searching the database
Your data matches 242 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
(click to perform a complete search on your data)
Matching statistic: St001296
(load all 11 compositions to match this statistic)
(load all 11 compositions to match this statistic)
St001296: Dyck paths ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[1,0]
=> 0
[1,0,1,0]
=> 1
[1,1,0,0]
=> 0
[1,0,1,0,1,0]
=> 2
[1,0,1,1,0,0]
=> 1
[1,1,0,0,1,0]
=> 1
[1,1,0,1,0,0]
=> 1
[1,1,1,0,0,0]
=> 0
[1,0,1,0,1,0,1,0]
=> 3
[1,0,1,0,1,1,0,0]
=> 2
[1,0,1,1,0,0,1,0]
=> 1
[1,0,1,1,0,1,0,0]
=> 2
[1,0,1,1,1,0,0,0]
=> 1
[1,1,0,0,1,0,1,0]
=> 2
[1,1,0,0,1,1,0,0]
=> 1
[1,1,0,1,0,0,1,0]
=> 2
[1,1,0,1,0,1,0,0]
=> 2
[1,1,0,1,1,0,0,0]
=> 1
[1,1,1,0,0,0,1,0]
=> 1
[1,1,1,0,0,1,0,0]
=> 1
[1,1,1,0,1,0,0,0]
=> 1
[1,1,1,1,0,0,0,0]
=> 0
[1,0,1,0,1,0,1,0,1,0]
=> 4
[1,0,1,0,1,0,1,1,0,0]
=> 3
[1,0,1,0,1,1,0,0,1,0]
=> 2
[1,0,1,0,1,1,0,1,0,0]
=> 3
[1,0,1,0,1,1,1,0,0,0]
=> 2
[1,0,1,1,0,0,1,0,1,0]
=> 2
[1,0,1,1,0,0,1,1,0,0]
=> 1
[1,0,1,1,0,1,0,0,1,0]
=> 2
[1,0,1,1,0,1,0,1,0,0]
=> 3
[1,0,1,1,0,1,1,0,0,0]
=> 2
[1,0,1,1,1,0,0,0,1,0]
=> 1
[1,0,1,1,1,0,0,1,0,0]
=> 1
[1,0,1,1,1,0,1,0,0,0]
=> 2
[1,0,1,1,1,1,0,0,0,0]
=> 1
[1,1,0,0,1,0,1,0,1,0]
=> 3
[1,1,0,0,1,0,1,1,0,0]
=> 2
[1,1,0,0,1,1,0,0,1,0]
=> 1
[1,1,0,0,1,1,0,1,0,0]
=> 2
[1,1,0,0,1,1,1,0,0,0]
=> 1
[1,1,0,1,0,0,1,0,1,0]
=> 3
[1,1,0,1,0,0,1,1,0,0]
=> 2
[1,1,0,1,0,1,0,0,1,0]
=> 3
[1,1,0,1,0,1,0,1,0,0]
=> 2
[1,1,0,1,0,1,1,0,0,0]
=> 2
[1,1,0,1,1,0,0,0,1,0]
=> 1
[1,1,0,1,1,0,0,1,0,0]
=> 2
[1,1,0,1,1,0,1,0,0,0]
=> 2
[1,1,0,1,1,1,0,0,0,0]
=> 1
Description
The maximal torsionfree index of an indecomposable non-projective module in the corresponding Nakayama algebra.
See [[http://www.findstat.org/DyckPaths/NakayamaAlgebras]].
Matching statistic: St000028
(load all 5 compositions to match this statistic)
(load all 5 compositions to match this statistic)
Mp00119: Dyck paths —to 321-avoiding permutation (Krattenthaler)⟶ Permutations
Mp00241: Permutations —invert Laguerre heap⟶ Permutations
St000028: Permutations ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00241: Permutations —invert Laguerre heap⟶ Permutations
St000028: Permutations ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[1,0]
=> [1] => [1] => 0
[1,0,1,0]
=> [1,2] => [1,2] => 0
[1,1,0,0]
=> [2,1] => [2,1] => 1
[1,0,1,0,1,0]
=> [1,2,3] => [1,2,3] => 0
[1,0,1,1,0,0]
=> [1,3,2] => [1,3,2] => 1
[1,1,0,0,1,0]
=> [2,1,3] => [2,1,3] => 1
[1,1,0,1,0,0]
=> [2,3,1] => [3,1,2] => 1
[1,1,1,0,0,0]
=> [3,1,2] => [2,3,1] => 2
[1,0,1,0,1,0,1,0]
=> [1,2,3,4] => [1,2,3,4] => 0
[1,0,1,0,1,1,0,0]
=> [1,2,4,3] => [1,2,4,3] => 1
[1,0,1,1,0,0,1,0]
=> [1,3,2,4] => [1,3,2,4] => 1
[1,0,1,1,0,1,0,0]
=> [1,3,4,2] => [1,4,2,3] => 1
[1,0,1,1,1,0,0,0]
=> [1,4,2,3] => [1,3,4,2] => 2
[1,1,0,0,1,0,1,0]
=> [2,1,3,4] => [2,1,3,4] => 1
[1,1,0,0,1,1,0,0]
=> [2,1,4,3] => [2,1,4,3] => 1
[1,1,0,1,0,0,1,0]
=> [2,3,1,4] => [3,1,2,4] => 1
[1,1,0,1,0,1,0,0]
=> [2,3,4,1] => [4,1,2,3] => 1
[1,1,0,1,1,0,0,0]
=> [2,4,1,3] => [3,4,1,2] => 2
[1,1,1,0,0,0,1,0]
=> [3,1,2,4] => [2,3,1,4] => 2
[1,1,1,0,0,1,0,0]
=> [3,1,4,2] => [4,2,3,1] => 2
[1,1,1,0,1,0,0,0]
=> [3,4,1,2] => [2,4,1,3] => 2
[1,1,1,1,0,0,0,0]
=> [4,1,2,3] => [2,3,4,1] => 3
[1,0,1,0,1,0,1,0,1,0]
=> [1,2,3,4,5] => [1,2,3,4,5] => 0
[1,0,1,0,1,0,1,1,0,0]
=> [1,2,3,5,4] => [1,2,3,5,4] => 1
[1,0,1,0,1,1,0,0,1,0]
=> [1,2,4,3,5] => [1,2,4,3,5] => 1
[1,0,1,0,1,1,0,1,0,0]
=> [1,2,4,5,3] => [1,2,5,3,4] => 1
[1,0,1,0,1,1,1,0,0,0]
=> [1,2,5,3,4] => [1,2,4,5,3] => 2
[1,0,1,1,0,0,1,0,1,0]
=> [1,3,2,4,5] => [1,3,2,4,5] => 1
[1,0,1,1,0,0,1,1,0,0]
=> [1,3,2,5,4] => [1,3,2,5,4] => 1
[1,0,1,1,0,1,0,0,1,0]
=> [1,3,4,2,5] => [1,4,2,3,5] => 1
[1,0,1,1,0,1,0,1,0,0]
=> [1,3,4,5,2] => [1,5,2,3,4] => 1
[1,0,1,1,0,1,1,0,0,0]
=> [1,3,5,2,4] => [1,4,5,2,3] => 2
[1,0,1,1,1,0,0,0,1,0]
=> [1,4,2,3,5] => [1,3,4,2,5] => 2
[1,0,1,1,1,0,0,1,0,0]
=> [1,4,2,5,3] => [1,5,3,4,2] => 2
[1,0,1,1,1,0,1,0,0,0]
=> [1,4,5,2,3] => [1,3,5,2,4] => 2
[1,0,1,1,1,1,0,0,0,0]
=> [1,5,2,3,4] => [1,3,4,5,2] => 3
[1,1,0,0,1,0,1,0,1,0]
=> [2,1,3,4,5] => [2,1,3,4,5] => 1
[1,1,0,0,1,0,1,1,0,0]
=> [2,1,3,5,4] => [2,1,3,5,4] => 1
[1,1,0,0,1,1,0,0,1,0]
=> [2,1,4,3,5] => [2,1,4,3,5] => 1
[1,1,0,0,1,1,0,1,0,0]
=> [2,1,4,5,3] => [2,1,5,3,4] => 1
[1,1,0,0,1,1,1,0,0,0]
=> [2,1,5,3,4] => [2,1,4,5,3] => 2
[1,1,0,1,0,0,1,0,1,0]
=> [2,3,1,4,5] => [3,1,2,4,5] => 1
[1,1,0,1,0,0,1,1,0,0]
=> [2,3,1,5,4] => [3,1,2,5,4] => 1
[1,1,0,1,0,1,0,0,1,0]
=> [2,3,4,1,5] => [4,1,2,3,5] => 1
[1,1,0,1,0,1,0,1,0,0]
=> [2,3,4,5,1] => [5,1,2,3,4] => 1
[1,1,0,1,0,1,1,0,0,0]
=> [2,3,5,1,4] => [4,5,1,2,3] => 2
[1,1,0,1,1,0,0,0,1,0]
=> [2,4,1,3,5] => [3,4,1,2,5] => 2
[1,1,0,1,1,0,0,1,0,0]
=> [2,4,1,5,3] => [5,3,4,1,2] => 2
[1,1,0,1,1,0,1,0,0,0]
=> [2,4,5,1,3] => [3,5,1,2,4] => 2
[1,1,0,1,1,1,0,0,0,0]
=> [2,5,1,3,4] => [3,4,5,1,2] => 3
Description
The number of stack-sorts needed to sort a permutation.
A permutation is (West) $t$-stack sortable if it is sortable using $t$ stacks in series.
Let $W_t(n,k)$ be the number of permutations of size $n$
with $k$ descents which are $t$-stack sortable. Then the polynomials $W_{n,t}(x) = \sum_{k=0}^n W_t(n,k)x^k$
are symmetric and unimodal.
We have $W_{n,1}(x) = A_n(x)$, the Eulerian polynomials. One can show that $W_{n,1}(x)$ and $W_{n,2}(x)$ are real-rooted.
Precisely the permutations that avoid the pattern $231$ have statistic at most $1$, see [3]. These are counted by $\frac{1}{n+1}\binom{2n}{n}$ ([[OEIS:A000108]]). Precisely the permutations that avoid the pattern $2341$ and the barred pattern $3\bar 5241$ have statistic at most $2$, see [4]. These are counted by $\frac{2(3n)!}{(n+1)!(2n+1)!}$ ([[OEIS:A000139]]).
Matching statistic: St000845
(load all 8 compositions to match this statistic)
(load all 8 compositions to match this statistic)
Mp00023: Dyck paths —to non-crossing permutation⟶ Permutations
Mp00065: Permutations —permutation poset⟶ Posets
St000845: Posets ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00065: Permutations —permutation poset⟶ Posets
St000845: Posets ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[1,0]
=> [1] => ([],1)
=> 0
[1,0,1,0]
=> [1,2] => ([(0,1)],2)
=> 1
[1,1,0,0]
=> [2,1] => ([],2)
=> 0
[1,0,1,0,1,0]
=> [1,2,3] => ([(0,2),(2,1)],3)
=> 1
[1,0,1,1,0,0]
=> [1,3,2] => ([(0,1),(0,2)],3)
=> 2
[1,1,0,0,1,0]
=> [2,1,3] => ([(0,2),(1,2)],3)
=> 1
[1,1,0,1,0,0]
=> [2,3,1] => ([(1,2)],3)
=> 1
[1,1,1,0,0,0]
=> [3,2,1] => ([],3)
=> 0
[1,0,1,0,1,0,1,0]
=> [1,2,3,4] => ([(0,3),(2,1),(3,2)],4)
=> 1
[1,0,1,0,1,1,0,0]
=> [1,2,4,3] => ([(0,3),(3,1),(3,2)],4)
=> 2
[1,0,1,1,0,0,1,0]
=> [1,3,2,4] => ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
[1,0,1,1,0,1,0,0]
=> [1,3,4,2] => ([(0,2),(0,3),(3,1)],4)
=> 2
[1,0,1,1,1,0,0,0]
=> [1,4,3,2] => ([(0,1),(0,2),(0,3)],4)
=> 3
[1,1,0,0,1,0,1,0]
=> [2,1,3,4] => ([(0,3),(1,3),(3,2)],4)
=> 1
[1,1,0,0,1,1,0,0]
=> [2,1,4,3] => ([(0,2),(0,3),(1,2),(1,3)],4)
=> 2
[1,1,0,1,0,0,1,0]
=> [2,3,1,4] => ([(0,3),(1,2),(2,3)],4)
=> 1
[1,1,0,1,0,1,0,0]
=> [2,3,4,1] => ([(1,2),(2,3)],4)
=> 1
[1,1,0,1,1,0,0,0]
=> [2,4,3,1] => ([(1,2),(1,3)],4)
=> 2
[1,1,1,0,0,0,1,0]
=> [3,2,1,4] => ([(0,3),(1,3),(2,3)],4)
=> 1
[1,1,1,0,0,1,0,0]
=> [3,2,4,1] => ([(1,3),(2,3)],4)
=> 1
[1,1,1,0,1,0,0,0]
=> [4,2,3,1] => ([(2,3)],4)
=> 1
[1,1,1,1,0,0,0,0]
=> [4,3,2,1] => ([],4)
=> 0
[1,0,1,0,1,0,1,0,1,0]
=> [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1
[1,0,1,0,1,0,1,1,0,0]
=> [1,2,3,5,4] => ([(0,3),(3,4),(4,1),(4,2)],5)
=> 2
[1,0,1,0,1,1,0,0,1,0]
=> [1,2,4,3,5] => ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> 2
[1,0,1,0,1,1,0,1,0,0]
=> [1,2,4,5,3] => ([(0,4),(3,2),(4,1),(4,3)],5)
=> 2
[1,0,1,0,1,1,1,0,0,0]
=> [1,2,5,4,3] => ([(0,4),(4,1),(4,2),(4,3)],5)
=> 3
[1,0,1,1,0,0,1,0,1,0]
=> [1,3,2,4,5] => ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> 2
[1,0,1,1,0,0,1,1,0,0]
=> [1,3,2,5,4] => ([(0,1),(0,2),(1,3),(1,4),(2,3),(2,4)],5)
=> 2
[1,0,1,1,0,1,0,0,1,0]
=> [1,3,4,2,5] => ([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
=> 2
[1,0,1,1,0,1,0,1,0,0]
=> [1,3,4,5,2] => ([(0,2),(0,4),(3,1),(4,3)],5)
=> 2
[1,0,1,1,0,1,1,0,0,0]
=> [1,3,5,4,2] => ([(0,3),(0,4),(4,1),(4,2)],5)
=> 2
[1,0,1,1,1,0,0,0,1,0]
=> [1,4,3,2,5] => ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> 3
[1,0,1,1,1,0,0,1,0,0]
=> [1,4,3,5,2] => ([(0,1),(0,2),(0,3),(2,4),(3,4)],5)
=> 3
[1,0,1,1,1,0,1,0,0,0]
=> [1,5,3,4,2] => ([(0,2),(0,3),(0,4),(4,1)],5)
=> 3
[1,0,1,1,1,1,0,0,0,0]
=> [1,5,4,3,2] => ([(0,1),(0,2),(0,3),(0,4)],5)
=> 4
[1,1,0,0,1,0,1,0,1,0]
=> [2,1,3,4,5] => ([(0,4),(1,4),(2,3),(4,2)],5)
=> 1
[1,1,0,0,1,0,1,1,0,0]
=> [2,1,3,5,4] => ([(0,4),(1,4),(4,2),(4,3)],5)
=> 2
[1,1,0,0,1,1,0,0,1,0]
=> [2,1,4,3,5] => ([(0,3),(0,4),(1,3),(1,4),(3,2),(4,2)],5)
=> 2
[1,1,0,0,1,1,0,1,0,0]
=> [2,1,4,5,3] => ([(0,3),(0,4),(1,3),(1,4),(4,2)],5)
=> 2
[1,1,0,0,1,1,1,0,0,0]
=> [2,1,5,4,3] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4)],5)
=> 3
[1,1,0,1,0,0,1,0,1,0]
=> [2,3,1,4,5] => ([(0,4),(1,2),(2,4),(4,3)],5)
=> 1
[1,1,0,1,0,0,1,1,0,0]
=> [2,3,1,5,4] => ([(0,3),(0,4),(1,2),(2,3),(2,4)],5)
=> 2
[1,1,0,1,0,1,0,0,1,0]
=> [2,3,4,1,5] => ([(0,4),(1,2),(2,3),(3,4)],5)
=> 1
[1,1,0,1,0,1,0,1,0,0]
=> [2,3,4,5,1] => ([(1,4),(3,2),(4,3)],5)
=> 1
[1,1,0,1,0,1,1,0,0,0]
=> [2,3,5,4,1] => ([(1,4),(4,2),(4,3)],5)
=> 2
[1,1,0,1,1,0,0,0,1,0]
=> [2,4,3,1,5] => ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> 2
[1,1,0,1,1,0,0,1,0,0]
=> [2,4,3,5,1] => ([(1,2),(1,3),(2,4),(3,4)],5)
=> 2
[1,1,0,1,1,0,1,0,0,0]
=> [2,5,3,4,1] => ([(1,3),(1,4),(4,2)],5)
=> 2
[1,1,0,1,1,1,0,0,0,0]
=> [2,5,4,3,1] => ([(1,2),(1,3),(1,4)],5)
=> 3
Description
The maximal number of elements covered by an element in a poset.
Matching statistic: St000846
(load all 10 compositions to match this statistic)
(load all 10 compositions to match this statistic)
Mp00025: Dyck paths —to 132-avoiding permutation⟶ Permutations
Mp00065: Permutations —permutation poset⟶ Posets
St000846: Posets ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00065: Permutations —permutation poset⟶ Posets
St000846: Posets ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[1,0]
=> [1] => ([],1)
=> 0
[1,0,1,0]
=> [2,1] => ([],2)
=> 0
[1,1,0,0]
=> [1,2] => ([(0,1)],2)
=> 1
[1,0,1,0,1,0]
=> [3,2,1] => ([],3)
=> 0
[1,0,1,1,0,0]
=> [2,3,1] => ([(1,2)],3)
=> 1
[1,1,0,0,1,0]
=> [3,1,2] => ([(1,2)],3)
=> 1
[1,1,0,1,0,0]
=> [2,1,3] => ([(0,2),(1,2)],3)
=> 2
[1,1,1,0,0,0]
=> [1,2,3] => ([(0,2),(2,1)],3)
=> 1
[1,0,1,0,1,0,1,0]
=> [4,3,2,1] => ([],4)
=> 0
[1,0,1,0,1,1,0,0]
=> [3,4,2,1] => ([(2,3)],4)
=> 1
[1,0,1,1,0,0,1,0]
=> [4,2,3,1] => ([(2,3)],4)
=> 1
[1,0,1,1,0,1,0,0]
=> [3,2,4,1] => ([(1,3),(2,3)],4)
=> 2
[1,0,1,1,1,0,0,0]
=> [2,3,4,1] => ([(1,2),(2,3)],4)
=> 1
[1,1,0,0,1,0,1,0]
=> [4,3,1,2] => ([(2,3)],4)
=> 1
[1,1,0,0,1,1,0,0]
=> [3,4,1,2] => ([(0,3),(1,2)],4)
=> 1
[1,1,0,1,0,0,1,0]
=> [4,2,1,3] => ([(1,3),(2,3)],4)
=> 2
[1,1,0,1,0,1,0,0]
=> [3,2,1,4] => ([(0,3),(1,3),(2,3)],4)
=> 3
[1,1,0,1,1,0,0,0]
=> [2,3,1,4] => ([(0,3),(1,2),(2,3)],4)
=> 2
[1,1,1,0,0,0,1,0]
=> [4,1,2,3] => ([(1,2),(2,3)],4)
=> 1
[1,1,1,0,0,1,0,0]
=> [3,1,2,4] => ([(0,3),(1,2),(2,3)],4)
=> 2
[1,1,1,0,1,0,0,0]
=> [2,1,3,4] => ([(0,3),(1,3),(3,2)],4)
=> 2
[1,1,1,1,0,0,0,0]
=> [1,2,3,4] => ([(0,3),(2,1),(3,2)],4)
=> 1
[1,0,1,0,1,0,1,0,1,0]
=> [5,4,3,2,1] => ([],5)
=> 0
[1,0,1,0,1,0,1,1,0,0]
=> [4,5,3,2,1] => ([(3,4)],5)
=> 1
[1,0,1,0,1,1,0,0,1,0]
=> [5,3,4,2,1] => ([(3,4)],5)
=> 1
[1,0,1,0,1,1,0,1,0,0]
=> [4,3,5,2,1] => ([(2,4),(3,4)],5)
=> 2
[1,0,1,0,1,1,1,0,0,0]
=> [3,4,5,2,1] => ([(2,3),(3,4)],5)
=> 1
[1,0,1,1,0,0,1,0,1,0]
=> [5,4,2,3,1] => ([(3,4)],5)
=> 1
[1,0,1,1,0,0,1,1,0,0]
=> [4,5,2,3,1] => ([(1,4),(2,3)],5)
=> 1
[1,0,1,1,0,1,0,0,1,0]
=> [5,3,2,4,1] => ([(2,4),(3,4)],5)
=> 2
[1,0,1,1,0,1,0,1,0,0]
=> [4,3,2,5,1] => ([(1,4),(2,4),(3,4)],5)
=> 3
[1,0,1,1,0,1,1,0,0,0]
=> [3,4,2,5,1] => ([(1,4),(2,3),(3,4)],5)
=> 2
[1,0,1,1,1,0,0,0,1,0]
=> [5,2,3,4,1] => ([(2,3),(3,4)],5)
=> 1
[1,0,1,1,1,0,0,1,0,0]
=> [4,2,3,5,1] => ([(1,4),(2,3),(3,4)],5)
=> 2
[1,0,1,1,1,0,1,0,0,0]
=> [3,2,4,5,1] => ([(1,4),(2,4),(4,3)],5)
=> 2
[1,0,1,1,1,1,0,0,0,0]
=> [2,3,4,5,1] => ([(1,4),(3,2),(4,3)],5)
=> 1
[1,1,0,0,1,0,1,0,1,0]
=> [5,4,3,1,2] => ([(3,4)],5)
=> 1
[1,1,0,0,1,0,1,1,0,0]
=> [4,5,3,1,2] => ([(1,4),(2,3)],5)
=> 1
[1,1,0,0,1,1,0,0,1,0]
=> [5,3,4,1,2] => ([(1,4),(2,3)],5)
=> 1
[1,1,0,0,1,1,0,1,0,0]
=> [4,3,5,1,2] => ([(0,4),(1,4),(2,3)],5)
=> 2
[1,1,0,0,1,1,1,0,0,0]
=> [3,4,5,1,2] => ([(0,3),(1,4),(4,2)],5)
=> 1
[1,1,0,1,0,0,1,0,1,0]
=> [5,4,2,1,3] => ([(2,4),(3,4)],5)
=> 2
[1,1,0,1,0,0,1,1,0,0]
=> [4,5,2,1,3] => ([(0,4),(1,4),(2,3)],5)
=> 2
[1,1,0,1,0,1,0,0,1,0]
=> [5,3,2,1,4] => ([(1,4),(2,4),(3,4)],5)
=> 3
[1,1,0,1,0,1,0,1,0,0]
=> [4,3,2,1,5] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 4
[1,1,0,1,0,1,1,0,0,0]
=> [3,4,2,1,5] => ([(0,4),(1,4),(2,3),(3,4)],5)
=> 3
[1,1,0,1,1,0,0,0,1,0]
=> [5,2,3,1,4] => ([(1,4),(2,3),(3,4)],5)
=> 2
[1,1,0,1,1,0,0,1,0,0]
=> [4,2,3,1,5] => ([(0,4),(1,4),(2,3),(3,4)],5)
=> 3
[1,1,0,1,1,0,1,0,0,0]
=> [3,2,4,1,5] => ([(0,4),(1,3),(2,3),(3,4)],5)
=> 2
[1,1,0,1,1,1,0,0,0,0]
=> [2,3,4,1,5] => ([(0,4),(1,2),(2,3),(3,4)],5)
=> 2
Description
The maximal number of elements covering an element of a poset.
Matching statistic: St000308
(load all 4 compositions to match this statistic)
(load all 4 compositions to match this statistic)
Mp00023: Dyck paths —to non-crossing permutation⟶ Permutations
Mp00064: Permutations —reverse⟶ Permutations
St000308: Permutations ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00064: Permutations —reverse⟶ Permutations
St000308: Permutations ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[1,0]
=> [1] => [1] => 1 = 0 + 1
[1,0,1,0]
=> [1,2] => [2,1] => 1 = 0 + 1
[1,1,0,0]
=> [2,1] => [1,2] => 2 = 1 + 1
[1,0,1,0,1,0]
=> [1,2,3] => [3,2,1] => 1 = 0 + 1
[1,0,1,1,0,0]
=> [1,3,2] => [2,3,1] => 2 = 1 + 1
[1,1,0,0,1,0]
=> [2,1,3] => [3,1,2] => 2 = 1 + 1
[1,1,0,1,0,0]
=> [2,3,1] => [1,3,2] => 2 = 1 + 1
[1,1,1,0,0,0]
=> [3,2,1] => [1,2,3] => 3 = 2 + 1
[1,0,1,0,1,0,1,0]
=> [1,2,3,4] => [4,3,2,1] => 1 = 0 + 1
[1,0,1,0,1,1,0,0]
=> [1,2,4,3] => [3,4,2,1] => 2 = 1 + 1
[1,0,1,1,0,0,1,0]
=> [1,3,2,4] => [4,2,3,1] => 2 = 1 + 1
[1,0,1,1,0,1,0,0]
=> [1,3,4,2] => [2,4,3,1] => 2 = 1 + 1
[1,0,1,1,1,0,0,0]
=> [1,4,3,2] => [2,3,4,1] => 3 = 2 + 1
[1,1,0,0,1,0,1,0]
=> [2,1,3,4] => [4,3,1,2] => 2 = 1 + 1
[1,1,0,0,1,1,0,0]
=> [2,1,4,3] => [3,4,1,2] => 2 = 1 + 1
[1,1,0,1,0,0,1,0]
=> [2,3,1,4] => [4,1,3,2] => 2 = 1 + 1
[1,1,0,1,0,1,0,0]
=> [2,3,4,1] => [1,4,3,2] => 2 = 1 + 1
[1,1,0,1,1,0,0,0]
=> [2,4,3,1] => [1,3,4,2] => 3 = 2 + 1
[1,1,1,0,0,0,1,0]
=> [3,2,1,4] => [4,1,2,3] => 3 = 2 + 1
[1,1,1,0,0,1,0,0]
=> [3,2,4,1] => [1,4,2,3] => 3 = 2 + 1
[1,1,1,0,1,0,0,0]
=> [4,2,3,1] => [1,3,2,4] => 3 = 2 + 1
[1,1,1,1,0,0,0,0]
=> [4,3,2,1] => [1,2,3,4] => 4 = 3 + 1
[1,0,1,0,1,0,1,0,1,0]
=> [1,2,3,4,5] => [5,4,3,2,1] => 1 = 0 + 1
[1,0,1,0,1,0,1,1,0,0]
=> [1,2,3,5,4] => [4,5,3,2,1] => 2 = 1 + 1
[1,0,1,0,1,1,0,0,1,0]
=> [1,2,4,3,5] => [5,3,4,2,1] => 2 = 1 + 1
[1,0,1,0,1,1,0,1,0,0]
=> [1,2,4,5,3] => [3,5,4,2,1] => 2 = 1 + 1
[1,0,1,0,1,1,1,0,0,0]
=> [1,2,5,4,3] => [3,4,5,2,1] => 3 = 2 + 1
[1,0,1,1,0,0,1,0,1,0]
=> [1,3,2,4,5] => [5,4,2,3,1] => 2 = 1 + 1
[1,0,1,1,0,0,1,1,0,0]
=> [1,3,2,5,4] => [4,5,2,3,1] => 2 = 1 + 1
[1,0,1,1,0,1,0,0,1,0]
=> [1,3,4,2,5] => [5,2,4,3,1] => 2 = 1 + 1
[1,0,1,1,0,1,0,1,0,0]
=> [1,3,4,5,2] => [2,5,4,3,1] => 2 = 1 + 1
[1,0,1,1,0,1,1,0,0,0]
=> [1,3,5,4,2] => [2,4,5,3,1] => 3 = 2 + 1
[1,0,1,1,1,0,0,0,1,0]
=> [1,4,3,2,5] => [5,2,3,4,1] => 3 = 2 + 1
[1,0,1,1,1,0,0,1,0,0]
=> [1,4,3,5,2] => [2,5,3,4,1] => 3 = 2 + 1
[1,0,1,1,1,0,1,0,0,0]
=> [1,5,3,4,2] => [2,4,3,5,1] => 3 = 2 + 1
[1,0,1,1,1,1,0,0,0,0]
=> [1,5,4,3,2] => [2,3,4,5,1] => 4 = 3 + 1
[1,1,0,0,1,0,1,0,1,0]
=> [2,1,3,4,5] => [5,4,3,1,2] => 2 = 1 + 1
[1,1,0,0,1,0,1,1,0,0]
=> [2,1,3,5,4] => [4,5,3,1,2] => 2 = 1 + 1
[1,1,0,0,1,1,0,0,1,0]
=> [2,1,4,3,5] => [5,3,4,1,2] => 2 = 1 + 1
[1,1,0,0,1,1,0,1,0,0]
=> [2,1,4,5,3] => [3,5,4,1,2] => 2 = 1 + 1
[1,1,0,0,1,1,1,0,0,0]
=> [2,1,5,4,3] => [3,4,5,1,2] => 3 = 2 + 1
[1,1,0,1,0,0,1,0,1,0]
=> [2,3,1,4,5] => [5,4,1,3,2] => 2 = 1 + 1
[1,1,0,1,0,0,1,1,0,0]
=> [2,3,1,5,4] => [4,5,1,3,2] => 2 = 1 + 1
[1,1,0,1,0,1,0,0,1,0]
=> [2,3,4,1,5] => [5,1,4,3,2] => 2 = 1 + 1
[1,1,0,1,0,1,0,1,0,0]
=> [2,3,4,5,1] => [1,5,4,3,2] => 2 = 1 + 1
[1,1,0,1,0,1,1,0,0,0]
=> [2,3,5,4,1] => [1,4,5,3,2] => 3 = 2 + 1
[1,1,0,1,1,0,0,0,1,0]
=> [2,4,3,1,5] => [5,1,3,4,2] => 3 = 2 + 1
[1,1,0,1,1,0,0,1,0,0]
=> [2,4,3,5,1] => [1,5,3,4,2] => 3 = 2 + 1
[1,1,0,1,1,0,1,0,0,0]
=> [2,5,3,4,1] => [1,4,3,5,2] => 3 = 2 + 1
[1,1,0,1,1,1,0,0,0,0]
=> [2,5,4,3,1] => [1,3,4,5,2] => 4 = 3 + 1
Description
The height of the tree associated to a permutation.
A permutation can be mapped to a rooted tree with vertices $\{0,1,2,\ldots,n\}$ and root $0$ in the following way. Entries of the permutations are inserted one after the other, each child is larger than its parent and the children are in strict order from left to right. Details of the construction are found in [1].
The statistic is given by the height of this tree.
See also [[St000325]] for the width of this tree.
Matching statistic: St000451
(load all 21 compositions to match this statistic)
(load all 21 compositions to match this statistic)
Mp00119: Dyck paths —to 321-avoiding permutation (Krattenthaler)⟶ Permutations
Mp00241: Permutations —invert Laguerre heap⟶ Permutations
St000451: Permutations ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00241: Permutations —invert Laguerre heap⟶ Permutations
St000451: Permutations ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[1,0]
=> [1] => [1] => 1 = 0 + 1
[1,0,1,0]
=> [1,2] => [1,2] => 1 = 0 + 1
[1,1,0,0]
=> [2,1] => [2,1] => 2 = 1 + 1
[1,0,1,0,1,0]
=> [1,2,3] => [1,2,3] => 1 = 0 + 1
[1,0,1,1,0,0]
=> [1,3,2] => [1,3,2] => 2 = 1 + 1
[1,1,0,0,1,0]
=> [2,1,3] => [2,1,3] => 2 = 1 + 1
[1,1,0,1,0,0]
=> [2,3,1] => [3,1,2] => 3 = 2 + 1
[1,1,1,0,0,0]
=> [3,1,2] => [2,3,1] => 2 = 1 + 1
[1,0,1,0,1,0,1,0]
=> [1,2,3,4] => [1,2,3,4] => 1 = 0 + 1
[1,0,1,0,1,1,0,0]
=> [1,2,4,3] => [1,2,4,3] => 2 = 1 + 1
[1,0,1,1,0,0,1,0]
=> [1,3,2,4] => [1,3,2,4] => 2 = 1 + 1
[1,0,1,1,0,1,0,0]
=> [1,3,4,2] => [1,4,2,3] => 3 = 2 + 1
[1,0,1,1,1,0,0,0]
=> [1,4,2,3] => [1,3,4,2] => 2 = 1 + 1
[1,1,0,0,1,0,1,0]
=> [2,1,3,4] => [2,1,3,4] => 2 = 1 + 1
[1,1,0,0,1,1,0,0]
=> [2,1,4,3] => [2,1,4,3] => 2 = 1 + 1
[1,1,0,1,0,0,1,0]
=> [2,3,1,4] => [3,1,2,4] => 3 = 2 + 1
[1,1,0,1,0,1,0,0]
=> [2,3,4,1] => [4,1,2,3] => 4 = 3 + 1
[1,1,0,1,1,0,0,0]
=> [2,4,1,3] => [3,4,1,2] => 3 = 2 + 1
[1,1,1,0,0,0,1,0]
=> [3,1,2,4] => [2,3,1,4] => 2 = 1 + 1
[1,1,1,0,0,1,0,0]
=> [3,1,4,2] => [4,2,3,1] => 3 = 2 + 1
[1,1,1,0,1,0,0,0]
=> [3,4,1,2] => [2,4,1,3] => 3 = 2 + 1
[1,1,1,1,0,0,0,0]
=> [4,1,2,3] => [2,3,4,1] => 2 = 1 + 1
[1,0,1,0,1,0,1,0,1,0]
=> [1,2,3,4,5] => [1,2,3,4,5] => 1 = 0 + 1
[1,0,1,0,1,0,1,1,0,0]
=> [1,2,3,5,4] => [1,2,3,5,4] => 2 = 1 + 1
[1,0,1,0,1,1,0,0,1,0]
=> [1,2,4,3,5] => [1,2,4,3,5] => 2 = 1 + 1
[1,0,1,0,1,1,0,1,0,0]
=> [1,2,4,5,3] => [1,2,5,3,4] => 3 = 2 + 1
[1,0,1,0,1,1,1,0,0,0]
=> [1,2,5,3,4] => [1,2,4,5,3] => 2 = 1 + 1
[1,0,1,1,0,0,1,0,1,0]
=> [1,3,2,4,5] => [1,3,2,4,5] => 2 = 1 + 1
[1,0,1,1,0,0,1,1,0,0]
=> [1,3,2,5,4] => [1,3,2,5,4] => 2 = 1 + 1
[1,0,1,1,0,1,0,0,1,0]
=> [1,3,4,2,5] => [1,4,2,3,5] => 3 = 2 + 1
[1,0,1,1,0,1,0,1,0,0]
=> [1,3,4,5,2] => [1,5,2,3,4] => 4 = 3 + 1
[1,0,1,1,0,1,1,0,0,0]
=> [1,3,5,2,4] => [1,4,5,2,3] => 3 = 2 + 1
[1,0,1,1,1,0,0,0,1,0]
=> [1,4,2,3,5] => [1,3,4,2,5] => 2 = 1 + 1
[1,0,1,1,1,0,0,1,0,0]
=> [1,4,2,5,3] => [1,5,3,4,2] => 3 = 2 + 1
[1,0,1,1,1,0,1,0,0,0]
=> [1,4,5,2,3] => [1,3,5,2,4] => 3 = 2 + 1
[1,0,1,1,1,1,0,0,0,0]
=> [1,5,2,3,4] => [1,3,4,5,2] => 2 = 1 + 1
[1,1,0,0,1,0,1,0,1,0]
=> [2,1,3,4,5] => [2,1,3,4,5] => 2 = 1 + 1
[1,1,0,0,1,0,1,1,0,0]
=> [2,1,3,5,4] => [2,1,3,5,4] => 2 = 1 + 1
[1,1,0,0,1,1,0,0,1,0]
=> [2,1,4,3,5] => [2,1,4,3,5] => 2 = 1 + 1
[1,1,0,0,1,1,0,1,0,0]
=> [2,1,4,5,3] => [2,1,5,3,4] => 3 = 2 + 1
[1,1,0,0,1,1,1,0,0,0]
=> [2,1,5,3,4] => [2,1,4,5,3] => 2 = 1 + 1
[1,1,0,1,0,0,1,0,1,0]
=> [2,3,1,4,5] => [3,1,2,4,5] => 3 = 2 + 1
[1,1,0,1,0,0,1,1,0,0]
=> [2,3,1,5,4] => [3,1,2,5,4] => 3 = 2 + 1
[1,1,0,1,0,1,0,0,1,0]
=> [2,3,4,1,5] => [4,1,2,3,5] => 4 = 3 + 1
[1,1,0,1,0,1,0,1,0,0]
=> [2,3,4,5,1] => [5,1,2,3,4] => 5 = 4 + 1
[1,1,0,1,0,1,1,0,0,0]
=> [2,3,5,1,4] => [4,5,1,2,3] => 4 = 3 + 1
[1,1,0,1,1,0,0,0,1,0]
=> [2,4,1,3,5] => [3,4,1,2,5] => 3 = 2 + 1
[1,1,0,1,1,0,0,1,0,0]
=> [2,4,1,5,3] => [5,3,4,1,2] => 3 = 2 + 1
[1,1,0,1,1,0,1,0,0,0]
=> [2,4,5,1,3] => [3,5,1,2,4] => 4 = 3 + 1
[1,1,0,1,1,1,0,0,0,0]
=> [2,5,1,3,4] => [3,4,5,1,2] => 3 = 2 + 1
Description
The length of the longest pattern of the form k 1 2...(k-1).
Matching statistic: St000141
(load all 8 compositions to match this statistic)
(load all 8 compositions to match this statistic)
Mp00137: Dyck paths —to symmetric ASM⟶ Alternating sign matrices
Mp00002: Alternating sign matrices —to left key permutation⟶ Permutations
Mp00149: Permutations —Lehmer code rotation⟶ Permutations
St000141: Permutations ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00002: Alternating sign matrices —to left key permutation⟶ Permutations
Mp00149: Permutations —Lehmer code rotation⟶ Permutations
St000141: Permutations ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[1,0]
=> [[1]]
=> [1] => [1] => 0
[1,0,1,0]
=> [[1,0],[0,1]]
=> [1,2] => [2,1] => 1
[1,1,0,0]
=> [[0,1],[1,0]]
=> [2,1] => [1,2] => 0
[1,0,1,0,1,0]
=> [[1,0,0],[0,1,0],[0,0,1]]
=> [1,2,3] => [2,3,1] => 1
[1,0,1,1,0,0]
=> [[1,0,0],[0,0,1],[0,1,0]]
=> [1,3,2] => [2,1,3] => 1
[1,1,0,0,1,0]
=> [[0,1,0],[1,0,0],[0,0,1]]
=> [2,1,3] => [3,2,1] => 2
[1,1,0,1,0,0]
=> [[0,1,0],[1,-1,1],[0,1,0]]
=> [1,3,2] => [2,1,3] => 1
[1,1,1,0,0,0]
=> [[0,0,1],[0,1,0],[1,0,0]]
=> [3,2,1] => [1,2,3] => 0
[1,0,1,0,1,0,1,0]
=> [[1,0,0,0],[0,1,0,0],[0,0,1,0],[0,0,0,1]]
=> [1,2,3,4] => [2,3,4,1] => 1
[1,0,1,0,1,1,0,0]
=> [[1,0,0,0],[0,1,0,0],[0,0,0,1],[0,0,1,0]]
=> [1,2,4,3] => [2,3,1,4] => 1
[1,0,1,1,0,0,1,0]
=> [[1,0,0,0],[0,0,1,0],[0,1,0,0],[0,0,0,1]]
=> [1,3,2,4] => [2,4,3,1] => 2
[1,0,1,1,0,1,0,0]
=> [[1,0,0,0],[0,0,1,0],[0,1,-1,1],[0,0,1,0]]
=> [1,2,4,3] => [2,3,1,4] => 1
[1,0,1,1,1,0,0,0]
=> [[1,0,0,0],[0,0,0,1],[0,0,1,0],[0,1,0,0]]
=> [1,4,3,2] => [2,1,3,4] => 1
[1,1,0,0,1,0,1,0]
=> [[0,1,0,0],[1,0,0,0],[0,0,1,0],[0,0,0,1]]
=> [2,1,3,4] => [3,2,4,1] => 2
[1,1,0,0,1,1,0,0]
=> [[0,1,0,0],[1,0,0,0],[0,0,0,1],[0,0,1,0]]
=> [2,1,4,3] => [3,2,1,4] => 2
[1,1,0,1,0,0,1,0]
=> [[0,1,0,0],[1,-1,1,0],[0,1,0,0],[0,0,0,1]]
=> [1,3,2,4] => [2,4,3,1] => 2
[1,1,0,1,0,1,0,0]
=> [[0,1,0,0],[1,-1,1,0],[0,1,-1,1],[0,0,1,0]]
=> [1,2,4,3] => [2,3,1,4] => 1
[1,1,0,1,1,0,0,0]
=> [[0,1,0,0],[1,-1,0,1],[0,0,1,0],[0,1,0,0]]
=> [1,4,3,2] => [2,1,3,4] => 1
[1,1,1,0,0,0,1,0]
=> [[0,0,1,0],[0,1,0,0],[1,0,0,0],[0,0,0,1]]
=> [3,2,1,4] => [4,3,2,1] => 3
[1,1,1,0,0,1,0,0]
=> [[0,0,1,0],[0,1,0,0],[1,0,-1,1],[0,0,1,0]]
=> [2,1,4,3] => [3,2,1,4] => 2
[1,1,1,0,1,0,0,0]
=> [[0,0,1,0],[0,1,-1,1],[1,-1,1,0],[0,1,0,0]]
=> [1,4,3,2] => [2,1,3,4] => 1
[1,1,1,1,0,0,0,0]
=> [[0,0,0,1],[0,0,1,0],[0,1,0,0],[1,0,0,0]]
=> [4,3,2,1] => [1,2,3,4] => 0
[1,0,1,0,1,0,1,0,1,0]
=> [[1,0,0,0,0],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,1,0],[0,0,0,0,1]]
=> [1,2,3,4,5] => [2,3,4,5,1] => 1
[1,0,1,0,1,0,1,1,0,0]
=> [[1,0,0,0,0],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,0,1],[0,0,0,1,0]]
=> [1,2,3,5,4] => [2,3,4,1,5] => 1
[1,0,1,0,1,1,0,0,1,0]
=> [[1,0,0,0,0],[0,1,0,0,0],[0,0,0,1,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [1,2,4,3,5] => [2,3,5,4,1] => 2
[1,0,1,0,1,1,0,1,0,0]
=> [[1,0,0,0,0],[0,1,0,0,0],[0,0,0,1,0],[0,0,1,-1,1],[0,0,0,1,0]]
=> [1,2,3,5,4] => [2,3,4,1,5] => 1
[1,0,1,0,1,1,1,0,0,0]
=> [[1,0,0,0,0],[0,1,0,0,0],[0,0,0,0,1],[0,0,0,1,0],[0,0,1,0,0]]
=> [1,2,5,4,3] => [2,3,1,4,5] => 1
[1,0,1,1,0,0,1,0,1,0]
=> [[1,0,0,0,0],[0,0,1,0,0],[0,1,0,0,0],[0,0,0,1,0],[0,0,0,0,1]]
=> [1,3,2,4,5] => [2,4,3,5,1] => 2
[1,0,1,1,0,0,1,1,0,0]
=> [[1,0,0,0,0],[0,0,1,0,0],[0,1,0,0,0],[0,0,0,0,1],[0,0,0,1,0]]
=> [1,3,2,5,4] => [2,4,3,1,5] => 2
[1,0,1,1,0,1,0,0,1,0]
=> [[1,0,0,0,0],[0,0,1,0,0],[0,1,-1,1,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [1,2,4,3,5] => [2,3,5,4,1] => 2
[1,0,1,1,0,1,0,1,0,0]
=> [[1,0,0,0,0],[0,0,1,0,0],[0,1,-1,1,0],[0,0,1,-1,1],[0,0,0,1,0]]
=> [1,2,3,5,4] => [2,3,4,1,5] => 1
[1,0,1,1,0,1,1,0,0,0]
=> [[1,0,0,0,0],[0,0,1,0,0],[0,1,-1,0,1],[0,0,0,1,0],[0,0,1,0,0]]
=> [1,2,5,4,3] => [2,3,1,4,5] => 1
[1,0,1,1,1,0,0,0,1,0]
=> [[1,0,0,0,0],[0,0,0,1,0],[0,0,1,0,0],[0,1,0,0,0],[0,0,0,0,1]]
=> [1,4,3,2,5] => [2,5,4,3,1] => 3
[1,0,1,1,1,0,0,1,0,0]
=> [[1,0,0,0,0],[0,0,0,1,0],[0,0,1,0,0],[0,1,0,-1,1],[0,0,0,1,0]]
=> [1,3,2,5,4] => [2,4,3,1,5] => 2
[1,0,1,1,1,0,1,0,0,0]
=> [[1,0,0,0,0],[0,0,0,1,0],[0,0,1,-1,1],[0,1,-1,1,0],[0,0,1,0,0]]
=> [1,2,5,4,3] => [2,3,1,4,5] => 1
[1,0,1,1,1,1,0,0,0,0]
=> [[1,0,0,0,0],[0,0,0,0,1],[0,0,0,1,0],[0,0,1,0,0],[0,1,0,0,0]]
=> [1,5,4,3,2] => [2,1,3,4,5] => 1
[1,1,0,0,1,0,1,0,1,0]
=> [[0,1,0,0,0],[1,0,0,0,0],[0,0,1,0,0],[0,0,0,1,0],[0,0,0,0,1]]
=> [2,1,3,4,5] => [3,2,4,5,1] => 2
[1,1,0,0,1,0,1,1,0,0]
=> [[0,1,0,0,0],[1,0,0,0,0],[0,0,1,0,0],[0,0,0,0,1],[0,0,0,1,0]]
=> [2,1,3,5,4] => [3,2,4,1,5] => 2
[1,1,0,0,1,1,0,0,1,0]
=> [[0,1,0,0,0],[1,0,0,0,0],[0,0,0,1,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [2,1,4,3,5] => [3,2,5,4,1] => 2
[1,1,0,0,1,1,0,1,0,0]
=> [[0,1,0,0,0],[1,0,0,0,0],[0,0,0,1,0],[0,0,1,-1,1],[0,0,0,1,0]]
=> [2,1,3,5,4] => [3,2,4,1,5] => 2
[1,1,0,0,1,1,1,0,0,0]
=> [[0,1,0,0,0],[1,0,0,0,0],[0,0,0,0,1],[0,0,0,1,0],[0,0,1,0,0]]
=> [2,1,5,4,3] => [3,2,1,4,5] => 2
[1,1,0,1,0,0,1,0,1,0]
=> [[0,1,0,0,0],[1,-1,1,0,0],[0,1,0,0,0],[0,0,0,1,0],[0,0,0,0,1]]
=> [1,3,2,4,5] => [2,4,3,5,1] => 2
[1,1,0,1,0,0,1,1,0,0]
=> [[0,1,0,0,0],[1,-1,1,0,0],[0,1,0,0,0],[0,0,0,0,1],[0,0,0,1,0]]
=> [1,3,2,5,4] => [2,4,3,1,5] => 2
[1,1,0,1,0,1,0,0,1,0]
=> [[0,1,0,0,0],[1,-1,1,0,0],[0,1,-1,1,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [1,2,4,3,5] => [2,3,5,4,1] => 2
[1,1,0,1,0,1,0,1,0,0]
=> [[0,1,0,0,0],[1,-1,1,0,0],[0,1,-1,1,0],[0,0,1,-1,1],[0,0,0,1,0]]
=> [1,2,3,5,4] => [2,3,4,1,5] => 1
[1,1,0,1,0,1,1,0,0,0]
=> [[0,1,0,0,0],[1,-1,1,0,0],[0,1,-1,0,1],[0,0,0,1,0],[0,0,1,0,0]]
=> [1,2,5,4,3] => [2,3,1,4,5] => 1
[1,1,0,1,1,0,0,0,1,0]
=> [[0,1,0,0,0],[1,-1,0,1,0],[0,0,1,0,0],[0,1,0,0,0],[0,0,0,0,1]]
=> [1,4,3,2,5] => [2,5,4,3,1] => 3
[1,1,0,1,1,0,0,1,0,0]
=> [[0,1,0,0,0],[1,-1,0,1,0],[0,0,1,0,0],[0,1,0,-1,1],[0,0,0,1,0]]
=> [1,3,2,5,4] => [2,4,3,1,5] => 2
[1,1,0,1,1,0,1,0,0,0]
=> [[0,1,0,0,0],[1,-1,0,1,0],[0,0,1,-1,1],[0,1,-1,1,0],[0,0,1,0,0]]
=> [1,2,5,4,3] => [2,3,1,4,5] => 1
[1,1,0,1,1,1,0,0,0,0]
=> [[0,1,0,0,0],[1,-1,0,0,1],[0,0,0,1,0],[0,0,1,0,0],[0,1,0,0,0]]
=> [1,5,4,3,2] => [2,1,3,4,5] => 1
Description
The maximum drop size of a permutation.
The maximum drop size of a permutation $\pi$ of $[n]=\{1,2,\ldots, n\}$ is defined to be the maximum value of $i-\pi(i)$.
Matching statistic: St000651
Mp00025: Dyck paths —to 132-avoiding permutation⟶ Permutations
Mp00061: Permutations —to increasing tree⟶ Binary trees
Mp00014: Binary trees —to 132-avoiding permutation⟶ Permutations
St000651: Permutations ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00061: Permutations —to increasing tree⟶ Binary trees
Mp00014: Binary trees —to 132-avoiding permutation⟶ Permutations
St000651: Permutations ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[1,0]
=> [1] => [.,.]
=> [1] => 0
[1,0,1,0]
=> [2,1] => [[.,.],.]
=> [1,2] => 1
[1,1,0,0]
=> [1,2] => [.,[.,.]]
=> [2,1] => 0
[1,0,1,0,1,0]
=> [3,2,1] => [[[.,.],.],.]
=> [1,2,3] => 1
[1,0,1,1,0,0]
=> [2,3,1] => [[.,[.,.]],.]
=> [2,1,3] => 2
[1,1,0,0,1,0]
=> [3,1,2] => [[.,.],[.,.]]
=> [3,1,2] => 1
[1,1,0,1,0,0]
=> [2,1,3] => [[.,.],[.,.]]
=> [3,1,2] => 1
[1,1,1,0,0,0]
=> [1,2,3] => [.,[.,[.,.]]]
=> [3,2,1] => 0
[1,0,1,0,1,0,1,0]
=> [4,3,2,1] => [[[[.,.],.],.],.]
=> [1,2,3,4] => 1
[1,0,1,0,1,1,0,0]
=> [3,4,2,1] => [[[.,[.,.]],.],.]
=> [2,1,3,4] => 2
[1,0,1,1,0,0,1,0]
=> [4,2,3,1] => [[[.,.],[.,.]],.]
=> [3,1,2,4] => 2
[1,0,1,1,0,1,0,0]
=> [3,2,4,1] => [[[.,.],[.,.]],.]
=> [3,1,2,4] => 2
[1,0,1,1,1,0,0,0]
=> [2,3,4,1] => [[.,[.,[.,.]]],.]
=> [3,2,1,4] => 3
[1,1,0,0,1,0,1,0]
=> [4,3,1,2] => [[[.,.],.],[.,.]]
=> [4,1,2,3] => 1
[1,1,0,0,1,1,0,0]
=> [3,4,1,2] => [[.,[.,.]],[.,.]]
=> [4,2,1,3] => 2
[1,1,0,1,0,0,1,0]
=> [4,2,1,3] => [[[.,.],.],[.,.]]
=> [4,1,2,3] => 1
[1,1,0,1,0,1,0,0]
=> [3,2,1,4] => [[[.,.],.],[.,.]]
=> [4,1,2,3] => 1
[1,1,0,1,1,0,0,0]
=> [2,3,1,4] => [[.,[.,.]],[.,.]]
=> [4,2,1,3] => 2
[1,1,1,0,0,0,1,0]
=> [4,1,2,3] => [[.,.],[.,[.,.]]]
=> [4,3,1,2] => 1
[1,1,1,0,0,1,0,0]
=> [3,1,2,4] => [[.,.],[.,[.,.]]]
=> [4,3,1,2] => 1
[1,1,1,0,1,0,0,0]
=> [2,1,3,4] => [[.,.],[.,[.,.]]]
=> [4,3,1,2] => 1
[1,1,1,1,0,0,0,0]
=> [1,2,3,4] => [.,[.,[.,[.,.]]]]
=> [4,3,2,1] => 0
[1,0,1,0,1,0,1,0,1,0]
=> [5,4,3,2,1] => [[[[[.,.],.],.],.],.]
=> [1,2,3,4,5] => 1
[1,0,1,0,1,0,1,1,0,0]
=> [4,5,3,2,1] => [[[[.,[.,.]],.],.],.]
=> [2,1,3,4,5] => 2
[1,0,1,0,1,1,0,0,1,0]
=> [5,3,4,2,1] => [[[[.,.],[.,.]],.],.]
=> [3,1,2,4,5] => 2
[1,0,1,0,1,1,0,1,0,0]
=> [4,3,5,2,1] => [[[[.,.],[.,.]],.],.]
=> [3,1,2,4,5] => 2
[1,0,1,0,1,1,1,0,0,0]
=> [3,4,5,2,1] => [[[.,[.,[.,.]]],.],.]
=> [3,2,1,4,5] => 3
[1,0,1,1,0,0,1,0,1,0]
=> [5,4,2,3,1] => [[[[.,.],.],[.,.]],.]
=> [4,1,2,3,5] => 2
[1,0,1,1,0,0,1,1,0,0]
=> [4,5,2,3,1] => [[[.,[.,.]],[.,.]],.]
=> [4,2,1,3,5] => 2
[1,0,1,1,0,1,0,0,1,0]
=> [5,3,2,4,1] => [[[[.,.],.],[.,.]],.]
=> [4,1,2,3,5] => 2
[1,0,1,1,0,1,0,1,0,0]
=> [4,3,2,5,1] => [[[[.,.],.],[.,.]],.]
=> [4,1,2,3,5] => 2
[1,0,1,1,0,1,1,0,0,0]
=> [3,4,2,5,1] => [[[.,[.,.]],[.,.]],.]
=> [4,2,1,3,5] => 2
[1,0,1,1,1,0,0,0,1,0]
=> [5,2,3,4,1] => [[[.,.],[.,[.,.]]],.]
=> [4,3,1,2,5] => 3
[1,0,1,1,1,0,0,1,0,0]
=> [4,2,3,5,1] => [[[.,.],[.,[.,.]]],.]
=> [4,3,1,2,5] => 3
[1,0,1,1,1,0,1,0,0,0]
=> [3,2,4,5,1] => [[[.,.],[.,[.,.]]],.]
=> [4,3,1,2,5] => 3
[1,0,1,1,1,1,0,0,0,0]
=> [2,3,4,5,1] => [[.,[.,[.,[.,.]]]],.]
=> [4,3,2,1,5] => 4
[1,1,0,0,1,0,1,0,1,0]
=> [5,4,3,1,2] => [[[[.,.],.],.],[.,.]]
=> [5,1,2,3,4] => 1
[1,1,0,0,1,0,1,1,0,0]
=> [4,5,3,1,2] => [[[.,[.,.]],.],[.,.]]
=> [5,2,1,3,4] => 2
[1,1,0,0,1,1,0,0,1,0]
=> [5,3,4,1,2] => [[[.,.],[.,.]],[.,.]]
=> [5,3,1,2,4] => 2
[1,1,0,0,1,1,0,1,0,0]
=> [4,3,5,1,2] => [[[.,.],[.,.]],[.,.]]
=> [5,3,1,2,4] => 2
[1,1,0,0,1,1,1,0,0,0]
=> [3,4,5,1,2] => [[.,[.,[.,.]]],[.,.]]
=> [5,3,2,1,4] => 3
[1,1,0,1,0,0,1,0,1,0]
=> [5,4,2,1,3] => [[[[.,.],.],.],[.,.]]
=> [5,1,2,3,4] => 1
[1,1,0,1,0,0,1,1,0,0]
=> [4,5,2,1,3] => [[[.,[.,.]],.],[.,.]]
=> [5,2,1,3,4] => 2
[1,1,0,1,0,1,0,0,1,0]
=> [5,3,2,1,4] => [[[[.,.],.],.],[.,.]]
=> [5,1,2,3,4] => 1
[1,1,0,1,0,1,0,1,0,0]
=> [4,3,2,1,5] => [[[[.,.],.],.],[.,.]]
=> [5,1,2,3,4] => 1
[1,1,0,1,0,1,1,0,0,0]
=> [3,4,2,1,5] => [[[.,[.,.]],.],[.,.]]
=> [5,2,1,3,4] => 2
[1,1,0,1,1,0,0,0,1,0]
=> [5,2,3,1,4] => [[[.,.],[.,.]],[.,.]]
=> [5,3,1,2,4] => 2
[1,1,0,1,1,0,0,1,0,0]
=> [4,2,3,1,5] => [[[.,.],[.,.]],[.,.]]
=> [5,3,1,2,4] => 2
[1,1,0,1,1,0,1,0,0,0]
=> [3,2,4,1,5] => [[[.,.],[.,.]],[.,.]]
=> [5,3,1,2,4] => 2
[1,1,0,1,1,1,0,0,0,0]
=> [2,3,4,1,5] => [[.,[.,[.,.]]],[.,.]]
=> [5,3,2,1,4] => 3
Description
The maximal size of a rise in a permutation.
This is $\max_i \sigma_{i+1}-\sigma_i$, except for the permutations without rises, where it is $0$.
Matching statistic: St000662
(load all 5 compositions to match this statistic)
(load all 5 compositions to match this statistic)
Mp00137: Dyck paths —to symmetric ASM⟶ Alternating sign matrices
Mp00002: Alternating sign matrices —to left key permutation⟶ Permutations
Mp00149: Permutations —Lehmer code rotation⟶ Permutations
St000662: Permutations ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00002: Alternating sign matrices —to left key permutation⟶ Permutations
Mp00149: Permutations —Lehmer code rotation⟶ Permutations
St000662: Permutations ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[1,0]
=> [[1]]
=> [1] => [1] => 0
[1,0,1,0]
=> [[1,0],[0,1]]
=> [1,2] => [2,1] => 1
[1,1,0,0]
=> [[0,1],[1,0]]
=> [2,1] => [1,2] => 0
[1,0,1,0,1,0]
=> [[1,0,0],[0,1,0],[0,0,1]]
=> [1,2,3] => [2,3,1] => 1
[1,0,1,1,0,0]
=> [[1,0,0],[0,0,1],[0,1,0]]
=> [1,3,2] => [2,1,3] => 1
[1,1,0,0,1,0]
=> [[0,1,0],[1,0,0],[0,0,1]]
=> [2,1,3] => [3,2,1] => 2
[1,1,0,1,0,0]
=> [[0,1,0],[1,-1,1],[0,1,0]]
=> [1,3,2] => [2,1,3] => 1
[1,1,1,0,0,0]
=> [[0,0,1],[0,1,0],[1,0,0]]
=> [3,2,1] => [1,2,3] => 0
[1,0,1,0,1,0,1,0]
=> [[1,0,0,0],[0,1,0,0],[0,0,1,0],[0,0,0,1]]
=> [1,2,3,4] => [2,3,4,1] => 1
[1,0,1,0,1,1,0,0]
=> [[1,0,0,0],[0,1,0,0],[0,0,0,1],[0,0,1,0]]
=> [1,2,4,3] => [2,3,1,4] => 1
[1,0,1,1,0,0,1,0]
=> [[1,0,0,0],[0,0,1,0],[0,1,0,0],[0,0,0,1]]
=> [1,3,2,4] => [2,4,3,1] => 2
[1,0,1,1,0,1,0,0]
=> [[1,0,0,0],[0,0,1,0],[0,1,-1,1],[0,0,1,0]]
=> [1,2,4,3] => [2,3,1,4] => 1
[1,0,1,1,1,0,0,0]
=> [[1,0,0,0],[0,0,0,1],[0,0,1,0],[0,1,0,0]]
=> [1,4,3,2] => [2,1,3,4] => 1
[1,1,0,0,1,0,1,0]
=> [[0,1,0,0],[1,0,0,0],[0,0,1,0],[0,0,0,1]]
=> [2,1,3,4] => [3,2,4,1] => 2
[1,1,0,0,1,1,0,0]
=> [[0,1,0,0],[1,0,0,0],[0,0,0,1],[0,0,1,0]]
=> [2,1,4,3] => [3,2,1,4] => 2
[1,1,0,1,0,0,1,0]
=> [[0,1,0,0],[1,-1,1,0],[0,1,0,0],[0,0,0,1]]
=> [1,3,2,4] => [2,4,3,1] => 2
[1,1,0,1,0,1,0,0]
=> [[0,1,0,0],[1,-1,1,0],[0,1,-1,1],[0,0,1,0]]
=> [1,2,4,3] => [2,3,1,4] => 1
[1,1,0,1,1,0,0,0]
=> [[0,1,0,0],[1,-1,0,1],[0,0,1,0],[0,1,0,0]]
=> [1,4,3,2] => [2,1,3,4] => 1
[1,1,1,0,0,0,1,0]
=> [[0,0,1,0],[0,1,0,0],[1,0,0,0],[0,0,0,1]]
=> [3,2,1,4] => [4,3,2,1] => 3
[1,1,1,0,0,1,0,0]
=> [[0,0,1,0],[0,1,0,0],[1,0,-1,1],[0,0,1,0]]
=> [2,1,4,3] => [3,2,1,4] => 2
[1,1,1,0,1,0,0,0]
=> [[0,0,1,0],[0,1,-1,1],[1,-1,1,0],[0,1,0,0]]
=> [1,4,3,2] => [2,1,3,4] => 1
[1,1,1,1,0,0,0,0]
=> [[0,0,0,1],[0,0,1,0],[0,1,0,0],[1,0,0,0]]
=> [4,3,2,1] => [1,2,3,4] => 0
[1,0,1,0,1,0,1,0,1,0]
=> [[1,0,0,0,0],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,1,0],[0,0,0,0,1]]
=> [1,2,3,4,5] => [2,3,4,5,1] => 1
[1,0,1,0,1,0,1,1,0,0]
=> [[1,0,0,0,0],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,0,1],[0,0,0,1,0]]
=> [1,2,3,5,4] => [2,3,4,1,5] => 1
[1,0,1,0,1,1,0,0,1,0]
=> [[1,0,0,0,0],[0,1,0,0,0],[0,0,0,1,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [1,2,4,3,5] => [2,3,5,4,1] => 2
[1,0,1,0,1,1,0,1,0,0]
=> [[1,0,0,0,0],[0,1,0,0,0],[0,0,0,1,0],[0,0,1,-1,1],[0,0,0,1,0]]
=> [1,2,3,5,4] => [2,3,4,1,5] => 1
[1,0,1,0,1,1,1,0,0,0]
=> [[1,0,0,0,0],[0,1,0,0,0],[0,0,0,0,1],[0,0,0,1,0],[0,0,1,0,0]]
=> [1,2,5,4,3] => [2,3,1,4,5] => 1
[1,0,1,1,0,0,1,0,1,0]
=> [[1,0,0,0,0],[0,0,1,0,0],[0,1,0,0,0],[0,0,0,1,0],[0,0,0,0,1]]
=> [1,3,2,4,5] => [2,4,3,5,1] => 2
[1,0,1,1,0,0,1,1,0,0]
=> [[1,0,0,0,0],[0,0,1,0,0],[0,1,0,0,0],[0,0,0,0,1],[0,0,0,1,0]]
=> [1,3,2,5,4] => [2,4,3,1,5] => 2
[1,0,1,1,0,1,0,0,1,0]
=> [[1,0,0,0,0],[0,0,1,0,0],[0,1,-1,1,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [1,2,4,3,5] => [2,3,5,4,1] => 2
[1,0,1,1,0,1,0,1,0,0]
=> [[1,0,0,0,0],[0,0,1,0,0],[0,1,-1,1,0],[0,0,1,-1,1],[0,0,0,1,0]]
=> [1,2,3,5,4] => [2,3,4,1,5] => 1
[1,0,1,1,0,1,1,0,0,0]
=> [[1,0,0,0,0],[0,0,1,0,0],[0,1,-1,0,1],[0,0,0,1,0],[0,0,1,0,0]]
=> [1,2,5,4,3] => [2,3,1,4,5] => 1
[1,0,1,1,1,0,0,0,1,0]
=> [[1,0,0,0,0],[0,0,0,1,0],[0,0,1,0,0],[0,1,0,0,0],[0,0,0,0,1]]
=> [1,4,3,2,5] => [2,5,4,3,1] => 3
[1,0,1,1,1,0,0,1,0,0]
=> [[1,0,0,0,0],[0,0,0,1,0],[0,0,1,0,0],[0,1,0,-1,1],[0,0,0,1,0]]
=> [1,3,2,5,4] => [2,4,3,1,5] => 2
[1,0,1,1,1,0,1,0,0,0]
=> [[1,0,0,0,0],[0,0,0,1,0],[0,0,1,-1,1],[0,1,-1,1,0],[0,0,1,0,0]]
=> [1,2,5,4,3] => [2,3,1,4,5] => 1
[1,0,1,1,1,1,0,0,0,0]
=> [[1,0,0,0,0],[0,0,0,0,1],[0,0,0,1,0],[0,0,1,0,0],[0,1,0,0,0]]
=> [1,5,4,3,2] => [2,1,3,4,5] => 1
[1,1,0,0,1,0,1,0,1,0]
=> [[0,1,0,0,0],[1,0,0,0,0],[0,0,1,0,0],[0,0,0,1,0],[0,0,0,0,1]]
=> [2,1,3,4,5] => [3,2,4,5,1] => 2
[1,1,0,0,1,0,1,1,0,0]
=> [[0,1,0,0,0],[1,0,0,0,0],[0,0,1,0,0],[0,0,0,0,1],[0,0,0,1,0]]
=> [2,1,3,5,4] => [3,2,4,1,5] => 2
[1,1,0,0,1,1,0,0,1,0]
=> [[0,1,0,0,0],[1,0,0,0,0],[0,0,0,1,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [2,1,4,3,5] => [3,2,5,4,1] => 2
[1,1,0,0,1,1,0,1,0,0]
=> [[0,1,0,0,0],[1,0,0,0,0],[0,0,0,1,0],[0,0,1,-1,1],[0,0,0,1,0]]
=> [2,1,3,5,4] => [3,2,4,1,5] => 2
[1,1,0,0,1,1,1,0,0,0]
=> [[0,1,0,0,0],[1,0,0,0,0],[0,0,0,0,1],[0,0,0,1,0],[0,0,1,0,0]]
=> [2,1,5,4,3] => [3,2,1,4,5] => 2
[1,1,0,1,0,0,1,0,1,0]
=> [[0,1,0,0,0],[1,-1,1,0,0],[0,1,0,0,0],[0,0,0,1,0],[0,0,0,0,1]]
=> [1,3,2,4,5] => [2,4,3,5,1] => 2
[1,1,0,1,0,0,1,1,0,0]
=> [[0,1,0,0,0],[1,-1,1,0,0],[0,1,0,0,0],[0,0,0,0,1],[0,0,0,1,0]]
=> [1,3,2,5,4] => [2,4,3,1,5] => 2
[1,1,0,1,0,1,0,0,1,0]
=> [[0,1,0,0,0],[1,-1,1,0,0],[0,1,-1,1,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [1,2,4,3,5] => [2,3,5,4,1] => 2
[1,1,0,1,0,1,0,1,0,0]
=> [[0,1,0,0,0],[1,-1,1,0,0],[0,1,-1,1,0],[0,0,1,-1,1],[0,0,0,1,0]]
=> [1,2,3,5,4] => [2,3,4,1,5] => 1
[1,1,0,1,0,1,1,0,0,0]
=> [[0,1,0,0,0],[1,-1,1,0,0],[0,1,-1,0,1],[0,0,0,1,0],[0,0,1,0,0]]
=> [1,2,5,4,3] => [2,3,1,4,5] => 1
[1,1,0,1,1,0,0,0,1,0]
=> [[0,1,0,0,0],[1,-1,0,1,0],[0,0,1,0,0],[0,1,0,0,0],[0,0,0,0,1]]
=> [1,4,3,2,5] => [2,5,4,3,1] => 3
[1,1,0,1,1,0,0,1,0,0]
=> [[0,1,0,0,0],[1,-1,0,1,0],[0,0,1,0,0],[0,1,0,-1,1],[0,0,0,1,0]]
=> [1,3,2,5,4] => [2,4,3,1,5] => 2
[1,1,0,1,1,0,1,0,0,0]
=> [[0,1,0,0,0],[1,-1,0,1,0],[0,0,1,-1,1],[0,1,-1,1,0],[0,0,1,0,0]]
=> [1,2,5,4,3] => [2,3,1,4,5] => 1
[1,1,0,1,1,1,0,0,0,0]
=> [[0,1,0,0,0],[1,-1,0,0,1],[0,0,0,1,0],[0,0,1,0,0],[0,1,0,0,0]]
=> [1,5,4,3,2] => [2,1,3,4,5] => 1
Description
The staircase size of the code of a permutation.
The code $c(\pi)$ of a permutation $\pi$ of length $n$ is given by the sequence $(c_1,\ldots,c_{n})$ with $c_i = |\{j > i : \pi(j) < \pi(i)\}|$. This is a bijection between permutations and all sequences $(c_1,\ldots,c_n)$ with $0 \leq c_i \leq n-i$.
The staircase size of the code is the maximal $k$ such that there exists a subsequence $(c_{i_k},\ldots,c_{i_1})$ of $c(\pi)$ with $c_{i_j} \geq j$.
This statistic is mapped through [[Mp00062]] to the number of descents, showing that together with the number of inversions [[St000018]] it is Euler-Mahonian.
Matching statistic: St001194
(load all 7 compositions to match this statistic)
(load all 7 compositions to match this statistic)
Mp00025: Dyck paths —to 132-avoiding permutation⟶ Permutations
Mp00072: Permutations —binary search tree: left to right⟶ Binary trees
Mp00020: Binary trees —to Tamari-corresponding Dyck path⟶ Dyck paths
St001194: Dyck paths ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00072: Permutations —binary search tree: left to right⟶ Binary trees
Mp00020: Binary trees —to Tamari-corresponding Dyck path⟶ Dyck paths
St001194: Dyck paths ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[1,0]
=> [1] => [.,.]
=> [1,0]
=> 0
[1,0,1,0]
=> [2,1] => [[.,.],.]
=> [1,0,1,0]
=> 0
[1,1,0,0]
=> [1,2] => [.,[.,.]]
=> [1,1,0,0]
=> 1
[1,0,1,0,1,0]
=> [3,2,1] => [[[.,.],.],.]
=> [1,0,1,0,1,0]
=> 0
[1,0,1,1,0,0]
=> [2,3,1] => [[.,.],[.,.]]
=> [1,0,1,1,0,0]
=> 1
[1,1,0,0,1,0]
=> [3,1,2] => [[.,[.,.]],.]
=> [1,1,0,0,1,0]
=> 2
[1,1,0,1,0,0]
=> [2,1,3] => [[.,.],[.,.]]
=> [1,0,1,1,0,0]
=> 1
[1,1,1,0,0,0]
=> [1,2,3] => [.,[.,[.,.]]]
=> [1,1,1,0,0,0]
=> 1
[1,0,1,0,1,0,1,0]
=> [4,3,2,1] => [[[[.,.],.],.],.]
=> [1,0,1,0,1,0,1,0]
=> 0
[1,0,1,0,1,1,0,0]
=> [3,4,2,1] => [[[.,.],.],[.,.]]
=> [1,0,1,0,1,1,0,0]
=> 1
[1,0,1,1,0,0,1,0]
=> [4,2,3,1] => [[[.,.],[.,.]],.]
=> [1,0,1,1,0,0,1,0]
=> 2
[1,0,1,1,0,1,0,0]
=> [3,2,4,1] => [[[.,.],.],[.,.]]
=> [1,0,1,0,1,1,0,0]
=> 1
[1,0,1,1,1,0,0,0]
=> [2,3,4,1] => [[.,.],[.,[.,.]]]
=> [1,0,1,1,1,0,0,0]
=> 1
[1,1,0,0,1,0,1,0]
=> [4,3,1,2] => [[[.,[.,.]],.],.]
=> [1,1,0,0,1,0,1,0]
=> 3
[1,1,0,0,1,1,0,0]
=> [3,4,1,2] => [[.,[.,.]],[.,.]]
=> [1,1,0,0,1,1,0,0]
=> 2
[1,1,0,1,0,0,1,0]
=> [4,2,1,3] => [[[.,.],[.,.]],.]
=> [1,0,1,1,0,0,1,0]
=> 2
[1,1,0,1,0,1,0,0]
=> [3,2,1,4] => [[[.,.],.],[.,.]]
=> [1,0,1,0,1,1,0,0]
=> 1
[1,1,0,1,1,0,0,0]
=> [2,3,1,4] => [[.,.],[.,[.,.]]]
=> [1,0,1,1,1,0,0,0]
=> 1
[1,1,1,0,0,0,1,0]
=> [4,1,2,3] => [[.,[.,[.,.]]],.]
=> [1,1,1,0,0,0,1,0]
=> 2
[1,1,1,0,0,1,0,0]
=> [3,1,2,4] => [[.,[.,.]],[.,.]]
=> [1,1,0,0,1,1,0,0]
=> 2
[1,1,1,0,1,0,0,0]
=> [2,1,3,4] => [[.,.],[.,[.,.]]]
=> [1,0,1,1,1,0,0,0]
=> 1
[1,1,1,1,0,0,0,0]
=> [1,2,3,4] => [.,[.,[.,[.,.]]]]
=> [1,1,1,1,0,0,0,0]
=> 1
[1,0,1,0,1,0,1,0,1,0]
=> [5,4,3,2,1] => [[[[[.,.],.],.],.],.]
=> [1,0,1,0,1,0,1,0,1,0]
=> 0
[1,0,1,0,1,0,1,1,0,0]
=> [4,5,3,2,1] => [[[[.,.],.],.],[.,.]]
=> [1,0,1,0,1,0,1,1,0,0]
=> 1
[1,0,1,0,1,1,0,0,1,0]
=> [5,3,4,2,1] => [[[[.,.],.],[.,.]],.]
=> [1,0,1,0,1,1,0,0,1,0]
=> 2
[1,0,1,0,1,1,0,1,0,0]
=> [4,3,5,2,1] => [[[[.,.],.],.],[.,.]]
=> [1,0,1,0,1,0,1,1,0,0]
=> 1
[1,0,1,0,1,1,1,0,0,0]
=> [3,4,5,2,1] => [[[.,.],.],[.,[.,.]]]
=> [1,0,1,0,1,1,1,0,0,0]
=> 1
[1,0,1,1,0,0,1,0,1,0]
=> [5,4,2,3,1] => [[[[.,.],[.,.]],.],.]
=> [1,0,1,1,0,0,1,0,1,0]
=> 3
[1,0,1,1,0,0,1,1,0,0]
=> [4,5,2,3,1] => [[[.,.],[.,.]],[.,.]]
=> [1,0,1,1,0,0,1,1,0,0]
=> 2
[1,0,1,1,0,1,0,0,1,0]
=> [5,3,2,4,1] => [[[[.,.],.],[.,.]],.]
=> [1,0,1,0,1,1,0,0,1,0]
=> 2
[1,0,1,1,0,1,0,1,0,0]
=> [4,3,2,5,1] => [[[[.,.],.],.],[.,.]]
=> [1,0,1,0,1,0,1,1,0,0]
=> 1
[1,0,1,1,0,1,1,0,0,0]
=> [3,4,2,5,1] => [[[.,.],.],[.,[.,.]]]
=> [1,0,1,0,1,1,1,0,0,0]
=> 1
[1,0,1,1,1,0,0,0,1,0]
=> [5,2,3,4,1] => [[[.,.],[.,[.,.]]],.]
=> [1,0,1,1,1,0,0,0,1,0]
=> 2
[1,0,1,1,1,0,0,1,0,0]
=> [4,2,3,5,1] => [[[.,.],[.,.]],[.,.]]
=> [1,0,1,1,0,0,1,1,0,0]
=> 2
[1,0,1,1,1,0,1,0,0,0]
=> [3,2,4,5,1] => [[[.,.],.],[.,[.,.]]]
=> [1,0,1,0,1,1,1,0,0,0]
=> 1
[1,0,1,1,1,1,0,0,0,0]
=> [2,3,4,5,1] => [[.,.],[.,[.,[.,.]]]]
=> [1,0,1,1,1,1,0,0,0,0]
=> 1
[1,1,0,0,1,0,1,0,1,0]
=> [5,4,3,1,2] => [[[[.,[.,.]],.],.],.]
=> [1,1,0,0,1,0,1,0,1,0]
=> 4
[1,1,0,0,1,0,1,1,0,0]
=> [4,5,3,1,2] => [[[.,[.,.]],.],[.,.]]
=> [1,1,0,0,1,0,1,1,0,0]
=> 3
[1,1,0,0,1,1,0,0,1,0]
=> [5,3,4,1,2] => [[[.,[.,.]],[.,.]],.]
=> [1,1,0,0,1,1,0,0,1,0]
=> 2
[1,1,0,0,1,1,0,1,0,0]
=> [4,3,5,1,2] => [[[.,[.,.]],.],[.,.]]
=> [1,1,0,0,1,0,1,1,0,0]
=> 3
[1,1,0,0,1,1,1,0,0,0]
=> [3,4,5,1,2] => [[.,[.,.]],[.,[.,.]]]
=> [1,1,0,0,1,1,1,0,0,0]
=> 2
[1,1,0,1,0,0,1,0,1,0]
=> [5,4,2,1,3] => [[[[.,.],[.,.]],.],.]
=> [1,0,1,1,0,0,1,0,1,0]
=> 3
[1,1,0,1,0,0,1,1,0,0]
=> [4,5,2,1,3] => [[[.,.],[.,.]],[.,.]]
=> [1,0,1,1,0,0,1,1,0,0]
=> 2
[1,1,0,1,0,1,0,0,1,0]
=> [5,3,2,1,4] => [[[[.,.],.],[.,.]],.]
=> [1,0,1,0,1,1,0,0,1,0]
=> 2
[1,1,0,1,0,1,0,1,0,0]
=> [4,3,2,1,5] => [[[[.,.],.],.],[.,.]]
=> [1,0,1,0,1,0,1,1,0,0]
=> 1
[1,1,0,1,0,1,1,0,0,0]
=> [3,4,2,1,5] => [[[.,.],.],[.,[.,.]]]
=> [1,0,1,0,1,1,1,0,0,0]
=> 1
[1,1,0,1,1,0,0,0,1,0]
=> [5,2,3,1,4] => [[[.,.],[.,[.,.]]],.]
=> [1,0,1,1,1,0,0,0,1,0]
=> 2
[1,1,0,1,1,0,0,1,0,0]
=> [4,2,3,1,5] => [[[.,.],[.,.]],[.,.]]
=> [1,0,1,1,0,0,1,1,0,0]
=> 2
[1,1,0,1,1,0,1,0,0,0]
=> [3,2,4,1,5] => [[[.,.],.],[.,[.,.]]]
=> [1,0,1,0,1,1,1,0,0,0]
=> 1
[1,1,0,1,1,1,0,0,0,0]
=> [2,3,4,1,5] => [[.,.],[.,[.,[.,.]]]]
=> [1,0,1,1,1,1,0,0,0,0]
=> 1
Description
The injective dimension of $A/AfA$ in the corresponding Nakayama algebra $A$ when $Af$ is the minimal faithful projective-injective left $A$-module
The following 232 statistics, ordered by result quality, also match your data. Click on any of them to see the details.
St000013The height of a Dyck path. St000062The length of the longest increasing subsequence of the permutation. St000166The depth minus 1 of an ordered tree. St001390The number of bumps occurring when Schensted-inserting the letter 1 of a permutation. St000094The depth of an ordered tree. St000442The maximal area to the right of an up step of a Dyck path. St001418Half of the global dimension of the stable Auslander algebra of the Nakayama algebra corresponding to the Dyck path. St001933The largest multiplicity of a part in an integer partition. St000392The length of the longest run of ones in a binary word. St001372The length of a longest cyclic run of ones of a binary word. St001498The normalised height of a Nakayama algebra with magnitude 1. St001644The dimension of a graph. St000993The multiplicity of the largest part of an integer partition. St000381The largest part of an integer composition. St000982The length of the longest constant subword. St000877The depth of the binary word interpreted as a path. St000259The diameter of a connected graph. St000144The pyramid weight of the Dyck path. St000439The position of the first down step of a Dyck path. St001024Maximum of dominant dimensions of the simple modules in the Nakayama algebra corresponding to the Dyck path. St001183The maximum of $projdim(S)+injdim(S)$ over all simple modules in the Nakayama algebra corresponding to the Dyck path. St001258Gives the maximum of injective plus projective dimension of an indecomposable module over the corresponding Nakayama algebra. St001514The dimension of the top of the Auslander-Reiten translate of the regular modules as a bimodule. St001515The vector space dimension of the socle of the first syzygy module of the regular module (as a bimodule). St001526The Loewy length of the Auslander-Reiten translate of the regular module as a bimodule of the Nakayama algebra corresponding to the Dyck path. St001733The number of weak left to right maxima of a Dyck path. St001199The dominant dimension of $eAe$ for the corresponding Nakayama algebra $A$ with minimal faithful projective-injective module $eA$. St001488The number of corners of a skew partition. St000480The number of lower covers of a partition in dominance order. St000481The number of upper covers of a partition in dominance order. St000757The length of the longest weakly inreasing subsequence of parts of an integer composition. St000899The maximal number of repetitions of an integer composition. St000904The maximal number of repetitions of an integer composition. St001052The length of the exterior of a permutation. St000668The least common multiple of the parts of the partition. St000708The product of the parts of an integer partition. St000933The number of multipartitions of sizes given by an integer partition. St000937The number of positive values of the symmetric group character corresponding to the partition. St000260The radius of a connected graph. St000454The largest eigenvalue of a graph if it is integral. St001330The hat guessing number of a graph. St000335The difference of lower and upper interactions. St000939The number of characters of the symmetric group whose value on the partition is positive. St000243The number of cyclic valleys and cyclic peaks of a permutation. St000996The number of exclusive left-to-right maxima of a permutation. St001645The pebbling number of a connected graph. St000444The length of the maximal rise of a Dyck path. St000675The number of centered multitunnels of a Dyck path. St000680The Grundy value for Hackendot on posets. St000717The number of ordinal summands of a poset. St000906The length of the shortest maximal chain in a poset. St001039The maximal height of a column in the parallelogram polyomino associated with a Dyck path. St001568The smallest positive integer that does not appear twice in the partition. St000306The bounce count of a Dyck path. St000374The number of exclusive right-to-left minima of a permutation. St000815The number of semistandard Young tableaux of partition weight of given shape. St001151The number of blocks with odd minimum. St001235The global dimension of the corresponding Comp-Nakayama algebra. St001060The distinguishing index of a graph. St001232The number of indecomposable modules with projective dimension 2 for Nakayama algebras with global dimension at most 2. St001431Half of the Loewy length minus one of a modified stable Auslander algebra of the Nakayama algebra corresponding to the Dyck path. St000307The number of rowmotion orbits of a poset. St001652The length of a longest interval of consecutive numbers. St001662The length of the longest factor of consecutive numbers in a permutation. St001667The maximal size of a pair of weak twins for a permutation. St000808The number of up steps of the associated bargraph. St001630The global dimension of the incidence algebra of the lattice over the rational numbers. St001878The projective dimension of the simple modules corresponding to the minimum of L in the incidence algebra of the lattice L. St000771The largest multiplicity of a distance Laplacian eigenvalue in a connected graph. St000777The number of distinct eigenvalues of the distance Laplacian of a connected graph. St000456The monochromatic index of a connected graph. St000245The number of ascents of a permutation. St000672The number of minimal elements in Bruhat order not less than the permutation. St000688The global dimension minus the dominant dimension of the LNakayama algebra associated to a Dyck path. St000834The number of right outer peaks of a permutation. St000871The number of very big ascents of a permutation. St001026The maximum of the projective dimensions of the indecomposable non-projective injective modules minus the minimum in the Nakayama algebra corresponding to the Dyck path. St001086The number of occurrences of the consecutive pattern 132 in a permutation. St000035The number of left outer peaks of a permutation. St000153The number of adjacent cycles of a permutation. St000742The number of big ascents of a permutation after prepending zero. St000619The number of cyclic descents of a permutation. St000455The second largest eigenvalue of a graph if it is integral. St000460The hook length of the last cell along the main diagonal of an integer partition. St000870The product of the hook lengths of the diagonal cells in an integer partition. St001198The number of simple modules in the algebra $eAe$ with projective dimension at most 1 in the corresponding Nakayama algebra $A$ with minimal faithful projective-injective module $eA$. St001200The number of simple modules in $eAe$ with projective dimension at most 2 in the corresponding Nakayama algebra $A$ with minimal faithful projective-injective module $eA$. St001206The maximal dimension of an indecomposable projective $eAe$-module (that is the height of the corresponding Dyck path) of the corresponding Nakayama algebra with minimal faithful projective-injective module $eA$. St001914The size of the orbit of an integer partition in Bulgarian solitaire. St000080The rank of the poset. St000373The number of weak exceedences of a permutation that are also mid-points of a decreasing subsequence of length $3$. St001942The number of loops of the quiver corresponding to the reduced incidence algebra of a poset. St000528The height of a poset. St000907The number of maximal antichains of minimal length in a poset. St001636The number of indecomposable injective modules with projective dimension at most one in the incidence algebra of the poset. St001782The order of rowmotion on the set of order ideals of a poset. St000524The number of posets with the same order polynomial. St000526The number of posets with combinatorially isomorphic order polytopes. St000633The size of the automorphism group of a poset. St000640The rank of the largest boolean interval in a poset. St000910The number of maximal chains of minimal length in a poset. St000914The sum of the values of the Möbius function of a poset. St001105The number of greedy linear extensions of a poset. St001106The number of supergreedy linear extensions of a poset. St001632The number of indecomposable injective modules $I$ with $dim Ext^1(I,A)=1$ for the incidence algebra A of a poset. St000208Number of integral Gelfand-Tsetlin polytopes with prescribed top row and integer partition weight. St000319The spin of an integer partition. St000320The dinv adjustment of an integer partition. St000698The number of 2-rim hooks removed from an integer partition to obtain its associated 2-core. St000755The number of real roots of the characteristic polynomial of a linear recurrence associated with an integer partition. St001250The number of parts of a partition that are not congruent 0 modulo 3. St001280The number of parts of an integer partition that are at least two. St001384The number of boxes in the diagram of a partition that do not lie in the largest triangle it contains. St001392The largest nonnegative integer which is not a part and is smaller than the largest part of the partition. St001432The order dimension of the partition. St001767The largest minimal number of arrows pointing to a cell in the Ferrers diagram in any assignment. St001924The number of cells in an integer partition whose arm and leg length coincide. St000145The Dyson rank of a partition. St000474Dyson's crank of a partition. St000477The weight of a partition according to Alladi. St000478Another weight of a partition according to Alladi. St000509The diagonal index (content) of a partition. St000510The number of invariant oriented cycles when acting with a permutation of given cycle type. St000514The number of invariant simple graphs when acting with a permutation of given cycle type. St000515The number of invariant set partitions when acting with a permutation of given cycle type. St000566The number of ways to select a row of a Ferrers shape and two cells in this row. St000667The greatest common divisor of the parts of the partition. St000681The Grundy value of Chomp on Ferrers diagrams. St000770The major index of an integer partition when read from bottom to top. St001279The sum of the parts of an integer partition that are at least two. St001360The number of covering relations in Young's lattice below a partition. St001380The number of monomer-dimer tilings of a Ferrers diagram. St001389The number of partitions of the same length below the given integer partition. St001527The cyclic permutation representation number of an integer partition. St001541The Gini index of an integer partition. St001571The Cartan determinant of the integer partition. St001599The multiplicity of the irreducible representation corresponding to a partition in the relabelling action on rooted trees. St001606The multiplicity of the irreducible representation corresponding to a partition in the relabelling action on set partitions. St001608The number of coloured rooted trees such that the multiplicities of colours are given by a partition. St001611The number of multiset partitions such that the multiplicities of elements are given by a partition. St001627The number of coloured connected graphs such that the multiplicities of colours are given by a partition. St001628The multiplicity of the irreducible representation corresponding to a partition in the relabelling action on simple connected graphs. St001763The Hurwitz number of an integer partition. St001918The degree of the cyclic sieving polynomial corresponding to an integer partition. St001934The number of monotone factorisations of genus zero of a permutation of given cycle type. St001938The number of transitive monotone factorizations of genus zero of a permutation of given cycle type. St001717The largest size of an interval in a poset. St001863The number of weak excedances of a signed permutation. St001889The size of the connectivity set of a signed permutation. St001207The Lowey length of the algebra $A/T$ when $T$ is the 1-tilting module corresponding to the permutation in the Auslander algebra of $K[x]/(x^n)$. St001491The number of indecomposable projective-injective modules in the algebra corresponding to a subset. St001603The number of colourings of a polygon such that the multiplicities of a colour are given by a partition. St001637The number of (upper) dissectors of a poset. St001668The number of points of the poset minus the width of the poset. St001890The maximum magnitude of the Möbius function of a poset. St001769The reflection length of a signed permutation. St001861The number of Bruhat lower covers of a permutation. St001864The number of excedances of a signed permutation. St001894The depth of a signed permutation. St001596The number of two-by-two squares inside a skew partition. St001633The number of simple modules with projective dimension two in the incidence algebra of the poset. St001896The number of right descents of a signed permutations. St000983The length of the longest alternating subword. St000264The girth of a graph, which is not a tree. St001875The number of simple modules with projective dimension at most 1. St000352The Elizalde-Pak rank of a permutation. St000337The lec statistic, the sum of the inversion numbers of the hook factors of a permutation. St000703The number of deficiencies of a permutation. St001744The number of occurrences of the arrow pattern 1-2 with an arrow from 1 to 2 in a permutation. St001877Number of indecomposable injective modules with projective dimension 2. St001720The minimal length of a chain of small intervals in a lattice. St001604The multiplicity of the irreducible representation corresponding to a partition in the relabelling action on polygons. St001605The number of colourings of a cycle such that the multiplicities of colours are given by a partition. St000284The Plancherel distribution on integer partitions. St000291The number of descents of a binary word. St000704The number of semistandard tableaux on a given integer partition with minimal maximal entry. St000714The number of semistandard Young tableau of given shape, with entries at most 2. St001128The exponens consonantiae of a partition. St000390The number of runs of ones in a binary word. St000888The maximal sum of entries on a diagonal of an alternating sign matrix. St000892The maximal number of nonzero entries on a diagonal of an alternating sign matrix. St001870The number of positive entries followed by a negative entry in a signed permutation. St001893The flag descent of a signed permutation. St000097The order of the largest clique of the graph. St000702The number of weak deficiencies of a permutation. St001553The number of indecomposable summands of the square of the Jacobson radical as a bimodule in the Nakayama algebra corresponding to the Dyck path. St001712The number of natural descents of a standard Young tableau. St001960The number of descents of a permutation minus one if its first entry is not one. St001355Number of non-empty prefixes of a binary word that contain equally many 0's and 1's. St001462The number of factors of a standard tableaux under concatenation. St001589The nesting number of a perfect matching. St000317The cycle descent number of a permutation. St000628The balance of a binary word. St000646The number of big ascents of a permutation. St000779The tier of a permutation. St001169Number of simple modules with projective dimension at least two in the corresponding Nakayama algebra. St001188The number of simple modules $S$ with grade $\inf \{ i \geq 0 | Ext^i(S,A) \neq 0 \}$ at least two in the Nakayama algebra $A$ corresponding to the Dyck path. St001205The number of non-simple indecomposable projective-injective modules of the algebra $eAe$ in the corresponding Nakayama algebra $A$ with minimal faithful projective-injective module $eA$. St001244The number of simple modules of projective dimension one that are not 1-regular for the Nakayama algebra associated to a Dyck path. St001414Half the length of the longest odd length palindromic prefix of a binary word. St001421Half the length of a longest factor which is its own reverse-complement and begins with a one of a binary word. St001683The number of distinct positions of the pattern letter 3 in occurrences of 132 in a permutation. St001687The number of distinct positions of the pattern letter 2 in occurrences of 213 in a permutation. St001811The Castelnuovo-Mumford regularity of a permutation. St001821The sorting index of a signed permutation. St001905The number of preferred parking spots in a parking function less than the index of the car. St001935The number of ascents in a parking function. St001946The number of descents in a parking function. St000015The number of peaks of a Dyck path. St000670The reversal length of a permutation. St000710The number of big deficiencies of a permutation. St000765The number of weak records in an integer composition. St000942The number of critical left to right maxima of the parking functions. St000991The number of right-to-left minima of a permutation. St001239The largest vector space dimension of the double dual of a simple module in the corresponding Nakayama algebra. St001773The number of minimal elements in Bruhat order not less than the signed permutation. St001046The maximal number of arcs nesting a given arc of a perfect matching. St001590The crossing number of a perfect matching. St000720The size of the largest partition in the oscillating tableau corresponding to the perfect matching. St000848The balance constant multiplied with the number of linear extensions of a poset. St000849The number of 1/3-balanced pairs in a poset. St001583The projective dimension of the simple module corresponding to the point in the poset of the symmetric group under bruhat order. St001624The breadth of a lattice. St000386The number of factors DDU in a Dyck path. St000884The number of isolated descents of a permutation. St000994The number of cycle peaks and the number of cycle valleys of a permutation. St001435The number of missing boxes in the first row. St000891The number of distinct diagonal sums of a permutation matrix. St001820The size of the image of the pop stack sorting operator. St000022The number of fixed points of a permutation. St000731The number of double exceedences of a permutation. St000292The number of ascents of a binary word.
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!