searching the database
Your data matches 39 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
(click to perform a complete search on your data)
Matching statistic: St000209
(load all 5 compositions to match this statistic)
(load all 5 compositions to match this statistic)
St000209: Permutations ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[1,2] => 0
[2,1] => 1
[1,2,3] => 0
[1,3,2] => 1
[2,1,3] => 1
[2,3,1] => 2
[3,1,2] => 2
[3,2,1] => 2
[1,2,3,4] => 0
[1,2,4,3] => 1
[1,3,2,4] => 1
[1,3,4,2] => 2
[1,4,2,3] => 2
[1,4,3,2] => 2
[2,1,3,4] => 1
[2,1,4,3] => 1
[2,3,1,4] => 2
[2,3,4,1] => 3
[2,4,1,3] => 3
[2,4,3,1] => 3
[3,1,2,4] => 2
[3,1,4,2] => 3
[3,2,1,4] => 2
[3,2,4,1] => 3
[3,4,1,2] => 2
[3,4,2,1] => 3
[4,1,2,3] => 3
[4,1,3,2] => 3
[4,2,1,3] => 3
[4,2,3,1] => 3
[4,3,1,2] => 3
[4,3,2,1] => 3
[1,2,3,4,5] => 0
[1,2,3,5,4] => 1
[1,2,4,3,5] => 1
[1,2,4,5,3] => 2
[1,2,5,3,4] => 2
[1,2,5,4,3] => 2
[1,3,2,4,5] => 1
[1,3,2,5,4] => 1
[1,3,4,2,5] => 2
[1,3,4,5,2] => 3
[1,3,5,2,4] => 3
[1,3,5,4,2] => 3
[1,4,2,3,5] => 2
[1,4,2,5,3] => 3
[1,4,3,2,5] => 2
[1,4,3,5,2] => 3
[1,4,5,2,3] => 2
[1,4,5,3,2] => 3
Description
Maximum difference of elements in cycles.
Given a cycle $C$ in a permutation, we can compute the maximum distance between elements in the cycle, that is $\max \{ a_i-a_j | a_i, a_j \in C \}$.
The statistic is then the maximum of this value over all cycles in the permutation.
Matching statistic: St000141
(load all 8 compositions to match this statistic)
(load all 8 compositions to match this statistic)
Mp00159: Permutations —Demazure product with inverse⟶ Permutations
St000141: Permutations ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
St000141: Permutations ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[1,2] => [1,2] => 0
[2,1] => [2,1] => 1
[1,2,3] => [1,2,3] => 0
[1,3,2] => [1,3,2] => 1
[2,1,3] => [2,1,3] => 1
[2,3,1] => [3,2,1] => 2
[3,1,2] => [3,2,1] => 2
[3,2,1] => [3,2,1] => 2
[1,2,3,4] => [1,2,3,4] => 0
[1,2,4,3] => [1,2,4,3] => 1
[1,3,2,4] => [1,3,2,4] => 1
[1,3,4,2] => [1,4,3,2] => 2
[1,4,2,3] => [1,4,3,2] => 2
[1,4,3,2] => [1,4,3,2] => 2
[2,1,3,4] => [2,1,3,4] => 1
[2,1,4,3] => [2,1,4,3] => 1
[2,3,1,4] => [3,2,1,4] => 2
[2,3,4,1] => [4,2,3,1] => 3
[2,4,1,3] => [3,4,1,2] => 2
[2,4,3,1] => [4,3,2,1] => 3
[3,1,2,4] => [3,2,1,4] => 2
[3,1,4,2] => [4,2,3,1] => 3
[3,2,1,4] => [3,2,1,4] => 2
[3,2,4,1] => [4,2,3,1] => 3
[3,4,1,2] => [4,3,2,1] => 3
[3,4,2,1] => [4,3,2,1] => 3
[4,1,2,3] => [4,2,3,1] => 3
[4,1,3,2] => [4,2,3,1] => 3
[4,2,1,3] => [4,3,2,1] => 3
[4,2,3,1] => [4,3,2,1] => 3
[4,3,1,2] => [4,3,2,1] => 3
[4,3,2,1] => [4,3,2,1] => 3
[1,2,3,4,5] => [1,2,3,4,5] => 0
[1,2,3,5,4] => [1,2,3,5,4] => 1
[1,2,4,3,5] => [1,2,4,3,5] => 1
[1,2,4,5,3] => [1,2,5,4,3] => 2
[1,2,5,3,4] => [1,2,5,4,3] => 2
[1,2,5,4,3] => [1,2,5,4,3] => 2
[1,3,2,4,5] => [1,3,2,4,5] => 1
[1,3,2,5,4] => [1,3,2,5,4] => 1
[1,3,4,2,5] => [1,4,3,2,5] => 2
[1,3,4,5,2] => [1,5,3,4,2] => 3
[1,3,5,2,4] => [1,4,5,2,3] => 2
[1,3,5,4,2] => [1,5,4,3,2] => 3
[1,4,2,3,5] => [1,4,3,2,5] => 2
[1,4,2,5,3] => [1,5,3,4,2] => 3
[1,4,3,2,5] => [1,4,3,2,5] => 2
[1,4,3,5,2] => [1,5,3,4,2] => 3
[1,4,5,2,3] => [1,5,4,3,2] => 3
[1,4,5,3,2] => [1,5,4,3,2] => 3
Description
The maximum drop size of a permutation.
The maximum drop size of a permutation $\pi$ of $[n]=\{1,2,\ldots, n\}$ is defined to be the maximum value of $i-\pi(i)$.
Matching statistic: St000503
(load all 8 compositions to match this statistic)
(load all 8 compositions to match this statistic)
Mp00151: Permutations —to cycle type⟶ Set partitions
St000503: Set partitions ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
St000503: Set partitions ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[1,2] => {{1},{2}}
=> 0
[2,1] => {{1,2}}
=> 1
[1,2,3] => {{1},{2},{3}}
=> 0
[1,3,2] => {{1},{2,3}}
=> 1
[2,1,3] => {{1,2},{3}}
=> 1
[2,3,1] => {{1,2,3}}
=> 2
[3,1,2] => {{1,2,3}}
=> 2
[3,2,1] => {{1,3},{2}}
=> 2
[1,2,3,4] => {{1},{2},{3},{4}}
=> 0
[1,2,4,3] => {{1},{2},{3,4}}
=> 1
[1,3,2,4] => {{1},{2,3},{4}}
=> 1
[1,3,4,2] => {{1},{2,3,4}}
=> 2
[1,4,2,3] => {{1},{2,3,4}}
=> 2
[1,4,3,2] => {{1},{2,4},{3}}
=> 2
[2,1,3,4] => {{1,2},{3},{4}}
=> 1
[2,1,4,3] => {{1,2},{3,4}}
=> 1
[2,3,1,4] => {{1,2,3},{4}}
=> 2
[2,3,4,1] => {{1,2,3,4}}
=> 3
[2,4,1,3] => {{1,2,3,4}}
=> 3
[2,4,3,1] => {{1,2,4},{3}}
=> 3
[3,1,2,4] => {{1,2,3},{4}}
=> 2
[3,1,4,2] => {{1,2,3,4}}
=> 3
[3,2,1,4] => {{1,3},{2},{4}}
=> 2
[3,2,4,1] => {{1,3,4},{2}}
=> 3
[3,4,1,2] => {{1,3},{2,4}}
=> 2
[3,4,2,1] => {{1,2,3,4}}
=> 3
[4,1,2,3] => {{1,2,3,4}}
=> 3
[4,1,3,2] => {{1,2,4},{3}}
=> 3
[4,2,1,3] => {{1,3,4},{2}}
=> 3
[4,2,3,1] => {{1,4},{2},{3}}
=> 3
[4,3,1,2] => {{1,2,3,4}}
=> 3
[4,3,2,1] => {{1,4},{2,3}}
=> 3
[1,2,3,4,5] => {{1},{2},{3},{4},{5}}
=> 0
[1,2,3,5,4] => {{1},{2},{3},{4,5}}
=> 1
[1,2,4,3,5] => {{1},{2},{3,4},{5}}
=> 1
[1,2,4,5,3] => {{1},{2},{3,4,5}}
=> 2
[1,2,5,3,4] => {{1},{2},{3,4,5}}
=> 2
[1,2,5,4,3] => {{1},{2},{3,5},{4}}
=> 2
[1,3,2,4,5] => {{1},{2,3},{4},{5}}
=> 1
[1,3,2,5,4] => {{1},{2,3},{4,5}}
=> 1
[1,3,4,2,5] => {{1},{2,3,4},{5}}
=> 2
[1,3,4,5,2] => {{1},{2,3,4,5}}
=> 3
[1,3,5,2,4] => {{1},{2,3,4,5}}
=> 3
[1,3,5,4,2] => {{1},{2,3,5},{4}}
=> 3
[1,4,2,3,5] => {{1},{2,3,4},{5}}
=> 2
[1,4,2,5,3] => {{1},{2,3,4,5}}
=> 3
[1,4,3,2,5] => {{1},{2,4},{3},{5}}
=> 2
[1,4,3,5,2] => {{1},{2,4,5},{3}}
=> 3
[1,4,5,2,3] => {{1},{2,4},{3,5}}
=> 2
[1,4,5,3,2] => {{1},{2,3,4,5}}
=> 3
Description
The maximal difference between two elements in a common block.
Matching statistic: St000956
(load all 4 compositions to match this statistic)
(load all 4 compositions to match this statistic)
Mp00159: Permutations —Demazure product with inverse⟶ Permutations
St000956: Permutations ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
St000956: Permutations ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[1,2] => [1,2] => 0
[2,1] => [2,1] => 1
[1,2,3] => [1,2,3] => 0
[1,3,2] => [1,3,2] => 1
[2,1,3] => [2,1,3] => 1
[2,3,1] => [3,2,1] => 2
[3,1,2] => [3,2,1] => 2
[3,2,1] => [3,2,1] => 2
[1,2,3,4] => [1,2,3,4] => 0
[1,2,4,3] => [1,2,4,3] => 1
[1,3,2,4] => [1,3,2,4] => 1
[1,3,4,2] => [1,4,3,2] => 2
[1,4,2,3] => [1,4,3,2] => 2
[1,4,3,2] => [1,4,3,2] => 2
[2,1,3,4] => [2,1,3,4] => 1
[2,1,4,3] => [2,1,4,3] => 1
[2,3,1,4] => [3,2,1,4] => 2
[2,3,4,1] => [4,2,3,1] => 3
[2,4,1,3] => [3,4,1,2] => 2
[2,4,3,1] => [4,3,2,1] => 3
[3,1,2,4] => [3,2,1,4] => 2
[3,1,4,2] => [4,2,3,1] => 3
[3,2,1,4] => [3,2,1,4] => 2
[3,2,4,1] => [4,2,3,1] => 3
[3,4,1,2] => [4,3,2,1] => 3
[3,4,2,1] => [4,3,2,1] => 3
[4,1,2,3] => [4,2,3,1] => 3
[4,1,3,2] => [4,2,3,1] => 3
[4,2,1,3] => [4,3,2,1] => 3
[4,2,3,1] => [4,3,2,1] => 3
[4,3,1,2] => [4,3,2,1] => 3
[4,3,2,1] => [4,3,2,1] => 3
[1,2,3,4,5] => [1,2,3,4,5] => 0
[1,2,3,5,4] => [1,2,3,5,4] => 1
[1,2,4,3,5] => [1,2,4,3,5] => 1
[1,2,4,5,3] => [1,2,5,4,3] => 2
[1,2,5,3,4] => [1,2,5,4,3] => 2
[1,2,5,4,3] => [1,2,5,4,3] => 2
[1,3,2,4,5] => [1,3,2,4,5] => 1
[1,3,2,5,4] => [1,3,2,5,4] => 1
[1,3,4,2,5] => [1,4,3,2,5] => 2
[1,3,4,5,2] => [1,5,3,4,2] => 3
[1,3,5,2,4] => [1,4,5,2,3] => 2
[1,3,5,4,2] => [1,5,4,3,2] => 3
[1,4,2,3,5] => [1,4,3,2,5] => 2
[1,4,2,5,3] => [1,5,3,4,2] => 3
[1,4,3,2,5] => [1,4,3,2,5] => 2
[1,4,3,5,2] => [1,5,3,4,2] => 3
[1,4,5,2,3] => [1,5,4,3,2] => 3
[1,4,5,3,2] => [1,5,4,3,2] => 3
Description
The maximal displacement of a permutation.
This is $\max\{ |\pi(i)-i| \mid 1 \leq i \leq n\}$ for a permutation $\pi$ of $\{1,\ldots,n\}$.
This statistic without the absolute value is the maximal drop size [[St000141]].
Matching statistic: St000442
(load all 3 compositions to match this statistic)
(load all 3 compositions to match this statistic)
Mp00159: Permutations —Demazure product with inverse⟶ Permutations
Mp00127: Permutations —left-to-right-maxima to Dyck path⟶ Dyck paths
St000442: Dyck paths ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00127: Permutations —left-to-right-maxima to Dyck path⟶ Dyck paths
St000442: Dyck paths ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[1,2] => [1,2] => [1,0,1,0]
=> 0
[2,1] => [2,1] => [1,1,0,0]
=> 1
[1,2,3] => [1,2,3] => [1,0,1,0,1,0]
=> 0
[1,3,2] => [1,3,2] => [1,0,1,1,0,0]
=> 1
[2,1,3] => [2,1,3] => [1,1,0,0,1,0]
=> 1
[2,3,1] => [3,2,1] => [1,1,1,0,0,0]
=> 2
[3,1,2] => [3,2,1] => [1,1,1,0,0,0]
=> 2
[3,2,1] => [3,2,1] => [1,1,1,0,0,0]
=> 2
[1,2,3,4] => [1,2,3,4] => [1,0,1,0,1,0,1,0]
=> 0
[1,2,4,3] => [1,2,4,3] => [1,0,1,0,1,1,0,0]
=> 1
[1,3,2,4] => [1,3,2,4] => [1,0,1,1,0,0,1,0]
=> 1
[1,3,4,2] => [1,4,3,2] => [1,0,1,1,1,0,0,0]
=> 2
[1,4,2,3] => [1,4,3,2] => [1,0,1,1,1,0,0,0]
=> 2
[1,4,3,2] => [1,4,3,2] => [1,0,1,1,1,0,0,0]
=> 2
[2,1,3,4] => [2,1,3,4] => [1,1,0,0,1,0,1,0]
=> 1
[2,1,4,3] => [2,1,4,3] => [1,1,0,0,1,1,0,0]
=> 1
[2,3,1,4] => [3,2,1,4] => [1,1,1,0,0,0,1,0]
=> 2
[2,3,4,1] => [4,2,3,1] => [1,1,1,1,0,0,0,0]
=> 3
[2,4,1,3] => [3,4,1,2] => [1,1,1,0,1,0,0,0]
=> 2
[2,4,3,1] => [4,3,2,1] => [1,1,1,1,0,0,0,0]
=> 3
[3,1,2,4] => [3,2,1,4] => [1,1,1,0,0,0,1,0]
=> 2
[3,1,4,2] => [4,2,3,1] => [1,1,1,1,0,0,0,0]
=> 3
[3,2,1,4] => [3,2,1,4] => [1,1,1,0,0,0,1,0]
=> 2
[3,2,4,1] => [4,2,3,1] => [1,1,1,1,0,0,0,0]
=> 3
[3,4,1,2] => [4,3,2,1] => [1,1,1,1,0,0,0,0]
=> 3
[3,4,2,1] => [4,3,2,1] => [1,1,1,1,0,0,0,0]
=> 3
[4,1,2,3] => [4,2,3,1] => [1,1,1,1,0,0,0,0]
=> 3
[4,1,3,2] => [4,2,3,1] => [1,1,1,1,0,0,0,0]
=> 3
[4,2,1,3] => [4,3,2,1] => [1,1,1,1,0,0,0,0]
=> 3
[4,2,3,1] => [4,3,2,1] => [1,1,1,1,0,0,0,0]
=> 3
[4,3,1,2] => [4,3,2,1] => [1,1,1,1,0,0,0,0]
=> 3
[4,3,2,1] => [4,3,2,1] => [1,1,1,1,0,0,0,0]
=> 3
[1,2,3,4,5] => [1,2,3,4,5] => [1,0,1,0,1,0,1,0,1,0]
=> 0
[1,2,3,5,4] => [1,2,3,5,4] => [1,0,1,0,1,0,1,1,0,0]
=> 1
[1,2,4,3,5] => [1,2,4,3,5] => [1,0,1,0,1,1,0,0,1,0]
=> 1
[1,2,4,5,3] => [1,2,5,4,3] => [1,0,1,0,1,1,1,0,0,0]
=> 2
[1,2,5,3,4] => [1,2,5,4,3] => [1,0,1,0,1,1,1,0,0,0]
=> 2
[1,2,5,4,3] => [1,2,5,4,3] => [1,0,1,0,1,1,1,0,0,0]
=> 2
[1,3,2,4,5] => [1,3,2,4,5] => [1,0,1,1,0,0,1,0,1,0]
=> 1
[1,3,2,5,4] => [1,3,2,5,4] => [1,0,1,1,0,0,1,1,0,0]
=> 1
[1,3,4,2,5] => [1,4,3,2,5] => [1,0,1,1,1,0,0,0,1,0]
=> 2
[1,3,4,5,2] => [1,5,3,4,2] => [1,0,1,1,1,1,0,0,0,0]
=> 3
[1,3,5,2,4] => [1,4,5,2,3] => [1,0,1,1,1,0,1,0,0,0]
=> 2
[1,3,5,4,2] => [1,5,4,3,2] => [1,0,1,1,1,1,0,0,0,0]
=> 3
[1,4,2,3,5] => [1,4,3,2,5] => [1,0,1,1,1,0,0,0,1,0]
=> 2
[1,4,2,5,3] => [1,5,3,4,2] => [1,0,1,1,1,1,0,0,0,0]
=> 3
[1,4,3,2,5] => [1,4,3,2,5] => [1,0,1,1,1,0,0,0,1,0]
=> 2
[1,4,3,5,2] => [1,5,3,4,2] => [1,0,1,1,1,1,0,0,0,0]
=> 3
[1,4,5,2,3] => [1,5,4,3,2] => [1,0,1,1,1,1,0,0,0,0]
=> 3
[1,4,5,3,2] => [1,5,4,3,2] => [1,0,1,1,1,1,0,0,0,0]
=> 3
Description
The maximal area to the right of an up step of a Dyck path.
Matching statistic: St000730
Mp00159: Permutations —Demazure product with inverse⟶ Permutations
Mp00151: Permutations —to cycle type⟶ Set partitions
St000730: Set partitions ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00151: Permutations —to cycle type⟶ Set partitions
St000730: Set partitions ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[1,2] => [1,2] => {{1},{2}}
=> 0
[2,1] => [2,1] => {{1,2}}
=> 1
[1,2,3] => [1,2,3] => {{1},{2},{3}}
=> 0
[1,3,2] => [1,3,2] => {{1},{2,3}}
=> 1
[2,1,3] => [2,1,3] => {{1,2},{3}}
=> 1
[2,3,1] => [3,2,1] => {{1,3},{2}}
=> 2
[3,1,2] => [3,2,1] => {{1,3},{2}}
=> 2
[3,2,1] => [3,2,1] => {{1,3},{2}}
=> 2
[1,2,3,4] => [1,2,3,4] => {{1},{2},{3},{4}}
=> 0
[1,2,4,3] => [1,2,4,3] => {{1},{2},{3,4}}
=> 1
[1,3,2,4] => [1,3,2,4] => {{1},{2,3},{4}}
=> 1
[1,3,4,2] => [1,4,3,2] => {{1},{2,4},{3}}
=> 2
[1,4,2,3] => [1,4,3,2] => {{1},{2,4},{3}}
=> 2
[1,4,3,2] => [1,4,3,2] => {{1},{2,4},{3}}
=> 2
[2,1,3,4] => [2,1,3,4] => {{1,2},{3},{4}}
=> 1
[2,1,4,3] => [2,1,4,3] => {{1,2},{3,4}}
=> 1
[2,3,1,4] => [3,2,1,4] => {{1,3},{2},{4}}
=> 2
[2,3,4,1] => [4,2,3,1] => {{1,4},{2},{3}}
=> 3
[2,4,1,3] => [3,4,1,2] => {{1,3},{2,4}}
=> 2
[2,4,3,1] => [4,3,2,1] => {{1,4},{2,3}}
=> 3
[3,1,2,4] => [3,2,1,4] => {{1,3},{2},{4}}
=> 2
[3,1,4,2] => [4,2,3,1] => {{1,4},{2},{3}}
=> 3
[3,2,1,4] => [3,2,1,4] => {{1,3},{2},{4}}
=> 2
[3,2,4,1] => [4,2,3,1] => {{1,4},{2},{3}}
=> 3
[3,4,1,2] => [4,3,2,1] => {{1,4},{2,3}}
=> 3
[3,4,2,1] => [4,3,2,1] => {{1,4},{2,3}}
=> 3
[4,1,2,3] => [4,2,3,1] => {{1,4},{2},{3}}
=> 3
[4,1,3,2] => [4,2,3,1] => {{1,4},{2},{3}}
=> 3
[4,2,1,3] => [4,3,2,1] => {{1,4},{2,3}}
=> 3
[4,2,3,1] => [4,3,2,1] => {{1,4},{2,3}}
=> 3
[4,3,1,2] => [4,3,2,1] => {{1,4},{2,3}}
=> 3
[4,3,2,1] => [4,3,2,1] => {{1,4},{2,3}}
=> 3
[1,2,3,4,5] => [1,2,3,4,5] => {{1},{2},{3},{4},{5}}
=> 0
[1,2,3,5,4] => [1,2,3,5,4] => {{1},{2},{3},{4,5}}
=> 1
[1,2,4,3,5] => [1,2,4,3,5] => {{1},{2},{3,4},{5}}
=> 1
[1,2,4,5,3] => [1,2,5,4,3] => {{1},{2},{3,5},{4}}
=> 2
[1,2,5,3,4] => [1,2,5,4,3] => {{1},{2},{3,5},{4}}
=> 2
[1,2,5,4,3] => [1,2,5,4,3] => {{1},{2},{3,5},{4}}
=> 2
[1,3,2,4,5] => [1,3,2,4,5] => {{1},{2,3},{4},{5}}
=> 1
[1,3,2,5,4] => [1,3,2,5,4] => {{1},{2,3},{4,5}}
=> 1
[1,3,4,2,5] => [1,4,3,2,5] => {{1},{2,4},{3},{5}}
=> 2
[1,3,4,5,2] => [1,5,3,4,2] => {{1},{2,5},{3},{4}}
=> 3
[1,3,5,2,4] => [1,4,5,2,3] => {{1},{2,4},{3,5}}
=> 2
[1,3,5,4,2] => [1,5,4,3,2] => {{1},{2,5},{3,4}}
=> 3
[1,4,2,3,5] => [1,4,3,2,5] => {{1},{2,4},{3},{5}}
=> 2
[1,4,2,5,3] => [1,5,3,4,2] => {{1},{2,5},{3},{4}}
=> 3
[1,4,3,2,5] => [1,4,3,2,5] => {{1},{2,4},{3},{5}}
=> 2
[1,4,3,5,2] => [1,5,3,4,2] => {{1},{2,5},{3},{4}}
=> 3
[1,4,5,2,3] => [1,5,4,3,2] => {{1},{2,5},{3,4}}
=> 3
[1,4,5,3,2] => [1,5,4,3,2] => {{1},{2,5},{3,4}}
=> 3
Description
The maximal arc length of a set partition.
The arcs of a set partition are those $i < j$ that are consecutive elements in the blocks. If there are no arcs, the maximal arc length is $0$.
Matching statistic: St000013
(load all 3 compositions to match this statistic)
(load all 3 compositions to match this statistic)
Mp00159: Permutations —Demazure product with inverse⟶ Permutations
Mp00127: Permutations —left-to-right-maxima to Dyck path⟶ Dyck paths
St000013: Dyck paths ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00127: Permutations —left-to-right-maxima to Dyck path⟶ Dyck paths
St000013: Dyck paths ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[1,2] => [1,2] => [1,0,1,0]
=> 1 = 0 + 1
[2,1] => [2,1] => [1,1,0,0]
=> 2 = 1 + 1
[1,2,3] => [1,2,3] => [1,0,1,0,1,0]
=> 1 = 0 + 1
[1,3,2] => [1,3,2] => [1,0,1,1,0,0]
=> 2 = 1 + 1
[2,1,3] => [2,1,3] => [1,1,0,0,1,0]
=> 2 = 1 + 1
[2,3,1] => [3,2,1] => [1,1,1,0,0,0]
=> 3 = 2 + 1
[3,1,2] => [3,2,1] => [1,1,1,0,0,0]
=> 3 = 2 + 1
[3,2,1] => [3,2,1] => [1,1,1,0,0,0]
=> 3 = 2 + 1
[1,2,3,4] => [1,2,3,4] => [1,0,1,0,1,0,1,0]
=> 1 = 0 + 1
[1,2,4,3] => [1,2,4,3] => [1,0,1,0,1,1,0,0]
=> 2 = 1 + 1
[1,3,2,4] => [1,3,2,4] => [1,0,1,1,0,0,1,0]
=> 2 = 1 + 1
[1,3,4,2] => [1,4,3,2] => [1,0,1,1,1,0,0,0]
=> 3 = 2 + 1
[1,4,2,3] => [1,4,3,2] => [1,0,1,1,1,0,0,0]
=> 3 = 2 + 1
[1,4,3,2] => [1,4,3,2] => [1,0,1,1,1,0,0,0]
=> 3 = 2 + 1
[2,1,3,4] => [2,1,3,4] => [1,1,0,0,1,0,1,0]
=> 2 = 1 + 1
[2,1,4,3] => [2,1,4,3] => [1,1,0,0,1,1,0,0]
=> 2 = 1 + 1
[2,3,1,4] => [3,2,1,4] => [1,1,1,0,0,0,1,0]
=> 3 = 2 + 1
[2,3,4,1] => [4,2,3,1] => [1,1,1,1,0,0,0,0]
=> 4 = 3 + 1
[2,4,1,3] => [3,4,1,2] => [1,1,1,0,1,0,0,0]
=> 3 = 2 + 1
[2,4,3,1] => [4,3,2,1] => [1,1,1,1,0,0,0,0]
=> 4 = 3 + 1
[3,1,2,4] => [3,2,1,4] => [1,1,1,0,0,0,1,0]
=> 3 = 2 + 1
[3,1,4,2] => [4,2,3,1] => [1,1,1,1,0,0,0,0]
=> 4 = 3 + 1
[3,2,1,4] => [3,2,1,4] => [1,1,1,0,0,0,1,0]
=> 3 = 2 + 1
[3,2,4,1] => [4,2,3,1] => [1,1,1,1,0,0,0,0]
=> 4 = 3 + 1
[3,4,1,2] => [4,3,2,1] => [1,1,1,1,0,0,0,0]
=> 4 = 3 + 1
[3,4,2,1] => [4,3,2,1] => [1,1,1,1,0,0,0,0]
=> 4 = 3 + 1
[4,1,2,3] => [4,2,3,1] => [1,1,1,1,0,0,0,0]
=> 4 = 3 + 1
[4,1,3,2] => [4,2,3,1] => [1,1,1,1,0,0,0,0]
=> 4 = 3 + 1
[4,2,1,3] => [4,3,2,1] => [1,1,1,1,0,0,0,0]
=> 4 = 3 + 1
[4,2,3,1] => [4,3,2,1] => [1,1,1,1,0,0,0,0]
=> 4 = 3 + 1
[4,3,1,2] => [4,3,2,1] => [1,1,1,1,0,0,0,0]
=> 4 = 3 + 1
[4,3,2,1] => [4,3,2,1] => [1,1,1,1,0,0,0,0]
=> 4 = 3 + 1
[1,2,3,4,5] => [1,2,3,4,5] => [1,0,1,0,1,0,1,0,1,0]
=> 1 = 0 + 1
[1,2,3,5,4] => [1,2,3,5,4] => [1,0,1,0,1,0,1,1,0,0]
=> 2 = 1 + 1
[1,2,4,3,5] => [1,2,4,3,5] => [1,0,1,0,1,1,0,0,1,0]
=> 2 = 1 + 1
[1,2,4,5,3] => [1,2,5,4,3] => [1,0,1,0,1,1,1,0,0,0]
=> 3 = 2 + 1
[1,2,5,3,4] => [1,2,5,4,3] => [1,0,1,0,1,1,1,0,0,0]
=> 3 = 2 + 1
[1,2,5,4,3] => [1,2,5,4,3] => [1,0,1,0,1,1,1,0,0,0]
=> 3 = 2 + 1
[1,3,2,4,5] => [1,3,2,4,5] => [1,0,1,1,0,0,1,0,1,0]
=> 2 = 1 + 1
[1,3,2,5,4] => [1,3,2,5,4] => [1,0,1,1,0,0,1,1,0,0]
=> 2 = 1 + 1
[1,3,4,2,5] => [1,4,3,2,5] => [1,0,1,1,1,0,0,0,1,0]
=> 3 = 2 + 1
[1,3,4,5,2] => [1,5,3,4,2] => [1,0,1,1,1,1,0,0,0,0]
=> 4 = 3 + 1
[1,3,5,2,4] => [1,4,5,2,3] => [1,0,1,1,1,0,1,0,0,0]
=> 3 = 2 + 1
[1,3,5,4,2] => [1,5,4,3,2] => [1,0,1,1,1,1,0,0,0,0]
=> 4 = 3 + 1
[1,4,2,3,5] => [1,4,3,2,5] => [1,0,1,1,1,0,0,0,1,0]
=> 3 = 2 + 1
[1,4,2,5,3] => [1,5,3,4,2] => [1,0,1,1,1,1,0,0,0,0]
=> 4 = 3 + 1
[1,4,3,2,5] => [1,4,3,2,5] => [1,0,1,1,1,0,0,0,1,0]
=> 3 = 2 + 1
[1,4,3,5,2] => [1,5,3,4,2] => [1,0,1,1,1,1,0,0,0,0]
=> 4 = 3 + 1
[1,4,5,2,3] => [1,5,4,3,2] => [1,0,1,1,1,1,0,0,0,0]
=> 4 = 3 + 1
[1,4,5,3,2] => [1,5,4,3,2] => [1,0,1,1,1,1,0,0,0,0]
=> 4 = 3 + 1
Description
The height of a Dyck path.
The height of a Dyck path $D$ of semilength $n$ is defined as the maximal height of a peak of $D$. The height of $D$ at position $i$ is the number of up-steps minus the number of down-steps before position $i$.
Matching statistic: St000028
Mp00159: Permutations —Demazure product with inverse⟶ Permutations
Mp00087: Permutations —inverse first fundamental transformation⟶ Permutations
Mp00067: Permutations —Foata bijection⟶ Permutations
St000028: Permutations ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00087: Permutations —inverse first fundamental transformation⟶ Permutations
Mp00067: Permutations —Foata bijection⟶ Permutations
St000028: Permutations ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[1,2] => [1,2] => [1,2] => [1,2] => 0
[2,1] => [2,1] => [2,1] => [2,1] => 1
[1,2,3] => [1,2,3] => [1,2,3] => [1,2,3] => 0
[1,3,2] => [1,3,2] => [1,3,2] => [3,1,2] => 1
[2,1,3] => [2,1,3] => [2,1,3] => [2,1,3] => 1
[2,3,1] => [3,2,1] => [2,3,1] => [2,3,1] => 2
[3,1,2] => [3,2,1] => [2,3,1] => [2,3,1] => 2
[3,2,1] => [3,2,1] => [2,3,1] => [2,3,1] => 2
[1,2,3,4] => [1,2,3,4] => [1,2,3,4] => [1,2,3,4] => 0
[1,2,4,3] => [1,2,4,3] => [1,2,4,3] => [4,1,2,3] => 1
[1,3,2,4] => [1,3,2,4] => [1,3,2,4] => [3,1,2,4] => 1
[1,3,4,2] => [1,4,3,2] => [1,3,4,2] => [3,1,4,2] => 2
[1,4,2,3] => [1,4,3,2] => [1,3,4,2] => [3,1,4,2] => 2
[1,4,3,2] => [1,4,3,2] => [1,3,4,2] => [3,1,4,2] => 2
[2,1,3,4] => [2,1,3,4] => [2,1,3,4] => [2,1,3,4] => 1
[2,1,4,3] => [2,1,4,3] => [2,1,4,3] => [4,2,1,3] => 1
[2,3,1,4] => [3,2,1,4] => [2,3,1,4] => [2,3,1,4] => 2
[2,3,4,1] => [4,2,3,1] => [2,3,4,1] => [2,3,4,1] => 3
[2,4,1,3] => [3,4,1,2] => [3,1,4,2] => [3,4,1,2] => 2
[2,4,3,1] => [4,3,2,1] => [3,2,4,1] => [3,2,4,1] => 3
[3,1,2,4] => [3,2,1,4] => [2,3,1,4] => [2,3,1,4] => 2
[3,1,4,2] => [4,2,3,1] => [2,3,4,1] => [2,3,4,1] => 3
[3,2,1,4] => [3,2,1,4] => [2,3,1,4] => [2,3,1,4] => 2
[3,2,4,1] => [4,2,3,1] => [2,3,4,1] => [2,3,4,1] => 3
[3,4,1,2] => [4,3,2,1] => [3,2,4,1] => [3,2,4,1] => 3
[3,4,2,1] => [4,3,2,1] => [3,2,4,1] => [3,2,4,1] => 3
[4,1,2,3] => [4,2,3,1] => [2,3,4,1] => [2,3,4,1] => 3
[4,1,3,2] => [4,2,3,1] => [2,3,4,1] => [2,3,4,1] => 3
[4,2,1,3] => [4,3,2,1] => [3,2,4,1] => [3,2,4,1] => 3
[4,2,3,1] => [4,3,2,1] => [3,2,4,1] => [3,2,4,1] => 3
[4,3,1,2] => [4,3,2,1] => [3,2,4,1] => [3,2,4,1] => 3
[4,3,2,1] => [4,3,2,1] => [3,2,4,1] => [3,2,4,1] => 3
[1,2,3,4,5] => [1,2,3,4,5] => [1,2,3,4,5] => [1,2,3,4,5] => 0
[1,2,3,5,4] => [1,2,3,5,4] => [1,2,3,5,4] => [5,1,2,3,4] => 1
[1,2,4,3,5] => [1,2,4,3,5] => [1,2,4,3,5] => [4,1,2,3,5] => 1
[1,2,4,5,3] => [1,2,5,4,3] => [1,2,4,5,3] => [4,1,2,5,3] => 2
[1,2,5,3,4] => [1,2,5,4,3] => [1,2,4,5,3] => [4,1,2,5,3] => 2
[1,2,5,4,3] => [1,2,5,4,3] => [1,2,4,5,3] => [4,1,2,5,3] => 2
[1,3,2,4,5] => [1,3,2,4,5] => [1,3,2,4,5] => [3,1,2,4,5] => 1
[1,3,2,5,4] => [1,3,2,5,4] => [1,3,2,5,4] => [5,3,1,2,4] => 1
[1,3,4,2,5] => [1,4,3,2,5] => [1,3,4,2,5] => [3,1,4,2,5] => 2
[1,3,4,5,2] => [1,5,3,4,2] => [1,3,4,5,2] => [3,1,4,5,2] => 3
[1,3,5,2,4] => [1,4,5,2,3] => [1,4,2,5,3] => [4,5,1,2,3] => 2
[1,3,5,4,2] => [1,5,4,3,2] => [1,4,3,5,2] => [4,3,1,5,2] => 3
[1,4,2,3,5] => [1,4,3,2,5] => [1,3,4,2,5] => [3,1,4,2,5] => 2
[1,4,2,5,3] => [1,5,3,4,2] => [1,3,4,5,2] => [3,1,4,5,2] => 3
[1,4,3,2,5] => [1,4,3,2,5] => [1,3,4,2,5] => [3,1,4,2,5] => 2
[1,4,3,5,2] => [1,5,3,4,2] => [1,3,4,5,2] => [3,1,4,5,2] => 3
[1,4,5,2,3] => [1,5,4,3,2] => [1,4,3,5,2] => [4,3,1,5,2] => 3
[1,4,5,3,2] => [1,5,4,3,2] => [1,4,3,5,2] => [4,3,1,5,2] => 3
Description
The number of stack-sorts needed to sort a permutation.
A permutation is (West) $t$-stack sortable if it is sortable using $t$ stacks in series.
Let $W_t(n,k)$ be the number of permutations of size $n$
with $k$ descents which are $t$-stack sortable. Then the polynomials $W_{n,t}(x) = \sum_{k=0}^n W_t(n,k)x^k$
are symmetric and unimodal.
We have $W_{n,1}(x) = A_n(x)$, the Eulerian polynomials. One can show that $W_{n,1}(x)$ and $W_{n,2}(x)$ are real-rooted.
Precisely the permutations that avoid the pattern $231$ have statistic at most $1$, see [3]. These are counted by $\frac{1}{n+1}\binom{2n}{n}$ ([[OEIS:A000108]]). Precisely the permutations that avoid the pattern $2341$ and the barred pattern $3\bar 5241$ have statistic at most $2$, see [4]. These are counted by $\frac{2(3n)!}{(n+1)!(2n+1)!}$ ([[OEIS:A000139]]).
Matching statistic: St000306
Mp00159: Permutations —Demazure product with inverse⟶ Permutations
Mp00127: Permutations —left-to-right-maxima to Dyck path⟶ Dyck paths
Mp00030: Dyck paths —zeta map⟶ Dyck paths
St000306: Dyck paths ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00127: Permutations —left-to-right-maxima to Dyck path⟶ Dyck paths
Mp00030: Dyck paths —zeta map⟶ Dyck paths
St000306: Dyck paths ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[1,2] => [1,2] => [1,0,1,0]
=> [1,1,0,0]
=> 0
[2,1] => [2,1] => [1,1,0,0]
=> [1,0,1,0]
=> 1
[1,2,3] => [1,2,3] => [1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> 0
[1,3,2] => [1,3,2] => [1,0,1,1,0,0]
=> [1,0,1,1,0,0]
=> 1
[2,1,3] => [2,1,3] => [1,1,0,0,1,0]
=> [1,1,0,1,0,0]
=> 1
[2,3,1] => [3,2,1] => [1,1,1,0,0,0]
=> [1,0,1,0,1,0]
=> 2
[3,1,2] => [3,2,1] => [1,1,1,0,0,0]
=> [1,0,1,0,1,0]
=> 2
[3,2,1] => [3,2,1] => [1,1,1,0,0,0]
=> [1,0,1,0,1,0]
=> 2
[1,2,3,4] => [1,2,3,4] => [1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> 0
[1,2,4,3] => [1,2,4,3] => [1,0,1,0,1,1,0,0]
=> [1,0,1,1,1,0,0,0]
=> 1
[1,3,2,4] => [1,3,2,4] => [1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,0,0]
=> 1
[1,3,4,2] => [1,4,3,2] => [1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,0,0]
=> 2
[1,4,2,3] => [1,4,3,2] => [1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,0,0]
=> 2
[1,4,3,2] => [1,4,3,2] => [1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,0,0]
=> 2
[2,1,3,4] => [2,1,3,4] => [1,1,0,0,1,0,1,0]
=> [1,1,1,0,1,0,0,0]
=> 1
[2,1,4,3] => [2,1,4,3] => [1,1,0,0,1,1,0,0]
=> [1,1,0,1,0,1,0,0]
=> 1
[2,3,1,4] => [3,2,1,4] => [1,1,1,0,0,0,1,0]
=> [1,0,1,1,0,1,0,0]
=> 2
[2,3,4,1] => [4,2,3,1] => [1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> 3
[2,4,1,3] => [3,4,1,2] => [1,1,1,0,1,0,0,0]
=> [1,1,0,0,1,0,1,0]
=> 2
[2,4,3,1] => [4,3,2,1] => [1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> 3
[3,1,2,4] => [3,2,1,4] => [1,1,1,0,0,0,1,0]
=> [1,0,1,1,0,1,0,0]
=> 2
[3,1,4,2] => [4,2,3,1] => [1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> 3
[3,2,1,4] => [3,2,1,4] => [1,1,1,0,0,0,1,0]
=> [1,0,1,1,0,1,0,0]
=> 2
[3,2,4,1] => [4,2,3,1] => [1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> 3
[3,4,1,2] => [4,3,2,1] => [1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> 3
[3,4,2,1] => [4,3,2,1] => [1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> 3
[4,1,2,3] => [4,2,3,1] => [1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> 3
[4,1,3,2] => [4,2,3,1] => [1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> 3
[4,2,1,3] => [4,3,2,1] => [1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> 3
[4,2,3,1] => [4,3,2,1] => [1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> 3
[4,3,1,2] => [4,3,2,1] => [1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> 3
[4,3,2,1] => [4,3,2,1] => [1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> 3
[1,2,3,4,5] => [1,2,3,4,5] => [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> 0
[1,2,3,5,4] => [1,2,3,5,4] => [1,0,1,0,1,0,1,1,0,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> 1
[1,2,4,3,5] => [1,2,4,3,5] => [1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> 1
[1,2,4,5,3] => [1,2,5,4,3] => [1,0,1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> 2
[1,2,5,3,4] => [1,2,5,4,3] => [1,0,1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> 2
[1,2,5,4,3] => [1,2,5,4,3] => [1,0,1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> 2
[1,3,2,4,5] => [1,3,2,4,5] => [1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,0,1,1,0,0,0,0]
=> 1
[1,3,2,5,4] => [1,3,2,5,4] => [1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> 1
[1,3,4,2,5] => [1,4,3,2,5] => [1,0,1,1,1,0,0,0,1,0]
=> [1,0,1,1,0,1,1,0,0,0]
=> 2
[1,3,4,5,2] => [1,5,3,4,2] => [1,0,1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> 3
[1,3,5,2,4] => [1,4,5,2,3] => [1,0,1,1,1,0,1,0,0,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> 2
[1,3,5,4,2] => [1,5,4,3,2] => [1,0,1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> 3
[1,4,2,3,5] => [1,4,3,2,5] => [1,0,1,1,1,0,0,0,1,0]
=> [1,0,1,1,0,1,1,0,0,0]
=> 2
[1,4,2,5,3] => [1,5,3,4,2] => [1,0,1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> 3
[1,4,3,2,5] => [1,4,3,2,5] => [1,0,1,1,1,0,0,0,1,0]
=> [1,0,1,1,0,1,1,0,0,0]
=> 2
[1,4,3,5,2] => [1,5,3,4,2] => [1,0,1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> 3
[1,4,5,2,3] => [1,5,4,3,2] => [1,0,1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> 3
[1,4,5,3,2] => [1,5,4,3,2] => [1,0,1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> 3
Description
The bounce count of a Dyck path.
For a Dyck path $D$ of length $2n$, this is the number of points $(i,i)$ for $1 \leq i < n$ that are touching points of the [[Mp00099|bounce path]] of $D$.
Matching statistic: St000651
(load all 5 compositions to match this statistic)
(load all 5 compositions to match this statistic)
Mp00159: Permutations —Demazure product with inverse⟶ Permutations
Mp00087: Permutations —inverse first fundamental transformation⟶ Permutations
Mp00069: Permutations —complement⟶ Permutations
St000651: Permutations ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00087: Permutations —inverse first fundamental transformation⟶ Permutations
Mp00069: Permutations —complement⟶ Permutations
St000651: Permutations ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[1,2] => [1,2] => [1,2] => [2,1] => 0
[2,1] => [2,1] => [2,1] => [1,2] => 1
[1,2,3] => [1,2,3] => [1,2,3] => [3,2,1] => 0
[1,3,2] => [1,3,2] => [1,3,2] => [3,1,2] => 1
[2,1,3] => [2,1,3] => [2,1,3] => [2,3,1] => 1
[2,3,1] => [3,2,1] => [2,3,1] => [2,1,3] => 2
[3,1,2] => [3,2,1] => [2,3,1] => [2,1,3] => 2
[3,2,1] => [3,2,1] => [2,3,1] => [2,1,3] => 2
[1,2,3,4] => [1,2,3,4] => [1,2,3,4] => [4,3,2,1] => 0
[1,2,4,3] => [1,2,4,3] => [1,2,4,3] => [4,3,1,2] => 1
[1,3,2,4] => [1,3,2,4] => [1,3,2,4] => [4,2,3,1] => 1
[1,3,4,2] => [1,4,3,2] => [1,3,4,2] => [4,2,1,3] => 2
[1,4,2,3] => [1,4,3,2] => [1,3,4,2] => [4,2,1,3] => 2
[1,4,3,2] => [1,4,3,2] => [1,3,4,2] => [4,2,1,3] => 2
[2,1,3,4] => [2,1,3,4] => [2,1,3,4] => [3,4,2,1] => 1
[2,1,4,3] => [2,1,4,3] => [2,1,4,3] => [3,4,1,2] => 1
[2,3,1,4] => [3,2,1,4] => [2,3,1,4] => [3,2,4,1] => 2
[2,3,4,1] => [4,2,3,1] => [2,3,4,1] => [3,2,1,4] => 3
[2,4,1,3] => [3,4,1,2] => [3,1,4,2] => [2,4,1,3] => 2
[2,4,3,1] => [4,3,2,1] => [3,2,4,1] => [2,3,1,4] => 3
[3,1,2,4] => [3,2,1,4] => [2,3,1,4] => [3,2,4,1] => 2
[3,1,4,2] => [4,2,3,1] => [2,3,4,1] => [3,2,1,4] => 3
[3,2,1,4] => [3,2,1,4] => [2,3,1,4] => [3,2,4,1] => 2
[3,2,4,1] => [4,2,3,1] => [2,3,4,1] => [3,2,1,4] => 3
[3,4,1,2] => [4,3,2,1] => [3,2,4,1] => [2,3,1,4] => 3
[3,4,2,1] => [4,3,2,1] => [3,2,4,1] => [2,3,1,4] => 3
[4,1,2,3] => [4,2,3,1] => [2,3,4,1] => [3,2,1,4] => 3
[4,1,3,2] => [4,2,3,1] => [2,3,4,1] => [3,2,1,4] => 3
[4,2,1,3] => [4,3,2,1] => [3,2,4,1] => [2,3,1,4] => 3
[4,2,3,1] => [4,3,2,1] => [3,2,4,1] => [2,3,1,4] => 3
[4,3,1,2] => [4,3,2,1] => [3,2,4,1] => [2,3,1,4] => 3
[4,3,2,1] => [4,3,2,1] => [3,2,4,1] => [2,3,1,4] => 3
[1,2,3,4,5] => [1,2,3,4,5] => [1,2,3,4,5] => [5,4,3,2,1] => 0
[1,2,3,5,4] => [1,2,3,5,4] => [1,2,3,5,4] => [5,4,3,1,2] => 1
[1,2,4,3,5] => [1,2,4,3,5] => [1,2,4,3,5] => [5,4,2,3,1] => 1
[1,2,4,5,3] => [1,2,5,4,3] => [1,2,4,5,3] => [5,4,2,1,3] => 2
[1,2,5,3,4] => [1,2,5,4,3] => [1,2,4,5,3] => [5,4,2,1,3] => 2
[1,2,5,4,3] => [1,2,5,4,3] => [1,2,4,5,3] => [5,4,2,1,3] => 2
[1,3,2,4,5] => [1,3,2,4,5] => [1,3,2,4,5] => [5,3,4,2,1] => 1
[1,3,2,5,4] => [1,3,2,5,4] => [1,3,2,5,4] => [5,3,4,1,2] => 1
[1,3,4,2,5] => [1,4,3,2,5] => [1,3,4,2,5] => [5,3,2,4,1] => 2
[1,3,4,5,2] => [1,5,3,4,2] => [1,3,4,5,2] => [5,3,2,1,4] => 3
[1,3,5,2,4] => [1,4,5,2,3] => [1,4,2,5,3] => [5,2,4,1,3] => 2
[1,3,5,4,2] => [1,5,4,3,2] => [1,4,3,5,2] => [5,2,3,1,4] => 3
[1,4,2,3,5] => [1,4,3,2,5] => [1,3,4,2,5] => [5,3,2,4,1] => 2
[1,4,2,5,3] => [1,5,3,4,2] => [1,3,4,5,2] => [5,3,2,1,4] => 3
[1,4,3,2,5] => [1,4,3,2,5] => [1,3,4,2,5] => [5,3,2,4,1] => 2
[1,4,3,5,2] => [1,5,3,4,2] => [1,3,4,5,2] => [5,3,2,1,4] => 3
[1,4,5,2,3] => [1,5,4,3,2] => [1,4,3,5,2] => [5,2,3,1,4] => 3
[1,4,5,3,2] => [1,5,4,3,2] => [1,4,3,5,2] => [5,2,3,1,4] => 3
Description
The maximal size of a rise in a permutation.
This is $\max_i \sigma_{i+1}-\sigma_i$, except for the permutations without rises, where it is $0$.
The following 29 statistics, ordered by result quality, also match your data. Click on any of them to see the details.
St000662The staircase size of the code of a permutation. St001046The maximal number of arcs nesting a given arc of a perfect matching. St000062The length of the longest increasing subsequence of the permutation. St000166The depth minus 1 of an ordered tree. St000720The size of the largest partition in the oscillating tableau corresponding to the perfect matching. St001039The maximal height of a column in the parallelogram polyomino associated with a Dyck path. St001203We associate to a CNakayama algebra (a Nakayama algebra with a cyclic quiver) with Kupisch series $L=[c_0,c_1,...,c_{n-1}]$ such that $n=c_0 < c_i$ for all $i > 0$ a Dyck path as follows:
St000094The depth of an ordered tree. St001232The number of indecomposable modules with projective dimension 2 for Nakayama algebras with global dimension at most 2. St000454The largest eigenvalue of a graph if it is integral. St001330The hat guessing number of a graph. St000771The largest multiplicity of a distance Laplacian eigenvalue in a connected graph. St000772The multiplicity of the largest distance Laplacian eigenvalue in a connected graph. St001645The pebbling number of a connected graph. St000264The girth of a graph, which is not a tree. St000259The diameter of a connected graph. St001879The number of indecomposable summands of the top of the first syzygy of the dual of the regular module in the incidence algebra of the lattice. St001589The nesting number of a perfect matching. St001875The number of simple modules with projective dimension at most 1. St001060The distinguishing index of a graph. St000455The second largest eigenvalue of a graph if it is integral. St001876The number of 2-regular simple modules in the incidence algebra of the lattice. St001880The number of 2-Gorenstein indecomposable injective modules in the incidence algebra of the lattice. St001630The global dimension of the incidence algebra of the lattice over the rational numbers. St001878The projective dimension of the simple modules corresponding to the minimum of L in the incidence algebra of the lattice L. St001207The Lowey length of the algebra $A/T$ when $T$ is the 1-tilting module corresponding to the permutation in the Auslander algebra of $K[x]/(x^n)$. St001596The number of two-by-two squares inside a skew partition. St001877Number of indecomposable injective modules with projective dimension 2. St001633The number of simple modules with projective dimension two in the incidence algebra of the poset.
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!