searching the database
Your data matches 202 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
(click to perform a complete search on your data)
Matching statistic: St001247
(load all 6 compositions to match this statistic)
(load all 6 compositions to match this statistic)
St001247: Integer partitions ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[2]
=> 0
[1,1]
=> 2
[3]
=> 1
[2,1]
=> 1
[1,1,1]
=> 3
[4]
=> 1
[3,1]
=> 2
[2,2]
=> 0
[2,1,1]
=> 2
[1,1,1,1]
=> 4
[5]
=> 0
[4,1]
=> 2
[3,2]
=> 1
[3,1,1]
=> 3
[2,2,1]
=> 1
[2,1,1,1]
=> 3
[1,1,1,1,1]
=> 5
[6]
=> 1
[5,1]
=> 1
[4,2]
=> 1
[4,1,1]
=> 3
[3,3]
=> 2
[3,2,1]
=> 2
[3,1,1,1]
=> 4
[2,2,2]
=> 0
[2,2,1,1]
=> 2
[2,1,1,1,1]
=> 4
[1,1,1,1,1,1]
=> 6
Description
The number of parts of a partition that are not congruent 2 modulo 3.
Matching statistic: St000288
(load all 3 compositions to match this statistic)
(load all 3 compositions to match this statistic)
Mp00317: Integer partitions —odd parts⟶ Binary words
Mp00104: Binary words —reverse⟶ Binary words
Mp00268: Binary words —zeros to flag zeros⟶ Binary words
St000288: Binary words ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00104: Binary words —reverse⟶ Binary words
Mp00268: Binary words —zeros to flag zeros⟶ Binary words
St000288: Binary words ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[2]
=> 0 => 0 => 0 => 0
[1,1]
=> 11 => 11 => 11 => 2
[3]
=> 1 => 1 => 1 => 1
[2,1]
=> 01 => 10 => 01 => 1
[1,1,1]
=> 111 => 111 => 111 => 3
[4]
=> 0 => 0 => 0 => 0
[3,1]
=> 11 => 11 => 11 => 2
[2,2]
=> 00 => 00 => 10 => 1
[2,1,1]
=> 011 => 110 => 011 => 2
[1,1,1,1]
=> 1111 => 1111 => 1111 => 4
[5]
=> 1 => 1 => 1 => 1
[4,1]
=> 01 => 10 => 01 => 1
[3,2]
=> 10 => 01 => 00 => 0
[3,1,1]
=> 111 => 111 => 111 => 3
[2,2,1]
=> 001 => 100 => 101 => 2
[2,1,1,1]
=> 0111 => 1110 => 0111 => 3
[1,1,1,1,1]
=> 11111 => 11111 => 11111 => 5
[6]
=> 0 => 0 => 0 => 0
[5,1]
=> 11 => 11 => 11 => 2
[4,2]
=> 00 => 00 => 10 => 1
[4,1,1]
=> 011 => 110 => 011 => 2
[3,3]
=> 11 => 11 => 11 => 2
[3,2,1]
=> 101 => 101 => 001 => 1
[3,1,1,1]
=> 1111 => 1111 => 1111 => 4
[2,2,2]
=> 000 => 000 => 010 => 1
[2,2,1,1]
=> 0011 => 1100 => 1011 => 3
[2,1,1,1,1]
=> 01111 => 11110 => 01111 => 4
[1,1,1,1,1,1]
=> 111111 => 111111 => 111111 => 6
Description
The number of ones in a binary word.
This is also known as the Hamming weight of the word.
Matching statistic: St000445
Mp00230: Integer partitions —parallelogram polyomino⟶ Dyck paths
Mp00142: Dyck paths —promotion⟶ Dyck paths
Mp00099: Dyck paths —bounce path⟶ Dyck paths
St000445: Dyck paths ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00142: Dyck paths —promotion⟶ Dyck paths
Mp00099: Dyck paths —bounce path⟶ Dyck paths
St000445: Dyck paths ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[2]
=> [1,0,1,0]
=> [1,1,0,0]
=> [1,1,0,0]
=> 0
[1,1]
=> [1,1,0,0]
=> [1,0,1,0]
=> [1,0,1,0]
=> 2
[3]
=> [1,0,1,0,1,0]
=> [1,1,0,1,0,0]
=> [1,0,1,1,0,0]
=> 1
[2,1]
=> [1,0,1,1,0,0]
=> [1,1,0,0,1,0]
=> [1,1,0,0,1,0]
=> 1
[1,1,1]
=> [1,1,0,1,0,0]
=> [1,0,1,0,1,0]
=> [1,0,1,0,1,0]
=> 3
[4]
=> [1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> 0
[3,1]
=> [1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0]
=> 2
[2,2]
=> [1,1,1,0,0,0]
=> [1,0,1,1,0,0]
=> [1,0,1,1,0,0]
=> 1
[2,1,1]
=> [1,0,1,1,0,1,0,0]
=> [1,1,0,0,1,0,1,0]
=> [1,1,0,0,1,0,1,0]
=> 2
[1,1,1,1]
=> [1,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0]
=> 4
[5]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> 1
[4,1]
=> [1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> 1
[3,2]
=> [1,0,1,1,1,0,0,0]
=> [1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> 0
[3,1,1]
=> [1,0,1,0,1,1,0,1,0,0]
=> [1,1,0,1,0,0,1,0,1,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> 3
[2,2,1]
=> [1,1,1,0,0,1,0,0]
=> [1,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0]
=> 2
[2,1,1,1]
=> [1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,0,1,0,1,0,1,0]
=> [1,1,0,0,1,0,1,0,1,0]
=> 3
[1,1,1,1,1]
=> [1,1,0,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> 5
[6]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,1,0,0]
=> [1,1,0,0,1,1,0,0,1,1,0,0]
=> 0
[5,1]
=> [1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,0,1,0,0,1,0]
=> [1,0,1,1,0,0,1,1,0,0,1,0]
=> 2
[4,2]
=> [1,0,1,0,1,1,1,0,0,0]
=> [1,1,0,1,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> 1
[4,1,1]
=> [1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,1,0,1,0,1,0,0,1,0,1,0]
=> [1,1,0,0,1,1,0,0,1,0,1,0]
=> 2
[3,3]
=> [1,1,1,0,1,0,0,0]
=> [1,0,1,1,0,1,0,0]
=> [1,0,1,0,1,1,0,0]
=> 2
[3,2,1]
=> [1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> 1
[3,1,1,1]
=> [1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,1,0,0,1,0,1,0,1,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0]
=> 4
[2,2,2]
=> [1,1,1,1,0,0,0,0]
=> [1,0,1,1,1,0,0,0]
=> [1,0,1,1,1,0,0,0]
=> 1
[2,2,1,1]
=> [1,1,1,0,0,1,0,1,0,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> 3
[2,1,1,1,1]
=> [1,0,1,1,0,1,0,1,0,1,0,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0]
=> 4
[1,1,1,1,1,1]
=> [1,1,0,1,0,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> 6
Description
The number of rises of length 1 of a Dyck path.
Matching statistic: St000674
Mp00230: Integer partitions —parallelogram polyomino⟶ Dyck paths
Mp00142: Dyck paths —promotion⟶ Dyck paths
Mp00099: Dyck paths —bounce path⟶ Dyck paths
St000674: Dyck paths ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00142: Dyck paths —promotion⟶ Dyck paths
Mp00099: Dyck paths —bounce path⟶ Dyck paths
St000674: Dyck paths ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[2]
=> [1,0,1,0]
=> [1,1,0,0]
=> [1,1,0,0]
=> 0
[1,1]
=> [1,1,0,0]
=> [1,0,1,0]
=> [1,0,1,0]
=> 2
[3]
=> [1,0,1,0,1,0]
=> [1,1,0,1,0,0]
=> [1,0,1,1,0,0]
=> 1
[2,1]
=> [1,0,1,1,0,0]
=> [1,1,0,0,1,0]
=> [1,1,0,0,1,0]
=> 1
[1,1,1]
=> [1,1,0,1,0,0]
=> [1,0,1,0,1,0]
=> [1,0,1,0,1,0]
=> 3
[4]
=> [1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> 0
[3,1]
=> [1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0]
=> 2
[2,2]
=> [1,1,1,0,0,0]
=> [1,0,1,1,0,0]
=> [1,0,1,1,0,0]
=> 1
[2,1,1]
=> [1,0,1,1,0,1,0,0]
=> [1,1,0,0,1,0,1,0]
=> [1,1,0,0,1,0,1,0]
=> 2
[1,1,1,1]
=> [1,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0]
=> 4
[5]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> 1
[4,1]
=> [1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> 1
[3,2]
=> [1,0,1,1,1,0,0,0]
=> [1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> 0
[3,1,1]
=> [1,0,1,0,1,1,0,1,0,0]
=> [1,1,0,1,0,0,1,0,1,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> 3
[2,2,1]
=> [1,1,1,0,0,1,0,0]
=> [1,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0]
=> 2
[2,1,1,1]
=> [1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,0,1,0,1,0,1,0]
=> [1,1,0,0,1,0,1,0,1,0]
=> 3
[1,1,1,1,1]
=> [1,1,0,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> 5
[6]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,1,0,0]
=> [1,1,0,0,1,1,0,0,1,1,0,0]
=> 0
[5,1]
=> [1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,0,1,0,0,1,0]
=> [1,0,1,1,0,0,1,1,0,0,1,0]
=> 2
[4,2]
=> [1,0,1,0,1,1,1,0,0,0]
=> [1,1,0,1,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> 1
[4,1,1]
=> [1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,1,0,1,0,1,0,0,1,0,1,0]
=> [1,1,0,0,1,1,0,0,1,0,1,0]
=> 2
[3,3]
=> [1,1,1,0,1,0,0,0]
=> [1,0,1,1,0,1,0,0]
=> [1,0,1,0,1,1,0,0]
=> 2
[3,2,1]
=> [1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> 1
[3,1,1,1]
=> [1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,1,0,0,1,0,1,0,1,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0]
=> 4
[2,2,2]
=> [1,1,1,1,0,0,0,0]
=> [1,0,1,1,1,0,0,0]
=> [1,0,1,1,1,0,0,0]
=> 1
[2,2,1,1]
=> [1,1,1,0,0,1,0,1,0,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> 3
[2,1,1,1,1]
=> [1,0,1,1,0,1,0,1,0,1,0,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0]
=> 4
[1,1,1,1,1,1]
=> [1,1,0,1,0,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> 6
Description
The number of hills of a Dyck path.
A hill is a peak with up step starting and down step ending at height zero.
Matching statistic: St000873
Mp00230: Integer partitions —parallelogram polyomino⟶ Dyck paths
Mp00119: Dyck paths —to 321-avoiding permutation (Krattenthaler)⟶ Permutations
Mp00241: Permutations —invert Laguerre heap⟶ Permutations
St000873: Permutations ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00119: Dyck paths —to 321-avoiding permutation (Krattenthaler)⟶ Permutations
Mp00241: Permutations —invert Laguerre heap⟶ Permutations
St000873: Permutations ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[2]
=> [1,0,1,0]
=> [1,2] => [1,2] => 2
[1,1]
=> [1,1,0,0]
=> [2,1] => [2,1] => 0
[3]
=> [1,0,1,0,1,0]
=> [1,2,3] => [1,2,3] => 3
[2,1]
=> [1,0,1,1,0,0]
=> [1,3,2] => [1,3,2] => 1
[1,1,1]
=> [1,1,0,1,0,0]
=> [2,3,1] => [3,1,2] => 1
[4]
=> [1,0,1,0,1,0,1,0]
=> [1,2,3,4] => [1,2,3,4] => 4
[3,1]
=> [1,0,1,0,1,1,0,0]
=> [1,2,4,3] => [1,2,4,3] => 2
[2,2]
=> [1,1,1,0,0,0]
=> [3,1,2] => [2,3,1] => 0
[2,1,1]
=> [1,0,1,1,0,1,0,0]
=> [1,3,4,2] => [1,4,2,3] => 2
[1,1,1,1]
=> [1,1,0,1,0,1,0,0]
=> [2,3,4,1] => [4,1,2,3] => 1
[5]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,2,3,4,5] => [1,2,3,4,5] => 5
[4,1]
=> [1,0,1,0,1,0,1,1,0,0]
=> [1,2,3,5,4] => [1,2,3,5,4] => 3
[3,2]
=> [1,0,1,1,1,0,0,0]
=> [1,4,2,3] => [1,3,4,2] => 1
[3,1,1]
=> [1,0,1,0,1,1,0,1,0,0]
=> [1,2,4,5,3] => [1,2,5,3,4] => 3
[2,2,1]
=> [1,1,1,0,0,1,0,0]
=> [3,1,4,2] => [4,2,3,1] => 0
[2,1,1,1]
=> [1,0,1,1,0,1,0,1,0,0]
=> [1,3,4,5,2] => [1,5,2,3,4] => 2
[1,1,1,1,1]
=> [1,1,0,1,0,1,0,1,0,0]
=> [2,3,4,5,1] => [5,1,2,3,4] => 1
[6]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,2,3,4,5,6] => [1,2,3,4,5,6] => 6
[5,1]
=> [1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,2,3,4,6,5] => [1,2,3,4,6,5] => 4
[4,2]
=> [1,0,1,0,1,1,1,0,0,0]
=> [1,2,5,3,4] => [1,2,4,5,3] => 2
[4,1,1]
=> [1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,2,3,5,6,4] => [1,2,3,6,4,5] => 4
[3,3]
=> [1,1,1,0,1,0,0,0]
=> [3,4,1,2] => [2,4,1,3] => 2
[3,2,1]
=> [1,0,1,1,1,0,0,1,0,0]
=> [1,4,2,5,3] => [1,5,3,4,2] => 1
[3,1,1,1]
=> [1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,2,4,5,6,3] => [1,2,6,3,4,5] => 3
[2,2,2]
=> [1,1,1,1,0,0,0,0]
=> [4,1,2,3] => [2,3,4,1] => 0
[2,2,1,1]
=> [1,1,1,0,0,1,0,1,0,0]
=> [3,1,4,5,2] => [5,2,3,1,4] => 1
[2,1,1,1,1]
=> [1,0,1,1,0,1,0,1,0,1,0,0]
=> [1,3,4,5,6,2] => [1,6,2,3,4,5] => 2
[1,1,1,1,1,1]
=> [1,1,0,1,0,1,0,1,0,1,0,0]
=> [2,3,4,5,6,1] => [6,1,2,3,4,5] => 1
Description
The aix statistic of a permutation.
According to [1], this statistic on finite strings π of integers is given as follows: let m be the leftmost occurrence of the minimal entry and let π=α m β. Then
aixπ={aixα if α,β≠∅1+aixβ if α=∅0 if β=∅ .
Matching statistic: St001017
(load all 2 compositions to match this statistic)
(load all 2 compositions to match this statistic)
Mp00230: Integer partitions —parallelogram polyomino⟶ Dyck paths
Mp00099: Dyck paths —bounce path⟶ Dyck paths
Mp00120: Dyck paths —Lalanne-Kreweras involution⟶ Dyck paths
St001017: Dyck paths ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00099: Dyck paths —bounce path⟶ Dyck paths
Mp00120: Dyck paths —Lalanne-Kreweras involution⟶ Dyck paths
St001017: Dyck paths ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[2]
=> [1,0,1,0]
=> [1,0,1,0]
=> [1,1,0,0]
=> 2
[1,1]
=> [1,1,0,0]
=> [1,1,0,0]
=> [1,0,1,0]
=> 0
[3]
=> [1,0,1,0,1,0]
=> [1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> 3
[2,1]
=> [1,0,1,1,0,0]
=> [1,0,1,1,0,0]
=> [1,1,0,0,1,0]
=> 1
[1,1,1]
=> [1,1,0,1,0,0]
=> [1,0,1,1,0,0]
=> [1,1,0,0,1,0]
=> 1
[4]
=> [1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> 4
[3,1]
=> [1,0,1,0,1,1,0,0]
=> [1,0,1,0,1,1,0,0]
=> [1,1,1,0,0,0,1,0]
=> 2
[2,2]
=> [1,1,1,0,0,0]
=> [1,1,1,0,0,0]
=> [1,0,1,0,1,0]
=> 1
[2,1,1]
=> [1,0,1,1,0,1,0,0]
=> [1,0,1,0,1,1,0,0]
=> [1,1,1,0,0,0,1,0]
=> 2
[1,1,1,1]
=> [1,1,0,1,0,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,0]
=> 0
[5]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> 5
[4,1]
=> [1,0,1,0,1,0,1,1,0,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,0,0,0,0,1,0]
=> 3
[3,2]
=> [1,0,1,1,1,0,0,0]
=> [1,0,1,1,1,0,0,0]
=> [1,1,0,0,1,0,1,0]
=> 2
[3,1,1]
=> [1,0,1,0,1,1,0,1,0,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,0,0,0,0,1,0]
=> 3
[2,2,1]
=> [1,1,1,0,0,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,0]
=> 0
[2,1,1,1]
=> [1,0,1,1,0,1,0,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> 1
[1,1,1,1,1]
=> [1,1,0,1,0,1,0,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> 1
[6]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0]
=> 6
[5,1]
=> [1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> 4
[4,2]
=> [1,0,1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,0,0,0,1,0,1,0]
=> 3
[4,1,1]
=> [1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> 4
[3,3]
=> [1,1,1,0,1,0,0,0]
=> [1,0,1,1,1,0,0,0]
=> [1,1,0,0,1,0,1,0]
=> 2
[3,2,1]
=> [1,0,1,1,1,0,0,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> 1
[3,1,1,1]
=> [1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,0,1,0,1,1,0,0,1,1,0,0]
=> [1,1,1,0,0,0,1,1,0,0,1,0]
=> 2
[2,2,2]
=> [1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> 1
[2,2,1,1]
=> [1,1,1,0,0,1,0,1,0,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> 1
[2,1,1,1,1]
=> [1,0,1,1,0,1,0,1,0,1,0,0]
=> [1,0,1,0,1,1,0,0,1,1,0,0]
=> [1,1,1,0,0,0,1,1,0,0,1,0]
=> 2
[1,1,1,1,1,1]
=> [1,1,0,1,0,1,0,1,0,1,0,0]
=> [1,1,0,0,1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0,1,0]
=> 0
Description
Number of indecomposable injective modules with projective dimension equal to the codominant dimension in the Nakayama algebra corresponding to the Dyck path.
Matching statistic: St001372
(load all 3 compositions to match this statistic)
(load all 3 compositions to match this statistic)
Mp00317: Integer partitions —odd parts⟶ Binary words
Mp00104: Binary words —reverse⟶ Binary words
Mp00268: Binary words —zeros to flag zeros⟶ Binary words
St001372: Binary words ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00104: Binary words —reverse⟶ Binary words
Mp00268: Binary words —zeros to flag zeros⟶ Binary words
St001372: Binary words ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[2]
=> 0 => 0 => 0 => 0
[1,1]
=> 11 => 11 => 11 => 2
[3]
=> 1 => 1 => 1 => 1
[2,1]
=> 01 => 10 => 01 => 1
[1,1,1]
=> 111 => 111 => 111 => 3
[4]
=> 0 => 0 => 0 => 0
[3,1]
=> 11 => 11 => 11 => 2
[2,2]
=> 00 => 00 => 10 => 1
[2,1,1]
=> 011 => 110 => 011 => 2
[1,1,1,1]
=> 1111 => 1111 => 1111 => 4
[5]
=> 1 => 1 => 1 => 1
[4,1]
=> 01 => 10 => 01 => 1
[3,2]
=> 10 => 01 => 00 => 0
[3,1,1]
=> 111 => 111 => 111 => 3
[2,2,1]
=> 001 => 100 => 101 => 2
[2,1,1,1]
=> 0111 => 1110 => 0111 => 3
[1,1,1,1,1]
=> 11111 => 11111 => 11111 => 5
[6]
=> 0 => 0 => 0 => 0
[5,1]
=> 11 => 11 => 11 => 2
[4,2]
=> 00 => 00 => 10 => 1
[4,1,1]
=> 011 => 110 => 011 => 2
[3,3]
=> 11 => 11 => 11 => 2
[3,2,1]
=> 101 => 101 => 001 => 1
[3,1,1,1]
=> 1111 => 1111 => 1111 => 4
[2,2,2]
=> 000 => 000 => 010 => 1
[2,2,1,1]
=> 0011 => 1100 => 1011 => 3
[2,1,1,1,1]
=> 01111 => 11110 => 01111 => 4
[1,1,1,1,1,1]
=> 111111 => 111111 => 111111 => 6
Description
The length of a longest cyclic run of ones of a binary word.
Consider the binary word as a cyclic arrangement of ones and zeros. Then this statistic is the length of the longest continuous sequence of ones in this arrangement.
Matching statistic: St001210
Mp00043: Integer partitions —to Dyck path⟶ Dyck paths
Mp00143: Dyck paths —inverse promotion⟶ Dyck paths
St001210: Dyck paths ⟶ ℤResult quality: 86% ●values known / values provided: 93%●distinct values known / distinct values provided: 86%
Mp00143: Dyck paths —inverse promotion⟶ Dyck paths
St001210: Dyck paths ⟶ ℤResult quality: 86% ●values known / values provided: 93%●distinct values known / distinct values provided: 86%
Values
[2]
=> [1,1,0,0,1,0]
=> [1,0,1,1,0,0]
=> 1 = 0 + 1
[1,1]
=> [1,0,1,1,0,0]
=> [1,1,1,0,0,0]
=> 3 = 2 + 1
[3]
=> [1,1,1,0,0,0,1,0]
=> [1,1,0,0,1,1,0,0]
=> 2 = 1 + 1
[2,1]
=> [1,0,1,0,1,0]
=> [1,1,0,1,0,0]
=> 2 = 1 + 1
[1,1,1]
=> [1,0,1,1,1,0,0,0]
=> [1,1,1,1,0,0,0,0]
=> 4 = 3 + 1
[4]
=> [1,1,1,1,0,0,0,0,1,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> 3 = 2 + 1
[3,1]
=> [1,1,0,1,0,0,1,0]
=> [1,0,1,0,1,1,0,0]
=> 1 = 0 + 1
[2,2]
=> [1,1,0,0,1,1,0,0]
=> [1,0,1,1,1,0,0,0]
=> 2 = 1 + 1
[2,1,1]
=> [1,0,1,1,0,1,0,0]
=> [1,1,1,0,1,0,0,0]
=> 3 = 2 + 1
[1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> 5 = 4 + 1
[5]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> [1,1,1,1,0,0,0,0,1,1,0,0]
=> 4 = 3 + 1
[4,1]
=> [1,1,1,0,1,0,0,0,1,0]
=> [1,1,0,1,0,0,1,1,0,0]
=> 2 = 1 + 1
[3,2]
=> [1,1,0,0,1,0,1,0]
=> [1,0,1,1,0,1,0,0]
=> 1 = 0 + 1
[3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0]
=> 3 = 2 + 1
[2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [1,1,0,1,1,0,0,0]
=> 2 = 1 + 1
[2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> 4 = 3 + 1
[1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0]
=> 6 = 5 + 1
[6]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0,1,1,0,0]
=> ? ∊ {4,6} + 1
[5,1]
=> [1,1,1,1,0,1,0,0,0,0,1,0]
=> [1,1,1,0,1,0,0,0,1,1,0,0]
=> 3 = 2 + 1
[4,2]
=> [1,1,1,0,0,1,0,0,1,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> 2 = 1 + 1
[4,1,1]
=> [1,1,0,1,1,0,0,0,1,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> 1 = 0 + 1
[3,3]
=> [1,1,1,0,0,0,1,1,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> 2 = 1 + 1
[3,2,1]
=> [1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,0]
=> 2 = 1 + 1
[3,1,1,1]
=> [1,0,1,1,1,0,0,1,0,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> 4 = 3 + 1
[2,2,2]
=> [1,1,0,0,1,1,1,0,0,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> 3 = 2 + 1
[2,2,1,1]
=> [1,0,1,1,0,1,1,0,0,0]
=> [1,1,1,0,1,1,0,0,0,0]
=> 3 = 2 + 1
[2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,0,0,0,0]
=> [1,1,1,1,1,0,1,0,0,0,0,0]
=> 5 = 4 + 1
[1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> ? ∊ {4,6} + 1
Description
Gives the maximal vector space dimension of the first Ext-group between an indecomposable module X and the regular module A, when A is the Nakayama algebra corresponding to the Dyck path.
Matching statistic: St000444
(load all 2 compositions to match this statistic)
(load all 2 compositions to match this statistic)
Mp00043: Integer partitions —to Dyck path⟶ Dyck paths
Mp00143: Dyck paths —inverse promotion⟶ Dyck paths
Mp00199: Dyck paths —prime Dyck path⟶ Dyck paths
St000444: Dyck paths ⟶ ℤResult quality: 86% ●values known / values provided: 93%●distinct values known / distinct values provided: 86%
Mp00143: Dyck paths —inverse promotion⟶ Dyck paths
Mp00199: Dyck paths —prime Dyck path⟶ Dyck paths
St000444: Dyck paths ⟶ ℤResult quality: 86% ●values known / values provided: 93%●distinct values known / distinct values provided: 86%
Values
[2]
=> [1,1,0,0,1,0]
=> [1,0,1,1,0,0]
=> [1,1,0,1,1,0,0,0]
=> 2 = 0 + 2
[1,1]
=> [1,0,1,1,0,0]
=> [1,1,1,0,0,0]
=> [1,1,1,1,0,0,0,0]
=> 4 = 2 + 2
[3]
=> [1,1,1,0,0,0,1,0]
=> [1,1,0,0,1,1,0,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> 3 = 1 + 2
[2,1]
=> [1,0,1,0,1,0]
=> [1,1,0,1,0,0]
=> [1,1,1,0,1,0,0,0]
=> 3 = 1 + 2
[1,1,1]
=> [1,0,1,1,1,0,0,0]
=> [1,1,1,1,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> 5 = 3 + 2
[4]
=> [1,1,1,1,0,0,0,0,1,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> [1,1,1,1,0,0,0,1,1,0,0,0]
=> 4 = 2 + 2
[3,1]
=> [1,1,0,1,0,0,1,0]
=> [1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> 2 = 0 + 2
[2,2]
=> [1,1,0,0,1,1,0,0]
=> [1,0,1,1,1,0,0,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> 3 = 1 + 2
[2,1,1]
=> [1,0,1,1,0,1,0,0]
=> [1,1,1,0,1,0,0,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> 4 = 2 + 2
[1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0]
=> 6 = 4 + 2
[5]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> [1,1,1,1,0,0,0,0,1,1,0,0]
=> [1,1,1,1,1,0,0,0,0,1,1,0,0,0]
=> 5 = 3 + 2
[4,1]
=> [1,1,1,0,1,0,0,0,1,0]
=> [1,1,0,1,0,0,1,1,0,0]
=> [1,1,1,0,1,0,0,1,1,0,0,0]
=> 3 = 1 + 2
[3,2]
=> [1,1,0,0,1,0,1,0]
=> [1,0,1,1,0,1,0,0]
=> [1,1,0,1,1,0,1,0,0,0]
=> 2 = 0 + 2
[3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> 4 = 2 + 2
[2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [1,1,0,1,1,0,0,0]
=> [1,1,1,0,1,1,0,0,0,0]
=> 3 = 1 + 2
[2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> [1,1,1,1,1,0,1,0,0,0,0,0]
=> 5 = 3 + 2
[1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> 7 = 5 + 2
[6]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0,1,1,0,0]
=> [1,1,1,1,1,1,0,0,0,0,0,1,1,0,0,0]
=> ? ∊ {4,6} + 2
[5,1]
=> [1,1,1,1,0,1,0,0,0,0,1,0]
=> [1,1,1,0,1,0,0,0,1,1,0,0]
=> [1,1,1,1,0,1,0,0,0,1,1,0,0,0]
=> 4 = 2 + 2
[4,2]
=> [1,1,1,0,0,1,0,0,1,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> [1,1,1,0,0,1,0,1,1,0,0,0]
=> 3 = 1 + 2
[4,1,1]
=> [1,1,0,1,1,0,0,0,1,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,1,1,0,0,1,1,0,0,0]
=> 2 = 0 + 2
[3,3]
=> [1,1,1,0,0,0,1,1,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> [1,1,1,0,0,1,1,1,0,0,0,0]
=> 3 = 1 + 2
[3,2,1]
=> [1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,0]
=> [1,1,1,0,1,0,1,0,0,0]
=> 3 = 1 + 2
[3,1,1,1]
=> [1,0,1,1,1,0,0,1,0,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> [1,1,1,1,1,0,0,1,0,0,0,0]
=> 5 = 3 + 2
[2,2,2]
=> [1,1,0,0,1,1,1,0,0,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,1,1,1,1,0,0,0,0,0]
=> 4 = 2 + 2
[2,2,1,1]
=> [1,0,1,1,0,1,1,0,0,0]
=> [1,1,1,0,1,1,0,0,0,0]
=> [1,1,1,1,0,1,1,0,0,0,0,0]
=> 4 = 2 + 2
[2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,0,0,0,0]
=> [1,1,1,1,1,0,1,0,0,0,0,0]
=> [1,1,1,1,1,1,0,1,0,0,0,0,0,0]
=> 6 = 4 + 2
[1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0]
=> ? ∊ {4,6} + 2
Description
The length of the maximal rise of a Dyck path.
Matching statistic: St001290
Mp00043: Integer partitions —to Dyck path⟶ Dyck paths
Mp00142: Dyck paths —promotion⟶ Dyck paths
Mp00030: Dyck paths —zeta map⟶ Dyck paths
St001290: Dyck paths ⟶ ℤResult quality: 86% ●values known / values provided: 93%●distinct values known / distinct values provided: 86%
Mp00142: Dyck paths —promotion⟶ Dyck paths
Mp00030: Dyck paths —zeta map⟶ Dyck paths
St001290: Dyck paths ⟶ ℤResult quality: 86% ●values known / values provided: 93%●distinct values known / distinct values provided: 86%
Values
[2]
=> [1,1,0,0,1,0]
=> [1,1,1,0,0,0]
=> [1,0,1,0,1,0]
=> 4 = 2 + 2
[1,1]
=> [1,0,1,1,0,0]
=> [1,1,0,0,1,0]
=> [1,1,0,1,0,0]
=> 2 = 0 + 2
[3]
=> [1,1,1,0,0,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> 5 = 3 + 2
[2,1]
=> [1,0,1,0,1,0]
=> [1,1,0,1,0,0]
=> [1,1,0,0,1,0]
=> 3 = 1 + 2
[1,1,1]
=> [1,0,1,1,1,0,0,0]
=> [1,1,0,0,1,1,0,0]
=> [1,1,0,1,0,1,0,0]
=> 3 = 1 + 2
[4]
=> [1,1,1,1,0,0,0,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> 6 = 4 + 2
[3,1]
=> [1,1,0,1,0,0,1,0]
=> [1,1,1,0,1,0,0,0]
=> [1,1,0,0,1,0,1,0]
=> 4 = 2 + 2
[2,2]
=> [1,1,0,0,1,1,0,0]
=> [1,1,1,0,0,0,1,0]
=> [1,0,1,1,0,1,0,0]
=> 3 = 1 + 2
[2,1,1]
=> [1,0,1,1,0,1,0,0]
=> [1,1,0,0,1,0,1,0]
=> [1,1,1,0,1,0,0,0]
=> 2 = 0 + 2
[1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> [1,0,1,1,0,1,0,1,0,0]
=> 4 = 2 + 2
[5]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> 7 = 5 + 2
[4,1]
=> [1,1,1,0,1,0,0,0,1,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> [1,1,0,0,1,0,1,0,1,0]
=> 5 = 3 + 2
[3,2]
=> [1,1,0,0,1,0,1,0]
=> [1,1,1,0,0,1,0,0]
=> [1,1,0,1,0,0,1,0]
=> 3 = 1 + 2
[3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,0,0]
=> [1,0,1,1,0,0,1,0]
=> 4 = 2 + 2
[2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0]
=> 2 = 0 + 2
[2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [1,1,0,0,1,1,0,1,0,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> 3 = 1 + 2
[1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,1,0,0,1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,1,0,1,0,1,0,0]
=> 5 = 3 + 2
[6]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> ? ∊ {4,6} + 2
[5,1]
=> [1,1,1,1,0,1,0,0,0,0,1,0]
=> [1,1,1,1,1,0,1,0,0,0,0,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0]
=> 6 = 4 + 2
[4,2]
=> [1,1,1,0,0,1,0,0,1,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> [1,1,0,1,0,0,1,0,1,0]
=> 4 = 2 + 2
[4,1,1]
=> [1,1,0,1,1,0,0,0,1,0]
=> [1,1,1,0,1,1,0,0,0,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> 5 = 3 + 2
[3,3]
=> [1,1,1,0,0,0,1,1,0,0]
=> [1,1,1,1,0,0,0,0,1,0]
=> [1,0,1,0,1,1,0,1,0,0]
=> 4 = 2 + 2
[3,2,1]
=> [1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,0]
=> [1,1,1,0,0,0,1,0]
=> 3 = 1 + 2
[3,1,1,1]
=> [1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> [1,1,1,0,1,0,1,0,0,0]
=> 2 = 0 + 2
[2,2,2]
=> [1,1,0,0,1,1,1,0,0,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> 3 = 1 + 2
[2,2,1,1]
=> [1,0,1,1,0,1,1,0,0,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> [1,1,0,1,1,0,1,0,0,0]
=> 3 = 1 + 2
[2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,0,0,0,0]
=> [1,1,0,0,1,1,1,0,1,0,0,0]
=> [1,1,0,0,1,1,0,1,0,1,0,0]
=> 4 = 2 + 2
[1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,1,0,0,1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,1,0,1,0,0]
=> ? ∊ {4,6} + 2
Description
The first natural number n such that the tensor product of n copies of D(A) is zero for the corresponding Nakayama algebra A.
The following 192 statistics, ordered by result quality, also match your data. Click on any of them to see the details.
St001948The number of augmented double ascents of a permutation. St001233The number of indecomposable 2-dimensional modules with projective dimension one. St001250The number of parts of a partition that are not congruent 0 modulo 3. St000460The hook length of the last cell along the main diagonal of an integer partition. St000870The product of the hook lengths of the diagonal cells in an integer partition. St001249Sum of the odd parts of a partition. St001360The number of covering relations in Young's lattice below a partition. St001933The largest multiplicity of a part in an integer partition. St000010The length of the partition. St000026The position of the first return of a Dyck path. St000032The number of elements smaller than the given Dyck path in the Tamari Order. St000063The number of linear extensions of a certain poset defined for an integer partition. St000108The number of partitions contained in the given partition. St000148The number of odd parts of a partition. St000160The multiplicity of the smallest part of a partition. St000228The size of a partition. St000290The major index of a binary word. St000293The number of inversions of a binary word. St000296The length of the symmetric border of a binary word. St000297The number of leading ones in a binary word. St000335The difference of lower and upper interactions. St000378The diagonal inversion number of an integer partition. St000384The maximal part of the shifted composition of an integer partition. St000392The length of the longest run of ones in a binary word. St000393The number of strictly increasing runs in a binary word. St000419The number of Dyck paths that are weakly above the Dyck path, except for the path itself. St000443The number of long tunnels of a Dyck path. St000459The hook length of the base cell of a partition. St000475The number of parts equal to 1 in a partition. St000519The largest length of a factor maximising the subword complexity. St000531The leading coefficient of the rook polynomial of an integer partition. St000532The total number of rook placements on a Ferrers board. St000548The number of different non-empty partial sums of an integer partition. St000627The exponent of a binary word. St000667The greatest common divisor of the parts of the partition. St000733The row containing the largest entry of a standard tableau. St000738The first entry in the last row of a standard tableau. St000753The Grundy value for the game of Kayles on a binary word. St000784The maximum of the length and the largest part of the integer partition. St000876The number of factors in the Catalan decomposition of a binary word. St000885The number of critical steps in the Catalan decomposition of a binary word. St000922The minimal number such that all substrings of this length are unique. St000982The length of the longest constant subword. St001000Number of indecomposable modules with projective dimension equal to the global dimension in the Nakayama algebra corresponding to the Dyck path. St001007Number of simple modules with projective dimension 1 in the Nakayama algebra corresponding to the Dyck path. St001014Number of indecomposable injective modules with codominant dimension equal to the dominant dimension of the Nakayama algebra corresponding to the Dyck path. St001015Number of indecomposable injective modules with codominant dimension equal to one in the Nakayama algebra corresponding to the Dyck path. St001016Number of indecomposable injective modules with codominant dimension at most 1 in the Nakayama algebra corresponding to the Dyck path. St001020Sum of the codominant dimensions of the non-projective indecomposable injective modules of the Nakayama algebra corresponding to the Dyck path. St001088Number of indecomposable projective non-injective modules with dominant dimension equal to the injective dimension in the corresponding Nakayama algebra. St001127The sum of the squares of the parts of a partition. St001184Number of indecomposable injective modules with grade at least 1 in the corresponding Nakayama algebra. St001187The number of simple modules with grade at least one in the corresponding Nakayama algebra. St001199The dominant dimension of eAe for the corresponding Nakayama algebra A with minimal faithful projective-injective module eA. St001224Let X be the direct sum of all simple modules of the corresponding Nakayama algebra. St001227The vector space dimension of the first extension group between the socle of the regular module and the Jacobson radical of the corresponding Nakayama algebra. St001232The number of indecomposable modules with projective dimension 2 for Nakayama algebras with global dimension at most 2. St001241The number of non-zero radicals of the indecomposable projective modules that have injective dimension and projective dimension at most one. St001267The length of the Lyndon factorization of the binary word. St001297The number of indecomposable non-injective projective modules minus the number of indecomposable non-injective projective modules that have reflexive Auslander-Reiten sequences in the corresponding Nakayama algebra. St001348The bounce of the parallelogram polyomino associated with the Dyck path. St001387Number of standard Young tableaux of the skew shape tracing the border of the given partition. St001389The number of partitions of the same length below the given integer partition. St001400The total number of Littlewood-Richardson tableaux of given shape. St001415The length of the longest palindromic prefix of a binary word. St001416The length of a longest palindromic factor of a binary word. St001417The length of a longest palindromic subword of a binary word. St001419The length of the longest palindromic factor beginning with a one of a binary word. St001436The index of a given binary word in the lex-order among all its cyclic shifts. St001437The flex of a binary word. St001485The modular major index of a binary word. St001498The normalised height of a Nakayama algebra with magnitude 1. St001515The vector space dimension of the socle of the first syzygy module of the regular module (as a bimodule). St001523The degree of symmetry of a Dyck path. St001527The cyclic permutation representation number of an integer partition. St001570The minimal number of edges to add to make a graph Hamiltonian. St001571The Cartan determinant of the integer partition. St001659The number of ways to place as many non-attacking rooks as possible on a Ferrers board. St001660The number of ways to place as many non-attacking rooks as possible on a skew Ferrers board. St001884The number of borders of a binary word. St001959The product of the heights of the peaks of a Dyck path. St000044The number of vertices of the unicellular map given by a perfect matching. St001491The number of indecomposable projective-injective modules in the algebra corresponding to a subset. St000668The least common multiple of the parts of the partition. St000770The major index of an integer partition when read from bottom to top. St000993The multiplicity of the largest part of an integer partition. St001603The number of colourings of a polygon such that the multiplicities of a colour are given by a partition. St001605The number of colourings of a cycle such that the multiplicities of colours are given by a partition. St000510The number of invariant oriented cycles when acting with a permutation of given cycle type. St000567The sum of the products of all pairs of parts. St000681The Grundy value of Chomp on Ferrers diagrams. St000937The number of positive values of the symmetric group character corresponding to the partition. St001101The coefficient times the product of the factorials of the parts of the monomial symmetric function indexed by the partition in the formal group law for increasing trees. St000046The largest eigenvalue of the random to random operator acting on the simple module corresponding to the given partition. St000478Another weight of a partition according to Alladi. St000566The number of ways to select a row of a Ferrers shape and two cells in this row. St000678The number of up steps after the last double rise of a Dyck path. St000698The number of 2-rim hooks removed from an integer partition to obtain its associated 2-core. St000704The number of semistandard tableaux on a given integer partition with minimal maximal entry. St000706The product of the factorials of the multiplicities of an integer partition. St000708The product of the parts of an integer partition. St000744The length of the path to the largest entry in a standard Young tableau. St000771The largest multiplicity of a distance Laplacian eigenvalue in a connected graph. St000772The multiplicity of the largest distance Laplacian eigenvalue in a connected graph. St000815The number of semistandard Young tableaux of partition weight of given shape. St000817The sum of the entries in the column specified by the composition of the change of basis matrix from dual immaculate quasisymmetric functions to monomial quasisymmetric functions. St000818The sum of the entries in the column specified by the composition of the change of basis matrix from quasisymmetric Schur functions to monomial quasisymmetric functions. St000884The number of isolated descents of a permutation. St000934The 2-degree of an integer partition. St000939The number of characters of the symmetric group whose value on the partition is positive. St000984The number of boxes below precisely one peak. St001107The number of times one can erase the first up and the last down step in a Dyck path and still remain a Dyck path. St001128The exponens consonantiae of a partition. St001262The dimension of the maximal parabolic seaweed algebra corresponding to the partition. St001378The product of the cohook lengths of the integer partition. St001380The number of monomer-dimer tilings of a Ferrers diagram. St001418Half of the global dimension of the stable Auslander algebra of the Nakayama algebra corresponding to the Dyck path. St001431Half of the Loewy length minus one of a modified stable Auslander algebra of the Nakayama algebra corresponding to the Dyck path. St001480The number of simple summands of the module J^2/J^3. St001499The number of indecomposable projective-injective modules of a magnitude 1 Nakayama algebra. St001561The value of the elementary symmetric function evaluated at 1. St001600The multiplicity of the irreducible representation corresponding to a partition in the relabelling action on simple graphs. St001606The multiplicity of the irreducible representation corresponding to a partition in the relabelling action on set partitions. St001607The number of coloured graphs such that the multiplicities of colours are given by a partition. St001610The number of coloured endofunctions such that the multiplicities of colours are given by a partition. St001611The number of multiset partitions such that the multiplicities of elements are given by a partition. St001785The number of ways to obtain a partition as the multiset of antidiagonal lengths of the Ferrers diagram of a partition. St001808The box weight or horizontal decoration of a Dyck path. St001879The number of indecomposable summands of the top of the first syzygy of the dual of the regular module in the incidence algebra of the lattice. St001914The size of the orbit of an integer partition in Bulgarian solitaire. St000137The Grundy value of an integer partition. St000512The number of invariant subsets of size 3 when acting with a permutation of given cycle type. St000621The number of standard tableaux of shape equal to the given partition such that the minimal cyclic descent is even. St000933The number of multipartitions of sizes given by an integer partition. St001124The multiplicity of the standard representation in the Kronecker square corresponding to a partition. St001364The number of permutations whose cube equals a fixed permutation of given cycle type. St001383The BG-rank of an integer partition. St001442The number of standard Young tableaux whose major index is divisible by the size of a given integer partition. St001568The smallest positive integer that does not appear twice in the partition. St001602The multiplicity of the irreducible representation corresponding to a partition in the relabelling action on endofunctions. St001609The number of coloured trees such that the multiplicities of colours are given by a partition. St001627The number of coloured connected graphs such that the multiplicities of colours are given by a partition. St001629The coefficient of the integer composition in the quasisymmetric expansion of the relabelling action of the symmetric group on cycles. St001913The number of preimages of an integer partition in Bulgarian solitaire. St001936The number of transitive factorisations of a permutation of given cycle type into star transpositions. St000260The radius of a connected graph. St000284The Plancherel distribution on integer partitions. St000456The monochromatic index of a connected graph. St000620The number of standard tableaux of shape equal to the given partition such that the minimal cyclic descent is odd. St000707The product of the factorials of the parts. St000714The number of semistandard Young tableau of given shape, with entries at most 2. St000901The cube of the number of standard Young tableaux with shape given by the partition. St000929The constant term of the character polynomial of an integer partition. St000941The number of characters of the symmetric group whose value on the partition is even. St001097The coefficient of the monomial symmetric function indexed by the partition in the formal group law for linear orders. St001099The coefficient times the product of the factorials of the parts of the monomial symmetric function indexed by the partition in the formal group law for leaf labelled binary trees. St001100The coefficient times the product of the factorials of the parts of the monomial symmetric function indexed by the partition in the formal group law for leaf labelled trees. St001198The number of simple modules in the algebra eAe with projective dimension at most 1 in the corresponding Nakayama algebra A with minimal faithful projective-injective module eA. St001206The maximal dimension of an indecomposable projective eAe-module (that is the height of the corresponding Dyck path) of the corresponding Nakayama algebra with minimal faithful projective-injective module eA. St001645The pebbling number of a connected graph. St001880The number of 2-Gorenstein indecomposable injective modules in the incidence algebra of the lattice. St000259The diameter of a connected graph. St001060The distinguishing index of a graph. St001123The multiplicity of the dual of the standard representation in the Kronecker square corresponding to a partition. St001200The number of simple modules in eAe with projective dimension at most 2 in the corresponding Nakayama algebra A with minimal faithful projective-injective module eA. St000264The girth of a graph, which is not a tree. St000454The largest eigenvalue of a graph if it is integral. St000514The number of invariant simple graphs when acting with a permutation of given cycle type. St000515The number of invariant set partitions when acting with a permutation of given cycle type. St000588The number of occurrences of the pattern {{1},{2},{3}} such that 1,3 are minimal, 2 is maximal. St000813The number of zero-one matrices with weakly decreasing column sums and row sums given by the partition. St000927The alternating sum of the coefficients of the character polynomial of an integer partition. St001195The global dimension of the algebra A/AfA of the corresponding Nakayama algebra A with minimal left faithful projective-injective module Af. St001604The multiplicity of the irreducible representation corresponding to a partition in the relabelling action on polygons. St001816Eigenvalues of the top-to-random operator acting on a simple module. St000090The variation of a composition. St000615The number of occurrences of the pattern {{1},{2},{3}} such that 1,3 are maximal. St000866The number of admissible inversions of a permutation in the sense of Shareshian-Wachs. St001171The vector space dimension of Ext1A(Io,A) when Io is the tilting module corresponding to the permutation o in the Auslander algebra A of K[x]/(xn). St001582The grades of the simple modules corresponding to the points in the poset of the symmetric group under the Bruhat order. St001683The number of distinct positions of the pattern letter 3 in occurrences of 132 in a permutation. St001687The number of distinct positions of the pattern letter 2 in occurrences of 213 in a permutation. St001823The Stasinski-Voll length of a signed permutation. St000605The number of occurrences of the pattern {{1},{2,3}} such that 3 is maximal, (2,3) are consecutive in a block. St001209The pmaj statistic of a parking function. St001583The projective dimension of the simple module corresponding to the point in the poset of the symmetric group under bruhat order. St001287The number of primes obtained by multiplying preimage and image of a permutation and subtracting one. St000868The aid statistic in the sense of Shareshian-Wachs. St000423The number of occurrences of the pattern 123 or of the pattern 132 in a permutation. St000428The number of occurrences of the pattern 123 or of the pattern 213 in a permutation. St001080The minimal length of a factorization of a permutation using the transposition (12) and the cycle (1,. St001168The vector space dimension of the tilting module corresponding to the permutation in the Auslander algebra of K[x]/(xn).
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!