Processing math: 100%

Your data matches 4 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
Matching statistic: St001407
St001407: Semistandard tableaux ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[[1,2]]
=> 1
[[2,2]]
=> 1
[[1],[2]]
=> 2
[[1,3]]
=> 1
[[2,3]]
=> 0
[[3,3]]
=> 1
[[1],[3]]
=> 1
[[2],[3]]
=> 1
[[1,1,2]]
=> 2
[[1,2,2]]
=> 2
[[2,2,2]]
=> 2
[[1,1],[2]]
=> 3
[[1,2],[2]]
=> 2
[[1,4]]
=> 1
[[2,4]]
=> 0
[[3,4]]
=> 0
[[4,4]]
=> 1
[[1],[4]]
=> 1
[[2],[4]]
=> 0
[[3],[4]]
=> 1
[[1,1,3]]
=> 2
[[1,2,3]]
=> 1
[[1,3,3]]
=> 2
[[2,2,3]]
=> 1
[[2,3,3]]
=> 1
[[3,3,3]]
=> 2
[[1,1],[3]]
=> 2
[[1,2],[3]]
=> 1
[[1,3],[2]]
=> 2
[[1,3],[3]]
=> 1
[[2,2],[3]]
=> 2
[[2,3],[3]]
=> 1
[[1],[2],[3]]
=> 3
[[1,1,1,2]]
=> 3
[[1,1,2,2]]
=> 3
[[1,2,2,2]]
=> 3
[[2,2,2,2]]
=> 3
[[1,1,1],[2]]
=> 4
[[1,1,2],[2]]
=> 3
[[1,2,2],[2]]
=> 3
[[1,1],[2,2]]
=> 4
[[1,5]]
=> 1
[[2,5]]
=> 0
[[3,5]]
=> 0
[[4,5]]
=> 0
[[5,5]]
=> 1
[[1],[5]]
=> 1
[[2],[5]]
=> 0
[[3],[5]]
=> 0
[[4],[5]]
=> 1
Description
The number of minimal entries in a semistandard tableau. An entry is minimal if replacing it with a smaller entry does not yield a semistandard tableau.
Matching statistic: St000771
Mp00107: Semistandard tableaux catabolismSemistandard tableaux
Mp00075: Semistandard tableaux reading word permutationPermutations
Mp00160: Permutations graph of inversionsGraphs
St000771: Graphs ⟶ ℤResult quality: 15% values known / values provided: 15%distinct values known / distinct values provided: 43%
Values
[[1,2]]
=> [[1,2]]
=> [1,2] => ([],2)
=> ? ∊ {1,1,2}
[[2,2]]
=> [[2,2]]
=> [1,2] => ([],2)
=> ? ∊ {1,1,2}
[[1],[2]]
=> [[1,2]]
=> [1,2] => ([],2)
=> ? ∊ {1,1,2}
[[1,3]]
=> [[1,3]]
=> [1,2] => ([],2)
=> ? ∊ {0,1,1,1,1}
[[2,3]]
=> [[2,3]]
=> [1,2] => ([],2)
=> ? ∊ {0,1,1,1,1}
[[3,3]]
=> [[3,3]]
=> [1,2] => ([],2)
=> ? ∊ {0,1,1,1,1}
[[1],[3]]
=> [[1,3]]
=> [1,2] => ([],2)
=> ? ∊ {0,1,1,1,1}
[[2],[3]]
=> [[2,3]]
=> [1,2] => ([],2)
=> ? ∊ {0,1,1,1,1}
[[1,1,2]]
=> [[1,1,2]]
=> [1,2,3] => ([],3)
=> ? ∊ {2,2,2,2,3}
[[1,2,2]]
=> [[1,2,2]]
=> [1,2,3] => ([],3)
=> ? ∊ {2,2,2,2,3}
[[2,2,2]]
=> [[2,2,2]]
=> [1,2,3] => ([],3)
=> ? ∊ {2,2,2,2,3}
[[1,1],[2]]
=> [[1,1,2]]
=> [1,2,3] => ([],3)
=> ? ∊ {2,2,2,2,3}
[[1,2],[2]]
=> [[1,2,2]]
=> [1,2,3] => ([],3)
=> ? ∊ {2,2,2,2,3}
[[1,4]]
=> [[1,4]]
=> [1,2] => ([],2)
=> ? ∊ {0,0,0,1,1,1,1}
[[2,4]]
=> [[2,4]]
=> [1,2] => ([],2)
=> ? ∊ {0,0,0,1,1,1,1}
[[3,4]]
=> [[3,4]]
=> [1,2] => ([],2)
=> ? ∊ {0,0,0,1,1,1,1}
[[4,4]]
=> [[4,4]]
=> [1,2] => ([],2)
=> ? ∊ {0,0,0,1,1,1,1}
[[1],[4]]
=> [[1,4]]
=> [1,2] => ([],2)
=> ? ∊ {0,0,0,1,1,1,1}
[[2],[4]]
=> [[2,4]]
=> [1,2] => ([],2)
=> ? ∊ {0,0,0,1,1,1,1}
[[3],[4]]
=> [[3,4]]
=> [1,2] => ([],2)
=> ? ∊ {0,0,0,1,1,1,1}
[[1,1,3]]
=> [[1,1,3]]
=> [1,2,3] => ([],3)
=> ? ∊ {1,1,1,1,2,2,2,2,2,2,3}
[[1,2,3]]
=> [[1,2,3]]
=> [1,2,3] => ([],3)
=> ? ∊ {1,1,1,1,2,2,2,2,2,2,3}
[[1,3,3]]
=> [[1,3,3]]
=> [1,2,3] => ([],3)
=> ? ∊ {1,1,1,1,2,2,2,2,2,2,3}
[[2,2,3]]
=> [[2,2,3]]
=> [1,2,3] => ([],3)
=> ? ∊ {1,1,1,1,2,2,2,2,2,2,3}
[[2,3,3]]
=> [[2,3,3]]
=> [1,2,3] => ([],3)
=> ? ∊ {1,1,1,1,2,2,2,2,2,2,3}
[[3,3,3]]
=> [[3,3,3]]
=> [1,2,3] => ([],3)
=> ? ∊ {1,1,1,1,2,2,2,2,2,2,3}
[[1,1],[3]]
=> [[1,1,3]]
=> [1,2,3] => ([],3)
=> ? ∊ {1,1,1,1,2,2,2,2,2,2,3}
[[1,2],[3]]
=> [[1,2,3]]
=> [1,2,3] => ([],3)
=> ? ∊ {1,1,1,1,2,2,2,2,2,2,3}
[[1,3],[2]]
=> [[1,2],[3]]
=> [3,1,2] => ([(0,2),(1,2)],3)
=> 1
[[1,3],[3]]
=> [[1,3,3]]
=> [1,2,3] => ([],3)
=> ? ∊ {1,1,1,1,2,2,2,2,2,2,3}
[[2,2],[3]]
=> [[2,2,3]]
=> [1,2,3] => ([],3)
=> ? ∊ {1,1,1,1,2,2,2,2,2,2,3}
[[2,3],[3]]
=> [[2,3,3]]
=> [1,2,3] => ([],3)
=> ? ∊ {1,1,1,1,2,2,2,2,2,2,3}
[[1],[2],[3]]
=> [[1,2],[3]]
=> [3,1,2] => ([(0,2),(1,2)],3)
=> 1
[[1,1,1,2]]
=> [[1,1,1,2]]
=> [1,2,3,4] => ([],4)
=> ? ∊ {3,3,3,3,3,3,4,4}
[[1,1,2,2]]
=> [[1,1,2,2]]
=> [1,2,3,4] => ([],4)
=> ? ∊ {3,3,3,3,3,3,4,4}
[[1,2,2,2]]
=> [[1,2,2,2]]
=> [1,2,3,4] => ([],4)
=> ? ∊ {3,3,3,3,3,3,4,4}
[[2,2,2,2]]
=> [[2,2,2,2]]
=> [1,2,3,4] => ([],4)
=> ? ∊ {3,3,3,3,3,3,4,4}
[[1,1,1],[2]]
=> [[1,1,1,2]]
=> [1,2,3,4] => ([],4)
=> ? ∊ {3,3,3,3,3,3,4,4}
[[1,1,2],[2]]
=> [[1,1,2,2]]
=> [1,2,3,4] => ([],4)
=> ? ∊ {3,3,3,3,3,3,4,4}
[[1,2,2],[2]]
=> [[1,2,2,2]]
=> [1,2,3,4] => ([],4)
=> ? ∊ {3,3,3,3,3,3,4,4}
[[1,1],[2,2]]
=> [[1,1,2,2]]
=> [1,2,3,4] => ([],4)
=> ? ∊ {3,3,3,3,3,3,4,4}
[[1,5]]
=> [[1,5]]
=> [1,2] => ([],2)
=> ? ∊ {0,0,0,0,0,1,1,1,1}
[[2,5]]
=> [[2,5]]
=> [1,2] => ([],2)
=> ? ∊ {0,0,0,0,0,1,1,1,1}
[[3,5]]
=> [[3,5]]
=> [1,2] => ([],2)
=> ? ∊ {0,0,0,0,0,1,1,1,1}
[[4,5]]
=> [[4,5]]
=> [1,2] => ([],2)
=> ? ∊ {0,0,0,0,0,1,1,1,1}
[[5,5]]
=> [[5,5]]
=> [1,2] => ([],2)
=> ? ∊ {0,0,0,0,0,1,1,1,1}
[[1],[5]]
=> [[1,5]]
=> [1,2] => ([],2)
=> ? ∊ {0,0,0,0,0,1,1,1,1}
[[2],[5]]
=> [[2,5]]
=> [1,2] => ([],2)
=> ? ∊ {0,0,0,0,0,1,1,1,1}
[[3],[5]]
=> [[3,5]]
=> [1,2] => ([],2)
=> ? ∊ {0,0,0,0,0,1,1,1,1}
[[4],[5]]
=> [[4,5]]
=> [1,2] => ([],2)
=> ? ∊ {0,0,0,0,0,1,1,1,1}
[[1,1,4]]
=> [[1,1,4]]
=> [1,2,3] => ([],3)
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2}
[[1,2,4]]
=> [[1,2,4]]
=> [1,2,3] => ([],3)
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2}
[[1,4],[2]]
=> [[1,2],[4]]
=> [3,1,2] => ([(0,2),(1,2)],3)
=> 1
[[1,4],[3]]
=> [[1,3],[4]]
=> [3,1,2] => ([(0,2),(1,2)],3)
=> 1
[[2,4],[3]]
=> [[2,3],[4]]
=> [3,1,2] => ([(0,2),(1,2)],3)
=> 1
[[1],[2],[4]]
=> [[1,2],[4]]
=> [3,1,2] => ([(0,2),(1,2)],3)
=> 1
[[1],[3],[4]]
=> [[1,3],[4]]
=> [3,1,2] => ([(0,2),(1,2)],3)
=> 1
[[2],[3],[4]]
=> [[2,3],[4]]
=> [3,1,2] => ([(0,2),(1,2)],3)
=> 1
[[1,1,3],[2]]
=> [[1,1,2],[3]]
=> [4,1,2,3] => ([(0,3),(1,3),(2,3)],4)
=> 2
[[1,2,3],[2]]
=> [[1,2,2],[3]]
=> [4,1,2,3] => ([(0,3),(1,3),(2,3)],4)
=> 2
[[1,1],[2],[3]]
=> [[1,1,2],[3]]
=> [4,1,2,3] => ([(0,3),(1,3),(2,3)],4)
=> 2
[[1,2],[2],[3]]
=> [[1,2,2],[3]]
=> [4,1,2,3] => ([(0,3),(1,3),(2,3)],4)
=> 2
[[1,5],[2]]
=> [[1,2],[5]]
=> [3,1,2] => ([(0,2),(1,2)],3)
=> 1
[[1,5],[3]]
=> [[1,3],[5]]
=> [3,1,2] => ([(0,2),(1,2)],3)
=> 1
[[1,5],[4]]
=> [[1,4],[5]]
=> [3,1,2] => ([(0,2),(1,2)],3)
=> 1
[[2,5],[3]]
=> [[2,3],[5]]
=> [3,1,2] => ([(0,2),(1,2)],3)
=> 1
[[2,5],[4]]
=> [[2,4],[5]]
=> [3,1,2] => ([(0,2),(1,2)],3)
=> 1
[[3,5],[4]]
=> [[3,4],[5]]
=> [3,1,2] => ([(0,2),(1,2)],3)
=> 1
[[1],[2],[5]]
=> [[1,2],[5]]
=> [3,1,2] => ([(0,2),(1,2)],3)
=> 1
[[1],[3],[5]]
=> [[1,3],[5]]
=> [3,1,2] => ([(0,2),(1,2)],3)
=> 1
[[1],[4],[5]]
=> [[1,4],[5]]
=> [3,1,2] => ([(0,2),(1,2)],3)
=> 1
[[2],[3],[5]]
=> [[2,3],[5]]
=> [3,1,2] => ([(0,2),(1,2)],3)
=> 1
[[2],[4],[5]]
=> [[2,4],[5]]
=> [3,1,2] => ([(0,2),(1,2)],3)
=> 1
[[3],[4],[5]]
=> [[3,4],[5]]
=> [3,1,2] => ([(0,2),(1,2)],3)
=> 1
[[1,1,4],[2]]
=> [[1,1,2],[4]]
=> [4,1,2,3] => ([(0,3),(1,3),(2,3)],4)
=> 2
[[1,1,4],[3]]
=> [[1,1,3],[4]]
=> [4,1,2,3] => ([(0,3),(1,3),(2,3)],4)
=> 2
[[1,2,4],[2]]
=> [[1,2,2],[4]]
=> [4,1,2,3] => ([(0,3),(1,3),(2,3)],4)
=> 2
[[1,2,4],[3]]
=> [[1,2,3],[4]]
=> [4,1,2,3] => ([(0,3),(1,3),(2,3)],4)
=> 2
[[1,3,4],[3]]
=> [[1,3,3],[4]]
=> [4,1,2,3] => ([(0,3),(1,3),(2,3)],4)
=> 2
[[2,2,4],[3]]
=> [[2,2,3],[4]]
=> [4,1,2,3] => ([(0,3),(1,3),(2,3)],4)
=> 2
[[2,3,4],[3]]
=> [[2,3,3],[4]]
=> [4,1,2,3] => ([(0,3),(1,3),(2,3)],4)
=> 2
[[1,1],[2],[4]]
=> [[1,1,2],[4]]
=> [4,1,2,3] => ([(0,3),(1,3),(2,3)],4)
=> 2
[[1,1],[3],[4]]
=> [[1,1,3],[4]]
=> [4,1,2,3] => ([(0,3),(1,3),(2,3)],4)
=> 2
[[1,2],[2],[4]]
=> [[1,2,2],[4]]
=> [4,1,2,3] => ([(0,3),(1,3),(2,3)],4)
=> 2
[[1,2],[3],[4]]
=> [[1,2,3],[4]]
=> [4,1,2,3] => ([(0,3),(1,3),(2,3)],4)
=> 2
[[1,4],[2],[3]]
=> [[1,2],[3],[4]]
=> [4,3,1,2] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 2
[[1,3],[3],[4]]
=> [[1,3,3],[4]]
=> [4,1,2,3] => ([(0,3),(1,3),(2,3)],4)
=> 2
[[2,2],[3],[4]]
=> [[2,2,3],[4]]
=> [4,1,2,3] => ([(0,3),(1,3),(2,3)],4)
=> 2
[[2,3],[3],[4]]
=> [[2,3,3],[4]]
=> [4,1,2,3] => ([(0,3),(1,3),(2,3)],4)
=> 2
[[1],[2],[3],[4]]
=> [[1,2],[3],[4]]
=> [4,3,1,2] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 2
[[1,1,1,3],[2]]
=> [[1,1,1,2],[3]]
=> [5,1,2,3,4] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 3
[[1,1,2,3],[2]]
=> [[1,1,2,2],[3]]
=> [5,1,2,3,4] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 3
[[1,2,2,3],[2]]
=> [[1,2,2,2],[3]]
=> [5,1,2,3,4] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 3
[[1,1,3],[2,2]]
=> [[1,1,2,2],[3]]
=> [5,1,2,3,4] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 3
[[1,1,1],[2],[3]]
=> [[1,1,1,2],[3]]
=> [5,1,2,3,4] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 3
[[1,1,2],[2],[3]]
=> [[1,1,2,2],[3]]
=> [5,1,2,3,4] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 3
[[1,2,2],[2],[3]]
=> [[1,2,2,2],[3]]
=> [5,1,2,3,4] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 3
[[1,1],[2,2],[3]]
=> [[1,1,2,2],[3]]
=> [5,1,2,3,4] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 3
Description
The largest multiplicity of a distance Laplacian eigenvalue in a connected graph. The distance Laplacian of a graph is the (symmetric) matrix with row and column sums 0, which has the negative distances between two vertices as its off-diagonal entries. This statistic is the largest multiplicity of an eigenvalue. For example, the cycle on four vertices has distance Laplacian (4121141221411214). Its eigenvalues are 0,4,4,6, so the statistic is 2. The path on four vertices has eigenvalues 0,4.7,6,9.2 and therefore statistic 1.
Matching statistic: St000772
Mp00107: Semistandard tableaux catabolismSemistandard tableaux
Mp00075: Semistandard tableaux reading word permutationPermutations
Mp00160: Permutations graph of inversionsGraphs
St000772: Graphs ⟶ ℤResult quality: 15% values known / values provided: 15%distinct values known / distinct values provided: 43%
Values
[[1,2]]
=> [[1,2]]
=> [1,2] => ([],2)
=> ? ∊ {1,1,2}
[[2,2]]
=> [[2,2]]
=> [1,2] => ([],2)
=> ? ∊ {1,1,2}
[[1],[2]]
=> [[1,2]]
=> [1,2] => ([],2)
=> ? ∊ {1,1,2}
[[1,3]]
=> [[1,3]]
=> [1,2] => ([],2)
=> ? ∊ {0,1,1,1,1}
[[2,3]]
=> [[2,3]]
=> [1,2] => ([],2)
=> ? ∊ {0,1,1,1,1}
[[3,3]]
=> [[3,3]]
=> [1,2] => ([],2)
=> ? ∊ {0,1,1,1,1}
[[1],[3]]
=> [[1,3]]
=> [1,2] => ([],2)
=> ? ∊ {0,1,1,1,1}
[[2],[3]]
=> [[2,3]]
=> [1,2] => ([],2)
=> ? ∊ {0,1,1,1,1}
[[1,1,2]]
=> [[1,1,2]]
=> [1,2,3] => ([],3)
=> ? ∊ {2,2,2,2,3}
[[1,2,2]]
=> [[1,2,2]]
=> [1,2,3] => ([],3)
=> ? ∊ {2,2,2,2,3}
[[2,2,2]]
=> [[2,2,2]]
=> [1,2,3] => ([],3)
=> ? ∊ {2,2,2,2,3}
[[1,1],[2]]
=> [[1,1,2]]
=> [1,2,3] => ([],3)
=> ? ∊ {2,2,2,2,3}
[[1,2],[2]]
=> [[1,2,2]]
=> [1,2,3] => ([],3)
=> ? ∊ {2,2,2,2,3}
[[1,4]]
=> [[1,4]]
=> [1,2] => ([],2)
=> ? ∊ {0,0,0,1,1,1,1}
[[2,4]]
=> [[2,4]]
=> [1,2] => ([],2)
=> ? ∊ {0,0,0,1,1,1,1}
[[3,4]]
=> [[3,4]]
=> [1,2] => ([],2)
=> ? ∊ {0,0,0,1,1,1,1}
[[4,4]]
=> [[4,4]]
=> [1,2] => ([],2)
=> ? ∊ {0,0,0,1,1,1,1}
[[1],[4]]
=> [[1,4]]
=> [1,2] => ([],2)
=> ? ∊ {0,0,0,1,1,1,1}
[[2],[4]]
=> [[2,4]]
=> [1,2] => ([],2)
=> ? ∊ {0,0,0,1,1,1,1}
[[3],[4]]
=> [[3,4]]
=> [1,2] => ([],2)
=> ? ∊ {0,0,0,1,1,1,1}
[[1,1,3]]
=> [[1,1,3]]
=> [1,2,3] => ([],3)
=> ? ∊ {1,1,1,1,2,2,2,2,2,2,3}
[[1,2,3]]
=> [[1,2,3]]
=> [1,2,3] => ([],3)
=> ? ∊ {1,1,1,1,2,2,2,2,2,2,3}
[[1,3,3]]
=> [[1,3,3]]
=> [1,2,3] => ([],3)
=> ? ∊ {1,1,1,1,2,2,2,2,2,2,3}
[[2,2,3]]
=> [[2,2,3]]
=> [1,2,3] => ([],3)
=> ? ∊ {1,1,1,1,2,2,2,2,2,2,3}
[[2,3,3]]
=> [[2,3,3]]
=> [1,2,3] => ([],3)
=> ? ∊ {1,1,1,1,2,2,2,2,2,2,3}
[[3,3,3]]
=> [[3,3,3]]
=> [1,2,3] => ([],3)
=> ? ∊ {1,1,1,1,2,2,2,2,2,2,3}
[[1,1],[3]]
=> [[1,1,3]]
=> [1,2,3] => ([],3)
=> ? ∊ {1,1,1,1,2,2,2,2,2,2,3}
[[1,2],[3]]
=> [[1,2,3]]
=> [1,2,3] => ([],3)
=> ? ∊ {1,1,1,1,2,2,2,2,2,2,3}
[[1,3],[2]]
=> [[1,2],[3]]
=> [3,1,2] => ([(0,2),(1,2)],3)
=> 1
[[1,3],[3]]
=> [[1,3,3]]
=> [1,2,3] => ([],3)
=> ? ∊ {1,1,1,1,2,2,2,2,2,2,3}
[[2,2],[3]]
=> [[2,2,3]]
=> [1,2,3] => ([],3)
=> ? ∊ {1,1,1,1,2,2,2,2,2,2,3}
[[2,3],[3]]
=> [[2,3,3]]
=> [1,2,3] => ([],3)
=> ? ∊ {1,1,1,1,2,2,2,2,2,2,3}
[[1],[2],[3]]
=> [[1,2],[3]]
=> [3,1,2] => ([(0,2),(1,2)],3)
=> 1
[[1,1,1,2]]
=> [[1,1,1,2]]
=> [1,2,3,4] => ([],4)
=> ? ∊ {3,3,3,3,3,3,4,4}
[[1,1,2,2]]
=> [[1,1,2,2]]
=> [1,2,3,4] => ([],4)
=> ? ∊ {3,3,3,3,3,3,4,4}
[[1,2,2,2]]
=> [[1,2,2,2]]
=> [1,2,3,4] => ([],4)
=> ? ∊ {3,3,3,3,3,3,4,4}
[[2,2,2,2]]
=> [[2,2,2,2]]
=> [1,2,3,4] => ([],4)
=> ? ∊ {3,3,3,3,3,3,4,4}
[[1,1,1],[2]]
=> [[1,1,1,2]]
=> [1,2,3,4] => ([],4)
=> ? ∊ {3,3,3,3,3,3,4,4}
[[1,1,2],[2]]
=> [[1,1,2,2]]
=> [1,2,3,4] => ([],4)
=> ? ∊ {3,3,3,3,3,3,4,4}
[[1,2,2],[2]]
=> [[1,2,2,2]]
=> [1,2,3,4] => ([],4)
=> ? ∊ {3,3,3,3,3,3,4,4}
[[1,1],[2,2]]
=> [[1,1,2,2]]
=> [1,2,3,4] => ([],4)
=> ? ∊ {3,3,3,3,3,3,4,4}
[[1,5]]
=> [[1,5]]
=> [1,2] => ([],2)
=> ? ∊ {0,0,0,0,0,1,1,1,1}
[[2,5]]
=> [[2,5]]
=> [1,2] => ([],2)
=> ? ∊ {0,0,0,0,0,1,1,1,1}
[[3,5]]
=> [[3,5]]
=> [1,2] => ([],2)
=> ? ∊ {0,0,0,0,0,1,1,1,1}
[[4,5]]
=> [[4,5]]
=> [1,2] => ([],2)
=> ? ∊ {0,0,0,0,0,1,1,1,1}
[[5,5]]
=> [[5,5]]
=> [1,2] => ([],2)
=> ? ∊ {0,0,0,0,0,1,1,1,1}
[[1],[5]]
=> [[1,5]]
=> [1,2] => ([],2)
=> ? ∊ {0,0,0,0,0,1,1,1,1}
[[2],[5]]
=> [[2,5]]
=> [1,2] => ([],2)
=> ? ∊ {0,0,0,0,0,1,1,1,1}
[[3],[5]]
=> [[3,5]]
=> [1,2] => ([],2)
=> ? ∊ {0,0,0,0,0,1,1,1,1}
[[4],[5]]
=> [[4,5]]
=> [1,2] => ([],2)
=> ? ∊ {0,0,0,0,0,1,1,1,1}
[[1,1,4]]
=> [[1,1,4]]
=> [1,2,3] => ([],3)
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2}
[[1,2,4]]
=> [[1,2,4]]
=> [1,2,3] => ([],3)
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2}
[[1,4],[2]]
=> [[1,2],[4]]
=> [3,1,2] => ([(0,2),(1,2)],3)
=> 1
[[1,4],[3]]
=> [[1,3],[4]]
=> [3,1,2] => ([(0,2),(1,2)],3)
=> 1
[[2,4],[3]]
=> [[2,3],[4]]
=> [3,1,2] => ([(0,2),(1,2)],3)
=> 1
[[1],[2],[4]]
=> [[1,2],[4]]
=> [3,1,2] => ([(0,2),(1,2)],3)
=> 1
[[1],[3],[4]]
=> [[1,3],[4]]
=> [3,1,2] => ([(0,2),(1,2)],3)
=> 1
[[2],[3],[4]]
=> [[2,3],[4]]
=> [3,1,2] => ([(0,2),(1,2)],3)
=> 1
[[1,1,3],[2]]
=> [[1,1,2],[3]]
=> [4,1,2,3] => ([(0,3),(1,3),(2,3)],4)
=> 2
[[1,2,3],[2]]
=> [[1,2,2],[3]]
=> [4,1,2,3] => ([(0,3),(1,3),(2,3)],4)
=> 2
[[1,1],[2],[3]]
=> [[1,1,2],[3]]
=> [4,1,2,3] => ([(0,3),(1,3),(2,3)],4)
=> 2
[[1,2],[2],[3]]
=> [[1,2,2],[3]]
=> [4,1,2,3] => ([(0,3),(1,3),(2,3)],4)
=> 2
[[1,5],[2]]
=> [[1,2],[5]]
=> [3,1,2] => ([(0,2),(1,2)],3)
=> 1
[[1,5],[3]]
=> [[1,3],[5]]
=> [3,1,2] => ([(0,2),(1,2)],3)
=> 1
[[1,5],[4]]
=> [[1,4],[5]]
=> [3,1,2] => ([(0,2),(1,2)],3)
=> 1
[[2,5],[3]]
=> [[2,3],[5]]
=> [3,1,2] => ([(0,2),(1,2)],3)
=> 1
[[2,5],[4]]
=> [[2,4],[5]]
=> [3,1,2] => ([(0,2),(1,2)],3)
=> 1
[[3,5],[4]]
=> [[3,4],[5]]
=> [3,1,2] => ([(0,2),(1,2)],3)
=> 1
[[1],[2],[5]]
=> [[1,2],[5]]
=> [3,1,2] => ([(0,2),(1,2)],3)
=> 1
[[1],[3],[5]]
=> [[1,3],[5]]
=> [3,1,2] => ([(0,2),(1,2)],3)
=> 1
[[1],[4],[5]]
=> [[1,4],[5]]
=> [3,1,2] => ([(0,2),(1,2)],3)
=> 1
[[2],[3],[5]]
=> [[2,3],[5]]
=> [3,1,2] => ([(0,2),(1,2)],3)
=> 1
[[2],[4],[5]]
=> [[2,4],[5]]
=> [3,1,2] => ([(0,2),(1,2)],3)
=> 1
[[3],[4],[5]]
=> [[3,4],[5]]
=> [3,1,2] => ([(0,2),(1,2)],3)
=> 1
[[1,1,4],[2]]
=> [[1,1,2],[4]]
=> [4,1,2,3] => ([(0,3),(1,3),(2,3)],4)
=> 2
[[1,1,4],[3]]
=> [[1,1,3],[4]]
=> [4,1,2,3] => ([(0,3),(1,3),(2,3)],4)
=> 2
[[1,2,4],[2]]
=> [[1,2,2],[4]]
=> [4,1,2,3] => ([(0,3),(1,3),(2,3)],4)
=> 2
[[1,2,4],[3]]
=> [[1,2,3],[4]]
=> [4,1,2,3] => ([(0,3),(1,3),(2,3)],4)
=> 2
[[1,3,4],[3]]
=> [[1,3,3],[4]]
=> [4,1,2,3] => ([(0,3),(1,3),(2,3)],4)
=> 2
[[2,2,4],[3]]
=> [[2,2,3],[4]]
=> [4,1,2,3] => ([(0,3),(1,3),(2,3)],4)
=> 2
[[2,3,4],[3]]
=> [[2,3,3],[4]]
=> [4,1,2,3] => ([(0,3),(1,3),(2,3)],4)
=> 2
[[1,1],[2],[4]]
=> [[1,1,2],[4]]
=> [4,1,2,3] => ([(0,3),(1,3),(2,3)],4)
=> 2
[[1,1],[3],[4]]
=> [[1,1,3],[4]]
=> [4,1,2,3] => ([(0,3),(1,3),(2,3)],4)
=> 2
[[1,2],[2],[4]]
=> [[1,2,2],[4]]
=> [4,1,2,3] => ([(0,3),(1,3),(2,3)],4)
=> 2
[[1,2],[3],[4]]
=> [[1,2,3],[4]]
=> [4,1,2,3] => ([(0,3),(1,3),(2,3)],4)
=> 2
[[1,4],[2],[3]]
=> [[1,2],[3],[4]]
=> [4,3,1,2] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 1
[[1,3],[3],[4]]
=> [[1,3,3],[4]]
=> [4,1,2,3] => ([(0,3),(1,3),(2,3)],4)
=> 2
[[2,2],[3],[4]]
=> [[2,2,3],[4]]
=> [4,1,2,3] => ([(0,3),(1,3),(2,3)],4)
=> 2
[[2,3],[3],[4]]
=> [[2,3,3],[4]]
=> [4,1,2,3] => ([(0,3),(1,3),(2,3)],4)
=> 2
[[1],[2],[3],[4]]
=> [[1,2],[3],[4]]
=> [4,3,1,2] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 1
[[1,1,1,3],[2]]
=> [[1,1,1,2],[3]]
=> [5,1,2,3,4] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 3
[[1,1,2,3],[2]]
=> [[1,1,2,2],[3]]
=> [5,1,2,3,4] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 3
[[1,2,2,3],[2]]
=> [[1,2,2,2],[3]]
=> [5,1,2,3,4] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 3
[[1,1,3],[2,2]]
=> [[1,1,2,2],[3]]
=> [5,1,2,3,4] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 3
[[1,1,1],[2],[3]]
=> [[1,1,1,2],[3]]
=> [5,1,2,3,4] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 3
[[1,1,2],[2],[3]]
=> [[1,1,2,2],[3]]
=> [5,1,2,3,4] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 3
[[1,2,2],[2],[3]]
=> [[1,2,2,2],[3]]
=> [5,1,2,3,4] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 3
[[1,1],[2,2],[3]]
=> [[1,1,2,2],[3]]
=> [5,1,2,3,4] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 3
Description
The multiplicity of the largest distance Laplacian eigenvalue in a connected graph. The distance Laplacian of a graph is the (symmetric) matrix with row and column sums 0, which has the negative distances between two vertices as its off-diagonal entries. This statistic is the largest multiplicity of an eigenvalue. For example, the cycle on four vertices has distance Laplacian (4121141221411214). Its eigenvalues are 0,4,4,6, so the statistic is 1. The path on four vertices has eigenvalues 0,4.7,6,9.2 and therefore also statistic 1. The graphs with statistic n1, n2 and n3 have been characterised, see [1].
Matching statistic: St001060
Mp00075: Semistandard tableaux reading word permutationPermutations
Mp00248: Permutations DEX compositionInteger compositions
Mp00184: Integer compositions to threshold graphGraphs
St001060: Graphs ⟶ ℤResult quality: 7% values known / values provided: 7%distinct values known / distinct values provided: 14%
Values
[[1,2]]
=> [1,2] => [2] => ([],2)
=> ? ∊ {1,1,2}
[[2,2]]
=> [1,2] => [2] => ([],2)
=> ? ∊ {1,1,2}
[[1],[2]]
=> [2,1] => [2] => ([],2)
=> ? ∊ {1,1,2}
[[1,3]]
=> [1,2] => [2] => ([],2)
=> ? ∊ {0,1,1,1,1}
[[2,3]]
=> [1,2] => [2] => ([],2)
=> ? ∊ {0,1,1,1,1}
[[3,3]]
=> [1,2] => [2] => ([],2)
=> ? ∊ {0,1,1,1,1}
[[1],[3]]
=> [2,1] => [2] => ([],2)
=> ? ∊ {0,1,1,1,1}
[[2],[3]]
=> [2,1] => [2] => ([],2)
=> ? ∊ {0,1,1,1,1}
[[1,1,2]]
=> [1,2,3] => [3] => ([],3)
=> ? ∊ {2,2,2,2,3}
[[1,2,2]]
=> [1,2,3] => [3] => ([],3)
=> ? ∊ {2,2,2,2,3}
[[2,2,2]]
=> [1,2,3] => [3] => ([],3)
=> ? ∊ {2,2,2,2,3}
[[1,1],[2]]
=> [3,1,2] => [3] => ([],3)
=> ? ∊ {2,2,2,2,3}
[[1,2],[2]]
=> [2,1,3] => [3] => ([],3)
=> ? ∊ {2,2,2,2,3}
[[1,4]]
=> [1,2] => [2] => ([],2)
=> ? ∊ {0,0,0,1,1,1,1}
[[2,4]]
=> [1,2] => [2] => ([],2)
=> ? ∊ {0,0,0,1,1,1,1}
[[3,4]]
=> [1,2] => [2] => ([],2)
=> ? ∊ {0,0,0,1,1,1,1}
[[4,4]]
=> [1,2] => [2] => ([],2)
=> ? ∊ {0,0,0,1,1,1,1}
[[1],[4]]
=> [2,1] => [2] => ([],2)
=> ? ∊ {0,0,0,1,1,1,1}
[[2],[4]]
=> [2,1] => [2] => ([],2)
=> ? ∊ {0,0,0,1,1,1,1}
[[3],[4]]
=> [2,1] => [2] => ([],2)
=> ? ∊ {0,0,0,1,1,1,1}
[[1,1,3]]
=> [1,2,3] => [3] => ([],3)
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,3}
[[1,2,3]]
=> [1,2,3] => [3] => ([],3)
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,3}
[[1,3,3]]
=> [1,2,3] => [3] => ([],3)
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,3}
[[2,2,3]]
=> [1,2,3] => [3] => ([],3)
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,3}
[[2,3,3]]
=> [1,2,3] => [3] => ([],3)
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,3}
[[3,3,3]]
=> [1,2,3] => [3] => ([],3)
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,3}
[[1,1],[3]]
=> [3,1,2] => [3] => ([],3)
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,3}
[[1,2],[3]]
=> [3,1,2] => [3] => ([],3)
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,3}
[[1,3],[2]]
=> [2,1,3] => [3] => ([],3)
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,3}
[[1,3],[3]]
=> [2,1,3] => [3] => ([],3)
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,3}
[[2,2],[3]]
=> [3,1,2] => [3] => ([],3)
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,3}
[[2,3],[3]]
=> [2,1,3] => [3] => ([],3)
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,3}
[[1],[2],[3]]
=> [3,2,1] => [2,1] => ([(0,2),(1,2)],3)
=> 2
[[1,1,1,2]]
=> [1,2,3,4] => [4] => ([],4)
=> ? ∊ {3,3,3,3,3,3,4,4}
[[1,1,2,2]]
=> [1,2,3,4] => [4] => ([],4)
=> ? ∊ {3,3,3,3,3,3,4,4}
[[1,2,2,2]]
=> [1,2,3,4] => [4] => ([],4)
=> ? ∊ {3,3,3,3,3,3,4,4}
[[2,2,2,2]]
=> [1,2,3,4] => [4] => ([],4)
=> ? ∊ {3,3,3,3,3,3,4,4}
[[1,1,1],[2]]
=> [4,1,2,3] => [4] => ([],4)
=> ? ∊ {3,3,3,3,3,3,4,4}
[[1,1,2],[2]]
=> [3,1,2,4] => [4] => ([],4)
=> ? ∊ {3,3,3,3,3,3,4,4}
[[1,2,2],[2]]
=> [2,1,3,4] => [4] => ([],4)
=> ? ∊ {3,3,3,3,3,3,4,4}
[[1,1],[2,2]]
=> [3,4,1,2] => [4] => ([],4)
=> ? ∊ {3,3,3,3,3,3,4,4}
[[1,5]]
=> [1,2] => [2] => ([],2)
=> ? ∊ {0,0,0,0,0,1,1,1,1}
[[2,5]]
=> [1,2] => [2] => ([],2)
=> ? ∊ {0,0,0,0,0,1,1,1,1}
[[3,5]]
=> [1,2] => [2] => ([],2)
=> ? ∊ {0,0,0,0,0,1,1,1,1}
[[4,5]]
=> [1,2] => [2] => ([],2)
=> ? ∊ {0,0,0,0,0,1,1,1,1}
[[5,5]]
=> [1,2] => [2] => ([],2)
=> ? ∊ {0,0,0,0,0,1,1,1,1}
[[1],[5]]
=> [2,1] => [2] => ([],2)
=> ? ∊ {0,0,0,0,0,1,1,1,1}
[[2],[5]]
=> [2,1] => [2] => ([],2)
=> ? ∊ {0,0,0,0,0,1,1,1,1}
[[3],[5]]
=> [2,1] => [2] => ([],2)
=> ? ∊ {0,0,0,0,0,1,1,1,1}
[[4],[5]]
=> [2,1] => [2] => ([],2)
=> ? ∊ {0,0,0,0,0,1,1,1,1}
[[1,1,4]]
=> [1,2,3] => [3] => ([],3)
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2}
[[1],[2],[4]]
=> [3,2,1] => [2,1] => ([(0,2),(1,2)],3)
=> 2
[[1],[3],[4]]
=> [3,2,1] => [2,1] => ([(0,2),(1,2)],3)
=> 2
[[2],[3],[4]]
=> [3,2,1] => [2,1] => ([(0,2),(1,2)],3)
=> 2
[[1,2],[2],[3]]
=> [4,2,1,3] => [2,2] => ([(1,3),(2,3)],4)
=> 2
[[1,3],[2],[3]]
=> [3,2,1,4] => [2,2] => ([(1,3),(2,3)],4)
=> 2
[[1],[2],[5]]
=> [3,2,1] => [2,1] => ([(0,2),(1,2)],3)
=> 2
[[1],[3],[5]]
=> [3,2,1] => [2,1] => ([(0,2),(1,2)],3)
=> 2
[[1],[4],[5]]
=> [3,2,1] => [2,1] => ([(0,2),(1,2)],3)
=> 2
[[2],[3],[5]]
=> [3,2,1] => [2,1] => ([(0,2),(1,2)],3)
=> 2
[[2],[4],[5]]
=> [3,2,1] => [2,1] => ([(0,2),(1,2)],3)
=> 2
[[3],[4],[5]]
=> [3,2,1] => [2,1] => ([(0,2),(1,2)],3)
=> 2
[[1,2],[2],[4]]
=> [4,2,1,3] => [2,2] => ([(1,3),(2,3)],4)
=> 2
[[1,3],[2],[4]]
=> [4,2,1,3] => [2,2] => ([(1,3),(2,3)],4)
=> 2
[[1,4],[2],[3]]
=> [3,2,1,4] => [2,2] => ([(1,3),(2,3)],4)
=> 2
[[1,4],[2],[4]]
=> [3,2,1,4] => [2,2] => ([(1,3),(2,3)],4)
=> 2
[[1,3],[3],[4]]
=> [4,2,1,3] => [2,2] => ([(1,3),(2,3)],4)
=> 2
[[1,4],[3],[4]]
=> [3,2,1,4] => [2,2] => ([(1,3),(2,3)],4)
=> 2
[[2,3],[3],[4]]
=> [4,2,1,3] => [2,2] => ([(1,3),(2,3)],4)
=> 2
[[2,4],[3],[4]]
=> [3,2,1,4] => [2,2] => ([(1,3),(2,3)],4)
=> 2
[[1],[2],[3],[4]]
=> [4,3,2,1] => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> 2
Description
The distinguishing index of a graph. This is the smallest number of colours such that there is a colouring of the edges which is not preserved by any automorphism. If the graph has a connected component which is a single edge, or at least two isolated vertices, this statistic is undefined.