3] => [1,4,2,3] => ([(0,2),(0,3),(3,1)],4)
=> 0
[1,4,3,2] => [1,4,3,2] => [4,3,1,2] => ([(2,3)],4)
=> ? ∊ {1,1,1,2,4}
[2,1,3,4] => [2,1,3,4] => [2,1,3,4] => ([(0,3),(1,3),(3,2)],4)
=> 1
[2,1,4,3] => [2,1,4,3] => [4,2,1,3] => ([(1,3),(2,3)],4)
=> 0
[2,3,1,4] => [1,3,2,4] => [3,1,2,4] => ([(0,3),(1,2),(2,3)],4)
=> 0
[2,3,4,1] => [1,2,4,3] => [4,1,2,3] => ([(1,2),(2,3)],4)
=> 0
[2,4,1,3] => [2,4,1,3] => [2,1,4,3] => ([(0,2),(0,3),(1,2),(1,3)],4)
=> 2
[2,4,3,1] => [1,4,3,2] => [4,3,1,2] => ([(2,3)],4)
=> ? ∊ {1,1,1,2,4}
[3,1,2,4] => [3,1,2,4] => [1,3,2,4] => ([(0,1),(0,2),(1,3),(2,3)],4)
=> 0
[3,1,4,2] => [2,1,4,3] => [4,2,1,3] => ([(1,3),(2,3)],4)
=> 0
[3,2,1,4] => [3,2,1,4] => [3,2,1,4] => ([(0,3),(1,3),(2,3)],4)
=> 1
[3,2,4,1] => [2,1,4,3] => [4,2,1,3] => ([(1,3),(2,3)],4)
=> 0
[3,4,1,2] => [2,4,1,3] => [2,1,4,3] => ([(0,2),(0,3),(1,2),(1,3)],4)
=> 2
[3,4,2,1] => [1,4,3,2] => [4,3,1,2] => ([(2,3)],4)
=> ? ∊ {1,1,1,2,4}
[4,1,2,3] => [4,1,2,3] => [1,2,4,3] => ([(0,3),(3,1),(3,2)],4)
=> 1
[4,1,3,2] => [4,1,3,2] => [4,1,3,2] => ([(1,2),(1,3)],4)
=> ? ∊ {1,1,1,2,4}
[4,2,1,3] => [4,2,1,3] => [2,4,1,3] => ([(0,3),(1,2),(1,3)],4)
=> 0
[4,2,3,1] => [4,1,3,2] => [4,1,3,2] => ([(1,2),(1,3)],4)
=> ? ∊ {1,1,1,2,4}
[4,3,1,2] => [4,3,1,2] => [1,4,3,2] => ([(0,1),(0,2),(0,3)],4)
=> 1
[4,3,2,1] => [4,3,2,1] => [4,3,2,1] => ([],4)
=> 0
[1,2,3,4,5] => [1,2,3,4,5] => [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 0
[1,2,3,5,4] => [1,2,3,5,4] => [5,1,2,3,4] => ([(1,4),(3,2),(4,3)],5)
=> 0
[1,2,4,3,5] => [1,2,4,3,5] => [4,1,2,3,5] => ([(0,4),(1,2),(2,3),(3,4)],5)
=> 0
[1,2,4,5,3] => [1,2,3,5,4] => [5,1,2,3,4] => ([(1,4),(3,2),(4,3)],5)
=> 0
[1,2,5,3,4] => [1,2,5,3,4] => [1,5,2,3,4] => ([(0,2),(0,4),(3,1),(4,3)],5)
=> 0
[1,2,5,4,3] => [1,2,5,4,3] => [5,4,1,2,3] => ([(2,3),(3,4)],5)
=> 0
[1,3,2,4,5] => [1,3,2,4,5] => [3,1,2,4,5] => ([(0,4),(1,2),(2,4),(4,3)],5)
=> 1
[1,3,2,5,4] => [1,3,2,5,4] => [5,3,1,2,4] => ([(1,4),(2,3),(3,4)],5)
=> 0
[1,3,4,2,5] => [1,2,4,3,5] => [4,1,2,3,5] => ([(0,4),(1,2),(2,3),(3,4)],5)
=> 0
[1,3,4,5,2] => [1,2,3,5,4] => [5,1,2,3,4] => ([(1,4),(3,2),(4,3)],5)
=> 0
[1,3,5,2,4] => [1,3,5,2,4] => [3,1,2,5,4] => ([(0,3),(0,4),(1,2),(2,3),(2,4)],5)
=> 2
[1,3,5,4,2] => [1,2,5,4,3] => [5,4,1,2,3] => ([(2,3),(3,4)],5)
=> 0
[1,4,2,3,5] => [1,4,2,3,5] => [1,4,2,3,5] => ([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
=> 0
[1,4,2,5,3] => [1,3,2,5,4] => [5,3,1,2,4] => ([(1,4),(2,3),(3,4)],5)
=> 0
[1,4,3,2,5] => [1,4,3,2,5] => [4,3,1,2,5] => ([(0,4),(1,4),(2,3),(3,4)],5)
=> 1
[1,4,3,5,2] => [1,3,2,5,4] => [5,3,1,2,4] => ([(1,4),(2,3),(3,4)],5)
=> 0
[1,4,5,2,3] => [1,3,5,2,4] => [3,1,2,5,4] => ([(0,3),(0,4),(1,2),(2,3),(2,4)],5)
=> 2
[1,4,5,3,2] => [1,2,5,4,3] => [5,4,1,2,3] => ([(2,3),(3,4)],5)
=> 0
[1,5,2,3,4] => [1,5,2,3,4] => [1,2,5,3,4] => ([(0,4),(3,2),(4,1),(4,3)],5)
=> 1
[1,5,2,4,3] => [1,5,2,4,3] => [5,1,4,2,3] => ([(1,3),(1,4),(4,2)],5)
=> ? ∊ {0,1,1,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,7,7,7,7,10}
[1,5,3,2,4] => [1,5,3,2,4] => [3,5,1,2,4] => ([(0,3),(1,2),(1,4),(3,4)],5)
=> 0
[1,5,3,4,2] => [1,5,2,4,3] => [5,1,4,2,3] => ([(1,3),(1,4),(4,2)],5)
=> ? ∊ {0,1,1,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,7,7,7,7,10}
[1,5,4,2,3] => [1,5,4,2,3] => [1,5,4,2,3] => ([(0,2),(0,3),(0,4),(4,1)],5)
=> 1
[1,5,4,3,2] => [1,5,4,3,2] => [5,4,3,1,2] => ([(3,4)],5)
=> ? ∊ {0,1,1,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,7,7,7,7,10}
[2,1,3,4,5] => [2,1,3,4,5] => [2,1,3,4,5] => ([(0,4),(1,4),(2,3),(4,2)],5)
=> 1
[2,1,3,5,4] => [2,1,3,5,4] => [5,2,1,3,4] => ([(1,4),(2,4),(4,3)],5)
=> 1
[2,1,4,3,5] => [2,1,4,3,5] => [4,2,1,3,5] => ([(0,4),(1,3),(2,3),(3,4)],5)
=> 1
[2,5,1,4,3] => [2,5,1,4,3] => [5,2,1,4,3] => ([(1,3),(1,4),(2,3),(2,4)],5)
=> ? ∊ {0,1,1,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,7,7,7,7,10}
[2,5,3,4,1] => [1,5,2,4,3] => [5,1,4,2,3] => ([(1,3),(1,4),(4,2)],5)
=> ? ∊ {0,1,1,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,7,7,7,7,10}
[2,5,4,3,1] => [1,5,4,3,2] => [5,4,3,1,2] => ([(3,4)],5)
=> ? ∊ {0,1,1,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,7,7,7,7,10}
[3,1,2,5,4] => [3,1,2,5,4] => [5,1,3,2,4] => ([(1,2),(1,3),(2,4),(3,4)],5)
=> ? ∊ {0,1,1,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,7,7,7,7,10}
[3,2,1,5,4] => [3,2,1,5,4] => [5,3,2,1,4] => ([(1,4),(2,4),(3,4)],5)
=> ? ∊ {0,1,1,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,7,7,7,7,10}
[3,5,1,4,2] => [2,5,1,4,3] => [5,2,1,4,3] => ([(1,3),(1,4),(2,3),(2,4)],5)
=> ? ∊ {0,1,1,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,7,7,7,7,10}
[3,5,2,4,1] => [2,5,1,4,3] => [5,2,1,4,3] => ([(1,3),(1,4),(2,3),(2,4)],5)
=> ? ∊ {0,1,1,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,7,7,7,7,10}
[3,5,4,2,1] => [1,5,4,3,2] => [5,4,3,1,2] => ([(3,4)],5)
=> ? ∊ {0,1,1,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,7,7,7,7,10}
[4,1,2,5,3] => [3,1,2,5,4] => [5,1,3,2,4] => ([(1,2),(1,3),(2,4),(3,4)],5)
=> ? ∊ {0,1,1,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,7,7,7,7,10}
[4,1,3,5,2] => [3,1,2,5,4] => [5,1,3,2,4] => ([(1,2),(1,3),(2,4),(3,4)],5)
=> ? ∊ {0,1,1,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,7,7,7,7,10}
[4,2,1,5,3] => [3,2,1,5,4] => [5,3,2,1,4] => ([(1,4),(2,4),(3,4)],5)
=> ? ∊ {0,1,1,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,7,7,7,7,10}
[4,2,3,5,1] => [3,1,2,5,4] => [5,1,3,2,4] => ([(1,2),(1,3),(2,4),(3,4)],5)
=> ? ∊ {0,1,1,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,7,7,7,7,10}
[4,3,1,5,2] => [3,2,1,5,4] => [5,3,2,1,4] => ([(1,4),(2,4),(3,4)],5)
=> ? ∊ {0,1,1,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,7,7,7,7,10}
[4,3,2,5,1] => [3,2,1,5,4] => [5,3,2,1,4] => ([(1,4),(2,4),(3,4)],5)
=> ? ∊ {0,1,1,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,7,7,7,7,10}
[4,5,1,3,2] => [2,5,1,4,3] => [5,2,1,4,3] => ([(1,3),(1,4),(2,3),(2,4)],5)
=> ? ∊ {0,1,1,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,7,7,7,7,10}
[4,5,2,3,1] => [2,5,1,4,3] => [5,2,1,4,3] => ([(1,3),(1,4),(2,3),(2,4)],5)
=> ? ∊ {0,1,1,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,7,7,7,7,10}
[4,5,3,2,1] => [1,5,4,3,2] => [5,4,3,1,2] => ([(3,4)],5)
=> ? ∊ {0,1,1,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,7,7,7,7,10}
[5,1,2,4,3] => [5,1,2,4,3] => [5,1,2,4,3] => ([(1,4),(4,2),(4,3)],5)
=> ? ∊ {0,1,1,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,7,7,7,7,10}
[5,1,3,4,2] => [5,1,2,4,3] => [5,1,2,4,3] => ([(1,4),(4,2),(4,3)],5)
=> ? ∊ {0,1,1,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,7,7,7,7,10}
[5,1,4,3,2] => [5,1,4,3,2] => [5,4,1,3,2] => ([(2,3),(2,4)],5)
=> ? ∊ {0,1,1,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,7,7,7,7,10}
[5,2,1,4,3] => [5,2,1,4,3] => [5,2,4,1,3] => ([(1,4),(2,3),(2,4)],5)
=> ? ∊ {0,1,1,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,7,7,7,7,10}
[5,2,3,4,1] => [5,1,2,4,3] => [5,1,2,4,3] => ([(1,4),(4,2),(4,3)],5)
=> ? ∊ {0,1,1,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,7,7,7,7,10}
[5,2,4,3,1] => [5,1,4,3,2] => [5,4,1,3,2] => ([(2,3),(2,4)],5)
=> ? ∊ {0,1,1,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,7,7,7,7,10}
[5,3,1,4,2] => [5,2,1,4,3] => [5,2,4,1,3] => ([(1,4),(2,3),(2,4)],5)
=> ? ∊ {0,1,1,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,7,7,7,7,10}
[5,3,2,4,1] => [5,2,1,4,3] => [5,2,4,1,3] => ([(1,4),(2,3),(2,4)],5)
=> ? ∊ {0,1,1,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,7,7,7,7,10}
[5,3,4,2,1] => [5,1,4,3,2] => [5,4,1,3,2] => ([(2,3),(2,4)],5)
=> ? ∊ {0,1,1,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,7,7,7,7,10}
[5,4,1,3,2] => [5,4,1,3,2] => [5,1,4,3,2] => ([(1,2),(1,3),(1,4)],5)
=> ? ∊ {0,1,1,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,7,7,7,7,10}
[5,4,2,3,1] => [5,4,1,3,2] => [5,1,4,3,2] => ([(1,2),(1,3),(1,4)],5)
=> ? ∊ {0,1,1,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,7,7,7,7,10}
[1,2,3,6,4,5] => [1,2,3,6,4,5] => [1,6,2,3,4,5] => ([(0,2),(0,5),(3,4),(4,1),(5,3)],6)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,13,13,13,13,13,13,13,13,13,13,13,13,13,13,16,16,16,16,16,20}
[1,2,4,6,3,5] => [1,2,4,6,3,5] => [4,1,2,3,6,5] => ([(0,4),(0,5),(1,2),(2,3),(3,4),(3,5)],6)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,13,13,13,13,13,13,13,13,13,13,13,13,13,13,16,16,16,16,16,20}
[1,2,5,3,4,6] => [1,2,5,3,4,6] => [1,5,2,3,4,6] => ([(0,2),(0,4),(1,5),(2,5),(3,1),(4,3)],6)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,13,13,13,13,13,13,13,13,13,13,13,13,13,13,16,16,16,16,16,20}
[1,2,5,6,3,4] => [1,2,4,6,3,5] => [4,1,2,3,6,5] => ([(0,4),(0,5),(1,2),(2,3),(3,4),(3,5)],6)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,13,13,13,13,13,13,13,13,13,13,13,13,13,13,16,16,16,16,16,20}
[1,2,6,3,4,5] => [1,2,6,3,4,5] => [1,2,6,3,4,5] => ([(0,5),(3,4),(4,2),(5,1),(5,3)],6)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,13,13,13,13,13,13,13,13,13,13,13,13,13,13,16,16,16,16,16,20}
[1,2,6,3,5,4] => [1,2,6,3,5,4] => [6,1,5,2,3,4] => ([(1,3),(1,5),(4,2),(5,4)],6)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,13,13,13,13,13,13,13,13,13,13,13,13,13,13,16,16,16,16,16,20}
[1,2,6,4,3,5] => [1,2,6,4,3,5] => [4,6,1,2,3,5] => ([(0,4),(1,3),(1,5),(2,5),(4,2)],6)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,13,13,13,13,13,13,13,13,13,13,13,13,13,13,16,16,16,16,16,20}
[1,2,6,4,5,3] => [1,2,6,3,5,4] => [6,1,5,2,3,4] => ([(1,3),(1,5),(4,2),(5,4)],6)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,13,13,13,13,13,13,13,13,13,13,13,13,13,13,16,16,16,16,16,20}
[1,2,6,5,3,4] => [1,2,6,5,3,4] => [1,6,5,2,3,4] => ([(0,2),(0,3),(0,5),(4,1),(5,4)],6)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,13,13,13,13,13,13,13,13,13,13,13,13,13,13,16,16,16,16,16,20}
[1,3,2,6,4,5] => [1,3,2,6,4,5] => [3,6,1,2,4,5] => ([(0,4),(1,3),(1,5),(4,5),(5,2)],6)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,13,13,13,13,13,13,13,13,13,13,13,13,13,13,16,16,16,16,16,20}
[1,3,4,6,2,5] => [1,2,4,6,3,5] => [4,1,2,3,6,5] => ([(0,4),(0,5),(1,2),(2,3),(3,4),(3,5)],6)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,13,13,13,13,13,13,13,13,13,13,13,13,13,13,16,16,16,16,16,20}
[1,3,5,2,4,6] => [1,3,5,2,4,6] => [3,1,2,5,4,6] => ([(0,2),(1,4),(1,5),(2,4),(2,5),(4,3),(5,3)],6)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,13,13,13,13,13,13,13,13,13,13,13,13,13,13,16,16,16,16,16,20}
Description
The interval resolution global dimension of a poset.
This is the cardinality of the longest chain of right minimal approximations by interval modules of an indecomposable module over the incidence algebra.
Matching statistic: St000454
(load all 17 compositions to match this statistic)
(load all 17 compositions to match this statistic)
Mp00248: Permutations —DEX composition⟶ Integer compositions
Mp00172: Integer compositions —rotate back to front⟶ Integer compositions
Mp00184: Integer compositions —to threshold graph⟶ Graphs
St000454: Graphs ⟶ ℤResult quality: 27% ●values known / values provided: 33%●distinct values known / distinct values provided: 27%
Mp00172: Integer compositions —rotate back to front⟶ Integer compositions
Mp00184: Integer compositions —to threshold graph⟶ Graphs
St000454: Graphs ⟶ ℤResult quality: 27% ●values known / values provided: 33%●distinct values known / distinct values provided: 27%
Values
[1] => [1] => [1] => ([],1)
=> 0
[1,2] => [2] => [2] => ([],2)
=> 0
[2,1] => [2] => [2] => ([],2)
=> 0
[1,2,3] => [3] => [3] => ([],3)
=> 0
[1,3,2] => [1,2] => [2,1] => ([(0,2),(1,2)],3)
=> ? = 0
[2,1,3] => [3] => [3] => ([],3)
=> 0
[2,3,1] => [3] => [3] => ([],3)
=> 0
[3,1,2] => [3] => [3] => ([],3)
=> 0
[3,2,1] => [2,1] => [1,2] => ([(1,2)],3)
=> 1
[1,2,3,4] => [4] => [4] => ([],4)
=> 0
[1,2,4,3] => [2,2] => [2,2] => ([(1,3),(2,3)],4)
=> ? ∊ {0,0,0,0,0,1,1,1,2,4}
[1,3,2,4] => [1,3] => [3,1] => ([(0,3),(1,3),(2,3)],4)
=> ? ∊ {0,0,0,0,0,1,1,1,2,4}
[1,3,4,2] => [1,3] => [3,1] => ([(0,3),(1,3),(2,3)],4)
=> ? ∊ {0,0,0,0,0,1,1,1,2,4}
[1,4,2,3] => [1,3] => [3,1] => ([(0,3),(1,3),(2,3)],4)
=> ? ∊ {0,0,0,0,0,1,1,1,2,4}
[1,4,3,2] => [1,2,1] => [1,1,2] => ([(1,2),(1,3),(2,3)],4)
=> 2
[2,1,3,4] => [4] => [4] => ([],4)
=> 0
[2,1,4,3] => [2,2] => [2,2] => ([(1,3),(2,3)],4)
=> ? ∊ {0,0,0,0,0,1,1,1,2,4}
[2,3,1,4] => [4] => [4] => ([],4)
=> 0
[2,3,4,1] => [4] => [4] => ([],4)
=> 0
[2,4,1,3] => [4] => [4] => ([],4)
=> 0
[2,4,3,1] => [3,1] => [1,3] => ([(2,3)],4)
=> 1
[3,1,2,4] => [4] => [4] => ([],4)
=> 0
[3,1,4,2] => [2,2] => [2,2] => ([(1,3),(2,3)],4)
=> ? ∊ {0,0,0,0,0,1,1,1,2,4}
[3,2,1,4] => [2,2] => [2,2] => ([(1,3),(2,3)],4)
=> ? ∊ {0,0,0,0,0,1,1,1,2,4}
[3,2,4,1] => [2,2] => [2,2] => ([(1,3),(2,3)],4)
=> ? ∊ {0,0,0,0,0,1,1,1,2,4}
[3,4,1,2] => [4] => [4] => ([],4)
=> 0
[3,4,2,1] => [3,1] => [1,3] => ([(2,3)],4)
=> 1
[4,1,2,3] => [4] => [4] => ([],4)
=> 0
[4,1,3,2] => [3,1] => [1,3] => ([(2,3)],4)
=> 1
[4,2,1,3] => [2,2] => [2,2] => ([(1,3),(2,3)],4)
=> ? ∊ {0,0,0,0,0,1,1,1,2,4}
[4,2,3,1] => [3,1] => [1,3] => ([(2,3)],4)
=> 1
[4,3,1,2] => [1,3] => [3,1] => ([(0,3),(1,3),(2,3)],4)
=> ? ∊ {0,0,0,0,0,1,1,1,2,4}
[4,3,2,1] => [1,2,1] => [1,1,2] => ([(1,2),(1,3),(2,3)],4)
=> 2
[1,2,3,4,5] => [5] => [5] => ([],5)
=> 0
[1,2,3,5,4] => [3,2] => [2,3] => ([(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,7,7,7,7,10}
[1,2,4,3,5] => [2,3] => [3,2] => ([(1,4),(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,7,7,7,7,10}
[1,2,4,5,3] => [2,3] => [3,2] => ([(1,4),(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,7,7,7,7,10}
[1,2,5,3,4] => [2,3] => [3,2] => ([(1,4),(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,7,7,7,7,10}
[1,2,5,4,3] => [2,2,1] => [1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,7,7,7,7,10}
[1,3,2,4,5] => [1,4] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 2
[1,3,2,5,4] => [1,2,2] => [2,1,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,7,7,7,7,10}
[1,3,4,2,5] => [1,4] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 2
[1,3,4,5,2] => [1,4] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 2
[1,3,5,2,4] => [1,4] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 2
[1,3,5,4,2] => [1,3,1] => [1,1,3] => ([(2,3),(2,4),(3,4)],5)
=> 2
[1,4,2,3,5] => [1,4] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 2
[1,4,2,5,3] => [1,2,2] => [2,1,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,7,7,7,7,10}
[1,4,3,2,5] => [1,2,2] => [2,1,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,7,7,7,7,10}
[1,4,3,5,2] => [1,2,2] => [2,1,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,7,7,7,7,10}
[1,4,5,2,3] => [1,4] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 2
[1,4,5,3,2] => [1,3,1] => [1,1,3] => ([(2,3),(2,4),(3,4)],5)
=> 2
[1,5,2,3,4] => [1,4] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 2
[1,5,2,4,3] => [1,3,1] => [1,1,3] => ([(2,3),(2,4),(3,4)],5)
=> 2
[1,5,3,2,4] => [1,2,2] => [2,1,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,7,7,7,7,10}
[1,5,3,4,2] => [1,3,1] => [1,1,3] => ([(2,3),(2,4),(3,4)],5)
=> 2
[1,5,4,2,3] => [1,1,3] => [3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
[1,5,4,3,2] => [1,1,2,1] => [1,1,1,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
[2,1,3,4,5] => [5] => [5] => ([],5)
=> 0
[2,1,3,5,4] => [3,2] => [2,3] => ([(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,7,7,7,7,10}
[2,1,4,3,5] => [2,3] => [3,2] => ([(1,4),(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,7,7,7,7,10}
[2,1,4,5,3] => [2,3] => [3,2] => ([(1,4),(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,7,7,7,7,10}
[2,1,5,3,4] => [2,3] => [3,2] => ([(1,4),(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,7,7,7,7,10}
[2,1,5,4,3] => [2,2,1] => [1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,7,7,7,7,10}
[2,3,1,4,5] => [5] => [5] => ([],5)
=> 0
[2,3,1,5,4] => [3,2] => [2,3] => ([(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,7,7,7,7,10}
[2,3,4,1,5] => [5] => [5] => ([],5)
=> 0
[2,3,4,5,1] => [5] => [5] => ([],5)
=> 0
[2,3,5,1,4] => [5] => [5] => ([],5)
=> 0
[2,3,5,4,1] => [4,1] => [1,4] => ([(3,4)],5)
=> 1
[2,4,1,3,5] => [5] => [5] => ([],5)
=> 0
[2,4,1,5,3] => [3,2] => [2,3] => ([(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,7,7,7,7,10}
[2,4,3,1,5] => [3,2] => [2,3] => ([(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,7,7,7,7,10}
[2,4,3,5,1] => [3,2] => [2,3] => ([(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,7,7,7,7,10}
[2,4,5,1,3] => [5] => [5] => ([],5)
=> 0
[2,4,5,3,1] => [4,1] => [1,4] => ([(3,4)],5)
=> 1
[2,5,1,3,4] => [5] => [5] => ([],5)
=> 0
[2,5,1,4,3] => [4,1] => [1,4] => ([(3,4)],5)
=> 1
[2,5,3,1,4] => [3,2] => [2,3] => ([(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,7,7,7,7,10}
[2,5,3,4,1] => [4,1] => [1,4] => ([(3,4)],5)
=> 1
[2,5,4,1,3] => [2,3] => [3,2] => ([(1,4),(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,7,7,7,7,10}
[2,5,4,3,1] => [2,2,1] => [1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,7,7,7,7,10}
[3,1,2,4,5] => [5] => [5] => ([],5)
=> 0
[3,1,2,5,4] => [3,2] => [2,3] => ([(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,7,7,7,7,10}
[3,1,4,2,5] => [2,3] => [3,2] => ([(1,4),(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,7,7,7,7,10}
[3,1,4,5,2] => [2,3] => [3,2] => ([(1,4),(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,7,7,7,7,10}
[3,1,5,2,4] => [2,3] => [3,2] => ([(1,4),(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,7,7,7,7,10}
[3,1,5,4,2] => [2,2,1] => [1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,7,7,7,7,10}
[3,2,1,4,5] => [2,3] => [3,2] => ([(1,4),(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,7,7,7,7,10}
[3,2,1,5,4] => [2,1,2] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,7,7,7,7,10}
[3,2,4,1,5] => [2,3] => [3,2] => ([(1,4),(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,7,7,7,7,10}
[3,2,4,5,1] => [2,3] => [3,2] => ([(1,4),(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,7,7,7,7,10}
[3,2,5,1,4] => [2,3] => [3,2] => ([(1,4),(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,7,7,7,7,10}
[3,2,5,4,1] => [2,2,1] => [1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,7,7,7,7,10}
[3,4,1,2,5] => [5] => [5] => ([],5)
=> 0
[3,4,1,5,2] => [3,2] => [2,3] => ([(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,7,7,7,7,10}
[3,4,2,1,5] => [3,2] => [2,3] => ([(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,7,7,7,7,10}
[3,4,2,5,1] => [3,2] => [2,3] => ([(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,7,7,7,7,10}
[3,5,2,1,4] => [3,2] => [2,3] => ([(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,7,7,7,7,10}
[3,5,4,1,2] => [2,3] => [3,2] => ([(1,4),(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,7,7,7,7,10}
[3,5,4,2,1] => [2,2,1] => [1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,7,7,7,7,10}
Description
The largest eigenvalue of a graph if it is integral.
If a graph is d-regular, then its largest eigenvalue equals d. One can show that the largest eigenvalue always lies between the average degree and the maximal degree.
This statistic is undefined if the largest eigenvalue of the graph is not integral.
Matching statistic: St001232
Mp00248: Permutations —DEX composition⟶ Integer compositions
Mp00040: Integer compositions —to partition⟶ Integer partitions
Mp00043: Integer partitions —to Dyck path⟶ Dyck paths
St001232: Dyck paths ⟶ ℤResult quality: 27% ●values known / values provided: 33%●distinct values known / distinct values provided: 27%
Mp00040: Integer compositions —to partition⟶ Integer partitions
Mp00043: Integer partitions —to Dyck path⟶ Dyck paths
St001232: Dyck paths ⟶ ℤResult quality: 27% ●values known / values provided: 33%●distinct values known / distinct values provided: 27%
Values
[1] => [1] => [1]
=> [1,0,1,0]
=> 1 = 0 + 1
[1,2] => [2] => [2]
=> [1,1,0,0,1,0]
=> 1 = 0 + 1
[2,1] => [2] => [2]
=> [1,1,0,0,1,0]
=> 1 = 0 + 1
[1,2,3] => [3] => [3]
=> [1,1,1,0,0,0,1,0]
=> 1 = 0 + 1
[1,3,2] => [1,2] => [2,1]
=> [1,0,1,0,1,0]
=> ? ∊ {0,1} + 1
[2,1,3] => [3] => [3]
=> [1,1,1,0,0,0,1,0]
=> 1 = 0 + 1
[2,3,1] => [3] => [3]
=> [1,1,1,0,0,0,1,0]
=> 1 = 0 + 1
[3,1,2] => [3] => [3]
=> [1,1,1,0,0,0,1,0]
=> 1 = 0 + 1
[3,2,1] => [2,1] => [2,1]
=> [1,0,1,0,1,0]
=> ? ∊ {0,1} + 1
[1,2,3,4] => [4] => [4]
=> [1,1,1,1,0,0,0,0,1,0]
=> 1 = 0 + 1
[1,2,4,3] => [2,2] => [2,2]
=> [1,1,0,0,1,1,0,0]
=> 2 = 1 + 1
[1,3,2,4] => [1,3] => [3,1]
=> [1,1,0,1,0,0,1,0]
=> ? ∊ {0,0,0,0,0,1,2,2,2,4} + 1
[1,3,4,2] => [1,3] => [3,1]
=> [1,1,0,1,0,0,1,0]
=> ? ∊ {0,0,0,0,0,1,2,2,2,4} + 1
[1,4,2,3] => [1,3] => [3,1]
=> [1,1,0,1,0,0,1,0]
=> ? ∊ {0,0,0,0,0,1,2,2,2,4} + 1
[1,4,3,2] => [1,2,1] => [2,1,1]
=> [1,0,1,1,0,1,0,0]
=> ? ∊ {0,0,0,0,0,1,2,2,2,4} + 1
[2,1,3,4] => [4] => [4]
=> [1,1,1,1,0,0,0,0,1,0]
=> 1 = 0 + 1
[2,1,4,3] => [2,2] => [2,2]
=> [1,1,0,0,1,1,0,0]
=> 2 = 1 + 1
[2,3,1,4] => [4] => [4]
=> [1,1,1,1,0,0,0,0,1,0]
=> 1 = 0 + 1
[2,3,4,1] => [4] => [4]
=> [1,1,1,1,0,0,0,0,1,0]
=> 1 = 0 + 1
[2,4,1,3] => [4] => [4]
=> [1,1,1,1,0,0,0,0,1,0]
=> 1 = 0 + 1
[2,4,3,1] => [3,1] => [3,1]
=> [1,1,0,1,0,0,1,0]
=> ? ∊ {0,0,0,0,0,1,2,2,2,4} + 1
[3,1,2,4] => [4] => [4]
=> [1,1,1,1,0,0,0,0,1,0]
=> 1 = 0 + 1
[3,1,4,2] => [2,2] => [2,2]
=> [1,1,0,0,1,1,0,0]
=> 2 = 1 + 1
[3,2,1,4] => [2,2] => [2,2]
=> [1,1,0,0,1,1,0,0]
=> 2 = 1 + 1
[3,2,4,1] => [2,2] => [2,2]
=> [1,1,0,0,1,1,0,0]
=> 2 = 1 + 1
[3,4,1,2] => [4] => [4]
=> [1,1,1,1,0,0,0,0,1,0]
=> 1 = 0 + 1
[3,4,2,1] => [3,1] => [3,1]
=> [1,1,0,1,0,0,1,0]
=> ? ∊ {0,0,0,0,0,1,2,2,2,4} + 1
[4,1,2,3] => [4] => [4]
=> [1,1,1,1,0,0,0,0,1,0]
=> 1 = 0 + 1
[4,1,3,2] => [3,1] => [3,1]
=> [1,1,0,1,0,0,1,0]
=> ? ∊ {0,0,0,0,0,1,2,2,2,4} + 1
[4,2,1,3] => [2,2] => [2,2]
=> [1,1,0,0,1,1,0,0]
=> 2 = 1 + 1
[4,2,3,1] => [3,1] => [3,1]
=> [1,1,0,1,0,0,1,0]
=> ? ∊ {0,0,0,0,0,1,2,2,2,4} + 1
[4,3,1,2] => [1,3] => [3,1]
=> [1,1,0,1,0,0,1,0]
=> ? ∊ {0,0,0,0,0,1,2,2,2,4} + 1
[4,3,2,1] => [1,2,1] => [2,1,1]
=> [1,0,1,1,0,1,0,0]
=> ? ∊ {0,0,0,0,0,1,2,2,2,4} + 1
[1,2,3,4,5] => [5] => [5]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> 1 = 0 + 1
[1,2,3,5,4] => [3,2] => [3,2]
=> [1,1,0,0,1,0,1,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,7,7,7,7,10} + 1
[1,2,4,3,5] => [2,3] => [3,2]
=> [1,1,0,0,1,0,1,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,7,7,7,7,10} + 1
[1,2,4,5,3] => [2,3] => [3,2]
=> [1,1,0,0,1,0,1,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,7,7,7,7,10} + 1
[1,2,5,3,4] => [2,3] => [3,2]
=> [1,1,0,0,1,0,1,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,7,7,7,7,10} + 1
[1,2,5,4,3] => [2,2,1] => [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,7,7,7,7,10} + 1
[1,3,2,4,5] => [1,4] => [4,1]
=> [1,1,1,0,1,0,0,0,1,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,7,7,7,7,10} + 1
[1,3,2,5,4] => [1,2,2] => [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,7,7,7,7,10} + 1
[1,3,4,2,5] => [1,4] => [4,1]
=> [1,1,1,0,1,0,0,0,1,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,7,7,7,7,10} + 1
[1,3,4,5,2] => [1,4] => [4,1]
=> [1,1,1,0,1,0,0,0,1,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,7,7,7,7,10} + 1
[1,3,5,2,4] => [1,4] => [4,1]
=> [1,1,1,0,1,0,0,0,1,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,7,7,7,7,10} + 1
[1,3,5,4,2] => [1,3,1] => [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> 3 = 2 + 1
[1,4,2,3,5] => [1,4] => [4,1]
=> [1,1,1,0,1,0,0,0,1,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,7,7,7,7,10} + 1
[1,4,2,5,3] => [1,2,2] => [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,7,7,7,7,10} + 1
[1,4,3,2,5] => [1,2,2] => [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,7,7,7,7,10} + 1
[1,4,3,5,2] => [1,2,2] => [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,7,7,7,7,10} + 1
[1,4,5,2,3] => [1,4] => [4,1]
=> [1,1,1,0,1,0,0,0,1,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,7,7,7,7,10} + 1
[1,4,5,3,2] => [1,3,1] => [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> 3 = 2 + 1
[1,5,2,3,4] => [1,4] => [4,1]
=> [1,1,1,0,1,0,0,0,1,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,7,7,7,7,10} + 1
[1,5,2,4,3] => [1,3,1] => [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> 3 = 2 + 1
[1,5,3,2,4] => [1,2,2] => [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,7,7,7,7,10} + 1
[1,5,3,4,2] => [1,3,1] => [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> 3 = 2 + 1
[1,5,4,2,3] => [1,1,3] => [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> 3 = 2 + 1
[1,5,4,3,2] => [1,1,2,1] => [2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,7,7,7,7,10} + 1
[2,1,3,4,5] => [5] => [5]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> 1 = 0 + 1
[2,1,3,5,4] => [3,2] => [3,2]
=> [1,1,0,0,1,0,1,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,7,7,7,7,10} + 1
[2,1,4,3,5] => [2,3] => [3,2]
=> [1,1,0,0,1,0,1,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,7,7,7,7,10} + 1
[2,1,4,5,3] => [2,3] => [3,2]
=> [1,1,0,0,1,0,1,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,7,7,7,7,10} + 1
[2,1,5,3,4] => [2,3] => [3,2]
=> [1,1,0,0,1,0,1,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,7,7,7,7,10} + 1
[2,1,5,4,3] => [2,2,1] => [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,7,7,7,7,10} + 1
[2,3,1,4,5] => [5] => [5]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> 1 = 0 + 1
[2,3,1,5,4] => [3,2] => [3,2]
=> [1,1,0,0,1,0,1,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,7,7,7,7,10} + 1
[2,3,4,1,5] => [5] => [5]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> 1 = 0 + 1
[2,3,4,5,1] => [5] => [5]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> 1 = 0 + 1
[2,3,5,1,4] => [5] => [5]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> 1 = 0 + 1
[2,3,5,4,1] => [4,1] => [4,1]
=> [1,1,1,0,1,0,0,0,1,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,7,7,7,7,10} + 1
[2,4,1,3,5] => [5] => [5]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> 1 = 0 + 1
[2,4,1,5,3] => [3,2] => [3,2]
=> [1,1,0,0,1,0,1,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,7,7,7,7,10} + 1
[2,4,3,1,5] => [3,2] => [3,2]
=> [1,1,0,0,1,0,1,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,7,7,7,7,10} + 1
[2,4,3,5,1] => [3,2] => [3,2]
=> [1,1,0,0,1,0,1,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,7,7,7,7,10} + 1
[2,4,5,1,3] => [5] => [5]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> 1 = 0 + 1
[2,4,5,3,1] => [4,1] => [4,1]
=> [1,1,1,0,1,0,0,0,1,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,7,7,7,7,10} + 1
[2,5,1,3,4] => [5] => [5]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> 1 = 0 + 1
[2,5,1,4,3] => [4,1] => [4,1]
=> [1,1,1,0,1,0,0,0,1,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,7,7,7,7,10} + 1
[2,5,3,1,4] => [3,2] => [3,2]
=> [1,1,0,0,1,0,1,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,7,7,7,7,10} + 1
[2,5,3,4,1] => [4,1] => [4,1]
=> [1,1,1,0,1,0,0,0,1,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,7,7,7,7,10} + 1
[2,5,4,1,3] => [2,3] => [3,2]
=> [1,1,0,0,1,0,1,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,7,7,7,7,10} + 1
[2,5,4,3,1] => [2,2,1] => [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,7,7,7,7,10} + 1
[3,1,2,4,5] => [5] => [5]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> 1 = 0 + 1
[3,1,2,5,4] => [3,2] => [3,2]
=> [1,1,0,0,1,0,1,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,7,7,7,7,10} + 1
[3,1,4,2,5] => [2,3] => [3,2]
=> [1,1,0,0,1,0,1,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,7,7,7,7,10} + 1
[3,1,4,5,2] => [2,3] => [3,2]
=> [1,1,0,0,1,0,1,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,7,7,7,7,10} + 1
[3,1,5,2,4] => [2,3] => [3,2]
=> [1,1,0,0,1,0,1,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,7,7,7,7,10} + 1
[3,4,1,2,5] => [5] => [5]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> 1 = 0 + 1
[3,4,5,1,2] => [5] => [5]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> 1 = 0 + 1
[3,5,1,2,4] => [5] => [5]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> 1 = 0 + 1
[4,1,2,3,5] => [5] => [5]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> 1 = 0 + 1
[4,3,5,2,1] => [1,3,1] => [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> 3 = 2 + 1
[4,5,1,2,3] => [5] => [5]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> 1 = 0 + 1
[4,5,3,2,1] => [3,1,1] => [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> 3 = 2 + 1
[5,1,2,3,4] => [5] => [5]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> 1 = 0 + 1
[5,3,1,4,2] => [1,3,1] => [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> 3 = 2 + 1
[5,3,2,4,1] => [1,3,1] => [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> 3 = 2 + 1
[5,3,4,2,1] => [1,3,1] => [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> 3 = 2 + 1
[5,4,1,3,2] => [1,3,1] => [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> 3 = 2 + 1
[5,4,2,3,1] => [1,3,1] => [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> 3 = 2 + 1
[1,2,3,4,5,6] => [6] => [6]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> 1 = 0 + 1
Description
The number of indecomposable modules with projective dimension 2 for Nakayama algebras with global dimension at most 2.
Matching statistic: St000772
(load all 9 compositions to match this statistic)
(load all 9 compositions to match this statistic)
Mp00248: Permutations —DEX composition⟶ Integer compositions
Mp00184: Integer compositions —to threshold graph⟶ Graphs
Mp00117: Graphs —Ore closure⟶ Graphs
St000772: Graphs ⟶ ℤResult quality: 33% ●values known / values provided: 33%●distinct values known / distinct values provided: 33%
Mp00184: Integer compositions —to threshold graph⟶ Graphs
Mp00117: Graphs —Ore closure⟶ Graphs
St000772: Graphs ⟶ ℤResult quality: 33% ●values known / values provided: 33%●distinct values known / distinct values provided: 33%
Values
[1] => [1] => ([],1)
=> ([],1)
=> 1 = 0 + 1
[1,2] => [2] => ([],2)
=> ([],2)
=> ? ∊ {0,0} + 1
[2,1] => [2] => ([],2)
=> ([],2)
=> ? ∊ {0,0} + 1
[1,2,3] => [3] => ([],3)
=> ([],3)
=> ? ∊ {0,0,0,0,1} + 1
[1,3,2] => [1,2] => ([(1,2)],3)
=> ([(1,2)],3)
=> ? ∊ {0,0,0,0,1} + 1
[2,1,3] => [3] => ([],3)
=> ([],3)
=> ? ∊ {0,0,0,0,1} + 1
[2,3,1] => [3] => ([],3)
=> ([],3)
=> ? ∊ {0,0,0,0,1} + 1
[3,1,2] => [3] => ([],3)
=> ([],3)
=> ? ∊ {0,0,0,0,1} + 1
[3,2,1] => [2,1] => ([(0,2),(1,2)],3)
=> ([(0,2),(1,2)],3)
=> 1 = 0 + 1
[1,2,3,4] => [4] => ([],4)
=> ([],4)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,1,1,1,2,2,2,4} + 1
[1,2,4,3] => [2,2] => ([(1,3),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,1,1,1,2,2,2,4} + 1
[1,3,2,4] => [1,3] => ([(2,3)],4)
=> ([(2,3)],4)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,1,1,1,2,2,2,4} + 1
[1,3,4,2] => [1,3] => ([(2,3)],4)
=> ([(2,3)],4)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,1,1,1,2,2,2,4} + 1
[1,4,2,3] => [1,3] => ([(2,3)],4)
=> ([(2,3)],4)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,1,1,1,2,2,2,4} + 1
[1,4,3,2] => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> 1 = 0 + 1
[2,1,3,4] => [4] => ([],4)
=> ([],4)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,1,1,1,2,2,2,4} + 1
[2,1,4,3] => [2,2] => ([(1,3),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,1,1,1,2,2,2,4} + 1
[2,3,1,4] => [4] => ([],4)
=> ([],4)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,1,1,1,2,2,2,4} + 1
[2,3,4,1] => [4] => ([],4)
=> ([],4)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,1,1,1,2,2,2,4} + 1
[2,4,1,3] => [4] => ([],4)
=> ([],4)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,1,1,1,2,2,2,4} + 1
[2,4,3,1] => [3,1] => ([(0,3),(1,3),(2,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> 2 = 1 + 1
[3,1,2,4] => [4] => ([],4)
=> ([],4)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,1,1,1,2,2,2,4} + 1
[3,1,4,2] => [2,2] => ([(1,3),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,1,1,1,2,2,2,4} + 1
[3,2,1,4] => [2,2] => ([(1,3),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,1,1,1,2,2,2,4} + 1
[3,2,4,1] => [2,2] => ([(1,3),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,1,1,1,2,2,2,4} + 1
[3,4,1,2] => [4] => ([],4)
=> ([],4)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,1,1,1,2,2,2,4} + 1
[3,4,2,1] => [3,1] => ([(0,3),(1,3),(2,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> 2 = 1 + 1
[4,1,2,3] => [4] => ([],4)
=> ([],4)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,1,1,1,2,2,2,4} + 1
[4,1,3,2] => [3,1] => ([(0,3),(1,3),(2,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> 2 = 1 + 1
[4,2,1,3] => [2,2] => ([(1,3),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,1,1,1,2,2,2,4} + 1
[4,2,3,1] => [3,1] => ([(0,3),(1,3),(2,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> 2 = 1 + 1
[4,3,1,2] => [1,3] => ([(2,3)],4)
=> ([(2,3)],4)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,1,1,1,2,2,2,4} + 1
[4,3,2,1] => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> 1 = 0 + 1
[1,2,3,4,5] => [5] => ([],5)
=> ([],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,7,7,7,7,10} + 1
[1,2,3,5,4] => [3,2] => ([(1,4),(2,4),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,7,7,7,7,10} + 1
[1,2,4,3,5] => [2,3] => ([(2,4),(3,4)],5)
=> ([(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,7,7,7,7,10} + 1
[1,2,4,5,3] => [2,3] => ([(2,4),(3,4)],5)
=> ([(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,7,7,7,7,10} + 1
[1,2,5,3,4] => [2,3] => ([(2,4),(3,4)],5)
=> ([(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,7,7,7,7,10} + 1
[1,2,5,4,3] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1 = 0 + 1
[1,3,2,4,5] => [1,4] => ([(3,4)],5)
=> ([(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,7,7,7,7,10} + 1
[1,3,2,5,4] => [1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,7,7,7,7,10} + 1
[1,3,4,2,5] => [1,4] => ([(3,4)],5)
=> ([(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,7,7,7,7,10} + 1
[1,3,4,5,2] => [1,4] => ([(3,4)],5)
=> ([(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,7,7,7,7,10} + 1
[1,3,5,2,4] => [1,4] => ([(3,4)],5)
=> ([(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,7,7,7,7,10} + 1
[1,3,5,4,2] => [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 2 = 1 + 1
[1,4,2,3,5] => [1,4] => ([(3,4)],5)
=> ([(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,7,7,7,7,10} + 1
[1,4,2,5,3] => [1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,7,7,7,7,10} + 1
[1,4,3,2,5] => [1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,7,7,7,7,10} + 1
[1,4,3,5,2] => [1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,7,7,7,7,10} + 1
[1,4,5,2,3] => [1,4] => ([(3,4)],5)
=> ([(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,7,7,7,7,10} + 1
[1,4,5,3,2] => [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 2 = 1 + 1
[1,5,2,3,4] => [1,4] => ([(3,4)],5)
=> ([(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,7,7,7,7,10} + 1
[1,5,2,4,3] => [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 2 = 1 + 1
[1,5,3,2,4] => [1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,7,7,7,7,10} + 1
[1,5,3,4,2] => [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 2 = 1 + 1
[1,5,4,2,3] => [1,1,3] => ([(2,3),(2,4),(3,4)],5)
=> ([(2,3),(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,7,7,7,7,10} + 1
[1,5,4,3,2] => [1,1,2,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1 = 0 + 1
[2,1,3,4,5] => [5] => ([],5)
=> ([],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,7,7,7,7,10} + 1
[2,1,3,5,4] => [3,2] => ([(1,4),(2,4),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,7,7,7,7,10} + 1
[2,1,4,3,5] => [2,3] => ([(2,4),(3,4)],5)
=> ([(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,7,7,7,7,10} + 1
[2,1,4,5,3] => [2,3] => ([(2,4),(3,4)],5)
=> ([(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,7,7,7,7,10} + 1
[2,1,5,3,4] => [2,3] => ([(2,4),(3,4)],5)
=> ([(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,7,7,7,7,10} + 1
[2,1,5,4,3] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1 = 0 + 1
[2,3,1,4,5] => [5] => ([],5)
=> ([],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,7,7,7,7,10} + 1
[2,3,1,5,4] => [3,2] => ([(1,4),(2,4),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,7,7,7,7,10} + 1
[2,3,5,4,1] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 3 = 2 + 1
[2,4,5,3,1] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 3 = 2 + 1
[2,5,1,4,3] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 3 = 2 + 1
[2,5,3,4,1] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 3 = 2 + 1
[2,5,4,3,1] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1 = 0 + 1
[3,1,5,4,2] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1 = 0 + 1
[3,2,5,4,1] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1 = 0 + 1
[3,4,5,2,1] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 3 = 2 + 1
[3,5,1,4,2] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 3 = 2 + 1
[3,5,2,4,1] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 3 = 2 + 1
[3,5,4,2,1] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1 = 0 + 1
[4,1,5,3,2] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1 = 0 + 1
[4,2,5,3,1] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1 = 0 + 1
[4,3,5,2,1] => [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 2 = 1 + 1
[4,5,1,3,2] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 3 = 2 + 1
[4,5,2,3,1] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 3 = 2 + 1
[4,5,3,2,1] => [3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2 = 1 + 1
[5,1,2,4,3] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 3 = 2 + 1
[5,1,3,4,2] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 3 = 2 + 1
[5,1,4,3,2] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1 = 0 + 1
[5,2,1,4,3] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1 = 0 + 1
[5,2,3,4,1] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 3 = 2 + 1
[5,2,4,3,1] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1 = 0 + 1
[5,3,1,4,2] => [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 2 = 1 + 1
[5,3,2,4,1] => [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 2 = 1 + 1
[5,3,4,2,1] => [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 2 = 1 + 1
[5,4,1,3,2] => [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 2 = 1 + 1
[5,4,2,3,1] => [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 2 = 1 + 1
[5,4,3,2,1] => [1,2,1,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4 = 3 + 1
[1,2,3,6,5,4] => [3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1 = 0 + 1
[1,2,4,6,5,3] => [2,3,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2 = 1 + 1
[1,2,5,6,4,3] => [2,3,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2 = 1 + 1
[1,2,6,3,5,4] => [2,3,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2 = 1 + 1
[1,2,6,4,5,3] => [2,3,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2 = 1 + 1
[1,2,6,5,4,3] => [2,1,2,1] => ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1 = 0 + 1
Description
The multiplicity of the largest distance Laplacian eigenvalue in a connected graph.
The distance Laplacian of a graph is the (symmetric) matrix with row and column sums 0, which has the negative distances between two vertices as its off-diagonal entries. This statistic is the largest multiplicity of an eigenvalue.
For example, the cycle on four vertices has distance Laplacian
(4−1−2−1−14−1−2−2−14−1−1−2−14).
Its eigenvalues are 0,4,4,6, so the statistic is 1.
The path on four vertices has eigenvalues 0,4.7…,6,9.2… and therefore also statistic 1.
The graphs with statistic n−1, n−2 and n−3 have been characterised, see [1].
Matching statistic: St000770
(load all 3 compositions to match this statistic)
(load all 3 compositions to match this statistic)
Mp00127: Permutations —left-to-right-maxima to Dyck path⟶ Dyck paths
Mp00233: Dyck paths —skew partition⟶ Skew partitions
Mp00183: Skew partitions —inner shape⟶ Integer partitions
St000770: Integer partitions ⟶ ℤResult quality: 31% ●values known / values provided: 31%●distinct values known / distinct values provided: 40%
Mp00233: Dyck paths —skew partition⟶ Skew partitions
Mp00183: Skew partitions —inner shape⟶ Integer partitions
St000770: Integer partitions ⟶ ℤResult quality: 31% ●values known / values provided: 31%●distinct values known / distinct values provided: 40%
Values
[1] => [1,0]
=> [[1],[]]
=> []
=> ? = 0
[1,2] => [1,0,1,0]
=> [[1,1],[]]
=> []
=> ? ∊ {0,0}
[2,1] => [1,1,0,0]
=> [[2],[]]
=> []
=> ? ∊ {0,0}
[1,2,3] => [1,0,1,0,1,0]
=> [[1,1,1],[]]
=> []
=> ? ∊ {0,0,0,0,0,1}
[1,3,2] => [1,0,1,1,0,0]
=> [[2,1],[]]
=> []
=> ? ∊ {0,0,0,0,0,1}
[2,1,3] => [1,1,0,0,1,0]
=> [[2,2],[1]]
=> [1]
=> ? ∊ {0,0,0,0,0,1}
[2,3,1] => [1,1,0,1,0,0]
=> [[3],[]]
=> []
=> ? ∊ {0,0,0,0,0,1}
[3,1,2] => [1,1,1,0,0,0]
=> [[2,2],[]]
=> []
=> ? ∊ {0,0,0,0,0,1}
[3,2,1] => [1,1,1,0,0,0]
=> [[2,2],[]]
=> []
=> ? ∊ {0,0,0,0,0,1}
[1,2,3,4] => [1,0,1,0,1,0,1,0]
=> [[1,1,1,1],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,2,2,4}
[1,2,4,3] => [1,0,1,0,1,1,0,0]
=> [[2,1,1],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,2,2,4}
[1,3,2,4] => [1,0,1,1,0,0,1,0]
=> [[2,2,1],[1]]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,2,2,4}
[1,3,4,2] => [1,0,1,1,0,1,0,0]
=> [[3,1],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,2,2,4}
[1,4,2,3] => [1,0,1,1,1,0,0,0]
=> [[2,2,1],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,2,2,4}
[1,4,3,2] => [1,0,1,1,1,0,0,0]
=> [[2,2,1],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,2,2,4}
[2,1,3,4] => [1,1,0,0,1,0,1,0]
=> [[2,2,2],[1,1]]
=> [1,1]
=> 1
[2,1,4,3] => [1,1,0,0,1,1,0,0]
=> [[3,2],[1]]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,2,2,4}
[2,3,1,4] => [1,1,0,1,0,0,1,0]
=> [[3,3],[2]]
=> [2]
=> 2
[2,3,4,1] => [1,1,0,1,0,1,0,0]
=> [[4],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,2,2,4}
[2,4,1,3] => [1,1,0,1,1,0,0,0]
=> [[3,3],[1]]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,2,2,4}
[2,4,3,1] => [1,1,0,1,1,0,0,0]
=> [[3,3],[1]]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,2,2,4}
[3,1,2,4] => [1,1,1,0,0,0,1,0]
=> [[2,2,2],[1]]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,2,2,4}
[3,1,4,2] => [1,1,1,0,0,1,0,0]
=> [[3,2],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,2,2,4}
[3,2,1,4] => [1,1,1,0,0,0,1,0]
=> [[2,2,2],[1]]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,2,2,4}
[3,2,4,1] => [1,1,1,0,0,1,0,0]
=> [[3,2],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,2,2,4}
[3,4,1,2] => [1,1,1,0,1,0,0,0]
=> [[2,2,2],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,2,2,4}
[3,4,2,1] => [1,1,1,0,1,0,0,0]
=> [[2,2,2],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,2,2,4}
[4,1,2,3] => [1,1,1,1,0,0,0,0]
=> [[3,3],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,2,2,4}
[4,1,3,2] => [1,1,1,1,0,0,0,0]
=> [[3,3],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,2,2,4}
[4,2,1,3] => [1,1,1,1,0,0,0,0]
=> [[3,3],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,2,2,4}
[4,2,3,1] => [1,1,1,1,0,0,0,0]
=> [[3,3],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,2,2,4}
[4,3,1,2] => [1,1,1,1,0,0,0,0]
=> [[3,3],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,2,2,4}
[4,3,2,1] => [1,1,1,1,0,0,0,0]
=> [[3,3],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,2,2,4}
[1,2,3,4,5] => [1,0,1,0,1,0,1,0,1,0]
=> [[1,1,1,1,1],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,7,7,7,7,10}
[1,2,3,5,4] => [1,0,1,0,1,0,1,1,0,0]
=> [[2,1,1,1],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,7,7,7,7,10}
[1,2,4,3,5] => [1,0,1,0,1,1,0,0,1,0]
=> [[2,2,1,1],[1]]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,7,7,7,7,10}
[1,2,4,5,3] => [1,0,1,0,1,1,0,1,0,0]
=> [[3,1,1],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,7,7,7,7,10}
[1,2,5,3,4] => [1,0,1,0,1,1,1,0,0,0]
=> [[2,2,1,1],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,7,7,7,7,10}
[1,2,5,4,3] => [1,0,1,0,1,1,1,0,0,0]
=> [[2,2,1,1],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,7,7,7,7,10}
[1,3,2,4,5] => [1,0,1,1,0,0,1,0,1,0]
=> [[2,2,2,1],[1,1]]
=> [1,1]
=> 1
[1,3,2,5,4] => [1,0,1,1,0,0,1,1,0,0]
=> [[3,2,1],[1]]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,7,7,7,7,10}
[1,3,4,2,5] => [1,0,1,1,0,1,0,0,1,0]
=> [[3,3,1],[2]]
=> [2]
=> 2
[1,3,4,5,2] => [1,0,1,1,0,1,0,1,0,0]
=> [[4,1],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,7,7,7,7,10}
[1,3,5,2,4] => [1,0,1,1,0,1,1,0,0,0]
=> [[3,3,1],[1]]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,7,7,7,7,10}
[1,3,5,4,2] => [1,0,1,1,0,1,1,0,0,0]
=> [[3,3,1],[1]]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,7,7,7,7,10}
[1,4,2,3,5] => [1,0,1,1,1,0,0,0,1,0]
=> [[2,2,2,1],[1]]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,7,7,7,7,10}
[1,4,2,5,3] => [1,0,1,1,1,0,0,1,0,0]
=> [[3,2,1],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,7,7,7,7,10}
[1,4,3,2,5] => [1,0,1,1,1,0,0,0,1,0]
=> [[2,2,2,1],[1]]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,7,7,7,7,10}
[1,4,3,5,2] => [1,0,1,1,1,0,0,1,0,0]
=> [[3,2,1],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,7,7,7,7,10}
[1,4,5,2,3] => [1,0,1,1,1,0,1,0,0,0]
=> [[2,2,2,1],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,7,7,7,7,10}
[1,4,5,3,2] => [1,0,1,1,1,0,1,0,0,0]
=> [[2,2,2,1],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,7,7,7,7,10}
[1,5,2,3,4] => [1,0,1,1,1,1,0,0,0,0]
=> [[3,3,1],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,7,7,7,7,10}
[1,5,2,4,3] => [1,0,1,1,1,1,0,0,0,0]
=> [[3,3,1],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,7,7,7,7,10}
[1,5,3,2,4] => [1,0,1,1,1,1,0,0,0,0]
=> [[3,3,1],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,7,7,7,7,10}
[2,1,3,4,5] => [1,1,0,0,1,0,1,0,1,0]
=> [[2,2,2,2],[1,1,1]]
=> [1,1,1]
=> 1
[2,1,3,5,4] => [1,1,0,0,1,0,1,1,0,0]
=> [[3,2,2],[1,1]]
=> [1,1]
=> 1
[2,1,4,3,5] => [1,1,0,0,1,1,0,0,1,0]
=> [[3,3,2],[2,1]]
=> [2,1]
=> 4
[2,1,5,3,4] => [1,1,0,0,1,1,1,0,0,0]
=> [[3,3,2],[1,1]]
=> [1,1]
=> 1
[2,1,5,4,3] => [1,1,0,0,1,1,1,0,0,0]
=> [[3,3,2],[1,1]]
=> [1,1]
=> 1
[2,3,1,4,5] => [1,1,0,1,0,0,1,0,1,0]
=> [[3,3,3],[2,2]]
=> [2,2]
=> 2
[2,3,1,5,4] => [1,1,0,1,0,0,1,1,0,0]
=> [[4,3],[2]]
=> [2]
=> 2
[2,3,4,1,5] => [1,1,0,1,0,1,0,0,1,0]
=> [[4,4],[3]]
=> [3]
=> 3
[2,3,5,1,4] => [1,1,0,1,0,1,1,0,0,0]
=> [[4,4],[2]]
=> [2]
=> 2
[2,3,5,4,1] => [1,1,0,1,0,1,1,0,0,0]
=> [[4,4],[2]]
=> [2]
=> 2
[2,4,1,3,5] => [1,1,0,1,1,0,0,0,1,0]
=> [[3,3,3],[2,1]]
=> [2,1]
=> 4
[2,4,3,1,5] => [1,1,0,1,1,0,0,0,1,0]
=> [[3,3,3],[2,1]]
=> [2,1]
=> 4
[2,4,5,1,3] => [1,1,0,1,1,0,1,0,0,0]
=> [[3,3,3],[1,1]]
=> [1,1]
=> 1
[2,4,5,3,1] => [1,1,0,1,1,0,1,0,0,0]
=> [[3,3,3],[1,1]]
=> [1,1]
=> 1
[3,1,2,4,5] => [1,1,1,0,0,0,1,0,1,0]
=> [[2,2,2,2],[1,1]]
=> [1,1]
=> 1
[3,1,4,2,5] => [1,1,1,0,0,1,0,0,1,0]
=> [[3,3,2],[2]]
=> [2]
=> 2
[3,2,1,4,5] => [1,1,1,0,0,0,1,0,1,0]
=> [[2,2,2,2],[1,1]]
=> [1,1]
=> 1
[3,2,4,1,5] => [1,1,1,0,0,1,0,0,1,0]
=> [[3,3,2],[2]]
=> [2]
=> 2
[4,1,2,3,5] => [1,1,1,1,0,0,0,0,1,0]
=> [[3,3,3],[2]]
=> [2]
=> 2
[4,1,3,2,5] => [1,1,1,1,0,0,0,0,1,0]
=> [[3,3,3],[2]]
=> [2]
=> 2
[4,2,1,3,5] => [1,1,1,1,0,0,0,0,1,0]
=> [[3,3,3],[2]]
=> [2]
=> 2
[4,2,3,1,5] => [1,1,1,1,0,0,0,0,1,0]
=> [[3,3,3],[2]]
=> [2]
=> 2
[4,3,1,2,5] => [1,1,1,1,0,0,0,0,1,0]
=> [[3,3,3],[2]]
=> [2]
=> 2
[4,3,2,1,5] => [1,1,1,1,0,0,0,0,1,0]
=> [[3,3,3],[2]]
=> [2]
=> 2
[1,2,4,3,5,6] => [1,0,1,0,1,1,0,0,1,0,1,0]
=> [[2,2,2,1,1],[1,1]]
=> [1,1]
=> 1
[1,2,4,5,3,6] => [1,0,1,0,1,1,0,1,0,0,1,0]
=> [[3,3,1,1],[2]]
=> [2]
=> 2
[1,3,2,4,5,6] => [1,0,1,1,0,0,1,0,1,0,1,0]
=> [[2,2,2,2,1],[1,1,1]]
=> [1,1,1]
=> 1
[1,3,2,4,6,5] => [1,0,1,1,0,0,1,0,1,1,0,0]
=> [[3,2,2,1],[1,1]]
=> [1,1]
=> 1
[1,3,2,5,4,6] => [1,0,1,1,0,0,1,1,0,0,1,0]
=> [[3,3,2,1],[2,1]]
=> [2,1]
=> 4
[1,3,2,6,4,5] => [1,0,1,1,0,0,1,1,1,0,0,0]
=> [[3,3,2,1],[1,1]]
=> [1,1]
=> 1
[1,3,2,6,5,4] => [1,0,1,1,0,0,1,1,1,0,0,0]
=> [[3,3,2,1],[1,1]]
=> [1,1]
=> 1
[1,3,4,2,5,6] => [1,0,1,1,0,1,0,0,1,0,1,0]
=> [[3,3,3,1],[2,2]]
=> [2,2]
=> 2
[1,3,4,2,6,5] => [1,0,1,1,0,1,0,0,1,1,0,0]
=> [[4,3,1],[2]]
=> [2]
=> 2
[1,3,4,5,2,6] => [1,0,1,1,0,1,0,1,0,0,1,0]
=> [[4,4,1],[3]]
=> [3]
=> 3
[1,3,4,6,2,5] => [1,0,1,1,0,1,0,1,1,0,0,0]
=> [[4,4,1],[2]]
=> [2]
=> 2
[1,3,4,6,5,2] => [1,0,1,1,0,1,0,1,1,0,0,0]
=> [[4,4,1],[2]]
=> [2]
=> 2
[1,3,5,2,4,6] => [1,0,1,1,0,1,1,0,0,0,1,0]
=> [[3,3,3,1],[2,1]]
=> [2,1]
=> 4
[1,3,5,4,2,6] => [1,0,1,1,0,1,1,0,0,0,1,0]
=> [[3,3,3,1],[2,1]]
=> [2,1]
=> 4
[1,3,5,6,2,4] => [1,0,1,1,0,1,1,0,1,0,0,0]
=> [[3,3,3,1],[1,1]]
=> [1,1]
=> 1
[1,3,5,6,4,2] => [1,0,1,1,0,1,1,0,1,0,0,0]
=> [[3,3,3,1],[1,1]]
=> [1,1]
=> 1
[1,4,2,3,5,6] => [1,0,1,1,1,0,0,0,1,0,1,0]
=> [[2,2,2,2,1],[1,1]]
=> [1,1]
=> 1
[1,4,2,5,3,6] => [1,0,1,1,1,0,0,1,0,0,1,0]
=> [[3,3,2,1],[2]]
=> [2]
=> 2
[1,4,3,2,5,6] => [1,0,1,1,1,0,0,0,1,0,1,0]
=> [[2,2,2,2,1],[1,1]]
=> [1,1]
=> 1
[1,4,3,5,2,6] => [1,0,1,1,1,0,0,1,0,0,1,0]
=> [[3,3,2,1],[2]]
=> [2]
=> 2
[1,5,2,3,4,6] => [1,0,1,1,1,1,0,0,0,0,1,0]
=> [[3,3,3,1],[2]]
=> [2]
=> 2
[1,5,2,4,3,6] => [1,0,1,1,1,1,0,0,0,0,1,0]
=> [[3,3,3,1],[2]]
=> [2]
=> 2
Description
The major index of an integer partition when read from bottom to top.
This is the sum of the positions of the corners of the shape of an integer partition when reading from bottom to top.
For example, the partition λ=(8,6,6,4,3,3) has corners at positions 3,6,9, and 13, giving a major index of 31.
Matching statistic: St000939
(load all 2 compositions to match this statistic)
(load all 2 compositions to match this statistic)
Mp00127: Permutations —left-to-right-maxima to Dyck path⟶ Dyck paths
Mp00233: Dyck paths —skew partition⟶ Skew partitions
Mp00183: Skew partitions —inner shape⟶ Integer partitions
St000939: Integer partitions ⟶ ℤResult quality: 31% ●values known / values provided: 31%●distinct values known / distinct values provided: 40%
Mp00233: Dyck paths —skew partition⟶ Skew partitions
Mp00183: Skew partitions —inner shape⟶ Integer partitions
St000939: Integer partitions ⟶ ℤResult quality: 31% ●values known / values provided: 31%●distinct values known / distinct values provided: 40%
Values
[1] => [1,0]
=> [[1],[]]
=> []
=> ? = 0
[1,2] => [1,0,1,0]
=> [[1,1],[]]
=> []
=> ? ∊ {0,0}
[2,1] => [1,1,0,0]
=> [[2],[]]
=> []
=> ? ∊ {0,0}
[1,2,3] => [1,0,1,0,1,0]
=> [[1,1,1],[]]
=> []
=> ? ∊ {0,0,0,0,0,1}
[1,3,2] => [1,0,1,1,0,0]
=> [[2,1],[]]
=> []
=> ? ∊ {0,0,0,0,0,1}
[2,1,3] => [1,1,0,0,1,0]
=> [[2,2],[1]]
=> [1]
=> ? ∊ {0,0,0,0,0,1}
[2,3,1] => [1,1,0,1,0,0]
=> [[3],[]]
=> []
=> ? ∊ {0,0,0,0,0,1}
[3,1,2] => [1,1,1,0,0,0]
=> [[2,2],[]]
=> []
=> ? ∊ {0,0,0,0,0,1}
[3,2,1] => [1,1,1,0,0,0]
=> [[2,2],[]]
=> []
=> ? ∊ {0,0,0,0,0,1}
[1,2,3,4] => [1,0,1,0,1,0,1,0]
=> [[1,1,1,1],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,2,2,4}
[1,2,4,3] => [1,0,1,0,1,1,0,0]
=> [[2,1,1],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,2,2,4}
[1,3,2,4] => [1,0,1,1,0,0,1,0]
=> [[2,2,1],[1]]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,2,2,4}
[1,3,4,2] => [1,0,1,1,0,1,0,0]
=> [[3,1],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,2,2,4}
[1,4,2,3] => [1,0,1,1,1,0,0,0]
=> [[2,2,1],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,2,2,4}
[1,4,3,2] => [1,0,1,1,1,0,0,0]
=> [[2,2,1],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,2,2,4}
[2,1,3,4] => [1,1,0,0,1,0,1,0]
=> [[2,2,2],[1,1]]
=> [1,1]
=> 2
[2,1,4,3] => [1,1,0,0,1,1,0,0]
=> [[3,2],[1]]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,2,2,4}
[2,3,1,4] => [1,1,0,1,0,0,1,0]
=> [[3,3],[2]]
=> [2]
=> 1
[2,3,4,1] => [1,1,0,1,0,1,0,0]
=> [[4],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,2,2,4}
[2,4,1,3] => [1,1,0,1,1,0,0,0]
=> [[3,3],[1]]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,2,2,4}
[2,4,3,1] => [1,1,0,1,1,0,0,0]
=> [[3,3],[1]]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,2,2,4}
[3,1,2,4] => [1,1,1,0,0,0,1,0]
=> [[2,2,2],[1]]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,2,2,4}
[3,1,4,2] => [1,1,1,0,0,1,0,0]
=> [[3,2],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,2,2,4}
[3,2,1,4] => [1,1,1,0,0,0,1,0]
=> [[2,2,2],[1]]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,2,2,4}
[3,2,4,1] => [1,1,1,0,0,1,0,0]
=> [[3,2],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,2,2,4}
[3,4,1,2] => [1,1,1,0,1,0,0,0]
=> [[2,2,2],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,2,2,4}
[3,4,2,1] => [1,1,1,0,1,0,0,0]
=> [[2,2,2],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,2,2,4}
[4,1,2,3] => [1,1,1,1,0,0,0,0]
=> [[3,3],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,2,2,4}
[4,1,3,2] => [1,1,1,1,0,0,0,0]
=> [[3,3],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,2,2,4}
[4,2,1,3] => [1,1,1,1,0,0,0,0]
=> [[3,3],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,2,2,4}
[4,2,3,1] => [1,1,1,1,0,0,0,0]
=> [[3,3],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,2,2,4}
[4,3,1,2] => [1,1,1,1,0,0,0,0]
=> [[3,3],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,2,2,4}
[4,3,2,1] => [1,1,1,1,0,0,0,0]
=> [[3,3],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,2,2,4}
[1,2,3,4,5] => [1,0,1,0,1,0,1,0,1,0]
=> [[1,1,1,1,1],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,7,7,7,7,10}
[1,2,3,5,4] => [1,0,1,0,1,0,1,1,0,0]
=> [[2,1,1,1],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,7,7,7,7,10}
[1,2,4,3,5] => [1,0,1,0,1,1,0,0,1,0]
=> [[2,2,1,1],[1]]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,7,7,7,7,10}
[1,2,4,5,3] => [1,0,1,0,1,1,0,1,0,0]
=> [[3,1,1],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,7,7,7,7,10}
[1,2,5,3,4] => [1,0,1,0,1,1,1,0,0,0]
=> [[2,2,1,1],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,7,7,7,7,10}
[1,2,5,4,3] => [1,0,1,0,1,1,1,0,0,0]
=> [[2,2,1,1],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,7,7,7,7,10}
[1,3,2,4,5] => [1,0,1,1,0,0,1,0,1,0]
=> [[2,2,2,1],[1,1]]
=> [1,1]
=> 2
[1,3,2,5,4] => [1,0,1,1,0,0,1,1,0,0]
=> [[3,2,1],[1]]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,7,7,7,7,10}
[1,3,4,2,5] => [1,0,1,1,0,1,0,0,1,0]
=> [[3,3,1],[2]]
=> [2]
=> 1
[1,3,4,5,2] => [1,0,1,1,0,1,0,1,0,0]
=> [[4,1],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,7,7,7,7,10}
[1,3,5,2,4] => [1,0,1,1,0,1,1,0,0,0]
=> [[3,3,1],[1]]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,7,7,7,7,10}
[1,3,5,4,2] => [1,0,1,1,0,1,1,0,0,0]
=> [[3,3,1],[1]]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,7,7,7,7,10}
[1,4,2,3,5] => [1,0,1,1,1,0,0,0,1,0]
=> [[2,2,2,1],[1]]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,7,7,7,7,10}
[1,4,2,5,3] => [1,0,1,1,1,0,0,1,0,0]
=> [[3,2,1],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,7,7,7,7,10}
[1,4,3,2,5] => [1,0,1,1,1,0,0,0,1,0]
=> [[2,2,2,1],[1]]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,7,7,7,7,10}
[1,4,3,5,2] => [1,0,1,1,1,0,0,1,0,0]
=> [[3,2,1],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,7,7,7,7,10}
[1,4,5,2,3] => [1,0,1,1,1,0,1,0,0,0]
=> [[2,2,2,1],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,7,7,7,7,10}
[1,4,5,3,2] => [1,0,1,1,1,0,1,0,0,0]
=> [[2,2,2,1],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,7,7,7,7,10}
[1,5,2,3,4] => [1,0,1,1,1,1,0,0,0,0]
=> [[3,3,1],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,7,7,7,7,10}
[1,5,2,4,3] => [1,0,1,1,1,1,0,0,0,0]
=> [[3,3,1],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,7,7,7,7,10}
[1,5,3,2,4] => [1,0,1,1,1,1,0,0,0,0]
=> [[3,3,1],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,7,7,7,7,10}
[2,1,3,4,5] => [1,1,0,0,1,0,1,0,1,0]
=> [[2,2,2,2],[1,1,1]]
=> [1,1,1]
=> 3
[2,1,3,5,4] => [1,1,0,0,1,0,1,1,0,0]
=> [[3,2,2],[1,1]]
=> [1,1]
=> 2
[2,1,4,3,5] => [1,1,0,0,1,1,0,0,1,0]
=> [[3,3,2],[2,1]]
=> [2,1]
=> 1
[2,1,5,3,4] => [1,1,0,0,1,1,1,0,0,0]
=> [[3,3,2],[1,1]]
=> [1,1]
=> 2
[2,1,5,4,3] => [1,1,0,0,1,1,1,0,0,0]
=> [[3,3,2],[1,1]]
=> [1,1]
=> 2
[2,3,1,4,5] => [1,1,0,1,0,0,1,0,1,0]
=> [[3,3,3],[2,2]]
=> [2,2]
=> 3
[2,3,1,5,4] => [1,1,0,1,0,0,1,1,0,0]
=> [[4,3],[2]]
=> [2]
=> 1
[2,3,4,1,5] => [1,1,0,1,0,1,0,0,1,0]
=> [[4,4],[3]]
=> [3]
=> 2
[2,3,5,1,4] => [1,1,0,1,0,1,1,0,0,0]
=> [[4,4],[2]]
=> [2]
=> 1
[2,3,5,4,1] => [1,1,0,1,0,1,1,0,0,0]
=> [[4,4],[2]]
=> [2]
=> 1
[2,4,1,3,5] => [1,1,0,1,1,0,0,0,1,0]
=> [[3,3,3],[2,1]]
=> [2,1]
=> 1
[2,4,3,1,5] => [1,1,0,1,1,0,0,0,1,0]
=> [[3,3,3],[2,1]]
=> [2,1]
=> 1
[2,4,5,1,3] => [1,1,0,1,1,0,1,0,0,0]
=> [[3,3,3],[1,1]]
=> [1,1]
=> 2
[2,4,5,3,1] => [1,1,0,1,1,0,1,0,0,0]
=> [[3,3,3],[1,1]]
=> [1,1]
=> 2
[3,1,2,4,5] => [1,1,1,0,0,0,1,0,1,0]
=> [[2,2,2,2],[1,1]]
=> [1,1]
=> 2
[3,1,4,2,5] => [1,1,1,0,0,1,0,0,1,0]
=> [[3,3,2],[2]]
=> [2]
=> 1
[3,2,1,4,5] => [1,1,1,0,0,0,1,0,1,0]
=> [[2,2,2,2],[1,1]]
=> [1,1]
=> 2
[3,2,4,1,5] => [1,1,1,0,0,1,0,0,1,0]
=> [[3,3,2],[2]]
=> [2]
=> 1
[4,1,2,3,5] => [1,1,1,1,0,0,0,0,1,0]
=> [[3,3,3],[2]]
=> [2]
=> 1
[4,1,3,2,5] => [1,1,1,1,0,0,0,0,1,0]
=> [[3,3,3],[2]]
=> [2]
=> 1
[4,2,1,3,5] => [1,1,1,1,0,0,0,0,1,0]
=> [[3,3,3],[2]]
=> [2]
=> 1
[4,2,3,1,5] => [1,1,1,1,0,0,0,0,1,0]
=> [[3,3,3],[2]]
=> [2]
=> 1
[4,3,1,2,5] => [1,1,1,1,0,0,0,0,1,0]
=> [[3,3,3],[2]]
=> [2]
=> 1
[4,3,2,1,5] => [1,1,1,1,0,0,0,0,1,0]
=> [[3,3,3],[2]]
=> [2]
=> 1
[1,2,4,3,5,6] => [1,0,1,0,1,1,0,0,1,0,1,0]
=> [[2,2,2,1,1],[1,1]]
=> [1,1]
=> 2
[1,2,4,5,3,6] => [1,0,1,0,1,1,0,1,0,0,1,0]
=> [[3,3,1,1],[2]]
=> [2]
=> 1
[1,3,2,4,5,6] => [1,0,1,1,0,0,1,0,1,0,1,0]
=> [[2,2,2,2,1],[1,1,1]]
=> [1,1,1]
=> 3
[1,3,2,4,6,5] => [1,0,1,1,0,0,1,0,1,1,0,0]
=> [[3,2,2,1],[1,1]]
=> [1,1]
=> 2
[1,3,2,5,4,6] => [1,0,1,1,0,0,1,1,0,0,1,0]
=> [[3,3,2,1],[2,1]]
=> [2,1]
=> 1
[1,3,2,6,4,5] => [1,0,1,1,0,0,1,1,1,0,0,0]
=> [[3,3,2,1],[1,1]]
=> [1,1]
=> 2
[1,3,2,6,5,4] => [1,0,1,1,0,0,1,1,1,0,0,0]
=> [[3,3,2,1],[1,1]]
=> [1,1]
=> 2
[1,3,4,2,5,6] => [1,0,1,1,0,1,0,0,1,0,1,0]
=> [[3,3,3,1],[2,2]]
=> [2,2]
=> 3
[1,3,4,2,6,5] => [1,0,1,1,0,1,0,0,1,1,0,0]
=> [[4,3,1],[2]]
=> [2]
=> 1
[1,3,4,5,2,6] => [1,0,1,1,0,1,0,1,0,0,1,0]
=> [[4,4,1],[3]]
=> [3]
=> 2
[1,3,4,6,2,5] => [1,0,1,1,0,1,0,1,1,0,0,0]
=> [[4,4,1],[2]]
=> [2]
=> 1
[1,3,4,6,5,2] => [1,0,1,1,0,1,0,1,1,0,0,0]
=> [[4,4,1],[2]]
=> [2]
=> 1
[1,3,5,2,4,6] => [1,0,1,1,0,1,1,0,0,0,1,0]
=> [[3,3,3,1],[2,1]]
=> [2,1]
=> 1
[1,3,5,4,2,6] => [1,0,1,1,0,1,1,0,0,0,1,0]
=> [[3,3,3,1],[2,1]]
=> [2,1]
=> 1
[1,3,5,6,2,4] => [1,0,1,1,0,1,1,0,1,0,0,0]
=> [[3,3,3,1],[1,1]]
=> [1,1]
=> 2
[1,3,5,6,4,2] => [1,0,1,1,0,1,1,0,1,0,0,0]
=> [[3,3,3,1],[1,1]]
=> [1,1]
=> 2
[1,4,2,3,5,6] => [1,0,1,1,1,0,0,0,1,0,1,0]
=> [[2,2,2,2,1],[1,1]]
=> [1,1]
=> 2
[1,4,2,5,3,6] => [1,0,1,1,1,0,0,1,0,0,1,0]
=> [[3,3,2,1],[2]]
=> [2]
=> 1
[1,4,3,2,5,6] => [1,0,1,1,1,0,0,0,1,0,1,0]
=> [[2,2,2,2,1],[1,1]]
=> [1,1]
=> 2
[1,4,3,5,2,6] => [1,0,1,1,1,0,0,1,0,0,1,0]
=> [[3,3,2,1],[2]]
=> [2]
=> 1
[1,5,2,3,4,6] => [1,0,1,1,1,1,0,0,0,0,1,0]
=> [[3,3,3,1],[2]]
=> [2]
=> 1
[1,5,2,4,3,6] => [1,0,1,1,1,1,0,0,0,0,1,0]
=> [[3,3,3,1],[2]]
=> [2]
=> 1
Description
The number of characters of the symmetric group whose value on the partition is positive.
The following 76 statistics, ordered by result quality, also match your data. Click on any of them to see the details.
St000456The monochromatic index of a connected graph. St001605The number of colourings of a cycle such that the multiplicities of colours are given by a partition. St001604The multiplicity of the irreducible representation corresponding to a partition in the relabelling action on polygons. St001651The Frankl number of a lattice. St000284The Plancherel distribution on integer partitions. St000512The number of invariant subsets of size 3 when acting with a permutation of given cycle type. St000566The number of ways to select a row of a Ferrers shape and two cells in this row. St000620The number of standard tableaux of shape equal to the given partition such that the minimal cyclic descent is odd. St000621The number of standard tableaux of shape equal to the given partition such that the minimal cyclic descent is even. St000668The least common multiple of the parts of the partition. St000681The Grundy value of Chomp on Ferrers diagrams. St000698The number of 2-rim hooks removed from an integer partition to obtain its associated 2-core. St000704The number of semistandard tableaux on a given integer partition with minimal maximal entry. St000707The product of the factorials of the parts. St000708The product of the parts of an integer partition. St000815The number of semistandard Young tableaux of partition weight of given shape. St000929The constant term of the character polynomial of an integer partition. St000933The number of multipartitions of sizes given by an integer partition. St000934The 2-degree of an integer partition. St000937The number of positive values of the symmetric group character corresponding to the partition. St001123The multiplicity of the dual of the standard representation in the Kronecker square corresponding to a partition. St001128The exponens consonantiae of a partition. St000510The number of invariant oriented cycles when acting with a permutation of given cycle type. St000567The sum of the products of all pairs of parts. St000714The number of semistandard Young tableau of given shape, with entries at most 2. St000993The multiplicity of the largest part of an integer partition. St001101The coefficient times the product of the factorials of the parts of the monomial symmetric function indexed by the partition in the formal group law for increasing trees. St001568The smallest positive integer that does not appear twice in the partition. St001876The number of 2-regular simple modules in the incidence algebra of the lattice. St000260The radius of a connected graph. St001630The global dimension of the incidence algebra of the lattice over the rational numbers. St001877Number of indecomposable injective modules with projective dimension 2. St001878The projective dimension of the simple modules corresponding to the minimum of L in the incidence algebra of the lattice L. St000422The energy of a graph, if it is integral. St001603The number of colourings of a polygon such that the multiplicities of a colour are given by a partition. St001629The coefficient of the integer composition in the quasisymmetric expansion of the relabelling action of the symmetric group on cycles. St000264The girth of a graph, which is not a tree. St001845The number of join irreducibles minus the rank of a lattice. St001438The number of missing boxes of a skew partition. St001435The number of missing boxes in the first row. St001570The minimal number of edges to add to make a graph Hamiltonian. St001846The number of elements which do not have a complement in the lattice. St000909The number of maximal chains of maximal size in a poset. St001875The number of simple modules with projective dimension at most 1. St000527The width of the poset. St000259The diameter of a connected graph. St000302The determinant of the distance matrix of a connected graph. St000466The Gutman (or modified Schultz) index of a connected graph. St000467The hyper-Wiener index of a connected graph. St000777The number of distinct eigenvalues of the distance Laplacian of a connected graph. St001645The pebbling number of a connected graph. St001330The hat guessing number of a graph. St001633The number of simple modules with projective dimension two in the incidence algebra of the poset. St000632The jump number of the poset. St001301The first Betti number of the order complex associated with the poset. St001396Number of triples of incomparable elements in a finite poset. St001397Number of pairs of incomparable elements in a finite poset. St001398Number of subsets of size 3 of elements in a poset that form a "v". St001902The number of potential covers of a poset. St000181The number of connected components of the Hasse diagram for the poset. St000298The order dimension or Dushnik-Miller dimension of a poset. St000307The number of rowmotion orbits of a poset. St000908The length of the shortest maximal antichain in a poset. St001268The size of the largest ordinal summand in the poset. St001399The distinguishing number of a poset. St001472The permanent of the Coxeter matrix of the poset. St001510The number of self-evacuating linear extensions of a finite poset. St001532The leading coefficient of the Poincare polynomial of the poset cone. St001533The largest coefficient of the Poincare polynomial of the poset cone. St001634The trace of the Coxeter matrix of the incidence algebra of a poset. St001779The order of promotion on the set of linear extensions of a poset. St000848The balance constant multiplied with the number of linear extensions of a poset. St000849The number of 1/3-balanced pairs in a poset. St000850The number of 1/2-balanced pairs in a poset. St001095The number of non-isomorphic posets with precisely one further covering relation. St001487The number of inner corners of a skew partition.
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!