searching the database
Your data matches 93 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
(click to perform a complete search on your data)
Matching statistic: St001087
Mp00129: Dyck paths —to 321-avoiding permutation (Billey-Jockusch-Stanley)⟶ Permutations
Mp00239: Permutations —Corteel⟶ Permutations
Mp00090: Permutations —cycle-as-one-line notation⟶ Permutations
St001087: Permutations ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00239: Permutations —Corteel⟶ Permutations
Mp00090: Permutations —cycle-as-one-line notation⟶ Permutations
St001087: Permutations ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[1,0]
=> [1] => [1] => [1] => 0
[1,0,1,0]
=> [2,1] => [2,1] => [1,2] => 0
[1,1,0,0]
=> [1,2] => [1,2] => [1,2] => 0
[1,0,1,0,1,0]
=> [2,3,1] => [3,2,1] => [1,3,2] => 0
[1,0,1,1,0,0]
=> [2,1,3] => [2,1,3] => [1,2,3] => 1
[1,1,0,0,1,0]
=> [1,3,2] => [1,3,2] => [1,2,3] => 1
[1,1,0,1,0,0]
=> [3,1,2] => [3,1,2] => [1,3,2] => 0
[1,1,1,0,0,0]
=> [1,2,3] => [1,2,3] => [1,2,3] => 1
[1,0,1,0,1,0,1,0]
=> [2,3,4,1] => [4,2,3,1] => [1,4,2,3] => 1
[1,0,1,0,1,1,0,0]
=> [2,3,1,4] => [3,2,1,4] => [1,3,2,4] => 1
[1,0,1,1,0,0,1,0]
=> [2,1,4,3] => [2,1,4,3] => [1,2,3,4] => 2
[1,0,1,1,0,1,0,0]
=> [2,4,1,3] => [4,2,1,3] => [1,4,3,2] => 0
[1,0,1,1,1,0,0,0]
=> [2,1,3,4] => [2,1,3,4] => [1,2,3,4] => 2
[1,1,0,0,1,0,1,0]
=> [1,3,4,2] => [1,4,3,2] => [1,2,4,3] => 1
[1,1,0,0,1,1,0,0]
=> [1,3,2,4] => [1,3,2,4] => [1,2,3,4] => 2
[1,1,0,1,0,0,1,0]
=> [3,1,4,2] => [4,1,3,2] => [1,4,2,3] => 1
[1,1,0,1,0,1,0,0]
=> [3,4,1,2] => [4,3,2,1] => [1,4,2,3] => 1
[1,1,0,1,1,0,0,0]
=> [3,1,2,4] => [3,1,2,4] => [1,3,2,4] => 1
[1,1,1,0,0,0,1,0]
=> [1,2,4,3] => [1,2,4,3] => [1,2,3,4] => 2
[1,1,1,0,0,1,0,0]
=> [1,4,2,3] => [1,4,2,3] => [1,2,4,3] => 1
[1,1,1,0,1,0,0,0]
=> [4,1,2,3] => [4,1,2,3] => [1,4,3,2] => 0
[1,1,1,1,0,0,0,0]
=> [1,2,3,4] => [1,2,3,4] => [1,2,3,4] => 2
[1,0,1,0,1,0,1,0,1,0]
=> [2,3,4,5,1] => [5,2,3,4,1] => [1,5,2,3,4] => 2
[1,0,1,0,1,0,1,1,0,0]
=> [2,3,4,1,5] => [4,2,3,1,5] => [1,4,2,3,5] => 2
[1,0,1,0,1,1,0,0,1,0]
=> [2,3,1,5,4] => [3,2,1,5,4] => [1,3,2,4,5] => 2
[1,0,1,0,1,1,0,1,0,0]
=> [2,3,5,1,4] => [5,2,3,1,4] => [1,5,4,2,3] => 1
[1,0,1,0,1,1,1,0,0,0]
=> [2,3,1,4,5] => [3,2,1,4,5] => [1,3,2,4,5] => 2
[1,0,1,1,0,0,1,0,1,0]
=> [2,1,4,5,3] => [2,1,5,4,3] => [1,2,3,5,4] => 2
[1,0,1,1,0,0,1,1,0,0]
=> [2,1,4,3,5] => [2,1,4,3,5] => [1,2,3,4,5] => 3
[1,0,1,1,0,1,0,0,1,0]
=> [2,4,1,5,3] => [5,2,1,4,3] => [1,5,3,2,4] => 1
[1,0,1,1,0,1,0,1,0,0]
=> [2,4,5,1,3] => [5,2,4,3,1] => [1,5,2,3,4] => 2
[1,0,1,1,0,1,1,0,0,0]
=> [2,4,1,3,5] => [4,2,1,3,5] => [1,4,3,2,5] => 1
[1,0,1,1,1,0,0,0,1,0]
=> [2,1,3,5,4] => [2,1,3,5,4] => [1,2,3,4,5] => 3
[1,0,1,1,1,0,0,1,0,0]
=> [2,1,5,3,4] => [2,1,5,3,4] => [1,2,3,5,4] => 2
[1,0,1,1,1,0,1,0,0,0]
=> [2,5,1,3,4] => [5,2,1,3,4] => [1,5,4,3,2] => 0
[1,0,1,1,1,1,0,0,0,0]
=> [2,1,3,4,5] => [2,1,3,4,5] => [1,2,3,4,5] => 3
[1,1,0,0,1,0,1,0,1,0]
=> [1,3,4,5,2] => [1,5,3,4,2] => [1,2,5,3,4] => 2
[1,1,0,0,1,0,1,1,0,0]
=> [1,3,4,2,5] => [1,4,3,2,5] => [1,2,4,3,5] => 2
[1,1,0,0,1,1,0,0,1,0]
=> [1,3,2,5,4] => [1,3,2,5,4] => [1,2,3,4,5] => 3
[1,1,0,0,1,1,0,1,0,0]
=> [1,3,5,2,4] => [1,5,3,2,4] => [1,2,5,4,3] => 1
[1,1,0,0,1,1,1,0,0,0]
=> [1,3,2,4,5] => [1,3,2,4,5] => [1,2,3,4,5] => 3
[1,1,0,1,0,0,1,0,1,0]
=> [3,1,4,5,2] => [5,1,3,4,2] => [1,5,2,3,4] => 2
[1,1,0,1,0,0,1,1,0,0]
=> [3,1,4,2,5] => [4,1,3,2,5] => [1,4,2,3,5] => 2
[1,1,0,1,0,1,0,0,1,0]
=> [3,4,1,5,2] => [5,3,2,4,1] => [1,5,2,3,4] => 2
[1,1,0,1,0,1,0,1,0,0]
=> [3,4,5,1,2] => [5,4,3,2,1] => [1,5,2,4,3] => 1
[1,1,0,1,0,1,1,0,0,0]
=> [3,4,1,2,5] => [4,3,2,1,5] => [1,4,2,3,5] => 2
[1,1,0,1,1,0,0,0,1,0]
=> [3,1,2,5,4] => [3,1,2,5,4] => [1,3,2,4,5] => 2
[1,1,0,1,1,0,0,1,0,0]
=> [3,1,5,2,4] => [5,1,3,2,4] => [1,5,4,2,3] => 1
[1,1,0,1,1,0,1,0,0,0]
=> [3,5,1,2,4] => [5,3,2,1,4] => [1,5,4,2,3] => 1
[1,1,0,1,1,1,0,0,0,0]
=> [3,1,2,4,5] => [3,1,2,4,5] => [1,3,2,4,5] => 2
Description
The number of occurrences of the vincular pattern |12-3 in a permutation.
This is the number of occurrences of the pattern $123$, where the first matched entry is the first entry of the permutation and the other two matched entries are consecutive.
In other words, this is the number of ascents whose bottom value is strictly larger than the first entry of the permutation.
Matching statistic: St000836
(load all 21 compositions to match this statistic)
(load all 21 compositions to match this statistic)
Mp00025: Dyck paths —to 132-avoiding permutation⟶ Permutations
St000836: Permutations ⟶ ℤResult quality: 99% ●values known / values provided: 99%●distinct values known / distinct values provided: 100%
St000836: Permutations ⟶ ℤResult quality: 99% ●values known / values provided: 99%●distinct values known / distinct values provided: 100%
Values
[1,0]
=> [1] => ? = 0
[1,0,1,0]
=> [2,1] => 0
[1,1,0,0]
=> [1,2] => 0
[1,0,1,0,1,0]
=> [3,2,1] => 1
[1,0,1,1,0,0]
=> [2,3,1] => 1
[1,1,0,0,1,0]
=> [3,1,2] => 1
[1,1,0,1,0,0]
=> [2,1,3] => 0
[1,1,1,0,0,0]
=> [1,2,3] => 0
[1,0,1,0,1,0,1,0]
=> [4,3,2,1] => 2
[1,0,1,0,1,1,0,0]
=> [3,4,2,1] => 2
[1,0,1,1,0,0,1,0]
=> [4,2,3,1] => 2
[1,0,1,1,0,1,0,0]
=> [3,2,4,1] => 1
[1,0,1,1,1,0,0,0]
=> [2,3,4,1] => 1
[1,1,0,0,1,0,1,0]
=> [4,3,1,2] => 2
[1,1,0,0,1,1,0,0]
=> [3,4,1,2] => 2
[1,1,0,1,0,0,1,0]
=> [4,2,1,3] => 1
[1,1,0,1,0,1,0,0]
=> [3,2,1,4] => 1
[1,1,0,1,1,0,0,0]
=> [2,3,1,4] => 1
[1,1,1,0,0,0,1,0]
=> [4,1,2,3] => 1
[1,1,1,0,0,1,0,0]
=> [3,1,2,4] => 1
[1,1,1,0,1,0,0,0]
=> [2,1,3,4] => 0
[1,1,1,1,0,0,0,0]
=> [1,2,3,4] => 0
[1,0,1,0,1,0,1,0,1,0]
=> [5,4,3,2,1] => 3
[1,0,1,0,1,0,1,1,0,0]
=> [4,5,3,2,1] => 3
[1,0,1,0,1,1,0,0,1,0]
=> [5,3,4,2,1] => 3
[1,0,1,0,1,1,0,1,0,0]
=> [4,3,5,2,1] => 2
[1,0,1,0,1,1,1,0,0,0]
=> [3,4,5,2,1] => 2
[1,0,1,1,0,0,1,0,1,0]
=> [5,4,2,3,1] => 3
[1,0,1,1,0,0,1,1,0,0]
=> [4,5,2,3,1] => 3
[1,0,1,1,0,1,0,0,1,0]
=> [5,3,2,4,1] => 2
[1,0,1,1,0,1,0,1,0,0]
=> [4,3,2,5,1] => 2
[1,0,1,1,0,1,1,0,0,0]
=> [3,4,2,5,1] => 2
[1,0,1,1,1,0,0,0,1,0]
=> [5,2,3,4,1] => 2
[1,0,1,1,1,0,0,1,0,0]
=> [4,2,3,5,1] => 2
[1,0,1,1,1,0,1,0,0,0]
=> [3,2,4,5,1] => 1
[1,0,1,1,1,1,0,0,0,0]
=> [2,3,4,5,1] => 1
[1,1,0,0,1,0,1,0,1,0]
=> [5,4,3,1,2] => 3
[1,1,0,0,1,0,1,1,0,0]
=> [4,5,3,1,2] => 3
[1,1,0,0,1,1,0,0,1,0]
=> [5,3,4,1,2] => 3
[1,1,0,0,1,1,0,1,0,0]
=> [4,3,5,1,2] => 2
[1,1,0,0,1,1,1,0,0,0]
=> [3,4,5,1,2] => 2
[1,1,0,1,0,0,1,0,1,0]
=> [5,4,2,1,3] => 2
[1,1,0,1,0,0,1,1,0,0]
=> [4,5,2,1,3] => 2
[1,1,0,1,0,1,0,0,1,0]
=> [5,3,2,1,4] => 2
[1,1,0,1,0,1,0,1,0,0]
=> [4,3,2,1,5] => 2
[1,1,0,1,0,1,1,0,0,0]
=> [3,4,2,1,5] => 2
[1,1,0,1,1,0,0,0,1,0]
=> [5,2,3,1,4] => 2
[1,1,0,1,1,0,0,1,0,0]
=> [4,2,3,1,5] => 2
[1,1,0,1,1,0,1,0,0,0]
=> [3,2,4,1,5] => 1
[1,1,0,1,1,1,0,0,0,0]
=> [2,3,4,1,5] => 1
[1,1,1,0,0,0,1,0,1,0]
=> [5,4,1,2,3] => 2
Description
The number of descents of distance 2 of a permutation.
This is, $\operatorname{des}_2(\pi) = | \{ i : \pi(i) > \pi(i+2) \} |$.
Matching statistic: St000837
(load all 22 compositions to match this statistic)
(load all 22 compositions to match this statistic)
Mp00031: Dyck paths —to 312-avoiding permutation⟶ Permutations
St000837: Permutations ⟶ ℤResult quality: 99% ●values known / values provided: 99%●distinct values known / distinct values provided: 100%
St000837: Permutations ⟶ ℤResult quality: 99% ●values known / values provided: 99%●distinct values known / distinct values provided: 100%
Values
[1,0]
=> [1] => ? = 0
[1,0,1,0]
=> [1,2] => 0
[1,1,0,0]
=> [2,1] => 0
[1,0,1,0,1,0]
=> [1,2,3] => 1
[1,0,1,1,0,0]
=> [1,3,2] => 1
[1,1,0,0,1,0]
=> [2,1,3] => 1
[1,1,0,1,0,0]
=> [2,3,1] => 0
[1,1,1,0,0,0]
=> [3,2,1] => 0
[1,0,1,0,1,0,1,0]
=> [1,2,3,4] => 2
[1,0,1,0,1,1,0,0]
=> [1,2,4,3] => 2
[1,0,1,1,0,0,1,0]
=> [1,3,2,4] => 2
[1,0,1,1,0,1,0,0]
=> [1,3,4,2] => 1
[1,0,1,1,1,0,0,0]
=> [1,4,3,2] => 1
[1,1,0,0,1,0,1,0]
=> [2,1,3,4] => 2
[1,1,0,0,1,1,0,0]
=> [2,1,4,3] => 2
[1,1,0,1,0,0,1,0]
=> [2,3,1,4] => 1
[1,1,0,1,0,1,0,0]
=> [2,3,4,1] => 1
[1,1,0,1,1,0,0,0]
=> [2,4,3,1] => 1
[1,1,1,0,0,0,1,0]
=> [3,2,1,4] => 1
[1,1,1,0,0,1,0,0]
=> [3,2,4,1] => 1
[1,1,1,0,1,0,0,0]
=> [3,4,2,1] => 0
[1,1,1,1,0,0,0,0]
=> [4,3,2,1] => 0
[1,0,1,0,1,0,1,0,1,0]
=> [1,2,3,4,5] => 3
[1,0,1,0,1,0,1,1,0,0]
=> [1,2,3,5,4] => 3
[1,0,1,0,1,1,0,0,1,0]
=> [1,2,4,3,5] => 3
[1,0,1,0,1,1,0,1,0,0]
=> [1,2,4,5,3] => 2
[1,0,1,0,1,1,1,0,0,0]
=> [1,2,5,4,3] => 2
[1,0,1,1,0,0,1,0,1,0]
=> [1,3,2,4,5] => 3
[1,0,1,1,0,0,1,1,0,0]
=> [1,3,2,5,4] => 3
[1,0,1,1,0,1,0,0,1,0]
=> [1,3,4,2,5] => 2
[1,0,1,1,0,1,0,1,0,0]
=> [1,3,4,5,2] => 2
[1,0,1,1,0,1,1,0,0,0]
=> [1,3,5,4,2] => 2
[1,0,1,1,1,0,0,0,1,0]
=> [1,4,3,2,5] => 2
[1,0,1,1,1,0,0,1,0,0]
=> [1,4,3,5,2] => 2
[1,0,1,1,1,0,1,0,0,0]
=> [1,4,5,3,2] => 1
[1,0,1,1,1,1,0,0,0,0]
=> [1,5,4,3,2] => 1
[1,1,0,0,1,0,1,0,1,0]
=> [2,1,3,4,5] => 3
[1,1,0,0,1,0,1,1,0,0]
=> [2,1,3,5,4] => 3
[1,1,0,0,1,1,0,0,1,0]
=> [2,1,4,3,5] => 3
[1,1,0,0,1,1,0,1,0,0]
=> [2,1,4,5,3] => 2
[1,1,0,0,1,1,1,0,0,0]
=> [2,1,5,4,3] => 2
[1,1,0,1,0,0,1,0,1,0]
=> [2,3,1,4,5] => 2
[1,1,0,1,0,0,1,1,0,0]
=> [2,3,1,5,4] => 2
[1,1,0,1,0,1,0,0,1,0]
=> [2,3,4,1,5] => 2
[1,1,0,1,0,1,0,1,0,0]
=> [2,3,4,5,1] => 2
[1,1,0,1,0,1,1,0,0,0]
=> [2,3,5,4,1] => 2
[1,1,0,1,1,0,0,0,1,0]
=> [2,4,3,1,5] => 2
[1,1,0,1,1,0,0,1,0,0]
=> [2,4,3,5,1] => 2
[1,1,0,1,1,0,1,0,0,0]
=> [2,4,5,3,1] => 1
[1,1,0,1,1,1,0,0,0,0]
=> [2,5,4,3,1] => 1
[1,1,1,0,0,0,1,0,1,0]
=> [3,2,1,4,5] => 2
Description
The number of ascents of distance 2 of a permutation.
This is, $\operatorname{asc}_2(\pi) = | \{ i : \pi(i) < \pi(i+2) \} |$.
Matching statistic: St001388
(load all 11 compositions to match this statistic)
(load all 11 compositions to match this statistic)
Mp00031: Dyck paths —to 312-avoiding permutation⟶ Permutations
St001388: Permutations ⟶ ℤResult quality: 99% ●values known / values provided: 99%●distinct values known / distinct values provided: 100%
St001388: Permutations ⟶ ℤResult quality: 99% ●values known / values provided: 99%●distinct values known / distinct values provided: 100%
Values
[1,0]
=> [1] => ? = 0
[1,0,1,0]
=> [1,2] => 0
[1,1,0,0]
=> [2,1] => 0
[1,0,1,0,1,0]
=> [1,2,3] => 0
[1,0,1,1,0,0]
=> [1,3,2] => 1
[1,1,0,0,1,0]
=> [2,1,3] => 1
[1,1,0,1,0,0]
=> [2,3,1] => 1
[1,1,1,0,0,0]
=> [3,2,1] => 0
[1,0,1,0,1,0,1,0]
=> [1,2,3,4] => 0
[1,0,1,0,1,1,0,0]
=> [1,2,4,3] => 1
[1,0,1,1,0,0,1,0]
=> [1,3,2,4] => 2
[1,0,1,1,0,1,0,0]
=> [1,3,4,2] => 2
[1,0,1,1,1,0,0,0]
=> [1,4,3,2] => 1
[1,1,0,0,1,0,1,0]
=> [2,1,3,4] => 1
[1,1,0,0,1,1,0,0]
=> [2,1,4,3] => 1
[1,1,0,1,0,0,1,0]
=> [2,3,1,4] => 2
[1,1,0,1,0,1,0,0]
=> [2,3,4,1] => 1
[1,1,0,1,1,0,0,0]
=> [2,4,3,1] => 2
[1,1,1,0,0,0,1,0]
=> [3,2,1,4] => 1
[1,1,1,0,0,1,0,0]
=> [3,2,4,1] => 2
[1,1,1,0,1,0,0,0]
=> [3,4,2,1] => 1
[1,1,1,1,0,0,0,0]
=> [4,3,2,1] => 0
[1,0,1,0,1,0,1,0,1,0]
=> [1,2,3,4,5] => 0
[1,0,1,0,1,0,1,1,0,0]
=> [1,2,3,5,4] => 1
[1,0,1,0,1,1,0,0,1,0]
=> [1,2,4,3,5] => 2
[1,0,1,0,1,1,0,1,0,0]
=> [1,2,4,5,3] => 2
[1,0,1,0,1,1,1,0,0,0]
=> [1,2,5,4,3] => 1
[1,0,1,1,0,0,1,0,1,0]
=> [1,3,2,4,5] => 2
[1,0,1,1,0,0,1,1,0,0]
=> [1,3,2,5,4] => 2
[1,0,1,1,0,1,0,0,1,0]
=> [1,3,4,2,5] => 3
[1,0,1,1,0,1,0,1,0,0]
=> [1,3,4,5,2] => 2
[1,0,1,1,0,1,1,0,0,0]
=> [1,3,5,4,2] => 3
[1,0,1,1,1,0,0,0,1,0]
=> [1,4,3,2,5] => 2
[1,0,1,1,1,0,0,1,0,0]
=> [1,4,3,5,2] => 3
[1,0,1,1,1,0,1,0,0,0]
=> [1,4,5,3,2] => 2
[1,0,1,1,1,1,0,0,0,0]
=> [1,5,4,3,2] => 1
[1,1,0,0,1,0,1,0,1,0]
=> [2,1,3,4,5] => 1
[1,1,0,0,1,0,1,1,0,0]
=> [2,1,3,5,4] => 2
[1,1,0,0,1,1,0,0,1,0]
=> [2,1,4,3,5] => 2
[1,1,0,0,1,1,0,1,0,0]
=> [2,1,4,5,3] => 2
[1,1,0,0,1,1,1,0,0,0]
=> [2,1,5,4,3] => 1
[1,1,0,1,0,0,1,0,1,0]
=> [2,3,1,4,5] => 2
[1,1,0,1,0,0,1,1,0,0]
=> [2,3,1,5,4] => 2
[1,1,0,1,0,1,0,0,1,0]
=> [2,3,4,1,5] => 2
[1,1,0,1,0,1,0,1,0,0]
=> [2,3,4,5,1] => 1
[1,1,0,1,0,1,1,0,0,0]
=> [2,3,5,4,1] => 2
[1,1,0,1,1,0,0,0,1,0]
=> [2,4,3,1,5] => 3
[1,1,0,1,1,0,0,1,0,0]
=> [2,4,3,5,1] => 3
[1,1,0,1,1,0,1,0,0,0]
=> [2,4,5,3,1] => 3
[1,1,0,1,1,1,0,0,0,0]
=> [2,5,4,3,1] => 2
[1,1,1,0,0,0,1,0,1,0]
=> [3,2,1,4,5] => 1
Description
The number of non-attacking neighbors of a permutation.
For a permutation $\sigma$, the indices $i$ and $i+1$ are attacking if $|\sigma(i)-\sigma(i+1)| = 1$.
Visually, this is, for $\sigma$ considered as a placement of kings on a chessboard, if the kings placed in columns $i$ and $i+1$ are non-attacking.
Matching statistic: St000619
(load all 2 compositions to match this statistic)
(load all 2 compositions to match this statistic)
Mp00031: Dyck paths —to 312-avoiding permutation⟶ Permutations
Mp00067: Permutations —Foata bijection⟶ Permutations
Mp00254: Permutations —Inverse fireworks map⟶ Permutations
St000619: Permutations ⟶ ℤResult quality: 99% ●values known / values provided: 99%●distinct values known / distinct values provided: 100%
Mp00067: Permutations —Foata bijection⟶ Permutations
Mp00254: Permutations —Inverse fireworks map⟶ Permutations
St000619: Permutations ⟶ ℤResult quality: 99% ●values known / values provided: 99%●distinct values known / distinct values provided: 100%
Values
[1,0]
=> [1] => [1] => [1] => ? = 0 + 1
[1,0,1,0]
=> [1,2] => [1,2] => [1,2] => 1 = 0 + 1
[1,1,0,0]
=> [2,1] => [2,1] => [2,1] => 1 = 0 + 1
[1,0,1,0,1,0]
=> [1,2,3] => [1,2,3] => [1,2,3] => 1 = 0 + 1
[1,0,1,1,0,0]
=> [1,3,2] => [3,1,2] => [3,1,2] => 1 = 0 + 1
[1,1,0,0,1,0]
=> [2,1,3] => [2,1,3] => [2,1,3] => 2 = 1 + 1
[1,1,0,1,0,0]
=> [2,3,1] => [2,3,1] => [1,3,2] => 2 = 1 + 1
[1,1,1,0,0,0]
=> [3,2,1] => [3,2,1] => [3,2,1] => 2 = 1 + 1
[1,0,1,0,1,0,1,0]
=> [1,2,3,4] => [1,2,3,4] => [1,2,3,4] => 1 = 0 + 1
[1,0,1,0,1,1,0,0]
=> [1,2,4,3] => [4,1,2,3] => [4,1,2,3] => 1 = 0 + 1
[1,0,1,1,0,0,1,0]
=> [1,3,2,4] => [3,1,2,4] => [3,1,2,4] => 2 = 1 + 1
[1,0,1,1,0,1,0,0]
=> [1,3,4,2] => [3,1,4,2] => [2,1,4,3] => 3 = 2 + 1
[1,0,1,1,1,0,0,0]
=> [1,4,3,2] => [4,3,1,2] => [4,3,1,2] => 2 = 1 + 1
[1,1,0,0,1,0,1,0]
=> [2,1,3,4] => [2,1,3,4] => [2,1,3,4] => 2 = 1 + 1
[1,1,0,0,1,1,0,0]
=> [2,1,4,3] => [4,2,1,3] => [4,2,1,3] => 2 = 1 + 1
[1,1,0,1,0,0,1,0]
=> [2,3,1,4] => [2,3,1,4] => [1,3,2,4] => 2 = 1 + 1
[1,1,0,1,0,1,0,0]
=> [2,3,4,1] => [2,3,4,1] => [1,2,4,3] => 2 = 1 + 1
[1,1,0,1,1,0,0,0]
=> [2,4,3,1] => [4,2,3,1] => [4,1,3,2] => 2 = 1 + 1
[1,1,1,0,0,0,1,0]
=> [3,2,1,4] => [3,2,1,4] => [3,2,1,4] => 3 = 2 + 1
[1,1,1,0,0,1,0,0]
=> [3,2,4,1] => [3,2,4,1] => [2,1,4,3] => 3 = 2 + 1
[1,1,1,0,1,0,0,0]
=> [3,4,2,1] => [3,4,2,1] => [1,4,3,2] => 3 = 2 + 1
[1,1,1,1,0,0,0,0]
=> [4,3,2,1] => [4,3,2,1] => [4,3,2,1] => 3 = 2 + 1
[1,0,1,0,1,0,1,0,1,0]
=> [1,2,3,4,5] => [1,2,3,4,5] => [1,2,3,4,5] => 1 = 0 + 1
[1,0,1,0,1,0,1,1,0,0]
=> [1,2,3,5,4] => [5,1,2,3,4] => [5,1,2,3,4] => 1 = 0 + 1
[1,0,1,0,1,1,0,0,1,0]
=> [1,2,4,3,5] => [4,1,2,3,5] => [4,1,2,3,5] => 2 = 1 + 1
[1,0,1,0,1,1,0,1,0,0]
=> [1,2,4,5,3] => [4,1,2,5,3] => [3,1,2,5,4] => 3 = 2 + 1
[1,0,1,0,1,1,1,0,0,0]
=> [1,2,5,4,3] => [5,4,1,2,3] => [5,4,1,2,3] => 2 = 1 + 1
[1,0,1,1,0,0,1,0,1,0]
=> [1,3,2,4,5] => [3,1,2,4,5] => [3,1,2,4,5] => 2 = 1 + 1
[1,0,1,1,0,0,1,1,0,0]
=> [1,3,2,5,4] => [5,3,1,2,4] => [5,3,1,2,4] => 2 = 1 + 1
[1,0,1,1,0,1,0,0,1,0]
=> [1,3,4,2,5] => [3,1,4,2,5] => [2,1,4,3,5] => 3 = 2 + 1
[1,0,1,1,0,1,0,1,0,0]
=> [1,3,4,5,2] => [3,1,4,5,2] => [2,1,3,5,4] => 3 = 2 + 1
[1,0,1,1,0,1,1,0,0,0]
=> [1,3,5,4,2] => [5,3,1,4,2] => [5,2,1,4,3] => 3 = 2 + 1
[1,0,1,1,1,0,0,0,1,0]
=> [1,4,3,2,5] => [4,3,1,2,5] => [4,3,1,2,5] => 3 = 2 + 1
[1,0,1,1,1,0,0,1,0,0]
=> [1,4,3,5,2] => [4,3,1,5,2] => [3,2,1,5,4] => 4 = 3 + 1
[1,0,1,1,1,0,1,0,0,0]
=> [1,4,5,3,2] => [4,5,1,3,2] => [2,5,1,4,3] => 3 = 2 + 1
[1,0,1,1,1,1,0,0,0,0]
=> [1,5,4,3,2] => [5,4,3,1,2] => [5,4,3,1,2] => 3 = 2 + 1
[1,1,0,0,1,0,1,0,1,0]
=> [2,1,3,4,5] => [2,1,3,4,5] => [2,1,3,4,5] => 2 = 1 + 1
[1,1,0,0,1,0,1,1,0,0]
=> [2,1,3,5,4] => [5,2,1,3,4] => [5,2,1,3,4] => 2 = 1 + 1
[1,1,0,0,1,1,0,0,1,0]
=> [2,1,4,3,5] => [4,2,1,3,5] => [4,2,1,3,5] => 3 = 2 + 1
[1,1,0,0,1,1,0,1,0,0]
=> [2,1,4,5,3] => [4,2,1,5,3] => [3,2,1,5,4] => 4 = 3 + 1
[1,1,0,0,1,1,1,0,0,0]
=> [2,1,5,4,3] => [5,4,2,1,3] => [5,4,2,1,3] => 3 = 2 + 1
[1,1,0,1,0,0,1,0,1,0]
=> [2,3,1,4,5] => [2,3,1,4,5] => [1,3,2,4,5] => 2 = 1 + 1
[1,1,0,1,0,0,1,1,0,0]
=> [2,3,1,5,4] => [5,2,3,1,4] => [5,1,3,2,4] => 2 = 1 + 1
[1,1,0,1,0,1,0,0,1,0]
=> [2,3,4,1,5] => [2,3,4,1,5] => [1,2,4,3,5] => 2 = 1 + 1
[1,1,0,1,0,1,0,1,0,0]
=> [2,3,4,5,1] => [2,3,4,5,1] => [1,2,3,5,4] => 2 = 1 + 1
[1,1,0,1,0,1,1,0,0,0]
=> [2,3,5,4,1] => [5,2,3,4,1] => [5,1,2,4,3] => 2 = 1 + 1
[1,1,0,1,1,0,0,0,1,0]
=> [2,4,3,1,5] => [4,2,3,1,5] => [4,1,3,2,5] => 3 = 2 + 1
[1,1,0,1,1,0,0,1,0,0]
=> [2,4,3,5,1] => [4,2,3,5,1] => [3,1,2,5,4] => 3 = 2 + 1
[1,1,0,1,1,0,1,0,0,0]
=> [2,4,5,3,1] => [4,2,5,3,1] => [2,1,5,4,3] => 4 = 3 + 1
[1,1,0,1,1,1,0,0,0,0]
=> [2,5,4,3,1] => [5,4,2,3,1] => [5,4,1,3,2] => 3 = 2 + 1
[1,1,1,0,0,0,1,0,1,0]
=> [3,2,1,4,5] => [3,2,1,4,5] => [3,2,1,4,5] => 3 = 2 + 1
Description
The number of cyclic descents of a permutation.
For a permutation $\pi$ of $\{1,\ldots,n\}$, this is given by the number of indices $1 \leq i \leq n$ such that $\pi(i) > \pi(i+1)$ where we set $\pi(n+1) = \pi(1)$.
Matching statistic: St001315
Mp00199: Dyck paths —prime Dyck path⟶ Dyck paths
Mp00023: Dyck paths —to non-crossing permutation⟶ Permutations
Mp00160: Permutations —graph of inversions⟶ Graphs
St001315: Graphs ⟶ ℤResult quality: 94% ●values known / values provided: 94%●distinct values known / distinct values provided: 100%
Mp00023: Dyck paths —to non-crossing permutation⟶ Permutations
Mp00160: Permutations —graph of inversions⟶ Graphs
St001315: Graphs ⟶ ℤResult quality: 94% ●values known / values provided: 94%●distinct values known / distinct values provided: 100%
Values
[1,0]
=> [1,1,0,0]
=> [2,1] => ([(0,1)],2)
=> 2 = 0 + 2
[1,0,1,0]
=> [1,1,0,1,0,0]
=> [2,3,1] => ([(0,2),(1,2)],3)
=> 2 = 0 + 2
[1,1,0,0]
=> [1,1,1,0,0,0]
=> [3,2,1] => ([(0,1),(0,2),(1,2)],3)
=> 2 = 0 + 2
[1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,0]
=> [2,3,4,1] => ([(0,3),(1,3),(2,3)],4)
=> 3 = 1 + 2
[1,0,1,1,0,0]
=> [1,1,0,1,1,0,0,0]
=> [2,4,3,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> 3 = 1 + 2
[1,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0]
=> [3,2,4,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> 3 = 1 + 2
[1,1,0,1,0,0]
=> [1,1,1,0,1,0,0,0]
=> [4,2,3,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 2 = 0 + 2
[1,1,1,0,0,0]
=> [1,1,1,1,0,0,0,0]
=> [4,3,2,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 2 = 0 + 2
[1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> [2,3,4,5,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 4 = 2 + 2
[1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> [2,3,5,4,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 4 = 2 + 2
[1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> [2,4,3,5,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 4 = 2 + 2
[1,0,1,1,0,1,0,0]
=> [1,1,0,1,1,0,1,0,0,0]
=> [2,5,3,4,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3 = 1 + 2
[1,0,1,1,1,0,0,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> [2,5,4,3,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3 = 1 + 2
[1,1,0,0,1,0,1,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> [3,2,4,5,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 4 = 2 + 2
[1,1,0,0,1,1,0,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> [3,2,5,4,1] => ([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> 4 = 2 + 2
[1,1,0,1,0,0,1,0]
=> [1,1,1,0,1,0,0,1,0,0]
=> [4,2,3,5,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3 = 1 + 2
[1,1,0,1,0,1,0,0]
=> [1,1,1,0,1,0,1,0,0,0]
=> [5,2,3,4,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3 = 1 + 2
[1,1,0,1,1,0,0,0]
=> [1,1,1,0,1,1,0,0,0,0]
=> [5,2,4,3,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3 = 1 + 2
[1,1,1,0,0,0,1,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> [4,3,2,5,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3 = 1 + 2
[1,1,1,0,0,1,0,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> [5,3,2,4,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3 = 1 + 2
[1,1,1,0,1,0,0,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> [5,3,4,2,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2 = 0 + 2
[1,1,1,1,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [5,4,3,2,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2 = 0 + 2
[1,0,1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,1,0,0]
=> [2,3,4,5,6,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> 5 = 3 + 2
[1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,0,1,1,0,0,0]
=> [2,3,4,6,5,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> 5 = 3 + 2
[1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,0,1,1,0,0,1,0,0]
=> [2,3,5,4,6,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> 5 = 3 + 2
[1,0,1,0,1,1,0,1,0,0]
=> [1,1,0,1,0,1,1,0,1,0,0,0]
=> [2,3,6,4,5,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 4 = 2 + 2
[1,0,1,0,1,1,1,0,0,0]
=> [1,1,0,1,0,1,1,1,0,0,0,0]
=> [2,3,6,5,4,1] => ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 4 = 2 + 2
[1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,1,1,0,0,1,0,1,0,0]
=> [2,4,3,5,6,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> 5 = 3 + 2
[1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,1,1,0,0,1,1,0,0,0]
=> [2,4,3,6,5,1] => ([(0,5),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> 5 = 3 + 2
[1,0,1,1,0,1,0,0,1,0]
=> [1,1,0,1,1,0,1,0,0,1,0,0]
=> [2,5,3,4,6,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 4 = 2 + 2
[1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,1,1,0,1,0,1,0,0,0]
=> [2,6,3,4,5,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 4 = 2 + 2
[1,0,1,1,0,1,1,0,0,0]
=> [1,1,0,1,1,0,1,1,0,0,0,0]
=> [2,6,3,5,4,1] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 4 = 2 + 2
[1,0,1,1,1,0,0,0,1,0]
=> [1,1,0,1,1,1,0,0,0,1,0,0]
=> [2,5,4,3,6,1] => ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 4 = 2 + 2
[1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,1,1,1,0,0,1,0,0,0]
=> [2,6,4,3,5,1] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 4 = 2 + 2
[1,0,1,1,1,0,1,0,0,0]
=> [1,1,0,1,1,1,0,1,0,0,0,0]
=> [2,6,4,5,3,1] => ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3 = 1 + 2
[1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,1,1,1,1,0,0,0,0,0]
=> [2,6,5,4,3,1] => ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3 = 1 + 2
[1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,0,0,1,0,1,0,1,0,0]
=> [3,2,4,5,6,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> 5 = 3 + 2
[1,1,0,0,1,0,1,1,0,0]
=> [1,1,1,0,0,1,0,1,1,0,0,0]
=> [3,2,4,6,5,1] => ([(0,5),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> 5 = 3 + 2
[1,1,0,0,1,1,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,1,0,0]
=> [3,2,5,4,6,1] => ([(0,5),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> 5 = 3 + 2
[1,1,0,0,1,1,0,1,0,0]
=> [1,1,1,0,0,1,1,0,1,0,0,0]
=> [3,2,6,4,5,1] => ([(0,1),(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 4 = 2 + 2
[1,1,0,0,1,1,1,0,0,0]
=> [1,1,1,0,0,1,1,1,0,0,0,0]
=> [3,2,6,5,4,1] => ([(0,1),(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 4 = 2 + 2
[1,1,0,1,0,0,1,0,1,0]
=> [1,1,1,0,1,0,0,1,0,1,0,0]
=> [4,2,3,5,6,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 4 = 2 + 2
[1,1,0,1,0,0,1,1,0,0]
=> [1,1,1,0,1,0,0,1,1,0,0,0]
=> [4,2,3,6,5,1] => ([(0,1),(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 4 = 2 + 2
[1,1,0,1,0,1,0,0,1,0]
=> [1,1,1,0,1,0,1,0,0,1,0,0]
=> [5,2,3,4,6,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 4 = 2 + 2
[1,1,0,1,0,1,0,1,0,0]
=> [1,1,1,0,1,0,1,0,1,0,0,0]
=> [6,2,3,4,5,1] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 4 = 2 + 2
[1,1,0,1,0,1,1,0,0,0]
=> [1,1,1,0,1,0,1,1,0,0,0,0]
=> [6,2,3,5,4,1] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 4 = 2 + 2
[1,1,0,1,1,0,0,0,1,0]
=> [1,1,1,0,1,1,0,0,0,1,0,0]
=> [5,2,4,3,6,1] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 4 = 2 + 2
[1,1,0,1,1,0,0,1,0,0]
=> [1,1,1,0,1,1,0,0,1,0,0,0]
=> [6,2,4,3,5,1] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 4 = 2 + 2
[1,1,0,1,1,0,1,0,0,0]
=> [1,1,1,0,1,1,0,1,0,0,0,0]
=> [6,2,4,5,3,1] => ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3 = 1 + 2
[1,1,0,1,1,1,0,0,0,0]
=> [1,1,1,0,1,1,1,0,0,0,0,0]
=> [6,2,5,4,3,1] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3 = 1 + 2
[1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,1,0,1,1,1,1,1,0,0,0,0,0,0]
=> [2,7,6,5,4,3,1] => ([(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? ∊ {0,0,1,1,1,1,1,1,1,1,2} + 2
[1,1,0,1,1,1,1,0,0,0,0,0]
=> [1,1,1,0,1,1,1,1,0,0,0,0,0,0]
=> [7,2,6,5,4,3,1] => ([(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? ∊ {0,0,1,1,1,1,1,1,1,1,2} + 2
[1,1,1,0,1,1,1,0,0,0,0,0]
=> [1,1,1,1,0,1,1,1,0,0,0,0,0,0]
=> [7,3,6,5,4,2,1] => ([(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? ∊ {0,0,1,1,1,1,1,1,1,1,2} + 2
[1,1,1,1,0,0,1,1,0,0,0,0]
=> [1,1,1,1,1,0,0,1,1,0,0,0,0,0]
=> [7,4,3,6,5,2,1] => ([(0,3),(0,4),(0,5),(0,6),(1,2),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? ∊ {0,0,1,1,1,1,1,1,1,1,2} + 2
[1,1,1,1,0,1,1,0,0,0,0,0]
=> [1,1,1,1,1,0,1,1,0,0,0,0,0,0]
=> [7,6,3,5,4,2,1] => ([(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? ∊ {0,0,1,1,1,1,1,1,1,1,2} + 2
[1,1,1,1,1,0,0,0,0,0,1,0]
=> [1,1,1,1,1,1,0,0,0,0,0,1,0,0]
=> [6,5,4,3,2,7,1] => ([(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? ∊ {0,0,1,1,1,1,1,1,1,1,2} + 2
[1,1,1,1,1,0,0,0,0,1,0,0]
=> [1,1,1,1,1,1,0,0,0,0,1,0,0,0]
=> [7,5,4,3,2,6,1] => ([(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? ∊ {0,0,1,1,1,1,1,1,1,1,2} + 2
[1,1,1,1,1,0,0,0,1,0,0,0]
=> [1,1,1,1,1,1,0,0,0,1,0,0,0,0]
=> [7,5,4,3,6,2,1] => ([(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? ∊ {0,0,1,1,1,1,1,1,1,1,2} + 2
[1,1,1,1,1,0,0,1,0,0,0,0]
=> [1,1,1,1,1,1,0,0,1,0,0,0,0,0]
=> [7,6,4,3,5,2,1] => ([(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? ∊ {0,0,1,1,1,1,1,1,1,1,2} + 2
[1,1,1,1,1,0,1,0,0,0,0,0]
=> [1,1,1,1,1,1,0,1,0,0,0,0,0,0]
=> [7,6,4,5,3,2,1] => ([(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? ∊ {0,0,1,1,1,1,1,1,1,1,2} + 2
[1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> [7,6,5,4,3,2,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? ∊ {0,0,1,1,1,1,1,1,1,1,2} + 2
Description
The dissociation number of a graph.
Matching statistic: St001517
(load all 2 compositions to match this statistic)
(load all 2 compositions to match this statistic)
Mp00027: Dyck paths —to partition⟶ Integer partitions
Mp00230: Integer partitions —parallelogram polyomino⟶ Dyck paths
Mp00031: Dyck paths —to 312-avoiding permutation⟶ Permutations
St001517: Permutations ⟶ ℤResult quality: 57% ●values known / values provided: 57%●distinct values known / distinct values provided: 80%
Mp00230: Integer partitions —parallelogram polyomino⟶ Dyck paths
Mp00031: Dyck paths —to 312-avoiding permutation⟶ Permutations
St001517: Permutations ⟶ ℤResult quality: 57% ●values known / values provided: 57%●distinct values known / distinct values provided: 80%
Values
[1,0]
=> []
=> []
=> [] => ? = 0
[1,0,1,0]
=> [1]
=> [1,0]
=> [1] => 0
[1,1,0,0]
=> []
=> []
=> [] => ? = 0
[1,0,1,0,1,0]
=> [2,1]
=> [1,0,1,1,0,0]
=> [1,3,2] => 1
[1,0,1,1,0,0]
=> [1,1]
=> [1,1,0,0]
=> [2,1] => 1
[1,1,0,0,1,0]
=> [2]
=> [1,0,1,0]
=> [1,2] => 1
[1,1,0,1,0,0]
=> [1]
=> [1,0]
=> [1] => 0
[1,1,1,0,0,0]
=> []
=> []
=> [] => ? = 0
[1,0,1,0,1,0,1,0]
=> [3,2,1]
=> [1,0,1,1,1,0,0,1,0,0]
=> [1,4,3,5,2] => 2
[1,0,1,0,1,1,0,0]
=> [2,2,1]
=> [1,1,1,0,0,1,0,0]
=> [3,2,4,1] => 2
[1,0,1,1,0,0,1,0]
=> [3,1,1]
=> [1,0,1,0,1,1,0,1,0,0]
=> [1,2,4,5,3] => 2
[1,0,1,1,0,1,0,0]
=> [2,1,1]
=> [1,0,1,1,0,1,0,0]
=> [1,3,4,2] => 2
[1,0,1,1,1,0,0,0]
=> [1,1,1]
=> [1,1,0,1,0,0]
=> [2,3,1] => 1
[1,1,0,0,1,0,1,0]
=> [3,2]
=> [1,0,1,1,1,0,0,0]
=> [1,4,3,2] => 1
[1,1,0,0,1,1,0,0]
=> [2,2]
=> [1,1,1,0,0,0]
=> [3,2,1] => 1
[1,1,0,1,0,0,1,0]
=> [3,1]
=> [1,0,1,0,1,1,0,0]
=> [1,2,4,3] => 2
[1,1,0,1,0,1,0,0]
=> [2,1]
=> [1,0,1,1,0,0]
=> [1,3,2] => 1
[1,1,0,1,1,0,0,0]
=> [1,1]
=> [1,1,0,0]
=> [2,1] => 1
[1,1,1,0,0,0,1,0]
=> [3]
=> [1,0,1,0,1,0]
=> [1,2,3] => 1
[1,1,1,0,0,1,0,0]
=> [2]
=> [1,0,1,0]
=> [1,2] => 1
[1,1,1,0,1,0,0,0]
=> [1]
=> [1,0]
=> [1] => 0
[1,1,1,1,0,0,0,0]
=> []
=> []
=> [] => ? = 0
[1,0,1,0,1,0,1,0,1,0]
=> [4,3,2,1]
=> [1,0,1,1,1,0,1,1,0,0,0,1,0,0]
=> [1,4,6,5,3,7,2] => ? ∊ {0,1,1,1,2,3}
[1,0,1,0,1,0,1,1,0,0]
=> [3,3,2,1]
=> [1,1,1,0,1,1,0,0,0,1,0,0]
=> [3,5,4,2,6,1] => 3
[1,0,1,0,1,1,0,0,1,0]
=> [4,2,2,1]
=> [1,0,1,0,1,1,1,1,0,0,0,1,0,0]
=> [1,2,6,5,4,7,3] => ? ∊ {0,1,1,1,2,3}
[1,0,1,0,1,1,0,1,0,0]
=> [3,2,2,1]
=> [1,0,1,1,1,1,0,0,0,1,0,0]
=> [1,5,4,3,6,2] => 2
[1,0,1,0,1,1,1,0,0,0]
=> [2,2,2,1]
=> [1,1,1,1,0,0,0,1,0,0]
=> [4,3,2,5,1] => 2
[1,0,1,1,0,0,1,0,1,0]
=> [4,3,1,1]
=> [1,0,1,1,1,0,1,0,0,1,0,1,0,0]
=> [1,4,5,3,6,7,2] => ? ∊ {0,1,1,1,2,3}
[1,0,1,1,0,0,1,1,0,0]
=> [3,3,1,1]
=> [1,1,1,0,1,0,0,1,0,1,0,0]
=> [3,4,2,5,6,1] => 3
[1,0,1,1,0,1,0,0,1,0]
=> [4,2,1,1]
=> [1,0,1,0,1,1,1,0,0,1,0,1,0,0]
=> [1,2,5,4,6,7,3] => ? ∊ {0,1,1,1,2,3}
[1,0,1,1,0,1,0,1,0,0]
=> [3,2,1,1]
=> [1,0,1,1,1,0,0,1,0,1,0,0]
=> [1,4,3,5,6,2] => 2
[1,0,1,1,0,1,1,0,0,0]
=> [2,2,1,1]
=> [1,1,1,0,0,1,0,1,0,0]
=> [3,2,4,5,1] => 2
[1,0,1,1,1,0,0,0,1,0]
=> [4,1,1,1]
=> [1,0,1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,2,3,5,6,7,4] => ? ∊ {0,1,1,1,2,3}
[1,0,1,1,1,0,0,1,0,0]
=> [3,1,1,1]
=> [1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,2,4,5,6,3] => 3
[1,0,1,1,1,0,1,0,0,0]
=> [2,1,1,1]
=> [1,0,1,1,0,1,0,1,0,0]
=> [1,3,4,5,2] => 2
[1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1]
=> [1,1,0,1,0,1,0,0]
=> [2,3,4,1] => 1
[1,1,0,0,1,0,1,0,1,0]
=> [4,3,2]
=> [1,0,1,1,1,0,1,1,0,0,0,0]
=> [1,4,6,5,3,2] => 3
[1,1,0,0,1,0,1,1,0,0]
=> [3,3,2]
=> [1,1,1,0,1,1,0,0,0,0]
=> [3,5,4,2,1] => 2
[1,1,0,0,1,1,0,0,1,0]
=> [4,2,2]
=> [1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,2,6,5,4,3] => 3
[1,1,0,0,1,1,0,1,0,0]
=> [3,2,2]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,5,4,3,2] => 2
[1,1,0,0,1,1,1,0,0,0]
=> [2,2,2]
=> [1,1,1,1,0,0,0,0]
=> [4,3,2,1] => 2
[1,1,0,1,0,0,1,0,1,0]
=> [4,3,1]
=> [1,0,1,1,1,0,1,0,0,1,0,0]
=> [1,4,5,3,6,2] => 2
[1,1,0,1,0,0,1,1,0,0]
=> [3,3,1]
=> [1,1,1,0,1,0,0,1,0,0]
=> [3,4,2,5,1] => 2
[1,1,0,1,0,1,0,0,1,0]
=> [4,2,1]
=> [1,0,1,0,1,1,1,0,0,1,0,0]
=> [1,2,5,4,6,3] => 3
[1,1,0,1,0,1,0,1,0,0]
=> [3,2,1]
=> [1,0,1,1,1,0,0,1,0,0]
=> [1,4,3,5,2] => 2
[1,1,0,1,0,1,1,0,0,0]
=> [2,2,1]
=> [1,1,1,0,0,1,0,0]
=> [3,2,4,1] => 2
[1,1,0,1,1,0,0,0,1,0]
=> [4,1,1]
=> [1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,2,3,5,6,4] => 3
[1,1,0,1,1,0,0,1,0,0]
=> [3,1,1]
=> [1,0,1,0,1,1,0,1,0,0]
=> [1,2,4,5,3] => 2
[1,1,0,1,1,0,1,0,0,0]
=> [2,1,1]
=> [1,0,1,1,0,1,0,0]
=> [1,3,4,2] => 2
[1,1,0,1,1,1,0,0,0,0]
=> [1,1,1]
=> [1,1,0,1,0,0]
=> [2,3,1] => 1
[1,1,1,0,0,0,1,0,1,0]
=> [4,3]
=> [1,0,1,1,1,0,1,0,0,0]
=> [1,4,5,3,2] => 2
[1,1,1,0,0,0,1,1,0,0]
=> [3,3]
=> [1,1,1,0,1,0,0,0]
=> [3,4,2,1] => 2
[1,1,1,0,0,1,0,0,1,0]
=> [4,2]
=> [1,0,1,0,1,1,1,0,0,0]
=> [1,2,5,4,3] => 2
[1,1,1,0,0,1,0,1,0,0]
=> [3,2]
=> [1,0,1,1,1,0,0,0]
=> [1,4,3,2] => 1
[1,1,1,0,0,1,1,0,0,0]
=> [2,2]
=> [1,1,1,0,0,0]
=> [3,2,1] => 1
[1,1,1,0,1,0,0,0,1,0]
=> [4,1]
=> [1,0,1,0,1,0,1,1,0,0]
=> [1,2,3,5,4] => 2
[1,1,1,0,1,0,0,1,0,0]
=> [3,1]
=> [1,0,1,0,1,1,0,0]
=> [1,2,4,3] => 2
[1,1,1,0,1,0,1,0,0,0]
=> [2,1]
=> [1,0,1,1,0,0]
=> [1,3,2] => 1
[1,1,1,0,1,1,0,0,0,0]
=> [1,1]
=> [1,1,0,0]
=> [2,1] => 1
[1,1,1,1,1,0,0,0,0,0]
=> []
=> []
=> [] => ? ∊ {0,1,1,1,2,3}
[1,0,1,0,1,0,1,0,1,0,1,0]
=> [5,4,3,2,1]
=> [1,0,1,1,1,0,1,1,1,0,0,1,0,0,0,1,0,0]
=> [1,4,7,6,8,5,3,9,2] => ? ∊ {0,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4}
[1,0,1,0,1,0,1,0,1,1,0,0]
=> [4,4,3,2,1]
=> [1,1,1,0,1,1,1,0,0,1,0,0,0,1,0,0]
=> [3,6,5,7,4,2,8,1] => ? ∊ {0,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4}
[1,0,1,0,1,0,1,1,0,0,1,0]
=> [5,3,3,2,1]
=> [1,0,1,0,1,1,1,1,1,0,0,1,0,0,0,1,0,0]
=> [1,2,7,6,8,5,4,9,3] => ? ∊ {0,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4}
[1,0,1,0,1,0,1,1,0,1,0,0]
=> [4,3,3,2,1]
=> [1,0,1,1,1,1,1,0,0,1,0,0,0,1,0,0]
=> [1,6,5,7,4,3,8,2] => ? ∊ {0,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4}
[1,0,1,0,1,0,1,1,1,0,0,0]
=> [3,3,3,2,1]
=> [1,1,1,1,1,0,0,1,0,0,0,1,0,0]
=> [5,4,6,3,2,7,1] => ? ∊ {0,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4}
[1,0,1,0,1,1,0,0,1,0,1,0]
=> [5,4,2,2,1]
=> [1,0,1,1,1,0,1,0,1,1,0,1,0,0,0,1,0,0]
=> [1,4,5,7,8,6,3,9,2] => ? ∊ {0,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4}
[1,0,1,0,1,1,0,0,1,1,0,0]
=> [4,4,2,2,1]
=> [1,1,1,0,1,0,1,1,0,1,0,0,0,1,0,0]
=> [3,4,6,7,5,2,8,1] => ? ∊ {0,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4}
[1,0,1,0,1,1,0,1,0,0,1,0]
=> [5,3,2,2,1]
=> [1,0,1,0,1,1,1,0,1,1,0,1,0,0,0,1,0,0]
=> [1,2,5,7,8,6,4,9,3] => ? ∊ {0,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4}
[1,0,1,0,1,1,0,1,0,1,0,0]
=> [4,3,2,2,1]
=> [1,0,1,1,1,0,1,1,0,1,0,0,0,1,0,0]
=> [1,4,6,7,5,3,8,2] => ? ∊ {0,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4}
[1,0,1,0,1,1,0,1,1,0,0,0]
=> [3,3,2,2,1]
=> [1,1,1,0,1,1,0,1,0,0,0,1,0,0]
=> [3,5,6,4,2,7,1] => ? ∊ {0,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4}
[1,0,1,0,1,1,1,0,0,0,1,0]
=> [5,2,2,2,1]
=> [1,0,1,0,1,0,1,1,1,1,0,1,0,0,0,1,0,0]
=> [1,2,3,7,8,6,5,9,4] => ? ∊ {0,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4}
[1,0,1,0,1,1,1,0,0,1,0,0]
=> [4,2,2,2,1]
=> [1,0,1,0,1,1,1,1,0,1,0,0,0,1,0,0]
=> [1,2,6,7,5,4,8,3] => ? ∊ {0,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4}
[1,0,1,0,1,1,1,0,1,0,0,0]
=> [3,2,2,2,1]
=> [1,0,1,1,1,1,0,1,0,0,0,1,0,0]
=> [1,5,6,4,3,7,2] => ? ∊ {0,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4}
[1,0,1,1,0,0,1,0,1,0,1,0]
=> [5,4,3,1,1]
=> [1,0,1,1,1,0,1,1,1,0,0,0,0,1,0,1,0,0]
=> [1,4,7,6,5,3,8,9,2] => ? ∊ {0,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4}
[1,0,1,1,0,0,1,0,1,1,0,0]
=> [4,4,3,1,1]
=> [1,1,1,0,1,1,1,0,0,0,0,1,0,1,0,0]
=> [3,6,5,4,2,7,8,1] => ? ∊ {0,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4}
[1,0,1,1,0,0,1,1,0,0,1,0]
=> [5,3,3,1,1]
=> [1,0,1,0,1,1,1,1,1,0,0,0,0,1,0,1,0,0]
=> [1,2,7,6,5,4,8,9,3] => ? ∊ {0,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4}
[1,0,1,1,0,0,1,1,0,1,0,0]
=> [4,3,3,1,1]
=> [1,0,1,1,1,1,1,0,0,0,0,1,0,1,0,0]
=> [1,6,5,4,3,7,8,2] => ? ∊ {0,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4}
[1,0,1,1,0,0,1,1,1,0,0,0]
=> [3,3,3,1,1]
=> [1,1,1,1,1,0,0,0,0,1,0,1,0,0]
=> [5,4,3,2,6,7,1] => ? ∊ {0,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4}
[1,0,1,1,0,1,0,0,1,0,1,0]
=> [5,4,2,1,1]
=> [1,0,1,1,1,0,1,0,1,1,0,0,0,1,0,1,0,0]
=> [1,4,5,7,6,3,8,9,2] => ? ∊ {0,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4}
[1,0,1,1,0,1,0,0,1,1,0,0]
=> [4,4,2,1,1]
=> [1,1,1,0,1,0,1,1,0,0,0,1,0,1,0,0]
=> [3,4,6,5,2,7,8,1] => ? ∊ {0,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4}
[1,0,1,1,0,1,0,1,0,0,1,0]
=> [5,3,2,1,1]
=> [1,0,1,0,1,1,1,0,1,1,0,0,0,1,0,1,0,0]
=> [1,2,5,7,6,4,8,9,3] => ? ∊ {0,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4}
[1,0,1,1,0,1,0,1,0,1,0,0]
=> [4,3,2,1,1]
=> [1,0,1,1,1,0,1,1,0,0,0,1,0,1,0,0]
=> [1,4,6,5,3,7,8,2] => ? ∊ {0,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4}
[1,0,1,1,0,1,0,1,1,0,0,0]
=> [3,3,2,1,1]
=> [1,1,1,0,1,1,0,0,0,1,0,1,0,0]
=> [3,5,4,2,6,7,1] => ? ∊ {0,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4}
[1,0,1,1,0,1,1,0,0,0,1,0]
=> [5,2,2,1,1]
=> [1,0,1,0,1,0,1,1,1,1,0,0,0,1,0,1,0,0]
=> [1,2,3,7,6,5,8,9,4] => ? ∊ {0,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4}
[1,0,1,1,0,1,1,0,0,1,0,0]
=> [4,2,2,1,1]
=> [1,0,1,0,1,1,1,1,0,0,0,1,0,1,0,0]
=> [1,2,6,5,4,7,8,3] => ? ∊ {0,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4}
[1,0,1,1,0,1,1,0,1,0,0,0]
=> [3,2,2,1,1]
=> [1,0,1,1,1,1,0,0,0,1,0,1,0,0]
=> [1,5,4,3,6,7,2] => ? ∊ {0,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4}
[1,0,1,1,1,0,0,0,1,0,1,0]
=> [5,4,1,1,1]
=> [1,0,1,1,1,0,1,0,1,0,0,1,0,1,0,1,0,0]
=> [1,4,5,6,3,7,8,9,2] => ? ∊ {0,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4}
[1,0,1,1,1,0,0,0,1,1,0,0]
=> [4,4,1,1,1]
=> [1,1,1,0,1,0,1,0,0,1,0,1,0,1,0,0]
=> [3,4,5,2,6,7,8,1] => ? ∊ {0,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4}
[1,0,1,1,1,0,0,1,0,0,1,0]
=> [5,3,1,1,1]
=> [1,0,1,0,1,1,1,0,1,0,0,1,0,1,0,1,0,0]
=> [1,2,5,6,4,7,8,9,3] => ? ∊ {0,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4}
[1,0,1,1,1,0,0,1,0,1,0,0]
=> [4,3,1,1,1]
=> [1,0,1,1,1,0,1,0,0,1,0,1,0,1,0,0]
=> [1,4,5,3,6,7,8,2] => ? ∊ {0,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4}
[1,0,1,1,1,0,0,1,1,0,0,0]
=> [3,3,1,1,1]
=> [1,1,1,0,1,0,0,1,0,1,0,1,0,0]
=> [3,4,2,5,6,7,1] => ? ∊ {0,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4}
[1,0,1,1,1,0,1,0,0,0,1,0]
=> [5,2,1,1,1]
=> [1,0,1,0,1,0,1,1,1,0,0,1,0,1,0,1,0,0]
=> [1,2,3,6,5,7,8,9,4] => ? ∊ {0,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4}
[1,0,1,1,1,0,1,0,0,1,0,0]
=> [4,2,1,1,1]
=> [1,0,1,0,1,1,1,0,0,1,0,1,0,1,0,0]
=> [1,2,5,4,6,7,8,3] => ? ∊ {0,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4}
[1,0,1,1,1,0,1,0,1,0,0,0]
=> [3,2,1,1,1]
=> [1,0,1,1,1,0,0,1,0,1,0,1,0,0]
=> [1,4,3,5,6,7,2] => ? ∊ {0,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4}
[1,0,1,1,1,1,0,0,0,0,1,0]
=> [5,1,1,1,1]
=> [1,0,1,0,1,0,1,0,1,1,0,1,0,1,0,1,0,0]
=> [1,2,3,4,6,7,8,9,5] => ? ∊ {0,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4}
[1,0,1,1,1,1,0,0,0,1,0,0]
=> [4,1,1,1,1]
=> [1,0,1,0,1,0,1,1,0,1,0,1,0,1,0,0]
=> [1,2,3,5,6,7,8,4] => ? ∊ {0,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4}
[1,0,1,1,1,1,0,0,1,0,0,0]
=> [3,1,1,1,1]
=> [1,0,1,0,1,1,0,1,0,1,0,1,0,0]
=> [1,2,4,5,6,7,3] => ? ∊ {0,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4}
[1,1,0,0,1,0,1,0,1,0,1,0]
=> [5,4,3,2]
=> [1,0,1,1,1,0,1,1,1,0,0,1,0,0,0,0]
=> [1,4,7,6,8,5,3,2] => ? ∊ {0,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4}
[1,1,0,0,1,0,1,0,1,1,0,0]
=> [4,4,3,2]
=> [1,1,1,0,1,1,1,0,0,1,0,0,0,0]
=> [3,6,5,7,4,2,1] => ? ∊ {0,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4}
[1,1,0,0,1,0,1,1,0,0,1,0]
=> [5,3,3,2]
=> [1,0,1,0,1,1,1,1,1,0,0,1,0,0,0,0]
=> [1,2,7,6,8,5,4,3] => ? ∊ {0,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4}
Description
The length of a longest pair of twins in a permutation.
A pair of twins in a permutation is a pair of two disjoint subsequences which are order isomorphic.
Matching statistic: St001667
Mp00027: Dyck paths —to partition⟶ Integer partitions
Mp00230: Integer partitions —parallelogram polyomino⟶ Dyck paths
Mp00025: Dyck paths —to 132-avoiding permutation⟶ Permutations
St001667: Permutations ⟶ ℤResult quality: 57% ●values known / values provided: 57%●distinct values known / distinct values provided: 80%
Mp00230: Integer partitions —parallelogram polyomino⟶ Dyck paths
Mp00025: Dyck paths —to 132-avoiding permutation⟶ Permutations
St001667: Permutations ⟶ ℤResult quality: 57% ●values known / values provided: 57%●distinct values known / distinct values provided: 80%
Values
[1,0]
=> []
=> []
=> [] => ? = 0
[1,0,1,0]
=> [1]
=> [1,0]
=> [1] => 0
[1,1,0,0]
=> []
=> []
=> [] => ? = 0
[1,0,1,0,1,0]
=> [2,1]
=> [1,0,1,1,0,0]
=> [2,3,1] => 1
[1,0,1,1,0,0]
=> [1,1]
=> [1,1,0,0]
=> [1,2] => 1
[1,1,0,0,1,0]
=> [2]
=> [1,0,1,0]
=> [2,1] => 1
[1,1,0,1,0,0]
=> [1]
=> [1,0]
=> [1] => 0
[1,1,1,0,0,0]
=> []
=> []
=> [] => ? = 0
[1,0,1,0,1,0,1,0]
=> [3,2,1]
=> [1,0,1,1,1,0,0,1,0,0]
=> [4,2,3,5,1] => 2
[1,0,1,0,1,1,0,0]
=> [2,2,1]
=> [1,1,1,0,0,1,0,0]
=> [3,1,2,4] => 2
[1,0,1,1,0,0,1,0]
=> [3,1,1]
=> [1,0,1,0,1,1,0,1,0,0]
=> [4,3,5,2,1] => 2
[1,0,1,1,0,1,0,0]
=> [2,1,1]
=> [1,0,1,1,0,1,0,0]
=> [3,2,4,1] => 2
[1,0,1,1,1,0,0,0]
=> [1,1,1]
=> [1,1,0,1,0,0]
=> [2,1,3] => 1
[1,1,0,0,1,0,1,0]
=> [3,2]
=> [1,0,1,1,1,0,0,0]
=> [2,3,4,1] => 1
[1,1,0,0,1,1,0,0]
=> [2,2]
=> [1,1,1,0,0,0]
=> [1,2,3] => 1
[1,1,0,1,0,0,1,0]
=> [3,1]
=> [1,0,1,0,1,1,0,0]
=> [3,4,2,1] => 2
[1,1,0,1,0,1,0,0]
=> [2,1]
=> [1,0,1,1,0,0]
=> [2,3,1] => 1
[1,1,0,1,1,0,0,0]
=> [1,1]
=> [1,1,0,0]
=> [1,2] => 1
[1,1,1,0,0,0,1,0]
=> [3]
=> [1,0,1,0,1,0]
=> [3,2,1] => 1
[1,1,1,0,0,1,0,0]
=> [2]
=> [1,0,1,0]
=> [2,1] => 1
[1,1,1,0,1,0,0,0]
=> [1]
=> [1,0]
=> [1] => 0
[1,1,1,1,0,0,0,0]
=> []
=> []
=> [] => ? = 0
[1,0,1,0,1,0,1,0,1,0]
=> [4,3,2,1]
=> [1,0,1,1,1,0,1,1,0,0,0,1,0,0]
=> [6,3,4,2,5,7,1] => ? ∊ {0,1,1,1,2,3}
[1,0,1,0,1,0,1,1,0,0]
=> [3,3,2,1]
=> [1,1,1,0,1,1,0,0,0,1,0,0]
=> [5,2,3,1,4,6] => 3
[1,0,1,0,1,1,0,0,1,0]
=> [4,2,2,1]
=> [1,0,1,0,1,1,1,1,0,0,0,1,0,0]
=> [6,3,4,5,7,2,1] => ? ∊ {0,1,1,1,2,3}
[1,0,1,0,1,1,0,1,0,0]
=> [3,2,2,1]
=> [1,0,1,1,1,1,0,0,0,1,0,0]
=> [5,2,3,4,6,1] => 2
[1,0,1,0,1,1,1,0,0,0]
=> [2,2,2,1]
=> [1,1,1,1,0,0,0,1,0,0]
=> [4,1,2,3,5] => 2
[1,0,1,1,0,0,1,0,1,0]
=> [4,3,1,1]
=> [1,0,1,1,1,0,1,0,0,1,0,1,0,0]
=> [6,5,3,2,4,7,1] => ? ∊ {0,1,1,1,2,3}
[1,0,1,1,0,0,1,1,0,0]
=> [3,3,1,1]
=> [1,1,1,0,1,0,0,1,0,1,0,0]
=> [5,4,2,1,3,6] => 3
[1,0,1,1,0,1,0,0,1,0]
=> [4,2,1,1]
=> [1,0,1,0,1,1,1,0,0,1,0,1,0,0]
=> [6,5,3,4,7,2,1] => ? ∊ {0,1,1,1,2,3}
[1,0,1,1,0,1,0,1,0,0]
=> [3,2,1,1]
=> [1,0,1,1,1,0,0,1,0,1,0,0]
=> [5,4,2,3,6,1] => 2
[1,0,1,1,0,1,1,0,0,0]
=> [2,2,1,1]
=> [1,1,1,0,0,1,0,1,0,0]
=> [4,3,1,2,5] => 2
[1,0,1,1,1,0,0,0,1,0]
=> [4,1,1,1]
=> [1,0,1,0,1,0,1,1,0,1,0,1,0,0]
=> [6,5,4,7,3,2,1] => ? ∊ {0,1,1,1,2,3}
[1,0,1,1,1,0,0,1,0,0]
=> [3,1,1,1]
=> [1,0,1,0,1,1,0,1,0,1,0,0]
=> [5,4,3,6,2,1] => 3
[1,0,1,1,1,0,1,0,0,0]
=> [2,1,1,1]
=> [1,0,1,1,0,1,0,1,0,0]
=> [4,3,2,5,1] => 2
[1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1]
=> [1,1,0,1,0,1,0,0]
=> [3,2,1,4] => 1
[1,1,0,0,1,0,1,0,1,0]
=> [4,3,2]
=> [1,0,1,1,1,0,1,1,0,0,0,0]
=> [3,4,2,5,6,1] => 3
[1,1,0,0,1,0,1,1,0,0]
=> [3,3,2]
=> [1,1,1,0,1,1,0,0,0,0]
=> [2,3,1,4,5] => 2
[1,1,0,0,1,1,0,0,1,0]
=> [4,2,2]
=> [1,0,1,0,1,1,1,1,0,0,0,0]
=> [3,4,5,6,2,1] => 3
[1,1,0,0,1,1,0,1,0,0]
=> [3,2,2]
=> [1,0,1,1,1,1,0,0,0,0]
=> [2,3,4,5,1] => 2
[1,1,0,0,1,1,1,0,0,0]
=> [2,2,2]
=> [1,1,1,1,0,0,0,0]
=> [1,2,3,4] => 2
[1,1,0,1,0,0,1,0,1,0]
=> [4,3,1]
=> [1,0,1,1,1,0,1,0,0,1,0,0]
=> [5,3,2,4,6,1] => 2
[1,1,0,1,0,0,1,1,0,0]
=> [3,3,1]
=> [1,1,1,0,1,0,0,1,0,0]
=> [4,2,1,3,5] => 2
[1,1,0,1,0,1,0,0,1,0]
=> [4,2,1]
=> [1,0,1,0,1,1,1,0,0,1,0,0]
=> [5,3,4,6,2,1] => 3
[1,1,0,1,0,1,0,1,0,0]
=> [3,2,1]
=> [1,0,1,1,1,0,0,1,0,0]
=> [4,2,3,5,1] => 2
[1,1,0,1,0,1,1,0,0,0]
=> [2,2,1]
=> [1,1,1,0,0,1,0,0]
=> [3,1,2,4] => 2
[1,1,0,1,1,0,0,0,1,0]
=> [4,1,1]
=> [1,0,1,0,1,0,1,1,0,1,0,0]
=> [5,4,6,3,2,1] => 3
[1,1,0,1,1,0,0,1,0,0]
=> [3,1,1]
=> [1,0,1,0,1,1,0,1,0,0]
=> [4,3,5,2,1] => 2
[1,1,0,1,1,0,1,0,0,0]
=> [2,1,1]
=> [1,0,1,1,0,1,0,0]
=> [3,2,4,1] => 2
[1,1,0,1,1,1,0,0,0,0]
=> [1,1,1]
=> [1,1,0,1,0,0]
=> [2,1,3] => 1
[1,1,1,0,0,0,1,0,1,0]
=> [4,3]
=> [1,0,1,1,1,0,1,0,0,0]
=> [3,2,4,5,1] => 2
[1,1,1,0,0,0,1,1,0,0]
=> [3,3]
=> [1,1,1,0,1,0,0,0]
=> [2,1,3,4] => 2
[1,1,1,0,0,1,0,0,1,0]
=> [4,2]
=> [1,0,1,0,1,1,1,0,0,0]
=> [3,4,5,2,1] => 2
[1,1,1,0,0,1,0,1,0,0]
=> [3,2]
=> [1,0,1,1,1,0,0,0]
=> [2,3,4,1] => 1
[1,1,1,0,0,1,1,0,0,0]
=> [2,2]
=> [1,1,1,0,0,0]
=> [1,2,3] => 1
[1,1,1,0,1,0,0,0,1,0]
=> [4,1]
=> [1,0,1,0,1,0,1,1,0,0]
=> [4,5,3,2,1] => 2
[1,1,1,0,1,0,0,1,0,0]
=> [3,1]
=> [1,0,1,0,1,1,0,0]
=> [3,4,2,1] => 2
[1,1,1,0,1,0,1,0,0,0]
=> [2,1]
=> [1,0,1,1,0,0]
=> [2,3,1] => 1
[1,1,1,0,1,1,0,0,0,0]
=> [1,1]
=> [1,1,0,0]
=> [1,2] => 1
[1,1,1,1,1,0,0,0,0,0]
=> []
=> []
=> [] => ? ∊ {0,1,1,1,2,3}
[1,0,1,0,1,0,1,0,1,0,1,0]
=> [5,4,3,2,1]
=> [1,0,1,1,1,0,1,1,1,0,0,1,0,0,0,1,0,0]
=> [8,5,3,4,6,2,7,9,1] => ? ∊ {0,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4}
[1,0,1,0,1,0,1,0,1,1,0,0]
=> [4,4,3,2,1]
=> [1,1,1,0,1,1,1,0,0,1,0,0,0,1,0,0]
=> [7,4,2,3,5,1,6,8] => ? ∊ {0,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4}
[1,0,1,0,1,0,1,1,0,0,1,0]
=> [5,3,3,2,1]
=> [1,0,1,0,1,1,1,1,1,0,0,1,0,0,0,1,0,0]
=> [8,5,3,4,6,7,9,2,1] => ? ∊ {0,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4}
[1,0,1,0,1,0,1,1,0,1,0,0]
=> [4,3,3,2,1]
=> [1,0,1,1,1,1,1,0,0,1,0,0,0,1,0,0]
=> [7,4,2,3,5,6,8,1] => ? ∊ {0,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4}
[1,0,1,0,1,0,1,1,1,0,0,0]
=> [3,3,3,2,1]
=> [1,1,1,1,1,0,0,1,0,0,0,1,0,0]
=> [6,3,1,2,4,5,7] => ? ∊ {0,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4}
[1,0,1,0,1,1,0,0,1,0,1,0]
=> [5,4,2,2,1]
=> [1,0,1,1,1,0,1,0,1,1,0,1,0,0,0,1,0,0]
=> [8,5,4,6,3,2,7,9,1] => ? ∊ {0,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4}
[1,0,1,0,1,1,0,0,1,1,0,0]
=> [4,4,2,2,1]
=> [1,1,1,0,1,0,1,1,0,1,0,0,0,1,0,0]
=> [7,4,3,5,2,1,6,8] => ? ∊ {0,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4}
[1,0,1,0,1,1,0,1,0,0,1,0]
=> [5,3,2,2,1]
=> [1,0,1,0,1,1,1,0,1,1,0,1,0,0,0,1,0,0]
=> [8,5,4,6,3,7,9,2,1] => ? ∊ {0,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4}
[1,0,1,0,1,1,0,1,0,1,0,0]
=> [4,3,2,2,1]
=> [1,0,1,1,1,0,1,1,0,1,0,0,0,1,0,0]
=> [7,4,3,5,2,6,8,1] => ? ∊ {0,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4}
[1,0,1,0,1,1,0,1,1,0,0,0]
=> [3,3,2,2,1]
=> [1,1,1,0,1,1,0,1,0,0,0,1,0,0]
=> [6,3,2,4,1,5,7] => ? ∊ {0,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4}
[1,0,1,0,1,1,1,0,0,0,1,0]
=> [5,2,2,2,1]
=> [1,0,1,0,1,0,1,1,1,1,0,1,0,0,0,1,0,0]
=> [8,5,4,6,7,9,3,2,1] => ? ∊ {0,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4}
[1,0,1,0,1,1,1,0,0,1,0,0]
=> [4,2,2,2,1]
=> [1,0,1,0,1,1,1,1,0,1,0,0,0,1,0,0]
=> [7,4,3,5,6,8,2,1] => ? ∊ {0,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4}
[1,0,1,0,1,1,1,0,1,0,0,0]
=> [3,2,2,2,1]
=> [1,0,1,1,1,1,0,1,0,0,0,1,0,0]
=> [6,3,2,4,5,7,1] => ? ∊ {0,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4}
[1,0,1,1,0,0,1,0,1,0,1,0]
=> [5,4,3,1,1]
=> [1,0,1,1,1,0,1,1,1,0,0,0,0,1,0,1,0,0]
=> [8,7,3,4,5,2,6,9,1] => ? ∊ {0,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4}
[1,0,1,1,0,0,1,0,1,1,0,0]
=> [4,4,3,1,1]
=> [1,1,1,0,1,1,1,0,0,0,0,1,0,1,0,0]
=> [7,6,2,3,4,1,5,8] => ? ∊ {0,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4}
[1,0,1,1,0,0,1,1,0,0,1,0]
=> [5,3,3,1,1]
=> [1,0,1,0,1,1,1,1,1,0,0,0,0,1,0,1,0,0]
=> [8,7,3,4,5,6,9,2,1] => ? ∊ {0,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4}
[1,0,1,1,0,0,1,1,0,1,0,0]
=> [4,3,3,1,1]
=> [1,0,1,1,1,1,1,0,0,0,0,1,0,1,0,0]
=> [7,6,2,3,4,5,8,1] => ? ∊ {0,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4}
[1,0,1,1,0,0,1,1,1,0,0,0]
=> [3,3,3,1,1]
=> [1,1,1,1,1,0,0,0,0,1,0,1,0,0]
=> [6,5,1,2,3,4,7] => ? ∊ {0,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4}
[1,0,1,1,0,1,0,0,1,0,1,0]
=> [5,4,2,1,1]
=> [1,0,1,1,1,0,1,0,1,1,0,0,0,1,0,1,0,0]
=> [8,7,4,5,3,2,6,9,1] => ? ∊ {0,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4}
[1,0,1,1,0,1,0,0,1,1,0,0]
=> [4,4,2,1,1]
=> [1,1,1,0,1,0,1,1,0,0,0,1,0,1,0,0]
=> [7,6,3,4,2,1,5,8] => ? ∊ {0,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4}
[1,0,1,1,0,1,0,1,0,0,1,0]
=> [5,3,2,1,1]
=> [1,0,1,0,1,1,1,0,1,1,0,0,0,1,0,1,0,0]
=> [8,7,4,5,3,6,9,2,1] => ? ∊ {0,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4}
[1,0,1,1,0,1,0,1,0,1,0,0]
=> [4,3,2,1,1]
=> [1,0,1,1,1,0,1,1,0,0,0,1,0,1,0,0]
=> [7,6,3,4,2,5,8,1] => ? ∊ {0,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4}
[1,0,1,1,0,1,0,1,1,0,0,0]
=> [3,3,2,1,1]
=> [1,1,1,0,1,1,0,0,0,1,0,1,0,0]
=> [6,5,2,3,1,4,7] => ? ∊ {0,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4}
[1,0,1,1,0,1,1,0,0,0,1,0]
=> [5,2,2,1,1]
=> [1,0,1,0,1,0,1,1,1,1,0,0,0,1,0,1,0,0]
=> [8,7,4,5,6,9,3,2,1] => ? ∊ {0,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4}
[1,0,1,1,0,1,1,0,0,1,0,0]
=> [4,2,2,1,1]
=> [1,0,1,0,1,1,1,1,0,0,0,1,0,1,0,0]
=> [7,6,3,4,5,8,2,1] => ? ∊ {0,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4}
[1,0,1,1,0,1,1,0,1,0,0,0]
=> [3,2,2,1,1]
=> [1,0,1,1,1,1,0,0,0,1,0,1,0,0]
=> [6,5,2,3,4,7,1] => ? ∊ {0,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4}
[1,0,1,1,1,0,0,0,1,0,1,0]
=> [5,4,1,1,1]
=> [1,0,1,1,1,0,1,0,1,0,0,1,0,1,0,1,0,0]
=> [8,7,6,4,3,2,5,9,1] => ? ∊ {0,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4}
[1,0,1,1,1,0,0,0,1,1,0,0]
=> [4,4,1,1,1]
=> [1,1,1,0,1,0,1,0,0,1,0,1,0,1,0,0]
=> [7,6,5,3,2,1,4,8] => ? ∊ {0,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4}
[1,0,1,1,1,0,0,1,0,0,1,0]
=> [5,3,1,1,1]
=> [1,0,1,0,1,1,1,0,1,0,0,1,0,1,0,1,0,0]
=> [8,7,6,4,3,5,9,2,1] => ? ∊ {0,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4}
[1,0,1,1,1,0,0,1,0,1,0,0]
=> [4,3,1,1,1]
=> [1,0,1,1,1,0,1,0,0,1,0,1,0,1,0,0]
=> [7,6,5,3,2,4,8,1] => ? ∊ {0,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4}
[1,0,1,1,1,0,0,1,1,0,0,0]
=> [3,3,1,1,1]
=> [1,1,1,0,1,0,0,1,0,1,0,1,0,0]
=> [6,5,4,2,1,3,7] => ? ∊ {0,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4}
[1,0,1,1,1,0,1,0,0,0,1,0]
=> [5,2,1,1,1]
=> [1,0,1,0,1,0,1,1,1,0,0,1,0,1,0,1,0,0]
=> [8,7,6,4,5,9,3,2,1] => ? ∊ {0,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4}
[1,0,1,1,1,0,1,0,0,1,0,0]
=> [4,2,1,1,1]
=> [1,0,1,0,1,1,1,0,0,1,0,1,0,1,0,0]
=> [7,6,5,3,4,8,2,1] => ? ∊ {0,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4}
[1,0,1,1,1,0,1,0,1,0,0,0]
=> [3,2,1,1,1]
=> [1,0,1,1,1,0,0,1,0,1,0,1,0,0]
=> [6,5,4,2,3,7,1] => ? ∊ {0,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4}
[1,0,1,1,1,1,0,0,0,0,1,0]
=> [5,1,1,1,1]
=> [1,0,1,0,1,0,1,0,1,1,0,1,0,1,0,1,0,0]
=> [8,7,6,5,9,4,3,2,1] => ? ∊ {0,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4}
[1,0,1,1,1,1,0,0,0,1,0,0]
=> [4,1,1,1,1]
=> [1,0,1,0,1,0,1,1,0,1,0,1,0,1,0,0]
=> [7,6,5,4,8,3,2,1] => ? ∊ {0,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4}
[1,0,1,1,1,1,0,0,1,0,0,0]
=> [3,1,1,1,1]
=> [1,0,1,0,1,1,0,1,0,1,0,1,0,0]
=> [6,5,4,3,7,2,1] => ? ∊ {0,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4}
[1,1,0,0,1,0,1,0,1,0,1,0]
=> [5,4,3,2]
=> [1,0,1,1,1,0,1,1,1,0,0,1,0,0,0,0]
=> [5,3,4,6,2,7,8,1] => ? ∊ {0,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4}
[1,1,0,0,1,0,1,0,1,1,0,0]
=> [4,4,3,2]
=> [1,1,1,0,1,1,1,0,0,1,0,0,0,0]
=> [4,2,3,5,1,6,7] => ? ∊ {0,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4}
[1,1,0,0,1,0,1,1,0,0,1,0]
=> [5,3,3,2]
=> [1,0,1,0,1,1,1,1,1,0,0,1,0,0,0,0]
=> [5,3,4,6,7,8,2,1] => ? ∊ {0,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4}
Description
The maximal size of a pair of weak twins for a permutation.
A pair of weak twins in a permutation is a pair of two disjoint subsequences of the same length with the same descent pattern. More formally, a pair of weak twins of size $k$ for a permutation $\pi$ of length $n$ are two disjoint lists $1 \leq i_1 < \dots < i_k \leq n$ and $1 \leq j_1 < \dots < j_k \leq n$ such that $\pi(i_a) < \pi(i_{a+1})$ if and only if $\pi(j_a) < \pi(j_{a+1})$ for all $1 \leq a < k$.
Matching statistic: St001873
Mp00027: Dyck paths —to partition⟶ Integer partitions
Mp00230: Integer partitions —parallelogram polyomino⟶ Dyck paths
Mp00296: Dyck paths —Knuth-Krattenthaler⟶ Dyck paths
St001873: Dyck paths ⟶ ℤResult quality: 57% ●values known / values provided: 57%●distinct values known / distinct values provided: 80%
Mp00230: Integer partitions —parallelogram polyomino⟶ Dyck paths
Mp00296: Dyck paths —Knuth-Krattenthaler⟶ Dyck paths
St001873: Dyck paths ⟶ ℤResult quality: 57% ●values known / values provided: 57%●distinct values known / distinct values provided: 80%
Values
[1,0]
=> []
=> []
=> []
=> ? = 0
[1,0,1,0]
=> [1]
=> [1,0]
=> [1,0]
=> 0
[1,1,0,0]
=> []
=> []
=> []
=> ? = 0
[1,0,1,0,1,0]
=> [2,1]
=> [1,0,1,1,0,0]
=> [1,1,0,1,0,0]
=> 1
[1,0,1,1,0,0]
=> [1,1]
=> [1,1,0,0]
=> [1,0,1,0]
=> 0
[1,1,0,0,1,0]
=> [2]
=> [1,0,1,0]
=> [1,1,0,0]
=> 1
[1,1,0,1,0,0]
=> [1]
=> [1,0]
=> [1,0]
=> 0
[1,1,1,0,0,0]
=> []
=> []
=> []
=> ? = 1
[1,0,1,0,1,0,1,0]
=> [3,2,1]
=> [1,0,1,1,1,0,0,1,0,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> 2
[1,0,1,0,1,1,0,0]
=> [2,2,1]
=> [1,1,1,0,0,1,0,0]
=> [1,1,0,0,1,0,1,0]
=> 1
[1,0,1,1,0,0,1,0]
=> [3,1,1]
=> [1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,0,1,1,0,0,0,0]
=> 2
[1,0,1,1,0,1,0,0]
=> [2,1,1]
=> [1,0,1,1,0,1,0,0]
=> [1,1,0,1,1,0,0,0]
=> 2
[1,0,1,1,1,0,0,0]
=> [1,1,1]
=> [1,1,0,1,0,0]
=> [1,0,1,1,0,0]
=> 1
[1,1,0,0,1,0,1,0]
=> [3,2]
=> [1,0,1,1,1,0,0,0]
=> [1,1,1,0,0,1,0,0]
=> 2
[1,1,0,0,1,1,0,0]
=> [2,2]
=> [1,1,1,0,0,0]
=> [1,1,0,0,1,0]
=> 1
[1,1,0,1,0,0,1,0]
=> [3,1]
=> [1,0,1,0,1,1,0,0]
=> [1,1,1,0,1,0,0,0]
=> 1
[1,1,0,1,0,1,0,0]
=> [2,1]
=> [1,0,1,1,0,0]
=> [1,1,0,1,0,0]
=> 1
[1,1,0,1,1,0,0,0]
=> [1,1]
=> [1,1,0,0]
=> [1,0,1,0]
=> 0
[1,1,1,0,0,0,1,0]
=> [3]
=> [1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> 1
[1,1,1,0,0,1,0,0]
=> [2]
=> [1,0,1,0]
=> [1,1,0,0]
=> 1
[1,1,1,0,1,0,0,0]
=> [1]
=> [1,0]
=> [1,0]
=> 0
[1,1,1,1,0,0,0,0]
=> []
=> []
=> []
=> ? = 2
[1,0,1,0,1,0,1,0,1,0]
=> [4,3,2,1]
=> [1,0,1,1,1,0,1,1,0,0,0,1,0,0]
=> [1,1,1,0,1,0,0,1,0,1,1,0,0,0]
=> ? ∊ {1,1,3,3,3,3}
[1,0,1,0,1,0,1,1,0,0]
=> [3,3,2,1]
=> [1,1,1,0,1,1,0,0,0,1,0,0]
=> [1,1,0,1,0,0,1,0,1,1,0,0]
=> 2
[1,0,1,0,1,1,0,0,1,0]
=> [4,2,2,1]
=> [1,0,1,0,1,1,1,1,0,0,0,1,0,0]
=> [1,1,1,1,1,0,0,1,0,0,1,0,0,0]
=> ? ∊ {1,1,3,3,3,3}
[1,0,1,0,1,1,0,1,0,0]
=> [3,2,2,1]
=> [1,0,1,1,1,1,0,0,0,1,0,0]
=> [1,1,1,1,0,0,1,0,0,1,0,0]
=> 3
[1,0,1,0,1,1,1,0,0,0]
=> [2,2,2,1]
=> [1,1,1,1,0,0,0,1,0,0]
=> [1,1,1,0,0,1,0,0,1,0]
=> 2
[1,0,1,1,0,0,1,0,1,0]
=> [4,3,1,1]
=> [1,0,1,1,1,0,1,0,0,1,0,1,0,0]
=> [1,1,1,0,0,1,1,1,0,0,1,0,0,0]
=> ? ∊ {1,1,3,3,3,3}
[1,0,1,1,0,0,1,1,0,0]
=> [3,3,1,1]
=> [1,1,1,0,1,0,0,1,0,1,0,0]
=> [1,1,0,0,1,1,1,0,0,1,0,0]
=> 3
[1,0,1,1,0,1,0,0,1,0]
=> [4,2,1,1]
=> [1,0,1,0,1,1,1,0,0,1,0,1,0,0]
=> [1,1,1,1,0,0,1,1,0,0,1,0,0,0]
=> ? ∊ {1,1,3,3,3,3}
[1,0,1,1,0,1,0,1,0,0]
=> [3,2,1,1]
=> [1,0,1,1,1,0,0,1,0,1,0,0]
=> [1,1,1,0,0,1,1,0,0,1,0,0]
=> 3
[1,0,1,1,0,1,1,0,0,0]
=> [2,2,1,1]
=> [1,1,1,0,0,1,0,1,0,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> 2
[1,0,1,1,1,0,0,0,1,0]
=> [4,1,1,1]
=> [1,0,1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,1,1,1,0,1,1,1,0,0,0,0,0,0]
=> ? ∊ {1,1,3,3,3,3}
[1,0,1,1,1,0,0,1,0,0]
=> [3,1,1,1]
=> [1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,1,1,0,1,1,1,0,0,0,0,0]
=> 2
[1,0,1,1,1,0,1,0,0,0]
=> [2,1,1,1]
=> [1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> 2
[1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1]
=> [1,1,0,1,0,1,0,0]
=> [1,0,1,1,1,0,0,0]
=> 1
[1,1,0,0,1,0,1,0,1,0]
=> [4,3,2]
=> [1,0,1,1,1,0,1,1,0,0,0,0]
=> [1,1,1,0,1,0,0,1,1,0,0,0]
=> 2
[1,1,0,0,1,0,1,1,0,0]
=> [3,3,2]
=> [1,1,1,0,1,1,0,0,0,0]
=> [1,1,0,1,0,0,1,1,0,0]
=> 2
[1,1,0,0,1,1,0,0,1,0]
=> [4,2,2]
=> [1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1,1,0,0,0,1,0,0,0]
=> 2
[1,1,0,0,1,1,0,1,0,0]
=> [3,2,2]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> 2
[1,1,0,0,1,1,1,0,0,0]
=> [2,2,2]
=> [1,1,1,1,0,0,0,0]
=> [1,1,1,0,0,0,1,0]
=> 1
[1,1,0,1,0,0,1,0,1,0]
=> [4,3,1]
=> [1,0,1,1,1,0,1,0,0,1,0,0]
=> [1,1,1,0,0,1,1,0,1,0,0,0]
=> 2
[1,1,0,1,0,0,1,1,0,0]
=> [3,3,1]
=> [1,1,1,0,1,0,0,1,0,0]
=> [1,1,0,0,1,1,0,1,0,0]
=> 2
[1,1,0,1,0,1,0,0,1,0]
=> [4,2,1]
=> [1,0,1,0,1,1,1,0,0,1,0,0]
=> [1,1,1,1,0,0,1,0,1,0,0,0]
=> 2
[1,1,0,1,0,1,0,1,0,0]
=> [3,2,1]
=> [1,0,1,1,1,0,0,1,0,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> 2
[1,1,0,1,0,1,1,0,0,0]
=> [2,2,1]
=> [1,1,1,0,0,1,0,0]
=> [1,1,0,0,1,0,1,0]
=> 1
[1,1,0,1,1,0,0,0,1,0]
=> [4,1,1]
=> [1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,1,0,1,1,0,0,0,0,0]
=> 3
[1,1,0,1,1,0,0,1,0,0]
=> [3,1,1]
=> [1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,0,1,1,0,0,0,0]
=> 2
[1,1,0,1,1,0,1,0,0,0]
=> [2,1,1]
=> [1,0,1,1,0,1,0,0]
=> [1,1,0,1,1,0,0,0]
=> 2
[1,1,0,1,1,1,0,0,0,0]
=> [1,1,1]
=> [1,1,0,1,0,0]
=> [1,0,1,1,0,0]
=> 1
[1,1,1,0,0,0,1,0,1,0]
=> [4,3]
=> [1,0,1,1,1,0,1,0,0,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> 2
[1,1,1,0,0,0,1,1,0,0]
=> [3,3]
=> [1,1,1,0,1,0,0,0]
=> [1,1,0,0,1,1,0,0]
=> 2
[1,1,1,0,0,1,0,0,1,0]
=> [4,2]
=> [1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> 2
[1,1,1,0,0,1,0,1,0,0]
=> [3,2]
=> [1,0,1,1,1,0,0,0]
=> [1,1,1,0,0,1,0,0]
=> 2
[1,1,1,0,0,1,1,0,0,0]
=> [2,2]
=> [1,1,1,0,0,0]
=> [1,1,0,0,1,0]
=> 1
[1,1,1,0,1,0,0,0,1,0]
=> [4,1]
=> [1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> 2
[1,1,1,0,1,0,0,1,0,0]
=> [3,1]
=> [1,0,1,0,1,1,0,0]
=> [1,1,1,0,1,0,0,0]
=> 1
[1,1,1,0,1,0,1,0,0,0]
=> [2,1]
=> [1,0,1,1,0,0]
=> [1,1,0,1,0,0]
=> 1
[1,1,1,0,1,1,0,0,0,0]
=> [1,1]
=> [1,1,0,0]
=> [1,0,1,0]
=> 0
[1,1,1,1,1,0,0,0,0,0]
=> []
=> []
=> []
=> ? ∊ {1,1,3,3,3,3}
[1,0,1,0,1,0,1,0,1,0,1,0]
=> [5,4,3,2,1]
=> [1,0,1,1,1,0,1,1,1,0,0,1,0,0,0,1,0,0]
=> [1,1,1,0,1,1,0,0,0,1,0,1,1,0,1,0,0,0]
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4}
[1,0,1,0,1,0,1,0,1,1,0,0]
=> [4,4,3,2,1]
=> [1,1,1,0,1,1,1,0,0,1,0,0,0,1,0,0]
=> [1,1,0,1,1,0,0,0,1,0,1,1,0,1,0,0]
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4}
[1,0,1,0,1,0,1,1,0,0,1,0]
=> [5,3,3,2,1]
=> [1,0,1,0,1,1,1,1,1,0,0,1,0,0,0,1,0,0]
=> [1,1,1,1,1,1,0,0,0,1,0,0,1,0,1,0,0,0]
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4}
[1,0,1,0,1,0,1,1,0,1,0,0]
=> [4,3,3,2,1]
=> [1,0,1,1,1,1,1,0,0,1,0,0,0,1,0,0]
=> [1,1,1,1,1,0,0,0,1,0,0,1,0,1,0,0]
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4}
[1,0,1,0,1,0,1,1,1,0,0,0]
=> [3,3,3,2,1]
=> [1,1,1,1,1,0,0,1,0,0,0,1,0,0]
=> [1,1,1,1,0,0,0,1,0,0,1,0,1,0]
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4}
[1,0,1,0,1,1,0,0,1,0,1,0]
=> [5,4,2,2,1]
=> [1,0,1,1,1,0,1,0,1,1,0,1,0,0,0,1,0,0]
=> [1,1,1,0,0,1,0,1,1,1,0,1,1,0,0,0,0,0]
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4}
[1,0,1,0,1,1,0,0,1,1,0,0]
=> [4,4,2,2,1]
=> [1,1,1,0,1,0,1,1,0,1,0,0,0,1,0,0]
=> [1,1,0,0,1,0,1,1,1,0,1,1,0,0,0,0]
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4}
[1,0,1,0,1,1,0,1,0,0,1,0]
=> [5,3,2,2,1]
=> [1,0,1,0,1,1,1,0,1,1,0,1,0,0,0,1,0,0]
=> [1,1,1,1,0,1,0,0,1,1,0,1,1,0,0,0,0,0]
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4}
[1,0,1,0,1,1,0,1,0,1,0,0]
=> [4,3,2,2,1]
=> [1,0,1,1,1,0,1,1,0,1,0,0,0,1,0,0]
=> [1,1,1,0,1,0,0,1,1,0,1,1,0,0,0,0]
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4}
[1,0,1,0,1,1,0,1,1,0,0,0]
=> [3,3,2,2,1]
=> [1,1,1,0,1,1,0,1,0,0,0,1,0,0]
=> [1,1,0,1,0,0,1,1,0,1,1,0,0,0]
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4}
[1,0,1,0,1,1,1,0,0,0,1,0]
=> [5,2,2,2,1]
=> [1,0,1,0,1,0,1,1,1,1,0,1,0,0,0,1,0,0]
=> [1,1,1,1,1,1,0,0,0,1,0,1,1,0,0,0,0,0]
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4}
[1,0,1,0,1,1,1,0,0,1,0,0]
=> [4,2,2,2,1]
=> [1,0,1,0,1,1,1,1,0,1,0,0,0,1,0,0]
=> [1,1,1,1,1,0,0,0,1,0,1,1,0,0,0,0]
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4}
[1,0,1,0,1,1,1,0,1,0,0,0]
=> [3,2,2,2,1]
=> [1,0,1,1,1,1,0,1,0,0,0,1,0,0]
=> [1,1,1,1,0,0,0,1,0,1,1,0,0,0]
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4}
[1,0,1,1,0,0,1,0,1,0,1,0]
=> [5,4,3,1,1]
=> [1,0,1,1,1,0,1,1,1,0,0,0,0,1,0,1,0,0]
=> [1,1,1,0,1,1,0,0,1,1,0,0,0,1,1,0,0,0]
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4}
[1,0,1,1,0,0,1,0,1,1,0,0]
=> [4,4,3,1,1]
=> [1,1,1,0,1,1,1,0,0,0,0,1,0,1,0,0]
=> [1,1,0,1,1,0,0,1,1,0,0,0,1,1,0,0]
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4}
[1,0,1,1,0,0,1,1,0,0,1,0]
=> [5,3,3,1,1]
=> [1,0,1,0,1,1,1,1,1,0,0,0,0,1,0,1,0,0]
=> [1,1,1,1,1,1,0,0,1,1,0,0,0,0,1,0,0,0]
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4}
[1,0,1,1,0,0,1,1,0,1,0,0]
=> [4,3,3,1,1]
=> [1,0,1,1,1,1,1,0,0,0,0,1,0,1,0,0]
=> [1,1,1,1,1,0,0,1,1,0,0,0,0,1,0,0]
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4}
[1,0,1,1,0,0,1,1,1,0,0,0]
=> [3,3,3,1,1]
=> [1,1,1,1,1,0,0,0,0,1,0,1,0,0]
=> [1,1,1,1,0,0,1,1,0,0,0,0,1,0]
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4}
[1,0,1,1,0,1,0,0,1,0,1,0]
=> [5,4,2,1,1]
=> [1,0,1,1,1,0,1,0,1,1,0,0,0,1,0,1,0,0]
=> [1,1,1,0,0,1,0,1,1,1,0,0,1,1,0,0,0,0]
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4}
[1,0,1,1,0,1,0,0,1,1,0,0]
=> [4,4,2,1,1]
=> [1,1,1,0,1,0,1,1,0,0,0,1,0,1,0,0]
=> [1,1,0,0,1,0,1,1,1,0,0,1,1,0,0,0]
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4}
[1,0,1,1,0,1,0,1,0,0,1,0]
=> [5,3,2,1,1]
=> [1,0,1,0,1,1,1,0,1,1,0,0,0,1,0,1,0,0]
=> [1,1,1,1,0,1,0,0,1,1,0,0,1,1,0,0,0,0]
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4}
[1,0,1,1,0,1,0,1,0,1,0,0]
=> [4,3,2,1,1]
=> [1,0,1,1,1,0,1,1,0,0,0,1,0,1,0,0]
=> [1,1,1,0,1,0,0,1,1,0,0,1,1,0,0,0]
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4}
[1,0,1,1,0,1,0,1,1,0,0,0]
=> [3,3,2,1,1]
=> [1,1,1,0,1,1,0,0,0,1,0,1,0,0]
=> [1,1,0,1,0,0,1,1,0,0,1,1,0,0]
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4}
[1,0,1,1,0,1,1,0,0,0,1,0]
=> [5,2,2,1,1]
=> [1,0,1,0,1,0,1,1,1,1,0,0,0,1,0,1,0,0]
=> [1,1,1,1,1,1,0,0,1,1,0,0,0,1,0,0,0,0]
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4}
[1,0,1,1,0,1,1,0,0,1,0,0]
=> [4,2,2,1,1]
=> [1,0,1,0,1,1,1,1,0,0,0,1,0,1,0,0]
=> [1,1,1,1,1,0,0,1,1,0,0,0,1,0,0,0]
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4}
[1,0,1,1,0,1,1,0,1,0,0,0]
=> [3,2,2,1,1]
=> [1,0,1,1,1,1,0,0,0,1,0,1,0,0]
=> [1,1,1,1,0,0,1,1,0,0,0,1,0,0]
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4}
[1,0,1,1,1,0,0,0,1,0,1,0]
=> [5,4,1,1,1]
=> [1,0,1,1,1,0,1,0,1,0,0,1,0,1,0,1,0,0]
=> [1,1,1,0,0,1,1,1,1,1,0,0,0,1,0,0,0,0]
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4}
[1,0,1,1,1,0,0,0,1,1,0,0]
=> [4,4,1,1,1]
=> [1,1,1,0,1,0,1,0,0,1,0,1,0,1,0,0]
=> [1,1,0,0,1,1,1,1,1,0,0,0,1,0,0,0]
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4}
[1,0,1,1,1,0,0,1,0,0,1,0]
=> [5,3,1,1,1]
=> [1,0,1,0,1,1,1,0,1,0,0,1,0,1,0,1,0,0]
=> [1,1,1,1,0,0,1,1,1,1,0,0,0,1,0,0,0,0]
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4}
[1,0,1,1,1,0,0,1,0,1,0,0]
=> [4,3,1,1,1]
=> [1,0,1,1,1,0,1,0,0,1,0,1,0,1,0,0]
=> [1,1,1,0,0,1,1,1,1,0,0,0,1,0,0,0]
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4}
[1,0,1,1,1,0,0,1,1,0,0,0]
=> [3,3,1,1,1]
=> [1,1,1,0,1,0,0,1,0,1,0,1,0,0]
=> [1,1,0,0,1,1,1,1,0,0,0,1,0,0]
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4}
[1,0,1,1,1,0,1,0,0,0,1,0]
=> [5,2,1,1,1]
=> [1,0,1,0,1,0,1,1,1,0,0,1,0,1,0,1,0,0]
=> [1,1,1,1,1,0,0,1,1,1,0,0,0,1,0,0,0,0]
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4}
[1,0,1,1,1,0,1,0,0,1,0,0]
=> [4,2,1,1,1]
=> [1,0,1,0,1,1,1,0,0,1,0,1,0,1,0,0]
=> [1,1,1,1,0,0,1,1,1,0,0,0,1,0,0,0]
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4}
[1,0,1,1,1,0,1,0,1,0,0,0]
=> [3,2,1,1,1]
=> [1,0,1,1,1,0,0,1,0,1,0,1,0,0]
=> [1,1,1,0,0,1,1,1,0,0,0,1,0,0]
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4}
[1,0,1,1,1,1,0,0,0,0,1,0]
=> [5,1,1,1,1]
=> [1,0,1,0,1,0,1,0,1,1,0,1,0,1,0,1,0,0]
=> [1,1,1,1,1,0,1,1,1,1,0,0,0,0,0,0,0,0]
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4}
[1,0,1,1,1,1,0,0,0,1,0,0]
=> [4,1,1,1,1]
=> [1,0,1,0,1,0,1,1,0,1,0,1,0,1,0,0]
=> [1,1,1,1,0,1,1,1,1,0,0,0,0,0,0,0]
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4}
[1,0,1,1,1,1,0,0,1,0,0,0]
=> [3,1,1,1,1]
=> [1,0,1,0,1,1,0,1,0,1,0,1,0,0]
=> [1,1,1,0,1,1,1,1,0,0,0,0,0,0]
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4}
[1,1,0,0,1,0,1,0,1,0,1,0]
=> [5,4,3,2]
=> [1,0,1,1,1,0,1,1,1,0,0,1,0,0,0,0]
=> [1,1,1,0,1,1,0,0,0,1,1,0,1,0,0,0]
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4}
[1,1,0,0,1,0,1,0,1,1,0,0]
=> [4,4,3,2]
=> [1,1,1,0,1,1,1,0,0,1,0,0,0,0]
=> [1,1,0,1,1,0,0,0,1,1,0,1,0,0]
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4}
[1,1,0,0,1,0,1,1,0,0,1,0]
=> [5,3,3,2]
=> [1,0,1,0,1,1,1,1,1,0,0,1,0,0,0,0]
=> [1,1,1,1,1,1,0,0,0,0,1,0,1,0,0,0]
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4}
Description
For a Nakayama algebra corresponding to a Dyck path, we define the matrix C with entries the Hom-spaces between $e_i J$ and $e_j J$ (the radical of the indecomposable projective modules).
The statistic gives half of the rank of the matrix C^t-C.
Matching statistic: St000680
Mp00233: Dyck paths —skew partition⟶ Skew partitions
Mp00192: Skew partitions —dominating sublattice⟶ Lattices
Mp00193: Lattices —to poset⟶ Posets
St000680: Posets ⟶ ℤResult quality: 46% ●values known / values provided: 46%●distinct values known / distinct values provided: 60%
Mp00192: Skew partitions —dominating sublattice⟶ Lattices
Mp00193: Lattices —to poset⟶ Posets
St000680: Posets ⟶ ℤResult quality: 46% ●values known / values provided: 46%●distinct values known / distinct values provided: 60%
Values
[1,0]
=> [[1],[]]
=> ([],1)
=> ([],1)
=> ? = 0
[1,0,1,0]
=> [[1,1],[]]
=> ([],1)
=> ([],1)
=> ? ∊ {0,0}
[1,1,0,0]
=> [[2],[]]
=> ([],1)
=> ([],1)
=> ? ∊ {0,0}
[1,0,1,0,1,0]
=> [[1,1,1],[]]
=> ([],1)
=> ([],1)
=> ? ∊ {0,0,1,1,1}
[1,0,1,1,0,0]
=> [[2,1],[]]
=> ([],1)
=> ([],1)
=> ? ∊ {0,0,1,1,1}
[1,1,0,0,1,0]
=> [[2,2],[1]]
=> ([],1)
=> ([],1)
=> ? ∊ {0,0,1,1,1}
[1,1,0,1,0,0]
=> [[3],[]]
=> ([],1)
=> ([],1)
=> ? ∊ {0,0,1,1,1}
[1,1,1,0,0,0]
=> [[2,2],[]]
=> ([],1)
=> ([],1)
=> ? ∊ {0,0,1,1,1}
[1,0,1,0,1,0,1,0]
=> [[1,1,1,1],[]]
=> ([],1)
=> ([],1)
=> ? ∊ {0,0,1,1,1,1,1,1,1,2,2,2}
[1,0,1,0,1,1,0,0]
=> [[2,1,1],[]]
=> ([],1)
=> ([],1)
=> ? ∊ {0,0,1,1,1,1,1,1,1,2,2,2}
[1,0,1,1,0,0,1,0]
=> [[2,2,1],[1]]
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 2
[1,0,1,1,0,1,0,0]
=> [[3,1],[]]
=> ([],1)
=> ([],1)
=> ? ∊ {0,0,1,1,1,1,1,1,1,2,2,2}
[1,0,1,1,1,0,0,0]
=> [[2,2,1],[]]
=> ([],1)
=> ([],1)
=> ? ∊ {0,0,1,1,1,1,1,1,1,2,2,2}
[1,1,0,0,1,0,1,0]
=> [[2,2,2],[1,1]]
=> ([],1)
=> ([],1)
=> ? ∊ {0,0,1,1,1,1,1,1,1,2,2,2}
[1,1,0,0,1,1,0,0]
=> [[3,2],[1]]
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 2
[1,1,0,1,0,0,1,0]
=> [[3,3],[2]]
=> ([],1)
=> ([],1)
=> ? ∊ {0,0,1,1,1,1,1,1,1,2,2,2}
[1,1,0,1,0,1,0,0]
=> [[4],[]]
=> ([],1)
=> ([],1)
=> ? ∊ {0,0,1,1,1,1,1,1,1,2,2,2}
[1,1,0,1,1,0,0,0]
=> [[3,3],[1]]
=> ([],1)
=> ([],1)
=> ? ∊ {0,0,1,1,1,1,1,1,1,2,2,2}
[1,1,1,0,0,0,1,0]
=> [[2,2,2],[1]]
=> ([],1)
=> ([],1)
=> ? ∊ {0,0,1,1,1,1,1,1,1,2,2,2}
[1,1,1,0,0,1,0,0]
=> [[3,2],[]]
=> ([],1)
=> ([],1)
=> ? ∊ {0,0,1,1,1,1,1,1,1,2,2,2}
[1,1,1,0,1,0,0,0]
=> [[2,2,2],[]]
=> ([],1)
=> ([],1)
=> ? ∊ {0,0,1,1,1,1,1,1,1,2,2,2}
[1,1,1,1,0,0,0,0]
=> [[3,3],[]]
=> ([],1)
=> ([],1)
=> ? ∊ {0,0,1,1,1,1,1,1,1,2,2,2}
[1,0,1,0,1,0,1,0,1,0]
=> [[1,1,1,1,1],[]]
=> ([],1)
=> ([],1)
=> ? ∊ {0,0,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3}
[1,0,1,0,1,0,1,1,0,0]
=> [[2,1,1,1],[]]
=> ([],1)
=> ([],1)
=> ? ∊ {0,0,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3}
[1,0,1,0,1,1,0,0,1,0]
=> [[2,2,1,1],[1]]
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 2
[1,0,1,0,1,1,0,1,0,0]
=> [[3,1,1],[]]
=> ([],1)
=> ([],1)
=> ? ∊ {0,0,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3}
[1,0,1,0,1,1,1,0,0,0]
=> [[2,2,1,1],[]]
=> ([],1)
=> ([],1)
=> ? ∊ {0,0,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3}
[1,0,1,1,0,0,1,0,1,0]
=> [[2,2,2,1],[1,1]]
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 2
[1,0,1,1,0,0,1,1,0,0]
=> [[3,2,1],[1]]
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 3
[1,0,1,1,0,1,0,0,1,0]
=> [[3,3,1],[2]]
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 2
[1,0,1,1,0,1,0,1,0,0]
=> [[4,1],[]]
=> ([],1)
=> ([],1)
=> ? ∊ {0,0,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3}
[1,0,1,1,0,1,1,0,0,0]
=> [[3,3,1],[1]]
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 2
[1,0,1,1,1,0,0,0,1,0]
=> [[2,2,2,1],[1]]
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 2
[1,0,1,1,1,0,0,1,0,0]
=> [[3,2,1],[]]
=> ([],1)
=> ([],1)
=> ? ∊ {0,0,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3}
[1,0,1,1,1,0,1,0,0,0]
=> [[2,2,2,1],[]]
=> ([],1)
=> ([],1)
=> ? ∊ {0,0,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3}
[1,0,1,1,1,1,0,0,0,0]
=> [[3,3,1],[]]
=> ([],1)
=> ([],1)
=> ? ∊ {0,0,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3}
[1,1,0,0,1,0,1,0,1,0]
=> [[2,2,2,2],[1,1,1]]
=> ([],1)
=> ([],1)
=> ? ∊ {0,0,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3}
[1,1,0,0,1,0,1,1,0,0]
=> [[3,2,2],[1,1]]
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 2
[1,1,0,0,1,1,0,0,1,0]
=> [[3,3,2],[2,1]]
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 3
[1,1,0,0,1,1,0,1,0,0]
=> [[4,2],[1]]
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 2
[1,1,0,0,1,1,1,0,0,0]
=> [[3,3,2],[1,1]]
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 2
[1,1,0,1,0,0,1,0,1,0]
=> [[3,3,3],[2,2]]
=> ([],1)
=> ([],1)
=> ? ∊ {0,0,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3}
[1,1,0,1,0,0,1,1,0,0]
=> [[4,3],[2]]
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 2
[1,1,0,1,0,1,0,0,1,0]
=> [[4,4],[3]]
=> ([],1)
=> ([],1)
=> ? ∊ {0,0,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3}
[1,1,0,1,0,1,0,1,0,0]
=> [[5],[]]
=> ([],1)
=> ([],1)
=> ? ∊ {0,0,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3}
[1,1,0,1,0,1,1,0,0,0]
=> [[4,4],[2]]
=> ([],1)
=> ([],1)
=> ? ∊ {0,0,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3}
[1,1,0,1,1,0,0,0,1,0]
=> [[3,3,3],[2,1]]
=> ([],1)
=> ([],1)
=> ? ∊ {0,0,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3}
[1,1,0,1,1,0,0,1,0,0]
=> [[4,3],[1]]
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 2
[1,1,0,1,1,0,1,0,0,0]
=> [[3,3,3],[1,1]]
=> ([],1)
=> ([],1)
=> ? ∊ {0,0,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3}
[1,1,0,1,1,1,0,0,0,0]
=> [[4,4],[1]]
=> ([],1)
=> ([],1)
=> ? ∊ {0,0,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3}
[1,1,1,0,0,0,1,0,1,0]
=> [[2,2,2,2],[1,1]]
=> ([],1)
=> ([],1)
=> ? ∊ {0,0,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3}
[1,1,1,0,0,0,1,1,0,0]
=> [[3,2,2],[1]]
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 2
[1,1,1,0,0,1,0,0,1,0]
=> [[3,3,2],[2]]
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 2
[1,1,1,0,0,1,0,1,0,0]
=> [[4,2],[]]
=> ([],1)
=> ([],1)
=> ? ∊ {0,0,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3}
[1,1,1,0,0,1,1,0,0,0]
=> [[3,3,2],[1]]
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 2
[1,1,1,0,1,0,0,0,1,0]
=> [[2,2,2,2],[1]]
=> ([],1)
=> ([],1)
=> ? ∊ {0,0,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3}
[1,1,1,0,1,0,0,1,0,0]
=> [[3,2,2],[]]
=> ([],1)
=> ([],1)
=> ? ∊ {0,0,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3}
[1,1,1,0,1,0,1,0,0,0]
=> [[2,2,2,2],[]]
=> ([],1)
=> ([],1)
=> ? ∊ {0,0,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3}
[1,1,1,0,1,1,0,0,0,0]
=> [[3,3,2],[]]
=> ([],1)
=> ([],1)
=> ? ∊ {0,0,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3}
[1,1,1,1,0,0,0,0,1,0]
=> [[3,3,3],[2]]
=> ([],1)
=> ([],1)
=> ? ∊ {0,0,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3}
[1,1,1,1,0,0,0,1,0,0]
=> [[4,3],[]]
=> ([],1)
=> ([],1)
=> ? ∊ {0,0,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3}
[1,1,1,1,0,0,1,0,0,0]
=> [[3,3,3],[1]]
=> ([],1)
=> ([],1)
=> ? ∊ {0,0,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3}
[1,1,1,1,0,1,0,0,0,0]
=> [[4,4],[]]
=> ([],1)
=> ([],1)
=> ? ∊ {0,0,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3}
[1,1,1,1,1,0,0,0,0,0]
=> [[3,3,3],[]]
=> ([],1)
=> ([],1)
=> ? ∊ {0,0,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3}
[1,0,1,0,1,0,1,0,1,0,1,0]
=> [[1,1,1,1,1,1],[]]
=> ([],1)
=> ([],1)
=> ? ∊ {0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4}
[1,0,1,0,1,0,1,0,1,1,0,0]
=> [[2,1,1,1,1],[]]
=> ([],1)
=> ([],1)
=> ? ∊ {0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4}
[1,0,1,0,1,0,1,1,0,0,1,0]
=> [[2,2,1,1,1],[1]]
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 2
[1,0,1,0,1,0,1,1,0,1,0,0]
=> [[3,1,1,1],[]]
=> ([],1)
=> ([],1)
=> ? ∊ {0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4}
[1,0,1,0,1,1,0,0,1,0,1,0]
=> [[2,2,2,1,1],[1,1]]
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 3
[1,0,1,0,1,1,0,0,1,1,0,0]
=> [[3,2,1,1],[1]]
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 3
[1,0,1,0,1,1,0,1,0,0,1,0]
=> [[3,3,1,1],[2]]
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 2
[1,0,1,0,1,1,0,1,1,0,0,0]
=> [[3,3,1,1],[1]]
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 2
[1,0,1,0,1,1,1,0,0,0,1,0]
=> [[2,2,2,1,1],[1]]
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 2
[1,0,1,1,0,0,1,0,1,0,1,0]
=> [[2,2,2,2,1],[1,1,1]]
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 2
[1,0,1,1,0,0,1,0,1,1,0,0]
=> [[3,2,2,1],[1,1]]
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 3
[1,0,1,1,0,0,1,1,0,0,1,0]
=> [[3,3,2,1],[2,1]]
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> 4
[1,0,1,1,0,0,1,1,0,1,0,0]
=> [[4,2,1],[1]]
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 3
[1,0,1,1,0,0,1,1,1,0,0,0]
=> [[3,3,2,1],[1,1]]
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> 4
[1,0,1,1,0,1,0,0,1,0,1,0]
=> [[3,3,3,1],[2,2]]
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 2
[1,0,1,1,0,1,0,0,1,1,0,0]
=> [[4,3,1],[2]]
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 3
[1,0,1,1,0,1,0,1,0,0,1,0]
=> [[4,4,1],[3]]
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 2
[1,0,1,1,0,1,0,1,1,0,0,0]
=> [[4,4,1],[2]]
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 2
[1,0,1,1,0,1,1,0,0,0,1,0]
=> [[3,3,3,1],[2,1]]
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 3
[1,0,1,1,0,1,1,0,0,1,0,0]
=> [[4,3,1],[1]]
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 3
[1,0,1,1,0,1,1,0,1,0,0,0]
=> [[3,3,3,1],[1,1]]
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 2
[1,0,1,1,0,1,1,1,0,0,0,0]
=> [[4,4,1],[1]]
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 2
[1,0,1,1,1,0,0,0,1,0,1,0]
=> [[2,2,2,2,1],[1,1]]
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 2
[1,0,1,1,1,0,0,0,1,1,0,0]
=> [[3,2,2,1],[1]]
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 3
[1,0,1,1,1,0,0,1,0,0,1,0]
=> [[3,3,2,1],[2]]
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 3
[1,0,1,1,1,0,0,1,1,0,0,0]
=> [[3,3,2,1],[1]]
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 3
[1,0,1,1,1,0,1,0,0,0,1,0]
=> [[2,2,2,2,1],[1]]
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 2
[1,0,1,1,1,1,0,0,0,0,1,0]
=> [[3,3,3,1],[2]]
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 2
[1,0,1,1,1,1,0,0,1,0,0,0]
=> [[3,3,3,1],[1]]
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 2
[1,1,0,0,1,0,1,0,1,1,0,0]
=> [[3,2,2,2],[1,1,1]]
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 2
[1,1,0,0,1,0,1,1,0,0,1,0]
=> [[3,3,2,2],[2,1,1]]
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 3
[1,1,0,0,1,0,1,1,0,1,0,0]
=> [[4,2,2],[1,1]]
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 2
[1,1,0,0,1,0,1,1,1,0,0,0]
=> [[3,3,2,2],[1,1,1]]
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 2
[1,1,0,0,1,1,0,0,1,0,1,0]
=> [[3,3,3,2],[2,2,1]]
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 3
[1,1,0,0,1,1,0,0,1,1,0,0]
=> [[4,3,2],[2,1]]
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> 4
[1,1,0,0,1,1,0,1,0,0,1,0]
=> [[4,4,2],[3,1]]
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 3
Description
The Grundy value for Hackendot on posets.
Two players take turns and remove an order filter. The player who is faced with the one element poset looses. This game is a slight variation of Chomp.
This statistic is the Grundy value of the poset, that is, the smallest non-negative integer which does not occur as value of a poset obtained by a single move.
The following 83 statistics, ordered by result quality, also match your data. Click on any of them to see the details.
St000717The number of ordinal summands of a poset. St000906The length of the shortest maximal chain in a poset. St000777The number of distinct eigenvalues of the distance Laplacian of a connected graph. St001803The maximal overlap of the cylindrical tableau associated with a tableau. St000672The number of minimal elements in Bruhat order not less than the permutation. St000771The largest multiplicity of a distance Laplacian eigenvalue in a connected graph. St000259The diameter of a connected graph. St000260The radius of a connected graph. St001875The number of simple modules with projective dimension at most 1. St001514The dimension of the top of the Auslander-Reiten translate of the regular modules as a bimodule. St001687The number of distinct positions of the pattern letter 2 in occurrences of 213 in a permutation. St000331The number of upper interactions of a Dyck path. St000454The largest eigenvalue of a graph if it is integral. St001200The number of simple modules in $eAe$ with projective dimension at most 2 in the corresponding Nakayama algebra $A$ with minimal faithful projective-injective module $eA$. St001198The number of simple modules in the algebra $eAe$ with projective dimension at most 1 in the corresponding Nakayama algebra $A$ with minimal faithful projective-injective module $eA$. St001206The maximal dimension of an indecomposable projective $eAe$-module (that is the height of the corresponding Dyck path) of the corresponding Nakayama algebra with minimal faithful projective-injective module $eA$. St000319The spin of an integer partition. St000320The dinv adjustment of an integer partition. St000460The hook length of the last cell along the main diagonal of an integer partition. St000667The greatest common divisor of the parts of the partition. St000993The multiplicity of the largest part of an integer partition. St001199The dominant dimension of $eAe$ for the corresponding Nakayama algebra $A$ with minimal faithful projective-injective module $eA$. St001247The number of parts of a partition that are not congruent 2 modulo 3. St001250The number of parts of a partition that are not congruent 0 modulo 3. St001384The number of boxes in the diagram of a partition that do not lie in the largest triangle it contains. St001498The normalised height of a Nakayama algebra with magnitude 1. St001568The smallest positive integer that does not appear twice in the partition. St001571The Cartan determinant of the integer partition. St001914The size of the orbit of an integer partition in Bulgarian solitaire. St001933The largest multiplicity of a part in an integer partition. St000474Dyson's crank of a partition. St001432The order dimension of the partition. St000208Number of integral Gelfand-Tsetlin polytopes with prescribed top row and integer partition weight. St000477The weight of a partition according to Alladi. St000514The number of invariant simple graphs when acting with a permutation of given cycle type. St000515The number of invariant set partitions when acting with a permutation of given cycle type. St000668The least common multiple of the parts of the partition. St000708The product of the parts of an integer partition. St000770The major index of an integer partition when read from bottom to top. St000815The number of semistandard Young tableaux of partition weight of given shape. St000870The product of the hook lengths of the diagonal cells in an integer partition. St000933The number of multipartitions of sizes given by an integer partition. St000937The number of positive values of the symmetric group character corresponding to the partition. St001279The sum of the parts of an integer partition that are at least two. St001360The number of covering relations in Young's lattice below a partition. St001380The number of monomer-dimer tilings of a Ferrers diagram. St001389The number of partitions of the same length below the given integer partition. St001527The cyclic permutation representation number of an integer partition. St001606The multiplicity of the irreducible representation corresponding to a partition in the relabelling action on set partitions. St001611The number of multiset partitions such that the multiplicities of elements are given by a partition. St000939The number of characters of the symmetric group whose value on the partition is positive. St001060The distinguishing index of a graph. St000670The reversal length of a permutation. St001491The number of indecomposable projective-injective modules in the algebra corresponding to a subset. St000353The number of inner valleys of a permutation. St001630The global dimension of the incidence algebra of the lattice over the rational numbers. St001878The projective dimension of the simple modules corresponding to the minimum of L in the incidence algebra of the lattice L. St000742The number of big ascents of a permutation after prepending zero. St000632The jump number of the poset. St000714The number of semistandard Young tableau of given shape, with entries at most 2. St000871The number of very big ascents of a permutation. St000035The number of left outer peaks of a permutation. St001638The book thickness of a graph. St000538The number of even inversions of a permutation. St000264The girth of a graph, which is not a tree. St000292The number of ascents of a binary word. St001520The number of strict 3-descents. St001556The number of inversions of the third entry of a permutation. St001712The number of natural descents of a standard Young tableau. St001822The number of alignments of a signed permutation. St001960The number of descents of a permutation minus one if its first entry is not one. St000092The number of outer peaks of a permutation. St000390The number of runs of ones in a binary word. St000898The number of maximal entries in the last diagonal of the monotone triangle. St001637The number of (upper) dissectors of a poset. St000307The number of rowmotion orbits of a poset. St000298The order dimension or Dushnik-Miller dimension of a poset. St000628The balance of a binary word. St001207The Lowey length of the algebra $A/T$ when $T$ is the 1-tilting module corresponding to the permutation in the Auslander algebra of $K[x]/(x^n)$. St001632The number of indecomposable injective modules $I$ with $dim Ext^1(I,A)=1$ for the incidence algebra A of a poset. St000640The rank of the largest boolean interval in a poset. St001633The number of simple modules with projective dimension two in the incidence algebra of the poset. St000891The number of distinct diagonal sums of a permutation matrix.
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!