searching the database
Your data matches 75 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
(click to perform a complete search on your data)
Matching statistic: St001228
(load all 12 compositions to match this statistic)
(load all 12 compositions to match this statistic)
St001228: Dyck paths ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[1,0]
=> 1
[1,0,1,0]
=> 2
[1,1,0,0]
=> 3
[1,0,1,0,1,0]
=> 3
[1,0,1,1,0,0]
=> 4
[1,1,0,0,1,0]
=> 4
[1,1,0,1,0,0]
=> 5
[1,1,1,0,0,0]
=> 6
[1,0,1,0,1,0,1,0]
=> 4
[1,0,1,0,1,1,0,0]
=> 5
[1,0,1,1,0,0,1,0]
=> 5
[1,0,1,1,0,1,0,0]
=> 6
[1,0,1,1,1,0,0,0]
=> 7
[1,1,0,0,1,0,1,0]
=> 5
[1,1,0,0,1,1,0,0]
=> 6
[1,1,0,1,0,0,1,0]
=> 6
[1,1,0,1,0,1,0,0]
=> 7
[1,1,0,1,1,0,0,0]
=> 8
[1,1,1,0,0,0,1,0]
=> 7
[1,1,1,0,0,1,0,0]
=> 8
[1,1,1,0,1,0,0,0]
=> 9
[1,1,1,1,0,0,0,0]
=> 10
[1,0,1,0,1,0,1,0,1,0]
=> 5
[1,0,1,0,1,0,1,1,0,0]
=> 6
[1,0,1,0,1,1,0,0,1,0]
=> 6
[1,0,1,0,1,1,0,1,0,0]
=> 7
[1,0,1,0,1,1,1,0,0,0]
=> 8
[1,0,1,1,0,0,1,0,1,0]
=> 6
[1,0,1,1,0,0,1,1,0,0]
=> 7
[1,0,1,1,0,1,0,0,1,0]
=> 7
[1,0,1,1,0,1,0,1,0,0]
=> 8
[1,0,1,1,0,1,1,0,0,0]
=> 9
[1,0,1,1,1,0,0,0,1,0]
=> 8
[1,0,1,1,1,0,0,1,0,0]
=> 9
[1,0,1,1,1,0,1,0,0,0]
=> 10
[1,0,1,1,1,1,0,0,0,0]
=> 11
[1,1,0,0,1,0,1,0,1,0]
=> 6
[1,1,0,0,1,0,1,1,0,0]
=> 7
[1,1,0,0,1,1,0,0,1,0]
=> 7
[1,1,0,0,1,1,0,1,0,0]
=> 8
[1,1,0,0,1,1,1,0,0,0]
=> 9
[1,1,0,1,0,0,1,0,1,0]
=> 7
[1,1,0,1,0,0,1,1,0,0]
=> 8
[1,1,0,1,0,1,0,0,1,0]
=> 8
[1,1,0,1,0,1,0,1,0,0]
=> 9
[1,1,0,1,0,1,1,0,0,0]
=> 10
[1,1,0,1,1,0,0,0,1,0]
=> 9
[1,1,0,1,1,0,0,1,0,0]
=> 10
[1,1,0,1,1,0,1,0,0,0]
=> 11
[1,1,0,1,1,1,0,0,0,0]
=> 12
Description
The vector space dimension of the space of module homomorphisms between J and itself when J denotes the Jacobson radical of the corresponding Nakayama algebra.
Matching statistic: St000012
(load all 6 compositions to match this statistic)
(load all 6 compositions to match this statistic)
Mp00199: Dyck paths —prime Dyck path⟶ Dyck paths
St000012: Dyck paths ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
St000012: Dyck paths ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[1,0]
=> [1,1,0,0]
=> 1
[1,0,1,0]
=> [1,1,0,1,0,0]
=> 2
[1,1,0,0]
=> [1,1,1,0,0,0]
=> 3
[1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,0]
=> 3
[1,0,1,1,0,0]
=> [1,1,0,1,1,0,0,0]
=> 4
[1,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0]
=> 4
[1,1,0,1,0,0]
=> [1,1,1,0,1,0,0,0]
=> 5
[1,1,1,0,0,0]
=> [1,1,1,1,0,0,0,0]
=> 6
[1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> 4
[1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> 5
[1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> 5
[1,0,1,1,0,1,0,0]
=> [1,1,0,1,1,0,1,0,0,0]
=> 6
[1,0,1,1,1,0,0,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> 7
[1,1,0,0,1,0,1,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> 5
[1,1,0,0,1,1,0,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> 6
[1,1,0,1,0,0,1,0]
=> [1,1,1,0,1,0,0,1,0,0]
=> 6
[1,1,0,1,0,1,0,0]
=> [1,1,1,0,1,0,1,0,0,0]
=> 7
[1,1,0,1,1,0,0,0]
=> [1,1,1,0,1,1,0,0,0,0]
=> 8
[1,1,1,0,0,0,1,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> 7
[1,1,1,0,0,1,0,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> 8
[1,1,1,0,1,0,0,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> 9
[1,1,1,1,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> 10
[1,0,1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,1,0,0]
=> 5
[1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,0,1,1,0,0,0]
=> 6
[1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,0,1,1,0,0,1,0,0]
=> 6
[1,0,1,0,1,1,0,1,0,0]
=> [1,1,0,1,0,1,1,0,1,0,0,0]
=> 7
[1,0,1,0,1,1,1,0,0,0]
=> [1,1,0,1,0,1,1,1,0,0,0,0]
=> 8
[1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,1,1,0,0,1,0,1,0,0]
=> 6
[1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,1,1,0,0,1,1,0,0,0]
=> 7
[1,0,1,1,0,1,0,0,1,0]
=> [1,1,0,1,1,0,1,0,0,1,0,0]
=> 7
[1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,1,1,0,1,0,1,0,0,0]
=> 8
[1,0,1,1,0,1,1,0,0,0]
=> [1,1,0,1,1,0,1,1,0,0,0,0]
=> 9
[1,0,1,1,1,0,0,0,1,0]
=> [1,1,0,1,1,1,0,0,0,1,0,0]
=> 8
[1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,1,1,1,0,0,1,0,0,0]
=> 9
[1,0,1,1,1,0,1,0,0,0]
=> [1,1,0,1,1,1,0,1,0,0,0,0]
=> 10
[1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,1,1,1,1,0,0,0,0,0]
=> 11
[1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,0,0,1,0,1,0,1,0,0]
=> 6
[1,1,0,0,1,0,1,1,0,0]
=> [1,1,1,0,0,1,0,1,1,0,0,0]
=> 7
[1,1,0,0,1,1,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,1,0,0]
=> 7
[1,1,0,0,1,1,0,1,0,0]
=> [1,1,1,0,0,1,1,0,1,0,0,0]
=> 8
[1,1,0,0,1,1,1,0,0,0]
=> [1,1,1,0,0,1,1,1,0,0,0,0]
=> 9
[1,1,0,1,0,0,1,0,1,0]
=> [1,1,1,0,1,0,0,1,0,1,0,0]
=> 7
[1,1,0,1,0,0,1,1,0,0]
=> [1,1,1,0,1,0,0,1,1,0,0,0]
=> 8
[1,1,0,1,0,1,0,0,1,0]
=> [1,1,1,0,1,0,1,0,0,1,0,0]
=> 8
[1,1,0,1,0,1,0,1,0,0]
=> [1,1,1,0,1,0,1,0,1,0,0,0]
=> 9
[1,1,0,1,0,1,1,0,0,0]
=> [1,1,1,0,1,0,1,1,0,0,0,0]
=> 10
[1,1,0,1,1,0,0,0,1,0]
=> [1,1,1,0,1,1,0,0,0,1,0,0]
=> 9
[1,1,0,1,1,0,0,1,0,0]
=> [1,1,1,0,1,1,0,0,1,0,0,0]
=> 10
[1,1,0,1,1,0,1,0,0,0]
=> [1,1,1,0,1,1,0,1,0,0,0,0]
=> 11
[1,1,0,1,1,1,0,0,0,0]
=> [1,1,1,0,1,1,1,0,0,0,0,0]
=> 12
Description
The area of a Dyck path.
This is the number of complete squares in the integer lattice which are below the path and above the x-axis. The 'half-squares' directly above the axis do not contribute to this statistic.
1. Dyck paths are bijection with '''area sequences''' $(a_1,\ldots,a_n)$ such that $a_1 = 0, a_{k+1} \leq a_k + 1$.
2. The generating function $\mathbf{D}_n(q) = \sum_{D \in \mathfrak{D}_n} q^{\operatorname{area}(D)}$ satisfy the recurrence $$\mathbf{D}_{n+1}(q) = \sum q^k \mathbf{D}_k(q) \mathbf{D}_{n-k}(q).$$
3. The area is equidistributed with [[St000005]] and [[St000006]]. Pairs of these statistics play an important role in the theory of $q,t$-Catalan numbers.
Matching statistic: St000400
(load all 5 compositions to match this statistic)
(load all 5 compositions to match this statistic)
Mp00026: Dyck paths —to ordered tree⟶ Ordered trees
St000400: Ordered trees ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
St000400: Ordered trees ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[1,0]
=> [[]]
=> 1
[1,0,1,0]
=> [[],[]]
=> 2
[1,1,0,0]
=> [[[]]]
=> 3
[1,0,1,0,1,0]
=> [[],[],[]]
=> 3
[1,0,1,1,0,0]
=> [[],[[]]]
=> 4
[1,1,0,0,1,0]
=> [[[]],[]]
=> 4
[1,1,0,1,0,0]
=> [[[],[]]]
=> 5
[1,1,1,0,0,0]
=> [[[[]]]]
=> 6
[1,0,1,0,1,0,1,0]
=> [[],[],[],[]]
=> 4
[1,0,1,0,1,1,0,0]
=> [[],[],[[]]]
=> 5
[1,0,1,1,0,0,1,0]
=> [[],[[]],[]]
=> 5
[1,0,1,1,0,1,0,0]
=> [[],[[],[]]]
=> 6
[1,0,1,1,1,0,0,0]
=> [[],[[[]]]]
=> 7
[1,1,0,0,1,0,1,0]
=> [[[]],[],[]]
=> 5
[1,1,0,0,1,1,0,0]
=> [[[]],[[]]]
=> 6
[1,1,0,1,0,0,1,0]
=> [[[],[]],[]]
=> 6
[1,1,0,1,0,1,0,0]
=> [[[],[],[]]]
=> 7
[1,1,0,1,1,0,0,0]
=> [[[],[[]]]]
=> 8
[1,1,1,0,0,0,1,0]
=> [[[[]]],[]]
=> 7
[1,1,1,0,0,1,0,0]
=> [[[[]],[]]]
=> 8
[1,1,1,0,1,0,0,0]
=> [[[[],[]]]]
=> 9
[1,1,1,1,0,0,0,0]
=> [[[[[]]]]]
=> 10
[1,0,1,0,1,0,1,0,1,0]
=> [[],[],[],[],[]]
=> 5
[1,0,1,0,1,0,1,1,0,0]
=> [[],[],[],[[]]]
=> 6
[1,0,1,0,1,1,0,0,1,0]
=> [[],[],[[]],[]]
=> 6
[1,0,1,0,1,1,0,1,0,0]
=> [[],[],[[],[]]]
=> 7
[1,0,1,0,1,1,1,0,0,0]
=> [[],[],[[[]]]]
=> 8
[1,0,1,1,0,0,1,0,1,0]
=> [[],[[]],[],[]]
=> 6
[1,0,1,1,0,0,1,1,0,0]
=> [[],[[]],[[]]]
=> 7
[1,0,1,1,0,1,0,0,1,0]
=> [[],[[],[]],[]]
=> 7
[1,0,1,1,0,1,0,1,0,0]
=> [[],[[],[],[]]]
=> 8
[1,0,1,1,0,1,1,0,0,0]
=> [[],[[],[[]]]]
=> 9
[1,0,1,1,1,0,0,0,1,0]
=> [[],[[[]]],[]]
=> 8
[1,0,1,1,1,0,0,1,0,0]
=> [[],[[[]],[]]]
=> 9
[1,0,1,1,1,0,1,0,0,0]
=> [[],[[[],[]]]]
=> 10
[1,0,1,1,1,1,0,0,0,0]
=> [[],[[[[]]]]]
=> 11
[1,1,0,0,1,0,1,0,1,0]
=> [[[]],[],[],[]]
=> 6
[1,1,0,0,1,0,1,1,0,0]
=> [[[]],[],[[]]]
=> 7
[1,1,0,0,1,1,0,0,1,0]
=> [[[]],[[]],[]]
=> 7
[1,1,0,0,1,1,0,1,0,0]
=> [[[]],[[],[]]]
=> 8
[1,1,0,0,1,1,1,0,0,0]
=> [[[]],[[[]]]]
=> 9
[1,1,0,1,0,0,1,0,1,0]
=> [[[],[]],[],[]]
=> 7
[1,1,0,1,0,0,1,1,0,0]
=> [[[],[]],[[]]]
=> 8
[1,1,0,1,0,1,0,0,1,0]
=> [[[],[],[]],[]]
=> 8
[1,1,0,1,0,1,0,1,0,0]
=> [[[],[],[],[]]]
=> 9
[1,1,0,1,0,1,1,0,0,0]
=> [[[],[],[[]]]]
=> 10
[1,1,0,1,1,0,0,0,1,0]
=> [[[],[[]]],[]]
=> 9
[1,1,0,1,1,0,0,1,0,0]
=> [[[],[[]],[]]]
=> 10
[1,1,0,1,1,0,1,0,0,0]
=> [[[],[[],[]]]]
=> 11
[1,1,0,1,1,1,0,0,0,0]
=> [[[],[[[]]]]]
=> 12
Description
The path length of an ordered tree.
This is the sum of the lengths of all paths from the root to a node, see Section 2.3.4.5 of [1].
Matching statistic: St001295
(load all 6 compositions to match this statistic)
(load all 6 compositions to match this statistic)
Mp00199: Dyck paths —prime Dyck path⟶ Dyck paths
St001295: Dyck paths ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
St001295: Dyck paths ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[1,0]
=> [1,1,0,0]
=> 1
[1,0,1,0]
=> [1,1,0,1,0,0]
=> 2
[1,1,0,0]
=> [1,1,1,0,0,0]
=> 3
[1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,0]
=> 3
[1,0,1,1,0,0]
=> [1,1,0,1,1,0,0,0]
=> 4
[1,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0]
=> 4
[1,1,0,1,0,0]
=> [1,1,1,0,1,0,0,0]
=> 5
[1,1,1,0,0,0]
=> [1,1,1,1,0,0,0,0]
=> 6
[1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> 4
[1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> 5
[1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> 5
[1,0,1,1,0,1,0,0]
=> [1,1,0,1,1,0,1,0,0,0]
=> 6
[1,0,1,1,1,0,0,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> 7
[1,1,0,0,1,0,1,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> 5
[1,1,0,0,1,1,0,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> 6
[1,1,0,1,0,0,1,0]
=> [1,1,1,0,1,0,0,1,0,0]
=> 6
[1,1,0,1,0,1,0,0]
=> [1,1,1,0,1,0,1,0,0,0]
=> 7
[1,1,0,1,1,0,0,0]
=> [1,1,1,0,1,1,0,0,0,0]
=> 8
[1,1,1,0,0,0,1,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> 7
[1,1,1,0,0,1,0,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> 8
[1,1,1,0,1,0,0,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> 9
[1,1,1,1,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> 10
[1,0,1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,1,0,0]
=> 5
[1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,0,1,1,0,0,0]
=> 6
[1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,0,1,1,0,0,1,0,0]
=> 6
[1,0,1,0,1,1,0,1,0,0]
=> [1,1,0,1,0,1,1,0,1,0,0,0]
=> 7
[1,0,1,0,1,1,1,0,0,0]
=> [1,1,0,1,0,1,1,1,0,0,0,0]
=> 8
[1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,1,1,0,0,1,0,1,0,0]
=> 6
[1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,1,1,0,0,1,1,0,0,0]
=> 7
[1,0,1,1,0,1,0,0,1,0]
=> [1,1,0,1,1,0,1,0,0,1,0,0]
=> 7
[1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,1,1,0,1,0,1,0,0,0]
=> 8
[1,0,1,1,0,1,1,0,0,0]
=> [1,1,0,1,1,0,1,1,0,0,0,0]
=> 9
[1,0,1,1,1,0,0,0,1,0]
=> [1,1,0,1,1,1,0,0,0,1,0,0]
=> 8
[1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,1,1,1,0,0,1,0,0,0]
=> 9
[1,0,1,1,1,0,1,0,0,0]
=> [1,1,0,1,1,1,0,1,0,0,0,0]
=> 10
[1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,1,1,1,1,0,0,0,0,0]
=> 11
[1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,0,0,1,0,1,0,1,0,0]
=> 6
[1,1,0,0,1,0,1,1,0,0]
=> [1,1,1,0,0,1,0,1,1,0,0,0]
=> 7
[1,1,0,0,1,1,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,1,0,0]
=> 7
[1,1,0,0,1,1,0,1,0,0]
=> [1,1,1,0,0,1,1,0,1,0,0,0]
=> 8
[1,1,0,0,1,1,1,0,0,0]
=> [1,1,1,0,0,1,1,1,0,0,0,0]
=> 9
[1,1,0,1,0,0,1,0,1,0]
=> [1,1,1,0,1,0,0,1,0,1,0,0]
=> 7
[1,1,0,1,0,0,1,1,0,0]
=> [1,1,1,0,1,0,0,1,1,0,0,0]
=> 8
[1,1,0,1,0,1,0,0,1,0]
=> [1,1,1,0,1,0,1,0,0,1,0,0]
=> 8
[1,1,0,1,0,1,0,1,0,0]
=> [1,1,1,0,1,0,1,0,1,0,0,0]
=> 9
[1,1,0,1,0,1,1,0,0,0]
=> [1,1,1,0,1,0,1,1,0,0,0,0]
=> 10
[1,1,0,1,1,0,0,0,1,0]
=> [1,1,1,0,1,1,0,0,0,1,0,0]
=> 9
[1,1,0,1,1,0,0,1,0,0]
=> [1,1,1,0,1,1,0,0,1,0,0,0]
=> 10
[1,1,0,1,1,0,1,0,0,0]
=> [1,1,1,0,1,1,0,1,0,0,0,0]
=> 11
[1,1,0,1,1,1,0,0,0,0]
=> [1,1,1,0,1,1,1,0,0,0,0,0]
=> 12
Description
Gives the vector space dimension of the homomorphism space between J^2 and J^2.
Matching statistic: St000005
(load all 2 compositions to match this statistic)
(load all 2 compositions to match this statistic)
Mp00199: Dyck paths —prime Dyck path⟶ Dyck paths
Mp00118: Dyck paths —swap returns and last descent⟶ Dyck paths
St000005: Dyck paths ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00118: Dyck paths —swap returns and last descent⟶ Dyck paths
St000005: Dyck paths ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[1,0]
=> [1,1,0,0]
=> [1,0,1,0]
=> 1
[1,0,1,0]
=> [1,1,0,1,0,0]
=> [1,1,0,0,1,0]
=> 2
[1,1,0,0]
=> [1,1,1,0,0,0]
=> [1,0,1,0,1,0]
=> 3
[1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,0]
=> [1,1,0,1,0,0,1,0]
=> 4
[1,0,1,1,0,0]
=> [1,1,0,1,1,0,0,0]
=> [1,1,0,0,1,0,1,0]
=> 5
[1,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0]
=> [1,1,1,0,0,0,1,0]
=> 3
[1,1,0,1,0,0]
=> [1,1,1,0,1,0,0,0]
=> [1,0,1,1,0,0,1,0]
=> 4
[1,1,1,0,0,0]
=> [1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> 6
[1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> [1,1,0,1,0,1,0,0,1,0]
=> 6
[1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> [1,1,0,1,0,0,1,0,1,0]
=> 8
[1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> [1,1,0,1,1,0,0,0,1,0]
=> 5
[1,0,1,1,0,1,0,0]
=> [1,1,0,1,1,0,1,0,0,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> 6
[1,0,1,1,1,0,0,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> [1,1,0,0,1,0,1,0,1,0]
=> 9
[1,1,0,0,1,0,1,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> [1,1,1,0,0,1,0,0,1,0]
=> 6
[1,1,0,0,1,1,0,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> [1,1,1,0,0,0,1,0,1,0]
=> 7
[1,1,0,1,0,0,1,0]
=> [1,1,1,0,1,0,0,1,0,0]
=> [1,1,1,0,1,0,0,0,1,0]
=> 5
[1,1,0,1,0,1,0,0]
=> [1,1,1,0,1,0,1,0,0,0]
=> [1,0,1,1,0,1,0,0,1,0]
=> 7
[1,1,0,1,1,0,0,0]
=> [1,1,1,0,1,1,0,0,0,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> 8
[1,1,1,0,0,0,1,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> [1,1,1,1,0,0,0,0,1,0]
=> 4
[1,1,1,0,0,1,0,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> 5
[1,1,1,0,1,0,0,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> 7
[1,1,1,1,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> 10
[1,0,1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,1,0,0]
=> [1,1,0,1,0,1,0,1,0,0,1,0]
=> 9
[1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,0,1,1,0,0,0]
=> [1,1,0,1,0,1,0,0,1,0,1,0]
=> 11
[1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,0,1,1,0,0,1,0,0]
=> [1,1,0,1,0,1,1,0,0,0,1,0]
=> 7
[1,0,1,0,1,1,0,1,0,0]
=> [1,1,0,1,0,1,1,0,1,0,0,0]
=> [1,1,0,1,0,0,1,1,0,0,1,0]
=> 9
[1,0,1,0,1,1,1,0,0,0]
=> [1,1,0,1,0,1,1,1,0,0,0,0]
=> [1,1,0,1,0,0,1,0,1,0,1,0]
=> 13
[1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,1,1,0,0,1,0,1,0,0]
=> [1,1,0,1,1,0,0,1,0,0,1,0]
=> 9
[1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,1,1,0,0,1,1,0,0,0]
=> [1,1,0,1,1,0,0,0,1,0,1,0]
=> 10
[1,0,1,1,0,1,0,0,1,0]
=> [1,1,0,1,1,0,1,0,0,1,0,0]
=> [1,1,0,1,1,0,1,0,0,0,1,0]
=> 7
[1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,1,1,0,1,0,1,0,0,0]
=> [1,1,0,0,1,1,0,1,0,0,1,0]
=> 10
[1,0,1,1,0,1,1,0,0,0]
=> [1,1,0,1,1,0,1,1,0,0,0,0]
=> [1,1,0,0,1,1,0,0,1,0,1,0]
=> 11
[1,0,1,1,1,0,0,0,1,0]
=> [1,1,0,1,1,1,0,0,0,1,0,0]
=> [1,1,0,1,1,1,0,0,0,0,1,0]
=> 6
[1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,1,1,1,0,0,1,0,0,0]
=> [1,1,0,0,1,1,1,0,0,0,1,0]
=> 7
[1,0,1,1,1,0,1,0,0,0]
=> [1,1,0,1,1,1,0,1,0,0,0,0]
=> [1,1,0,0,1,0,1,1,0,0,1,0]
=> 10
[1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,1,1,1,1,0,0,0,0,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0]
=> 14
[1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,0,0,1,0,1,0,1,0,0]
=> [1,1,1,0,0,1,0,1,0,0,1,0]
=> 8
[1,1,0,0,1,0,1,1,0,0]
=> [1,1,1,0,0,1,0,1,1,0,0,0]
=> [1,1,1,0,0,1,0,0,1,0,1,0]
=> 11
[1,1,0,0,1,1,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,1,0,0]
=> [1,1,1,0,0,1,1,0,0,0,1,0]
=> 7
[1,1,0,0,1,1,0,1,0,0]
=> [1,1,1,0,0,1,1,0,1,0,0,0]
=> [1,1,1,0,0,0,1,1,0,0,1,0]
=> 8
[1,1,0,0,1,1,1,0,0,0]
=> [1,1,1,0,0,1,1,1,0,0,0,0]
=> [1,1,1,0,0,0,1,0,1,0,1,0]
=> 12
[1,1,0,1,0,0,1,0,1,0]
=> [1,1,1,0,1,0,0,1,0,1,0,0]
=> [1,1,1,0,1,0,0,1,0,0,1,0]
=> 8
[1,1,0,1,0,0,1,1,0,0]
=> [1,1,1,0,1,0,0,1,1,0,0,0]
=> [1,1,1,0,1,0,0,0,1,0,1,0]
=> 10
[1,1,0,1,0,1,0,0,1,0]
=> [1,1,1,0,1,0,1,0,0,1,0,0]
=> [1,1,1,0,1,0,1,0,0,0,1,0]
=> 7
[1,1,0,1,0,1,0,1,0,0]
=> [1,1,1,0,1,0,1,0,1,0,0,0]
=> [1,0,1,1,0,1,0,1,0,0,1,0]
=> 9
[1,1,0,1,0,1,1,0,0,0]
=> [1,1,1,0,1,0,1,1,0,0,0,0]
=> [1,0,1,1,0,1,0,0,1,0,1,0]
=> 12
[1,1,0,1,1,0,0,0,1,0]
=> [1,1,1,0,1,1,0,0,0,1,0,0]
=> [1,1,1,0,1,1,0,0,0,0,1,0]
=> 6
[1,1,0,1,1,0,0,1,0,0]
=> [1,1,1,0,1,1,0,0,1,0,0,0]
=> [1,0,1,1,0,1,1,0,0,0,1,0]
=> 8
[1,1,0,1,1,0,1,0,0,0]
=> [1,1,1,0,1,1,0,1,0,0,0,0]
=> [1,0,1,1,0,0,1,1,0,0,1,0]
=> 9
[1,1,0,1,1,1,0,0,0,0]
=> [1,1,1,0,1,1,1,0,0,0,0,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0]
=> 13
Description
The bounce statistic of a Dyck path.
The '''bounce path''' $D'$ of a Dyck path $D$ is the Dyck path obtained from $D$ by starting at the end point $(2n,0)$, traveling north-west until hitting $D$, then bouncing back south-west to the $x$-axis, and repeating this procedure until finally reaching the point $(0,0)$.
The points where $D'$ touches the $x$-axis are called '''bounce points''', and a bounce path is uniquely determined by its bounce points.
This statistic is given by the sum of all $i$ for which the bounce path $D'$ of $D$ touches the $x$-axis at $(2i,0)$.
In particular, the bounce statistics of $D$ and $D'$ coincide.
Matching statistic: St000006
(load all 2 compositions to match this statistic)
(load all 2 compositions to match this statistic)
Mp00199: Dyck paths —prime Dyck path⟶ Dyck paths
Mp00032: Dyck paths —inverse zeta map⟶ Dyck paths
St000006: Dyck paths ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00032: Dyck paths —inverse zeta map⟶ Dyck paths
St000006: Dyck paths ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[1,0]
=> [1,1,0,0]
=> [1,0,1,0]
=> 1
[1,0,1,0]
=> [1,1,0,1,0,0]
=> [1,1,0,0,1,0]
=> 2
[1,1,0,0]
=> [1,1,1,0,0,0]
=> [1,0,1,0,1,0]
=> 3
[1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> 3
[1,0,1,1,0,0]
=> [1,1,0,1,1,0,0,0]
=> [1,0,1,1,0,0,1,0]
=> 4
[1,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0]
=> [1,1,0,1,0,0,1,0]
=> 4
[1,1,0,1,0,0]
=> [1,1,1,0,1,0,0,0]
=> [1,1,0,0,1,0,1,0]
=> 5
[1,1,1,0,0,0]
=> [1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> 6
[1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> 4
[1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> 5
[1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> [1,1,1,0,0,1,0,0,1,0]
=> 5
[1,0,1,1,0,1,0,0]
=> [1,1,0,1,1,0,1,0,0,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> 6
[1,0,1,1,1,0,0,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> 7
[1,1,0,0,1,0,1,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> [1,1,0,0,1,1,0,1,0,0]
=> 5
[1,1,0,0,1,1,0,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> [1,0,1,1,0,1,0,0,1,0]
=> 6
[1,1,0,1,0,0,1,0]
=> [1,1,1,0,1,0,0,1,0,0]
=> [1,1,0,1,0,0,1,1,0,0]
=> 6
[1,1,0,1,0,1,0,0]
=> [1,1,1,0,1,0,1,0,0,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> 7
[1,1,0,1,1,0,0,0]
=> [1,1,1,0,1,1,0,0,0,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> 8
[1,1,1,0,0,0,1,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> [1,1,0,1,0,1,0,0,1,0]
=> 7
[1,1,1,0,0,1,0,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> [1,1,0,1,0,0,1,0,1,0]
=> 8
[1,1,1,0,1,0,0,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> [1,1,0,0,1,0,1,0,1,0]
=> 9
[1,1,1,1,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> 10
[1,0,1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,1,0,0]
=> [1,1,1,0,0,0,1,1,1,0,0,0]
=> 5
[1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,0,1,1,0,0,0]
=> [1,0,1,1,1,0,0,0,1,1,0,0]
=> 6
[1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,0,1,1,0,0,1,0,0]
=> [1,1,1,0,0,1,1,0,0,0,1,0]
=> 6
[1,0,1,0,1,1,0,1,0,0]
=> [1,1,0,1,0,1,1,0,1,0,0,0]
=> [1,1,1,0,0,0,1,0,1,1,0,0]
=> 7
[1,0,1,0,1,1,1,0,0,0]
=> [1,1,0,1,0,1,1,1,0,0,0,0]
=> [1,0,1,0,1,1,0,0,1,1,0,0]
=> 8
[1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,1,1,0,0,1,0,1,0,0]
=> [1,1,0,0,1,1,1,0,0,1,0,0]
=> 6
[1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,1,1,0,0,1,1,0,0,0]
=> [1,0,1,1,1,0,0,1,0,0,1,0]
=> 7
[1,0,1,1,0,1,0,0,1,0]
=> [1,1,0,1,1,0,1,0,0,1,0,0]
=> [1,1,0,1,1,0,0,0,1,1,0,0]
=> 7
[1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,1,1,0,1,0,1,0,0,0]
=> [1,1,1,0,0,0,1,1,0,0,1,0]
=> 8
[1,0,1,1,0,1,1,0,0,0]
=> [1,1,0,1,1,0,1,1,0,0,0,0]
=> [1,0,1,1,0,0,1,0,1,1,0,0]
=> 9
[1,0,1,1,1,0,0,0,1,0]
=> [1,1,0,1,1,1,0,0,0,1,0,0]
=> [1,1,0,1,1,0,0,1,0,0,1,0]
=> 8
[1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,1,1,1,0,0,1,0,0,0]
=> [1,1,1,0,0,1,0,0,1,0,1,0]
=> 9
[1,0,1,1,1,0,1,0,0,0]
=> [1,1,0,1,1,1,0,1,0,0,0,0]
=> [1,1,0,0,1,0,1,0,1,1,0,0]
=> 10
[1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,1,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0]
=> 11
[1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,0,0,1,0,1,0,1,0,0]
=> [1,1,1,0,1,0,0,0,1,1,0,0]
=> 6
[1,1,0,0,1,0,1,1,0,0]
=> [1,1,1,0,0,1,0,1,1,0,0,0]
=> [1,0,1,1,0,0,1,1,0,1,0,0]
=> 7
[1,1,0,0,1,1,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,1,0,0]
=> [1,1,1,0,1,0,0,1,0,0,1,0]
=> 7
[1,1,0,0,1,1,0,1,0,0]
=> [1,1,1,0,0,1,1,0,1,0,0,0]
=> [1,1,0,0,1,0,1,1,0,1,0,0]
=> 8
[1,1,0,0,1,1,1,0,0,0]
=> [1,1,1,0,0,1,1,1,0,0,0,0]
=> [1,0,1,0,1,1,0,1,0,0,1,0]
=> 9
[1,1,0,1,0,0,1,0,1,0]
=> [1,1,1,0,1,0,0,1,0,1,0,0]
=> [1,1,1,0,0,0,1,1,0,1,0,0]
=> 7
[1,1,0,1,0,0,1,1,0,0]
=> [1,1,1,0,1,0,0,1,1,0,0,0]
=> [1,0,1,1,0,1,0,0,1,1,0,0]
=> 8
[1,1,0,1,0,1,0,0,1,0]
=> [1,1,1,0,1,0,1,0,0,1,0,0]
=> [1,1,1,0,0,1,0,0,1,1,0,0]
=> 8
[1,1,0,1,0,1,0,1,0,0]
=> [1,1,1,0,1,0,1,0,1,0,0,0]
=> [1,1,0,0,1,1,0,0,1,1,0,0]
=> 9
[1,1,0,1,0,1,1,0,0,0]
=> [1,1,1,0,1,0,1,1,0,0,0,0]
=> [1,0,1,1,0,0,1,1,0,0,1,0]
=> 10
[1,1,0,1,1,0,0,0,1,0]
=> [1,1,1,0,1,1,0,0,0,1,0,0]
=> [1,1,1,0,0,1,0,1,0,0,1,0]
=> 9
[1,1,0,1,1,0,0,1,0,0]
=> [1,1,1,0,1,1,0,0,1,0,0,0]
=> [1,1,0,1,0,0,1,0,1,1,0,0]
=> 10
[1,1,0,1,1,0,1,0,0,0]
=> [1,1,1,0,1,1,0,1,0,0,0,0]
=> [1,1,0,0,1,0,1,1,0,0,1,0]
=> 11
[1,1,0,1,1,1,0,0,0,0]
=> [1,1,1,0,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0]
=> 12
Description
The dinv of a Dyck path.
Let $a=(a_1,\ldots,a_n)$ be the area sequence of a Dyck path $D$ (see [[St000012]]).
The dinv statistic of $D$ is
$$ \operatorname{dinv}(D) = \# \big\{ i < j : a_i-a_j \in \{ 0,1 \} \big\}.$$
Equivalently, $\operatorname{dinv}(D)$ is also equal to the number of boxes in the partition above $D$ whose ''arm length'' is one larger or equal to its ''leg length''.
There is a recursive definition of the $(\operatorname{area},\operatorname{dinv})$ pair of statistics, see [2].
Let $a=(0,a_2,\ldots,a_r,0,a_{r+2},\ldots,a_n)$ be the area sequence of the Dyck path $D$ with $a_i > 0$ for $2\leq i\leq r$ (so that the path touches the diagonal for the first time after $r$ steps). Assume that $D$ has $v$ entries where $a_i=0$. Let $D'$ be the path with the area sequence $(0,a_{r+2},\ldots,a_n,a_2-1,a_3-1,\ldots,a_r-1)$, then the statistics are related by
$$(\operatorname{area}(D),\operatorname{dinv}(D)) = (\operatorname{area}(D')+r-1,\operatorname{dinv}(D')+v-1).$$
Matching statistic: St000018
(load all 5 compositions to match this statistic)
(load all 5 compositions to match this statistic)
Mp00199: Dyck paths —prime Dyck path⟶ Dyck paths
Mp00031: Dyck paths —to 312-avoiding permutation⟶ Permutations
St000018: Permutations ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00031: Dyck paths —to 312-avoiding permutation⟶ Permutations
St000018: Permutations ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[1,0]
=> [1,1,0,0]
=> [2,1] => 1
[1,0,1,0]
=> [1,1,0,1,0,0]
=> [2,3,1] => 2
[1,1,0,0]
=> [1,1,1,0,0,0]
=> [3,2,1] => 3
[1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,0]
=> [2,3,4,1] => 3
[1,0,1,1,0,0]
=> [1,1,0,1,1,0,0,0]
=> [2,4,3,1] => 4
[1,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0]
=> [3,2,4,1] => 4
[1,1,0,1,0,0]
=> [1,1,1,0,1,0,0,0]
=> [3,4,2,1] => 5
[1,1,1,0,0,0]
=> [1,1,1,1,0,0,0,0]
=> [4,3,2,1] => 6
[1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> [2,3,4,5,1] => 4
[1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> [2,3,5,4,1] => 5
[1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> [2,4,3,5,1] => 5
[1,0,1,1,0,1,0,0]
=> [1,1,0,1,1,0,1,0,0,0]
=> [2,4,5,3,1] => 6
[1,0,1,1,1,0,0,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> [2,5,4,3,1] => 7
[1,1,0,0,1,0,1,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> [3,2,4,5,1] => 5
[1,1,0,0,1,1,0,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> [3,2,5,4,1] => 6
[1,1,0,1,0,0,1,0]
=> [1,1,1,0,1,0,0,1,0,0]
=> [3,4,2,5,1] => 6
[1,1,0,1,0,1,0,0]
=> [1,1,1,0,1,0,1,0,0,0]
=> [3,4,5,2,1] => 7
[1,1,0,1,1,0,0,0]
=> [1,1,1,0,1,1,0,0,0,0]
=> [3,5,4,2,1] => 8
[1,1,1,0,0,0,1,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> [4,3,2,5,1] => 7
[1,1,1,0,0,1,0,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> [4,3,5,2,1] => 8
[1,1,1,0,1,0,0,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> [4,5,3,2,1] => 9
[1,1,1,1,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [5,4,3,2,1] => 10
[1,0,1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,1,0,0]
=> [2,3,4,5,6,1] => 5
[1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,0,1,1,0,0,0]
=> [2,3,4,6,5,1] => 6
[1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,0,1,1,0,0,1,0,0]
=> [2,3,5,4,6,1] => 6
[1,0,1,0,1,1,0,1,0,0]
=> [1,1,0,1,0,1,1,0,1,0,0,0]
=> [2,3,5,6,4,1] => 7
[1,0,1,0,1,1,1,0,0,0]
=> [1,1,0,1,0,1,1,1,0,0,0,0]
=> [2,3,6,5,4,1] => 8
[1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,1,1,0,0,1,0,1,0,0]
=> [2,4,3,5,6,1] => 6
[1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,1,1,0,0,1,1,0,0,0]
=> [2,4,3,6,5,1] => 7
[1,0,1,1,0,1,0,0,1,0]
=> [1,1,0,1,1,0,1,0,0,1,0,0]
=> [2,4,5,3,6,1] => 7
[1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,1,1,0,1,0,1,0,0,0]
=> [2,4,5,6,3,1] => 8
[1,0,1,1,0,1,1,0,0,0]
=> [1,1,0,1,1,0,1,1,0,0,0,0]
=> [2,4,6,5,3,1] => 9
[1,0,1,1,1,0,0,0,1,0]
=> [1,1,0,1,1,1,0,0,0,1,0,0]
=> [2,5,4,3,6,1] => 8
[1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,1,1,1,0,0,1,0,0,0]
=> [2,5,4,6,3,1] => 9
[1,0,1,1,1,0,1,0,0,0]
=> [1,1,0,1,1,1,0,1,0,0,0,0]
=> [2,5,6,4,3,1] => 10
[1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,1,1,1,1,0,0,0,0,0]
=> [2,6,5,4,3,1] => 11
[1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,0,0,1,0,1,0,1,0,0]
=> [3,2,4,5,6,1] => 6
[1,1,0,0,1,0,1,1,0,0]
=> [1,1,1,0,0,1,0,1,1,0,0,0]
=> [3,2,4,6,5,1] => 7
[1,1,0,0,1,1,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,1,0,0]
=> [3,2,5,4,6,1] => 7
[1,1,0,0,1,1,0,1,0,0]
=> [1,1,1,0,0,1,1,0,1,0,0,0]
=> [3,2,5,6,4,1] => 8
[1,1,0,0,1,1,1,0,0,0]
=> [1,1,1,0,0,1,1,1,0,0,0,0]
=> [3,2,6,5,4,1] => 9
[1,1,0,1,0,0,1,0,1,0]
=> [1,1,1,0,1,0,0,1,0,1,0,0]
=> [3,4,2,5,6,1] => 7
[1,1,0,1,0,0,1,1,0,0]
=> [1,1,1,0,1,0,0,1,1,0,0,0]
=> [3,4,2,6,5,1] => 8
[1,1,0,1,0,1,0,0,1,0]
=> [1,1,1,0,1,0,1,0,0,1,0,0]
=> [3,4,5,2,6,1] => 8
[1,1,0,1,0,1,0,1,0,0]
=> [1,1,1,0,1,0,1,0,1,0,0,0]
=> [3,4,5,6,2,1] => 9
[1,1,0,1,0,1,1,0,0,0]
=> [1,1,1,0,1,0,1,1,0,0,0,0]
=> [3,4,6,5,2,1] => 10
[1,1,0,1,1,0,0,0,1,0]
=> [1,1,1,0,1,1,0,0,0,1,0,0]
=> [3,5,4,2,6,1] => 9
[1,1,0,1,1,0,0,1,0,0]
=> [1,1,1,0,1,1,0,0,1,0,0,0]
=> [3,5,4,6,2,1] => 10
[1,1,0,1,1,0,1,0,0,0]
=> [1,1,1,0,1,1,0,1,0,0,0,0]
=> [3,5,6,4,2,1] => 11
[1,1,0,1,1,1,0,0,0,0]
=> [1,1,1,0,1,1,1,0,0,0,0,0]
=> [3,6,5,4,2,1] => 12
Description
The number of inversions of a permutation.
This equals the minimal number of simple transpositions $(i,i+1)$ needed to write $\pi$. Thus, it is also the Coxeter length of $\pi$.
Matching statistic: St000041
Mp00199: Dyck paths —prime Dyck path⟶ Dyck paths
Mp00146: Dyck paths —to tunnel matching⟶ Perfect matchings
St000041: Perfect matchings ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00146: Dyck paths —to tunnel matching⟶ Perfect matchings
St000041: Perfect matchings ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[1,0]
=> [1,1,0,0]
=> [(1,4),(2,3)]
=> 1
[1,0,1,0]
=> [1,1,0,1,0,0]
=> [(1,6),(2,3),(4,5)]
=> 2
[1,1,0,0]
=> [1,1,1,0,0,0]
=> [(1,6),(2,5),(3,4)]
=> 3
[1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,0]
=> [(1,8),(2,3),(4,5),(6,7)]
=> 3
[1,0,1,1,0,0]
=> [1,1,0,1,1,0,0,0]
=> [(1,8),(2,3),(4,7),(5,6)]
=> 4
[1,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0]
=> [(1,8),(2,5),(3,4),(6,7)]
=> 4
[1,1,0,1,0,0]
=> [1,1,1,0,1,0,0,0]
=> [(1,8),(2,7),(3,4),(5,6)]
=> 5
[1,1,1,0,0,0]
=> [1,1,1,1,0,0,0,0]
=> [(1,8),(2,7),(3,6),(4,5)]
=> 6
[1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> [(1,10),(2,3),(4,5),(6,7),(8,9)]
=> 4
[1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> [(1,10),(2,3),(4,5),(6,9),(7,8)]
=> 5
[1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> [(1,10),(2,3),(4,7),(5,6),(8,9)]
=> 5
[1,0,1,1,0,1,0,0]
=> [1,1,0,1,1,0,1,0,0,0]
=> [(1,10),(2,3),(4,9),(5,6),(7,8)]
=> 6
[1,0,1,1,1,0,0,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> [(1,10),(2,3),(4,9),(5,8),(6,7)]
=> 7
[1,1,0,0,1,0,1,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> [(1,10),(2,5),(3,4),(6,7),(8,9)]
=> 5
[1,1,0,0,1,1,0,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> [(1,10),(2,5),(3,4),(6,9),(7,8)]
=> 6
[1,1,0,1,0,0,1,0]
=> [1,1,1,0,1,0,0,1,0,0]
=> [(1,10),(2,7),(3,4),(5,6),(8,9)]
=> 6
[1,1,0,1,0,1,0,0]
=> [1,1,1,0,1,0,1,0,0,0]
=> [(1,10),(2,9),(3,4),(5,6),(7,8)]
=> 7
[1,1,0,1,1,0,0,0]
=> [1,1,1,0,1,1,0,0,0,0]
=> [(1,10),(2,9),(3,4),(5,8),(6,7)]
=> 8
[1,1,1,0,0,0,1,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> [(1,10),(2,7),(3,6),(4,5),(8,9)]
=> 7
[1,1,1,0,0,1,0,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> [(1,10),(2,9),(3,6),(4,5),(7,8)]
=> 8
[1,1,1,0,1,0,0,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> [(1,10),(2,9),(3,8),(4,5),(6,7)]
=> 9
[1,1,1,1,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [(1,10),(2,9),(3,8),(4,7),(5,6)]
=> 10
[1,0,1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,1,0,0]
=> [(1,12),(2,3),(4,5),(6,7),(8,9),(10,11)]
=> 5
[1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,0,1,1,0,0,0]
=> [(1,12),(2,3),(4,5),(6,7),(8,11),(9,10)]
=> 6
[1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,0,1,1,0,0,1,0,0]
=> [(1,12),(2,3),(4,5),(6,9),(7,8),(10,11)]
=> 6
[1,0,1,0,1,1,0,1,0,0]
=> [1,1,0,1,0,1,1,0,1,0,0,0]
=> [(1,12),(2,3),(4,5),(6,11),(7,8),(9,10)]
=> 7
[1,0,1,0,1,1,1,0,0,0]
=> [1,1,0,1,0,1,1,1,0,0,0,0]
=> [(1,12),(2,3),(4,5),(6,11),(7,10),(8,9)]
=> 8
[1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,1,1,0,0,1,0,1,0,0]
=> [(1,12),(2,3),(4,7),(5,6),(8,9),(10,11)]
=> 6
[1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,1,1,0,0,1,1,0,0,0]
=> [(1,12),(2,3),(4,7),(5,6),(8,11),(9,10)]
=> 7
[1,0,1,1,0,1,0,0,1,0]
=> [1,1,0,1,1,0,1,0,0,1,0,0]
=> [(1,12),(2,3),(4,9),(5,6),(7,8),(10,11)]
=> 7
[1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,1,1,0,1,0,1,0,0,0]
=> [(1,12),(2,3),(4,11),(5,6),(7,8),(9,10)]
=> 8
[1,0,1,1,0,1,1,0,0,0]
=> [1,1,0,1,1,0,1,1,0,0,0,0]
=> [(1,12),(2,3),(4,11),(5,6),(7,10),(8,9)]
=> 9
[1,0,1,1,1,0,0,0,1,0]
=> [1,1,0,1,1,1,0,0,0,1,0,0]
=> [(1,12),(2,3),(4,9),(5,8),(6,7),(10,11)]
=> 8
[1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,1,1,1,0,0,1,0,0,0]
=> [(1,12),(2,3),(4,11),(5,8),(6,7),(9,10)]
=> 9
[1,0,1,1,1,0,1,0,0,0]
=> [1,1,0,1,1,1,0,1,0,0,0,0]
=> [(1,12),(2,3),(4,11),(5,10),(6,7),(8,9)]
=> 10
[1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,1,1,1,1,0,0,0,0,0]
=> [(1,12),(2,3),(4,11),(5,10),(6,9),(7,8)]
=> 11
[1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,0,0,1,0,1,0,1,0,0]
=> [(1,12),(2,5),(3,4),(6,7),(8,9),(10,11)]
=> 6
[1,1,0,0,1,0,1,1,0,0]
=> [1,1,1,0,0,1,0,1,1,0,0,0]
=> [(1,12),(2,5),(3,4),(6,7),(8,11),(9,10)]
=> 7
[1,1,0,0,1,1,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,1,0,0]
=> [(1,12),(2,5),(3,4),(6,9),(7,8),(10,11)]
=> 7
[1,1,0,0,1,1,0,1,0,0]
=> [1,1,1,0,0,1,1,0,1,0,0,0]
=> [(1,12),(2,5),(3,4),(6,11),(7,8),(9,10)]
=> 8
[1,1,0,0,1,1,1,0,0,0]
=> [1,1,1,0,0,1,1,1,0,0,0,0]
=> [(1,12),(2,5),(3,4),(6,11),(7,10),(8,9)]
=> 9
[1,1,0,1,0,0,1,0,1,0]
=> [1,1,1,0,1,0,0,1,0,1,0,0]
=> [(1,12),(2,7),(3,4),(5,6),(8,9),(10,11)]
=> 7
[1,1,0,1,0,0,1,1,0,0]
=> [1,1,1,0,1,0,0,1,1,0,0,0]
=> [(1,12),(2,7),(3,4),(5,6),(8,11),(9,10)]
=> 8
[1,1,0,1,0,1,0,0,1,0]
=> [1,1,1,0,1,0,1,0,0,1,0,0]
=> [(1,12),(2,9),(3,4),(5,6),(7,8),(10,11)]
=> 8
[1,1,0,1,0,1,0,1,0,0]
=> [1,1,1,0,1,0,1,0,1,0,0,0]
=> [(1,12),(2,11),(3,4),(5,6),(7,8),(9,10)]
=> 9
[1,1,0,1,0,1,1,0,0,0]
=> [1,1,1,0,1,0,1,1,0,0,0,0]
=> [(1,12),(2,11),(3,4),(5,6),(7,10),(8,9)]
=> 10
[1,1,0,1,1,0,0,0,1,0]
=> [1,1,1,0,1,1,0,0,0,1,0,0]
=> [(1,12),(2,9),(3,4),(5,8),(6,7),(10,11)]
=> 9
[1,1,0,1,1,0,0,1,0,0]
=> [1,1,1,0,1,1,0,0,1,0,0,0]
=> [(1,12),(2,11),(3,4),(5,8),(6,7),(9,10)]
=> 10
[1,1,0,1,1,0,1,0,0,0]
=> [1,1,1,0,1,1,0,1,0,0,0,0]
=> [(1,12),(2,11),(3,4),(5,10),(6,7),(8,9)]
=> 11
[1,1,0,1,1,1,0,0,0,0]
=> [1,1,1,0,1,1,1,0,0,0,0,0]
=> [(1,12),(2,11),(3,4),(5,10),(6,9),(7,8)]
=> 12
Description
The number of nestings of a perfect matching.
This is the number of pairs of edges $((a,b), (c,d))$ such that $a\le c\le d\le b$. i.e., the edge $(c,d)$ is nested inside $(a,b)$.
Matching statistic: St000057
Mp00199: Dyck paths —prime Dyck path⟶ Dyck paths
Mp00033: Dyck paths —to two-row standard tableau⟶ Standard tableaux
St000057: Standard tableaux ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00033: Dyck paths —to two-row standard tableau⟶ Standard tableaux
St000057: Standard tableaux ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[1,0]
=> [1,1,0,0]
=> [[1,2],[3,4]]
=> 1
[1,0,1,0]
=> [1,1,0,1,0,0]
=> [[1,2,4],[3,5,6]]
=> 2
[1,1,0,0]
=> [1,1,1,0,0,0]
=> [[1,2,3],[4,5,6]]
=> 3
[1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,0]
=> [[1,2,4,6],[3,5,7,8]]
=> 3
[1,0,1,1,0,0]
=> [1,1,0,1,1,0,0,0]
=> [[1,2,4,5],[3,6,7,8]]
=> 4
[1,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0]
=> [[1,2,3,6],[4,5,7,8]]
=> 4
[1,1,0,1,0,0]
=> [1,1,1,0,1,0,0,0]
=> [[1,2,3,5],[4,6,7,8]]
=> 5
[1,1,1,0,0,0]
=> [1,1,1,1,0,0,0,0]
=> [[1,2,3,4],[5,6,7,8]]
=> 6
[1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> [[1,2,4,6,8],[3,5,7,9,10]]
=> 4
[1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> [[1,2,4,6,7],[3,5,8,9,10]]
=> 5
[1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> [[1,2,4,5,8],[3,6,7,9,10]]
=> 5
[1,0,1,1,0,1,0,0]
=> [1,1,0,1,1,0,1,0,0,0]
=> [[1,2,4,5,7],[3,6,8,9,10]]
=> 6
[1,0,1,1,1,0,0,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> [[1,2,4,5,6],[3,7,8,9,10]]
=> 7
[1,1,0,0,1,0,1,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> [[1,2,3,6,8],[4,5,7,9,10]]
=> 5
[1,1,0,0,1,1,0,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> [[1,2,3,6,7],[4,5,8,9,10]]
=> 6
[1,1,0,1,0,0,1,0]
=> [1,1,1,0,1,0,0,1,0,0]
=> [[1,2,3,5,8],[4,6,7,9,10]]
=> 6
[1,1,0,1,0,1,0,0]
=> [1,1,1,0,1,0,1,0,0,0]
=> [[1,2,3,5,7],[4,6,8,9,10]]
=> 7
[1,1,0,1,1,0,0,0]
=> [1,1,1,0,1,1,0,0,0,0]
=> [[1,2,3,5,6],[4,7,8,9,10]]
=> 8
[1,1,1,0,0,0,1,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> [[1,2,3,4,8],[5,6,7,9,10]]
=> 7
[1,1,1,0,0,1,0,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> [[1,2,3,4,7],[5,6,8,9,10]]
=> 8
[1,1,1,0,1,0,0,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> [[1,2,3,4,6],[5,7,8,9,10]]
=> 9
[1,1,1,1,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [[1,2,3,4,5],[6,7,8,9,10]]
=> 10
[1,0,1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,1,0,0]
=> [[1,2,4,6,8,10],[3,5,7,9,11,12]]
=> 5
[1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,0,1,1,0,0,0]
=> [[1,2,4,6,8,9],[3,5,7,10,11,12]]
=> 6
[1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,0,1,1,0,0,1,0,0]
=> [[1,2,4,6,7,10],[3,5,8,9,11,12]]
=> 6
[1,0,1,0,1,1,0,1,0,0]
=> [1,1,0,1,0,1,1,0,1,0,0,0]
=> [[1,2,4,6,7,9],[3,5,8,10,11,12]]
=> 7
[1,0,1,0,1,1,1,0,0,0]
=> [1,1,0,1,0,1,1,1,0,0,0,0]
=> [[1,2,4,6,7,8],[3,5,9,10,11,12]]
=> 8
[1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,1,1,0,0,1,0,1,0,0]
=> [[1,2,4,5,8,10],[3,6,7,9,11,12]]
=> 6
[1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,1,1,0,0,1,1,0,0,0]
=> [[1,2,4,5,8,9],[3,6,7,10,11,12]]
=> 7
[1,0,1,1,0,1,0,0,1,0]
=> [1,1,0,1,1,0,1,0,0,1,0,0]
=> [[1,2,4,5,7,10],[3,6,8,9,11,12]]
=> 7
[1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,1,1,0,1,0,1,0,0,0]
=> [[1,2,4,5,7,9],[3,6,8,10,11,12]]
=> 8
[1,0,1,1,0,1,1,0,0,0]
=> [1,1,0,1,1,0,1,1,0,0,0,0]
=> [[1,2,4,5,7,8],[3,6,9,10,11,12]]
=> 9
[1,0,1,1,1,0,0,0,1,0]
=> [1,1,0,1,1,1,0,0,0,1,0,0]
=> [[1,2,4,5,6,10],[3,7,8,9,11,12]]
=> 8
[1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,1,1,1,0,0,1,0,0,0]
=> [[1,2,4,5,6,9],[3,7,8,10,11,12]]
=> 9
[1,0,1,1,1,0,1,0,0,0]
=> [1,1,0,1,1,1,0,1,0,0,0,0]
=> [[1,2,4,5,6,8],[3,7,9,10,11,12]]
=> 10
[1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,1,1,1,1,0,0,0,0,0]
=> [[1,2,4,5,6,7],[3,8,9,10,11,12]]
=> 11
[1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,0,0,1,0,1,0,1,0,0]
=> [[1,2,3,6,8,10],[4,5,7,9,11,12]]
=> 6
[1,1,0,0,1,0,1,1,0,0]
=> [1,1,1,0,0,1,0,1,1,0,0,0]
=> [[1,2,3,6,8,9],[4,5,7,10,11,12]]
=> 7
[1,1,0,0,1,1,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,1,0,0]
=> [[1,2,3,6,7,10],[4,5,8,9,11,12]]
=> 7
[1,1,0,0,1,1,0,1,0,0]
=> [1,1,1,0,0,1,1,0,1,0,0,0]
=> [[1,2,3,6,7,9],[4,5,8,10,11,12]]
=> 8
[1,1,0,0,1,1,1,0,0,0]
=> [1,1,1,0,0,1,1,1,0,0,0,0]
=> [[1,2,3,6,7,8],[4,5,9,10,11,12]]
=> 9
[1,1,0,1,0,0,1,0,1,0]
=> [1,1,1,0,1,0,0,1,0,1,0,0]
=> [[1,2,3,5,8,10],[4,6,7,9,11,12]]
=> 7
[1,1,0,1,0,0,1,1,0,0]
=> [1,1,1,0,1,0,0,1,1,0,0,0]
=> [[1,2,3,5,8,9],[4,6,7,10,11,12]]
=> 8
[1,1,0,1,0,1,0,0,1,0]
=> [1,1,1,0,1,0,1,0,0,1,0,0]
=> [[1,2,3,5,7,10],[4,6,8,9,11,12]]
=> 8
[1,1,0,1,0,1,0,1,0,0]
=> [1,1,1,0,1,0,1,0,1,0,0,0]
=> [[1,2,3,5,7,9],[4,6,8,10,11,12]]
=> 9
[1,1,0,1,0,1,1,0,0,0]
=> [1,1,1,0,1,0,1,1,0,0,0,0]
=> [[1,2,3,5,7,8],[4,6,9,10,11,12]]
=> 10
[1,1,0,1,1,0,0,0,1,0]
=> [1,1,1,0,1,1,0,0,0,1,0,0]
=> [[1,2,3,5,6,10],[4,7,8,9,11,12]]
=> 9
[1,1,0,1,1,0,0,1,0,0]
=> [1,1,1,0,1,1,0,0,1,0,0,0]
=> [[1,2,3,5,6,9],[4,7,8,10,11,12]]
=> 10
[1,1,0,1,1,0,1,0,0,0]
=> [1,1,1,0,1,1,0,1,0,0,0,0]
=> [[1,2,3,5,6,8],[4,7,9,10,11,12]]
=> 11
[1,1,0,1,1,1,0,0,0,0]
=> [1,1,1,0,1,1,1,0,0,0,0,0]
=> [[1,2,3,5,6,7],[4,8,9,10,11,12]]
=> 12
Description
The Shynar inversion number of a standard tableau.
Shynar's inversion number is the number of inversion pairs in a standard Young tableau, where an inversion pair is defined as a pair of integers (x,y) such that y > x and y appears strictly southwest of x in the tableau.
Matching statistic: St000067
(load all 3 compositions to match this statistic)
(load all 3 compositions to match this statistic)
Mp00199: Dyck paths —prime Dyck path⟶ Dyck paths
Mp00137: Dyck paths —to symmetric ASM⟶ Alternating sign matrices
St000067: Alternating sign matrices ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00137: Dyck paths —to symmetric ASM⟶ Alternating sign matrices
St000067: Alternating sign matrices ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[1,0]
=> [1,1,0,0]
=> [[0,1],[1,0]]
=> 1
[1,0,1,0]
=> [1,1,0,1,0,0]
=> [[0,1,0],[1,-1,1],[0,1,0]]
=> 2
[1,1,0,0]
=> [1,1,1,0,0,0]
=> [[0,0,1],[0,1,0],[1,0,0]]
=> 3
[1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,0]
=> [[0,1,0,0],[1,-1,1,0],[0,1,-1,1],[0,0,1,0]]
=> 3
[1,0,1,1,0,0]
=> [1,1,0,1,1,0,0,0]
=> [[0,1,0,0],[1,-1,0,1],[0,0,1,0],[0,1,0,0]]
=> 4
[1,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0]
=> [[0,0,1,0],[0,1,0,0],[1,0,-1,1],[0,0,1,0]]
=> 4
[1,1,0,1,0,0]
=> [1,1,1,0,1,0,0,0]
=> [[0,0,1,0],[0,1,-1,1],[1,-1,1,0],[0,1,0,0]]
=> 5
[1,1,1,0,0,0]
=> [1,1,1,1,0,0,0,0]
=> [[0,0,0,1],[0,0,1,0],[0,1,0,0],[1,0,0,0]]
=> 6
[1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> [[0,1,0,0,0],[1,-1,1,0,0],[0,1,-1,1,0],[0,0,1,-1,1],[0,0,0,1,0]]
=> 4
[1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> [[0,1,0,0,0],[1,-1,1,0,0],[0,1,-1,0,1],[0,0,0,1,0],[0,0,1,0,0]]
=> 5
[1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> [[0,1,0,0,0],[1,-1,0,1,0],[0,0,1,0,0],[0,1,0,-1,1],[0,0,0,1,0]]
=> 5
[1,0,1,1,0,1,0,0]
=> [1,1,0,1,1,0,1,0,0,0]
=> [[0,1,0,0,0],[1,-1,0,1,0],[0,0,1,-1,1],[0,1,-1,1,0],[0,0,1,0,0]]
=> 6
[1,0,1,1,1,0,0,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> [[0,1,0,0,0],[1,-1,0,0,1],[0,0,0,1,0],[0,0,1,0,0],[0,1,0,0,0]]
=> 7
[1,1,0,0,1,0,1,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> [[0,0,1,0,0],[0,1,0,0,0],[1,0,-1,1,0],[0,0,1,-1,1],[0,0,0,1,0]]
=> 5
[1,1,0,0,1,1,0,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> [[0,0,1,0,0],[0,1,0,0,0],[1,0,-1,0,1],[0,0,0,1,0],[0,0,1,0,0]]
=> 6
[1,1,0,1,0,0,1,0]
=> [1,1,1,0,1,0,0,1,0,0]
=> [[0,0,1,0,0],[0,1,-1,1,0],[1,-1,1,0,0],[0,1,0,-1,1],[0,0,0,1,0]]
=> 6
[1,1,0,1,0,1,0,0]
=> [1,1,1,0,1,0,1,0,0,0]
=> [[0,0,1,0,0],[0,1,-1,1,0],[1,-1,1,-1,1],[0,1,-1,1,0],[0,0,1,0,0]]
=> 7
[1,1,0,1,1,0,0,0]
=> [1,1,1,0,1,1,0,0,0,0]
=> [[0,0,1,0,0],[0,1,-1,0,1],[1,-1,0,1,0],[0,0,1,0,0],[0,1,0,0,0]]
=> 8
[1,1,1,0,0,0,1,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> [[0,0,0,1,0],[0,0,1,0,0],[0,1,0,0,0],[1,0,0,-1,1],[0,0,0,1,0]]
=> 7
[1,1,1,0,0,1,0,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> [[0,0,0,1,0],[0,0,1,0,0],[0,1,0,-1,1],[1,0,-1,1,0],[0,0,1,0,0]]
=> 8
[1,1,1,0,1,0,0,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> [[0,0,0,1,0],[0,0,1,-1,1],[0,1,-1,1,0],[1,-1,1,0,0],[0,1,0,0,0]]
=> 9
[1,1,1,1,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [[0,0,0,0,1],[0,0,0,1,0],[0,0,1,0,0],[0,1,0,0,0],[1,0,0,0,0]]
=> 10
[1,0,1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,1,0,0]
=> [[0,1,0,0,0,0],[1,-1,1,0,0,0],[0,1,-1,1,0,0],[0,0,1,-1,1,0],[0,0,0,1,-1,1],[0,0,0,0,1,0]]
=> 5
[1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,0,1,1,0,0,0]
=> [[0,1,0,0,0,0],[1,-1,1,0,0,0],[0,1,-1,1,0,0],[0,0,1,-1,0,1],[0,0,0,0,1,0],[0,0,0,1,0,0]]
=> 6
[1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,0,1,1,0,0,1,0,0]
=> [[0,1,0,0,0,0],[1,-1,1,0,0,0],[0,1,-1,0,1,0],[0,0,0,1,0,0],[0,0,1,0,-1,1],[0,0,0,0,1,0]]
=> 6
[1,0,1,0,1,1,0,1,0,0]
=> [1,1,0,1,0,1,1,0,1,0,0,0]
=> [[0,1,0,0,0,0],[1,-1,1,0,0,0],[0,1,-1,0,1,0],[0,0,0,1,-1,1],[0,0,1,-1,1,0],[0,0,0,1,0,0]]
=> 7
[1,0,1,0,1,1,1,0,0,0]
=> [1,1,0,1,0,1,1,1,0,0,0,0]
=> [[0,1,0,0,0,0],[1,-1,1,0,0,0],[0,1,-1,0,0,1],[0,0,0,0,1,0],[0,0,0,1,0,0],[0,0,1,0,0,0]]
=> 8
[1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,1,1,0,0,1,0,1,0,0]
=> [[0,1,0,0,0,0],[1,-1,0,1,0,0],[0,0,1,0,0,0],[0,1,0,-1,1,0],[0,0,0,1,-1,1],[0,0,0,0,1,0]]
=> 6
[1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,1,1,0,0,1,1,0,0,0]
=> [[0,1,0,0,0,0],[1,-1,0,1,0,0],[0,0,1,0,0,0],[0,1,0,-1,0,1],[0,0,0,0,1,0],[0,0,0,1,0,0]]
=> 7
[1,0,1,1,0,1,0,0,1,0]
=> [1,1,0,1,1,0,1,0,0,1,0,0]
=> [[0,1,0,0,0,0],[1,-1,0,1,0,0],[0,0,1,-1,1,0],[0,1,-1,1,0,0],[0,0,1,0,-1,1],[0,0,0,0,1,0]]
=> 7
[1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,1,1,0,1,0,1,0,0,0]
=> [[0,1,0,0,0,0],[1,-1,0,1,0,0],[0,0,1,-1,1,0],[0,1,-1,1,-1,1],[0,0,1,-1,1,0],[0,0,0,1,0,0]]
=> 8
[1,0,1,1,0,1,1,0,0,0]
=> [1,1,0,1,1,0,1,1,0,0,0,0]
=> [[0,1,0,0,0,0],[1,-1,0,1,0,0],[0,0,1,-1,0,1],[0,1,-1,0,1,0],[0,0,0,1,0,0],[0,0,1,0,0,0]]
=> 9
[1,0,1,1,1,0,0,0,1,0]
=> [1,1,0,1,1,1,0,0,0,1,0,0]
=> [[0,1,0,0,0,0],[1,-1,0,0,1,0],[0,0,0,1,0,0],[0,0,1,0,0,0],[0,1,0,0,-1,1],[0,0,0,0,1,0]]
=> 8
[1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,1,1,1,0,0,1,0,0,0]
=> [[0,1,0,0,0,0],[1,-1,0,0,1,0],[0,0,0,1,0,0],[0,0,1,0,-1,1],[0,1,0,-1,1,0],[0,0,0,1,0,0]]
=> 9
[1,0,1,1,1,0,1,0,0,0]
=> [1,1,0,1,1,1,0,1,0,0,0,0]
=> [[0,1,0,0,0,0],[1,-1,0,0,1,0],[0,0,0,1,-1,1],[0,0,1,-1,1,0],[0,1,-1,1,0,0],[0,0,1,0,0,0]]
=> 10
[1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,1,1,1,1,0,0,0,0,0]
=> [[0,1,0,0,0,0],[1,-1,0,0,0,1],[0,0,0,0,1,0],[0,0,0,1,0,0],[0,0,1,0,0,0],[0,1,0,0,0,0]]
=> 11
[1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,0,0,1,0,1,0,1,0,0]
=> [[0,0,1,0,0,0],[0,1,0,0,0,0],[1,0,-1,1,0,0],[0,0,1,-1,1,0],[0,0,0,1,-1,1],[0,0,0,0,1,0]]
=> 6
[1,1,0,0,1,0,1,1,0,0]
=> [1,1,1,0,0,1,0,1,1,0,0,0]
=> [[0,0,1,0,0,0],[0,1,0,0,0,0],[1,0,-1,1,0,0],[0,0,1,-1,0,1],[0,0,0,0,1,0],[0,0,0,1,0,0]]
=> 7
[1,1,0,0,1,1,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,1,0,0]
=> [[0,0,1,0,0,0],[0,1,0,0,0,0],[1,0,-1,0,1,0],[0,0,0,1,0,0],[0,0,1,0,-1,1],[0,0,0,0,1,0]]
=> 7
[1,1,0,0,1,1,0,1,0,0]
=> [1,1,1,0,0,1,1,0,1,0,0,0]
=> [[0,0,1,0,0,0],[0,1,0,0,0,0],[1,0,-1,0,1,0],[0,0,0,1,-1,1],[0,0,1,-1,1,0],[0,0,0,1,0,0]]
=> 8
[1,1,0,0,1,1,1,0,0,0]
=> [1,1,1,0,0,1,1,1,0,0,0,0]
=> [[0,0,1,0,0,0],[0,1,0,0,0,0],[1,0,-1,0,0,1],[0,0,0,0,1,0],[0,0,0,1,0,0],[0,0,1,0,0,0]]
=> 9
[1,1,0,1,0,0,1,0,1,0]
=> [1,1,1,0,1,0,0,1,0,1,0,0]
=> [[0,0,1,0,0,0],[0,1,-1,1,0,0],[1,-1,1,0,0,0],[0,1,0,-1,1,0],[0,0,0,1,-1,1],[0,0,0,0,1,0]]
=> 7
[1,1,0,1,0,0,1,1,0,0]
=> [1,1,1,0,1,0,0,1,1,0,0,0]
=> [[0,0,1,0,0,0],[0,1,-1,1,0,0],[1,-1,1,0,0,0],[0,1,0,-1,0,1],[0,0,0,0,1,0],[0,0,0,1,0,0]]
=> 8
[1,1,0,1,0,1,0,0,1,0]
=> [1,1,1,0,1,0,1,0,0,1,0,0]
=> [[0,0,1,0,0,0],[0,1,-1,1,0,0],[1,-1,1,-1,1,0],[0,1,-1,1,0,0],[0,0,1,0,-1,1],[0,0,0,0,1,0]]
=> 8
[1,1,0,1,0,1,0,1,0,0]
=> [1,1,1,0,1,0,1,0,1,0,0,0]
=> [[0,0,1,0,0,0],[0,1,-1,1,0,0],[1,-1,1,-1,1,0],[0,1,-1,1,-1,1],[0,0,1,-1,1,0],[0,0,0,1,0,0]]
=> 9
[1,1,0,1,0,1,1,0,0,0]
=> [1,1,1,0,1,0,1,1,0,0,0,0]
=> [[0,0,1,0,0,0],[0,1,-1,1,0,0],[1,-1,1,-1,0,1],[0,1,-1,0,1,0],[0,0,0,1,0,0],[0,0,1,0,0,0]]
=> 10
[1,1,0,1,1,0,0,0,1,0]
=> [1,1,1,0,1,1,0,0,0,1,0,0]
=> [[0,0,1,0,0,0],[0,1,-1,0,1,0],[1,-1,0,1,0,0],[0,0,1,0,0,0],[0,1,0,0,-1,1],[0,0,0,0,1,0]]
=> 9
[1,1,0,1,1,0,0,1,0,0]
=> [1,1,1,0,1,1,0,0,1,0,0,0]
=> [[0,0,1,0,0,0],[0,1,-1,0,1,0],[1,-1,0,1,0,0],[0,0,1,0,-1,1],[0,1,0,-1,1,0],[0,0,0,1,0,0]]
=> 10
[1,1,0,1,1,0,1,0,0,0]
=> [1,1,1,0,1,1,0,1,0,0,0,0]
=> [[0,0,1,0,0,0],[0,1,-1,0,1,0],[1,-1,0,1,-1,1],[0,0,1,-1,1,0],[0,1,-1,1,0,0],[0,0,1,0,0,0]]
=> 11
[1,1,0,1,1,1,0,0,0,0]
=> [1,1,1,0,1,1,1,0,0,0,0,0]
=> [[0,0,1,0,0,0],[0,1,-1,0,0,1],[1,-1,0,0,1,0],[0,0,0,1,0,0],[0,0,1,0,0,0],[0,1,0,0,0,0]]
=> 12
Description
The inversion number of the alternating sign matrix.
If we denote the entries of the alternating sign matrix as $a_{i,j}$, the inversion number is defined as
$$\sum_{i > k}\sum_{j < \ell} a_{i,j}a_{k,\ell}.$$
When restricted to permutation matrices, this gives the usual inversion number of the permutation.
The following 65 statistics, ordered by result quality, also match your data. Click on any of them to see the details.
St000076The rank of the alternating sign matrix in the alternating sign matrix poset. St000133The "bounce" of a permutation. St000161The sum of the sizes of the right subtrees of a binary tree. St000231Sum of the maximal elements of the blocks of a set partition. St000246The number of non-inversions of a permutation. St000795The mad of a permutation. St001397Number of pairs of incomparable elements in a finite poset. St001558The number of transpositions that are smaller or equal to a permutation in Bruhat order. St000004The major index of a permutation. St000042The number of crossings of a perfect matching. St000081The number of edges of a graph. St000224The sorting index of a permutation. St000233The number of nestings of a set partition. St000305The inverse major index of a permutation. St000332The positive inversions of an alternating sign matrix. St000378The diagonal inversion number of an integer partition. St000496The rcs statistic of a set partition. St000796The stat' of a permutation. St000797The stat`` of a permutation. St000798The makl of a permutation. St000947The major index east count of a Dyck path. St001161The major index north count of a Dyck path. St001428The number of B-inversions of a signed permutation. St001671Haglund's hag of a permutation. St001759The Rajchgot index of a permutation. St000639The number of relations in a poset. St000301The number of facets of the stable set polytope of a graph. St001718The number of non-empty open intervals in a poset. St000123The difference in Coxeter length of a permutation and its image under the Simion-Schmidt map. St000802The number of occurrences of the vincular pattern |321 in a permutation. St001772The number of occurrences of the signed pattern 12 in a signed permutation. St001879The number of indecomposable summands of the top of the first syzygy of the dual of the regular module in the incidence algebra of the lattice. St000550The number of modular elements of a lattice. St000551The number of left modular elements of a lattice. St001232The number of indecomposable modules with projective dimension 2 for Nakayama algebras with global dimension at most 2. St000476The sum of the semi-lengths of tunnels before a valley of a Dyck path. St001645The pebbling number of a connected graph. St000883The number of longest increasing subsequences of a permutation. St001880The number of 2-Gorenstein indecomposable injective modules in the incidence algebra of the lattice. St000809The reduced reflection length of the permutation. St000957The number of Bruhat lower covers of a permutation. St001583The projective dimension of the simple module corresponding to the point in the poset of the symmetric group under bruhat order. St001821The sorting index of a signed permutation. St001209The pmaj statistic of a parking function. St000030The sum of the descent differences of a permutations. St000136The dinv of a parking function. St000194The number of primary dinversion pairs of a labelled dyck path corresponding to a parking function. St000238The number of indices that are not small weak excedances. St000240The number of indices that are not small excedances. St000539The number of odd inversions of a permutation. St000868The aid statistic in the sense of Shareshian-Wachs. St001076The minimal length of a factorization of a permutation into transpositions that are cyclic shifts of (12). St001579The number of cyclically simple transpositions decreasing the number of cyclic descents needed to sort a permutation. St001726The number of visible inversions of a permutation. St000222The number of alignments in the permutation. St000358The number of occurrences of the pattern 31-2. St000422The energy of a graph, if it is integral. St000572The dimension exponent of a set partition. St000824The sum of the number of descents and the number of recoils of a permutation. St001021Sum of the differences between projective and codominant dimension of the non-projective indecomposable injective modules in the Nakayama algebra corresponding to the Dyck path. St001584The area statistic between a Dyck path and its bounce path. St001727The number of invisible inversions of a permutation. St000189The number of elements in the poset. St001078The minimal number of occurrences of (12) in a factorization of a permutation into transpositions (12) and cycles (1,. St001812The biclique partition number of a graph.
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!