Your data matches 53 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
St000269: Graphs ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
([],1)
=> 1
([],2)
=> 1
([(0,1)],2)
=> 2
([],3)
=> 1
([(1,2)],3)
=> 2
([(0,2),(1,2)],3)
=> 4
([(0,1),(0,2),(1,2)],3)
=> 6
([],4)
=> 1
([(2,3)],4)
=> 2
([(1,3),(2,3)],4)
=> 4
([(0,3),(1,3),(2,3)],4)
=> 8
([(0,3),(1,2)],4)
=> 4
([(0,3),(1,2),(2,3)],4)
=> 8
([(1,2),(1,3),(2,3)],4)
=> 6
([(0,3),(1,2),(1,3),(2,3)],4)
=> 12
([(0,2),(0,3),(1,2),(1,3)],4)
=> 14
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 18
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 24
Description
The number of acyclic orientations of a graph.
Mp00203: Graphs coneGraphs
St000948: Graphs ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
([],1)
=> ([(0,1)],2)
=> 1
([],2)
=> ([(0,2),(1,2)],3)
=> 1
([(0,1)],2)
=> ([(0,1),(0,2),(1,2)],3)
=> 2
([],3)
=> ([(0,3),(1,3),(2,3)],4)
=> 1
([(1,2)],3)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> 2
([(0,2),(1,2)],3)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 4
([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 6
([],4)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 1
([(2,3)],4)
=> ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
([(1,3),(2,3)],4)
=> ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4
([(0,3),(1,3),(2,3)],4)
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 8
([(0,3),(1,2)],4)
=> ([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> 4
([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> 8
([(1,2),(1,3),(2,3)],4)
=> ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 6
([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 12
([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> 14
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 18
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 24
Description
The chromatic discriminant of a graph. The chromatic discriminant $\alpha(G)$ is the coefficient of the linear term of the chromatic polynomial $\chi(G,q)$. According to [1], it equals the cardinality of any of the following sets: (1) Acyclic orientations of G with unique sink at $q$, (2) Maximum $G$-parking functions relative to $q$, (3) Minimal $q$-critical states, (4) Spanning trees of G without broken circuits, (5) Conjugacy classes of Coxeter elements in the Coxeter group associated to $G$, (6) Multilinear Lyndon heaps on $G$. In addition, $\alpha(G)$ is also equal to the the dimension of the root space corresponding to the sum of all simple roots in the Kac-Moody Lie algebra associated to the graph.
Mp00203: Graphs coneGraphs
St001475: Graphs ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
([],1)
=> ([(0,1)],2)
=> 1
([],2)
=> ([(0,2),(1,2)],3)
=> 1
([(0,1)],2)
=> ([(0,1),(0,2),(1,2)],3)
=> 2
([],3)
=> ([(0,3),(1,3),(2,3)],4)
=> 1
([(1,2)],3)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> 2
([(0,2),(1,2)],3)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 4
([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 6
([],4)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 1
([(2,3)],4)
=> ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
([(1,3),(2,3)],4)
=> ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4
([(0,3),(1,3),(2,3)],4)
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 8
([(0,3),(1,2)],4)
=> ([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> 4
([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> 8
([(1,2),(1,3),(2,3)],4)
=> ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 6
([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 12
([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> 14
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 18
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 24
Description
The evaluation of the Tutte polynomial of the graph at (x,y) equal to (1,0).
Matching statistic: St001070
Mp00203: Graphs coneGraphs
Mp00203: Graphs coneGraphs
St001070: Graphs ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
([],1)
=> ([(0,1)],2)
=> ([(0,1),(0,2),(1,2)],3)
=> 1
([],2)
=> ([(0,2),(1,2)],3)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 1
([(0,1)],2)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 2
([],3)
=> ([(0,3),(1,3),(2,3)],4)
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
([(1,2)],3)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
([(0,2),(1,2)],3)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4
([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 6
([],4)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1
([(2,3)],4)
=> ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
([(1,3),(2,3)],4)
=> ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 4
([(0,3),(1,3),(2,3)],4)
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 8
([(0,3),(1,2)],4)
=> ([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 4
([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 8
([(1,2),(1,3),(2,3)],4)
=> ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6
([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 12
([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 14
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 18
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 24
Description
The absolute value of the derivative of the chromatic polynomial of the graph at 1. This is closely related to Crapo's beta invariant, the only difference being the value for the graphs without edges.
Matching statistic: St001071
Mp00203: Graphs coneGraphs
Mp00203: Graphs coneGraphs
St001071: Graphs ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
([],1)
=> ([(0,1)],2)
=> ([(0,1),(0,2),(1,2)],3)
=> 1
([],2)
=> ([(0,2),(1,2)],3)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 1
([(0,1)],2)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 2
([],3)
=> ([(0,3),(1,3),(2,3)],4)
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
([(1,2)],3)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
([(0,2),(1,2)],3)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4
([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 6
([],4)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1
([(2,3)],4)
=> ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
([(1,3),(2,3)],4)
=> ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 4
([(0,3),(1,3),(2,3)],4)
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 8
([(0,3),(1,2)],4)
=> ([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 4
([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 8
([(1,2),(1,3),(2,3)],4)
=> ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6
([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 12
([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 14
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 18
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 24
Description
The beta invariant of the graph. The beta invariant was introduced by Crapo [1] for matroids. For graphs with $n$ vertices the beta invariant is $$\beta(G) = (-1)^{n-c}\sum_{S\subseteq E} (-1)^{|S|} (n-c(S)),$$ where $c(S)$ is the number of connected components of the subgraph of $G$ with edge set $S$. For graphs with at least one edge the beta invariant equals the absolute value of the derivative of the chromatic polynomial at $1$. [2] The beta invariant also coincides with the coefficient of the monomial $x$, and also with the coefficient of the monomial $y$, of the Tutte polynomial.
Mp00266: Graphs connected vertex partitionsLattices
Mp00193: Lattices to posetPosets
St000327: Posets ⟶ ℤResult quality: 33% values known / values provided: 44%distinct values known / distinct values provided: 33%
Values
([],1)
=> ([],1)
=> ([],1)
=> ? = 1
([],2)
=> ([],1)
=> ([],1)
=> ? = 2
([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
([],3)
=> ([],1)
=> ([],1)
=> ? = 2
([(1,2)],3)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
([(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 4
([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> 6
([],4)
=> ([],1)
=> ([],1)
=> ? ∊ {2,8,8,12,14,18,24}
([(2,3)],4)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
([(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 4
([(0,3),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ? ∊ {2,8,8,12,14,18,24}
([(0,3),(1,2)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 4
([(0,3),(1,2),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ? ∊ {2,8,8,12,14,18,24}
([(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> 6
([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(0,4),(1,7),(1,8),(2,6),(2,8),(3,5),(3,8),(4,5),(4,6),(4,7),(5,9),(6,9),(7,9),(8,9)],10)
=> ([(0,1),(0,2),(0,3),(0,4),(1,7),(1,8),(2,6),(2,8),(3,5),(3,8),(4,5),(4,6),(4,7),(5,9),(6,9),(7,9),(8,9)],10)
=> ? ∊ {2,8,8,12,14,18,24}
([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,1),(0,2),(0,3),(0,4),(1,8),(1,9),(1,10),(2,6),(2,7),(2,10),(3,5),(3,7),(3,9),(4,5),(4,6),(4,8),(5,11),(6,11),(7,11),(8,11),(9,11),(10,11)],12)
=> ([(0,1),(0,2),(0,3),(0,4),(1,8),(1,9),(1,10),(2,6),(2,7),(2,10),(3,5),(3,7),(3,9),(4,5),(4,6),(4,8),(5,11),(6,11),(7,11),(8,11),(9,11),(10,11)],12)
=> ? ∊ {2,8,8,12,14,18,24}
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,10),(1,11),(2,8),(2,9),(2,11),(3,6),(3,7),(3,11),(4,7),(4,9),(4,10),(5,6),(5,8),(5,10),(6,12),(7,12),(8,12),(9,12),(10,12),(11,12)],13)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,10),(1,11),(2,8),(2,9),(2,11),(3,6),(3,7),(3,11),(4,7),(4,9),(4,10),(5,6),(5,8),(5,10),(6,12),(7,12),(8,12),(9,12),(10,12),(11,12)],13)
=> ? ∊ {2,8,8,12,14,18,24}
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,9),(1,11),(1,13),(2,9),(2,10),(2,12),(3,8),(3,10),(3,13),(4,8),(4,11),(4,12),(5,7),(5,12),(5,13),(6,7),(6,10),(6,11),(7,14),(8,14),(9,14),(10,14),(11,14),(12,14),(13,14)],15)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,9),(1,11),(1,13),(2,9),(2,10),(2,12),(3,8),(3,10),(3,13),(4,8),(4,11),(4,12),(5,7),(5,12),(5,13),(6,7),(6,10),(6,11),(7,14),(8,14),(9,14),(10,14),(11,14),(12,14),(13,14)],15)
=> ? ∊ {2,8,8,12,14,18,24}
Description
The number of cover relations in a poset. Equivalently, this is also the number of edges in the Hasse diagram [1].
Mp00243: Graphs weak duplicate orderPosets
Mp00074: Posets to graphGraphs
St001645: Graphs ⟶ ℤResult quality: 22% values known / values provided: 39%distinct values known / distinct values provided: 22%
Values
([],1)
=> ([],1)
=> ([],1)
=> 1
([],2)
=> ([],1)
=> ([],1)
=> 1
([(0,1)],2)
=> ([],2)
=> ([],2)
=> ? = 2
([],3)
=> ([],1)
=> ([],1)
=> 1
([(1,2)],3)
=> ([(0,2),(1,2)],3)
=> ([(0,2),(1,2)],3)
=> 4
([(0,2),(1,2)],3)
=> ([],2)
=> ([],2)
=> ? ∊ {2,6}
([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ([],3)
=> ? ∊ {2,6}
([],4)
=> ([],1)
=> ([],1)
=> 1
([(2,3)],4)
=> ([(0,2),(1,2)],3)
=> ([(0,2),(1,2)],3)
=> 4
([(1,3),(2,3)],4)
=> ([(0,2),(1,2)],3)
=> ([(0,2),(1,2)],3)
=> 4
([(0,3),(1,3),(2,3)],4)
=> ([],2)
=> ([],2)
=> ? ∊ {2,6,8,8,12,14,18,24}
([(0,3),(1,2)],4)
=> ([],4)
=> ([],4)
=> ? ∊ {2,6,8,8,12,14,18,24}
([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(1,2)],4)
=> ([(0,3),(1,2)],4)
=> ? ∊ {2,6,8,8,12,14,18,24}
([(1,2),(1,3),(2,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> ? ∊ {2,6,8,8,12,14,18,24}
([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> ? ∊ {2,6,8,8,12,14,18,24}
([(0,2),(0,3),(1,2),(1,3)],4)
=> ([],2)
=> ([],2)
=> ? ∊ {2,6,8,8,12,14,18,24}
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([],3)
=> ([],3)
=> ? ∊ {2,6,8,8,12,14,18,24}
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([],4)
=> ([],4)
=> ? ∊ {2,6,8,8,12,14,18,24}
Description
The pebbling number of a connected graph.
Mp00264: Graphs delete endpointsGraphs
St001545: Graphs ⟶ ℤResult quality: 28% values known / values provided: 28%distinct values known / distinct values provided: 44%
Values
([],1)
=> ([],1)
=> ? = 1
([],2)
=> ([],2)
=> ? ∊ {1,2}
([(0,1)],2)
=> ([],1)
=> ? ∊ {1,2}
([],3)
=> ([],3)
=> ? ∊ {1,2,4}
([(1,2)],3)
=> ([],2)
=> ? ∊ {1,2,4}
([(0,2),(1,2)],3)
=> ([],1)
=> ? ∊ {1,2,4}
([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> 6
([],4)
=> ([],4)
=> ? ∊ {1,2,4,4,8,8,18}
([(2,3)],4)
=> ([],3)
=> ? ∊ {1,2,4,4,8,8,18}
([(1,3),(2,3)],4)
=> ([],2)
=> ? ∊ {1,2,4,4,8,8,18}
([(0,3),(1,3),(2,3)],4)
=> ([],1)
=> ? ∊ {1,2,4,4,8,8,18}
([(0,3),(1,2)],4)
=> ([],2)
=> ? ∊ {1,2,4,4,8,8,18}
([(0,3),(1,2),(2,3)],4)
=> ([],1)
=> ? ∊ {1,2,4,4,8,8,18}
([(1,2),(1,3),(2,3)],4)
=> ([(1,2),(1,3),(2,3)],4)
=> ? ∊ {1,2,4,4,8,8,18}
([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> 6
([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> 12
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 14
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 24
Description
The second Elser number of a connected graph. For a connected graph $G$ the $k$-th Elser number is $$ els_k(G) = (-1)^{|V(G)|+1} \sum_N (-1)^{|E(N)|} |V(N)|^k $$ where the sum is over all nuclei of $G$, that is, the connected subgraphs of $G$ whose vertex set is a vertex cover of $G$. It is clear that this number is even. It was shown in [1] that it is non-negative.
Mp00266: Graphs connected vertex partitionsLattices
Mp00193: Lattices to posetPosets
St001880: Posets ⟶ ℤResult quality: 22% values known / values provided: 28%distinct values known / distinct values provided: 22%
Values
([],1)
=> ([],1)
=> ([],1)
=> ? = 1
([],2)
=> ([],1)
=> ([],1)
=> ? ∊ {1,2}
([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ? ∊ {1,2}
([],3)
=> ([],1)
=> ([],1)
=> ? ∊ {2,6}
([(1,2)],3)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ? ∊ {2,6}
([(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 4
([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> 1
([],4)
=> ([],1)
=> ([],1)
=> ? ∊ {2,6,8,8,12,14,18,24}
([(2,3)],4)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ? ∊ {2,6,8,8,12,14,18,24}
([(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 4
([(0,3),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ? ∊ {2,6,8,8,12,14,18,24}
([(0,3),(1,2)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 4
([(0,3),(1,2),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ? ∊ {2,6,8,8,12,14,18,24}
([(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> 1
([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(0,4),(1,7),(1,8),(2,6),(2,8),(3,5),(3,8),(4,5),(4,6),(4,7),(5,9),(6,9),(7,9),(8,9)],10)
=> ([(0,1),(0,2),(0,3),(0,4),(1,7),(1,8),(2,6),(2,8),(3,5),(3,8),(4,5),(4,6),(4,7),(5,9),(6,9),(7,9),(8,9)],10)
=> ? ∊ {2,6,8,8,12,14,18,24}
([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,1),(0,2),(0,3),(0,4),(1,8),(1,9),(1,10),(2,6),(2,7),(2,10),(3,5),(3,7),(3,9),(4,5),(4,6),(4,8),(5,11),(6,11),(7,11),(8,11),(9,11),(10,11)],12)
=> ([(0,1),(0,2),(0,3),(0,4),(1,8),(1,9),(1,10),(2,6),(2,7),(2,10),(3,5),(3,7),(3,9),(4,5),(4,6),(4,8),(5,11),(6,11),(7,11),(8,11),(9,11),(10,11)],12)
=> ? ∊ {2,6,8,8,12,14,18,24}
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,10),(1,11),(2,8),(2,9),(2,11),(3,6),(3,7),(3,11),(4,7),(4,9),(4,10),(5,6),(5,8),(5,10),(6,12),(7,12),(8,12),(9,12),(10,12),(11,12)],13)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,10),(1,11),(2,8),(2,9),(2,11),(3,6),(3,7),(3,11),(4,7),(4,9),(4,10),(5,6),(5,8),(5,10),(6,12),(7,12),(8,12),(9,12),(10,12),(11,12)],13)
=> ? ∊ {2,6,8,8,12,14,18,24}
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,9),(1,11),(1,13),(2,9),(2,10),(2,12),(3,8),(3,10),(3,13),(4,8),(4,11),(4,12),(5,7),(5,12),(5,13),(6,7),(6,10),(6,11),(7,14),(8,14),(9,14),(10,14),(11,14),(12,14),(13,14)],15)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,9),(1,11),(1,13),(2,9),(2,10),(2,12),(3,8),(3,10),(3,13),(4,8),(4,11),(4,12),(5,7),(5,12),(5,13),(6,7),(6,10),(6,11),(7,14),(8,14),(9,14),(10,14),(11,14),(12,14),(13,14)],15)
=> ? ∊ {2,6,8,8,12,14,18,24}
Description
The number of 2-Gorenstein indecomposable injective modules in the incidence algebra of the lattice.
Matching statistic: St000455
Mp00259: Graphs vertex additionGraphs
Mp00203: Graphs coneGraphs
St000455: Graphs ⟶ ℤResult quality: 22% values known / values provided: 28%distinct values known / distinct values provided: 22%
Values
([],1)
=> ([],2)
=> ([(0,2),(1,2)],3)
=> 0 = 1 - 1
([],2)
=> ([],3)
=> ([(0,3),(1,3),(2,3)],4)
=> 0 = 1 - 1
([(0,1)],2)
=> ([(1,2)],3)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> ? = 2 - 1
([],3)
=> ([],4)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 0 = 1 - 1
([(1,2)],3)
=> ([(2,3)],4)
=> ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {2,4,6} - 1
([(0,2),(1,2)],3)
=> ([(1,3),(2,3)],4)
=> ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {2,4,6} - 1
([(0,1),(0,2),(1,2)],3)
=> ([(1,2),(1,3),(2,3)],4)
=> ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {2,4,6} - 1
([],4)
=> ([],5)
=> ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> 0 = 1 - 1
([(2,3)],4)
=> ([(3,4)],5)
=> ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {4,4,6,8,8,12,14,18,24} - 1
([(1,3),(2,3)],4)
=> ([(2,4),(3,4)],5)
=> ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {4,4,6,8,8,12,14,18,24} - 1
([(0,3),(1,3),(2,3)],4)
=> ([(1,4),(2,4),(3,4)],5)
=> ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {4,4,6,8,8,12,14,18,24} - 1
([(0,3),(1,2)],4)
=> ([(1,4),(2,3)],5)
=> ([(0,5),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> 1 = 2 - 1
([(0,3),(1,2),(2,3)],4)
=> ([(1,4),(2,3),(3,4)],5)
=> ([(0,5),(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {4,4,6,8,8,12,14,18,24} - 1
([(1,2),(1,3),(2,3)],4)
=> ([(2,3),(2,4),(3,4)],5)
=> ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {4,4,6,8,8,12,14,18,24} - 1
([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {4,4,6,8,8,12,14,18,24} - 1
([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> ? ∊ {4,4,6,8,8,12,14,18,24} - 1
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {4,4,6,8,8,12,14,18,24} - 1
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {4,4,6,8,8,12,14,18,24} - 1
Description
The second largest eigenvalue of a graph if it is integral. This statistic is undefined if the second largest eigenvalue of the graph is not integral. Chapter 4 of [1] provides lots of context.
The following 43 statistics, ordered by result quality, also match your data. Click on any of them to see the details.
St001651The Frankl number of a lattice. St000454The largest eigenvalue of a graph if it is integral. St000706The product of the factorials of the multiplicities of an integer partition. St000771The largest multiplicity of a distance Laplacian eigenvalue in a connected graph. St000772The multiplicity of the largest distance Laplacian eigenvalue in a connected graph. St000777The number of distinct eigenvalues of the distance Laplacian of a connected graph. St001877Number of indecomposable injective modules with projective dimension 2. St000259The diameter of a connected graph. St000260The radius of a connected graph. St000302The determinant of the distance matrix of a connected graph. St000466The Gutman (or modified Schultz) index of a connected graph. St000467The hyper-Wiener index of a connected graph. St001330The hat guessing number of a graph. St001845The number of join irreducibles minus the rank of a lattice. St000418The number of Dyck paths that are weakly below a Dyck path. St000707The product of the factorials of the parts. St000770The major index of an integer partition when read from bottom to top. St000981The length of the longest zigzag subpath. St001491The number of indecomposable projective-injective modules in the algebra corresponding to a subset. St001531Number of partial orders contained in the poset determined by the Dyck path. St001959The product of the heights of the peaks of a Dyck path. St001816Eigenvalues of the top-to-random operator acting on a simple module. St001626The number of maximal proper sublattices of a lattice. St000460The hook length of the last cell along the main diagonal of an integer partition. St000870The product of the hook lengths of the diagonal cells in an integer partition. St001247The number of parts of a partition that are not congruent 2 modulo 3. St001249Sum of the odd parts of a partition. St001250The number of parts of a partition that are not congruent 0 modulo 3. St001360The number of covering relations in Young's lattice below a partition. St001378The product of the cohook lengths of the integer partition. St001380The number of monomer-dimer tilings of a Ferrers diagram. St001529The number of monomials in the expansion of the nabla operator applied to the power-sum symmetric function indexed by the partition. St001561The value of the elementary symmetric function evaluated at 1. St001562The value of the complete homogeneous symmetric function evaluated at 1. St001563The value of the power-sum symmetric function evaluated at 1. St001605The number of colourings of a cycle such that the multiplicities of colours are given by a partition. St001607The number of coloured graphs such that the multiplicities of colours are given by a partition. St001608The number of coloured rooted trees such that the multiplicities of colours are given by a partition. St001610The number of coloured endofunctions such that the multiplicities of colours are given by a partition. St001611The number of multiset partitions such that the multiplicities of elements are given by a partition. St001785The number of ways to obtain a partition as the multiset of antidiagonal lengths of the Ferrers diagram of a partition. St001914The size of the orbit of an integer partition in Bulgarian solitaire. St001933The largest multiplicity of a part in an integer partition.