Your data matches 233 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
Mp00199: Dyck paths prime Dyck pathDyck paths
St000874: Dyck paths ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[1,0]
=> [1,1,0,0]
=> 1
[1,0,1,0]
=> [1,1,0,1,0,0]
=> 1
[1,1,0,0]
=> [1,1,1,0,0,0]
=> 2
[1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,0]
=> 1
[1,0,1,1,0,0]
=> [1,1,0,1,1,0,0,0]
=> 4
[1,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0]
=> 2
[1,1,0,1,0,0]
=> [1,1,1,0,1,0,0,0]
=> 2
[1,1,1,0,0,0]
=> [1,1,1,1,0,0,0,0]
=> 3
[1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> 1
[1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> 6
[1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> 4
[1,0,1,1,0,1,0,0]
=> [1,1,0,1,1,0,1,0,0,0]
=> 4
[1,0,1,1,1,0,0,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> 5
[1,1,0,0,1,0,1,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> 2
[1,1,0,0,1,1,0,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> 6
[1,1,0,1,0,0,1,0]
=> [1,1,1,0,1,0,0,1,0,0]
=> 2
[1,1,0,1,0,1,0,0]
=> [1,1,1,0,1,0,1,0,0,0]
=> 2
[1,1,0,1,1,0,0,0]
=> [1,1,1,0,1,1,0,0,0,0]
=> 5
[1,1,1,0,0,0,1,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> 3
[1,1,1,0,0,1,0,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> 3
[1,1,1,0,1,0,0,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> 3
[1,1,1,1,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> 4
[1,0,1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,1,0,0]
=> 1
[1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,0,1,1,0,0,0]
=> 8
[1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,0,1,1,0,0,1,0,0]
=> 6
[1,0,1,0,1,1,0,1,0,0]
=> [1,1,0,1,0,1,1,0,1,0,0,0]
=> 6
[1,0,1,0,1,1,1,0,0,0]
=> [1,1,0,1,0,1,1,1,0,0,0,0]
=> 7
[1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,1,1,0,0,1,0,1,0,0]
=> 4
[1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,1,1,0,0,1,1,0,0,0]
=> 8
[1,0,1,1,0,1,0,0,1,0]
=> [1,1,0,1,1,0,1,0,0,1,0,0]
=> 4
[1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,1,1,0,1,0,1,0,0,0]
=> 4
[1,0,1,1,0,1,1,0,0,0]
=> [1,1,0,1,1,0,1,1,0,0,0,0]
=> 7
[1,0,1,1,1,0,0,0,1,0]
=> [1,1,0,1,1,1,0,0,0,1,0,0]
=> 5
[1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,1,1,1,0,0,1,0,0,0]
=> 5
[1,0,1,1,1,0,1,0,0,0]
=> [1,1,0,1,1,1,0,1,0,0,0,0]
=> 5
[1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,1,1,1,1,0,0,0,0,0]
=> 6
[1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,0,0,1,0,1,0,1,0,0]
=> 2
[1,1,0,0,1,0,1,1,0,0]
=> [1,1,1,0,0,1,0,1,1,0,0,0]
=> 8
[1,1,0,0,1,1,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,1,0,0]
=> 6
[1,1,0,0,1,1,0,1,0,0]
=> [1,1,1,0,0,1,1,0,1,0,0,0]
=> 6
[1,1,0,0,1,1,1,0,0,0]
=> [1,1,1,0,0,1,1,1,0,0,0,0]
=> 7
[1,1,0,1,0,0,1,0,1,0]
=> [1,1,1,0,1,0,0,1,0,1,0,0]
=> 2
[1,1,0,1,0,0,1,1,0,0]
=> [1,1,1,0,1,0,0,1,1,0,0,0]
=> 8
[1,1,0,1,0,1,0,0,1,0]
=> [1,1,1,0,1,0,1,0,0,1,0,0]
=> 2
[1,1,0,1,0,1,0,1,0,0]
=> [1,1,1,0,1,0,1,0,1,0,0,0]
=> 2
[1,1,0,1,0,1,1,0,0,0]
=> [1,1,1,0,1,0,1,1,0,0,0,0]
=> 7
[1,1,0,1,1,0,0,0,1,0]
=> [1,1,1,0,1,1,0,0,0,1,0,0]
=> 5
[1,1,0,1,1,0,0,1,0,0]
=> [1,1,1,0,1,1,0,0,1,0,0,0]
=> 5
[1,1,0,1,1,0,1,0,0,0]
=> [1,1,1,0,1,1,0,1,0,0,0,0]
=> 5
[1,1,0,1,1,1,0,0,0,0]
=> [1,1,1,0,1,1,1,0,0,0,0,0]
=> 6
Description
The position of the last double rise in a Dyck path. If the Dyck path has no double rises, this statistic is $0$.
Mp00035: Dyck paths to alternating sign matrixAlternating sign matrices
Mp00006: Alternating sign matrices gyrationAlternating sign matrices
St000067: Alternating sign matrices ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[1,0]
=> [[1]]
=> [[1]]
=> 0 = 1 - 1
[1,0,1,0]
=> [[1,0],[0,1]]
=> [[0,1],[1,0]]
=> 1 = 2 - 1
[1,1,0,0]
=> [[0,1],[1,0]]
=> [[1,0],[0,1]]
=> 0 = 1 - 1
[1,0,1,0,1,0]
=> [[1,0,0],[0,1,0],[0,0,1]]
=> [[0,0,1],[0,1,0],[1,0,0]]
=> 3 = 4 - 1
[1,0,1,1,0,0]
=> [[1,0,0],[0,0,1],[0,1,0]]
=> [[0,1,0],[1,0,0],[0,0,1]]
=> 1 = 2 - 1
[1,1,0,0,1,0]
=> [[0,1,0],[1,0,0],[0,0,1]]
=> [[1,0,0],[0,0,1],[0,1,0]]
=> 1 = 2 - 1
[1,1,0,1,0,0]
=> [[0,1,0],[1,-1,1],[0,1,0]]
=> [[1,0,0],[0,1,0],[0,0,1]]
=> 0 = 1 - 1
[1,1,1,0,0,0]
=> [[0,0,1],[1,0,0],[0,1,0]]
=> [[0,1,0],[0,0,1],[1,0,0]]
=> 2 = 3 - 1
[1,0,1,0,1,0,1,0]
=> [[1,0,0,0],[0,1,0,0],[0,0,1,0],[0,0,0,1]]
=> [[0,0,1,0],[0,1,-1,1],[1,-1,1,0],[0,1,0,0]]
=> 5 = 6 - 1
[1,0,1,0,1,1,0,0]
=> [[1,0,0,0],[0,1,0,0],[0,0,0,1],[0,0,1,0]]
=> [[0,0,1,0],[0,1,0,0],[1,0,0,0],[0,0,0,1]]
=> 3 = 4 - 1
[1,0,1,1,0,0,1,0]
=> [[1,0,0,0],[0,0,1,0],[0,1,0,0],[0,0,0,1]]
=> [[0,1,0,0],[1,0,0,0],[0,0,0,1],[0,0,1,0]]
=> 2 = 3 - 1
[1,0,1,1,0,1,0,0]
=> [[1,0,0,0],[0,0,1,0],[0,1,-1,1],[0,0,1,0]]
=> [[0,1,0,0],[1,0,0,0],[0,0,1,0],[0,0,0,1]]
=> 1 = 2 - 1
[1,0,1,1,1,0,0,0]
=> [[1,0,0,0],[0,0,0,1],[0,1,0,0],[0,0,1,0]]
=> [[0,0,1,0],[0,1,0,0],[1,-1,0,1],[0,1,0,0]]
=> 4 = 5 - 1
[1,1,0,0,1,0,1,0]
=> [[0,1,0,0],[1,0,0,0],[0,0,1,0],[0,0,0,1]]
=> [[1,0,0,0],[0,0,0,1],[0,0,1,0],[0,1,0,0]]
=> 3 = 4 - 1
[1,1,0,0,1,1,0,0]
=> [[0,1,0,0],[1,0,0,0],[0,0,0,1],[0,0,1,0]]
=> [[1,0,0,0],[0,0,1,0],[0,1,0,0],[0,0,0,1]]
=> 1 = 2 - 1
[1,1,0,1,0,0,1,0]
=> [[0,1,0,0],[1,-1,1,0],[0,1,0,0],[0,0,0,1]]
=> [[1,0,0,0],[0,1,0,0],[0,0,0,1],[0,0,1,0]]
=> 1 = 2 - 1
[1,1,0,1,0,1,0,0]
=> [[0,1,0,0],[1,-1,1,0],[0,1,-1,1],[0,0,1,0]]
=> [[1,0,0,0],[0,1,0,0],[0,0,1,0],[0,0,0,1]]
=> 0 = 1 - 1
[1,1,0,1,1,0,0,0]
=> [[0,1,0,0],[1,-1,0,1],[0,1,0,0],[0,0,1,0]]
=> [[1,0,0,0],[0,0,1,0],[0,0,0,1],[0,1,0,0]]
=> 2 = 3 - 1
[1,1,1,0,0,0,1,0]
=> [[0,0,1,0],[1,0,0,0],[0,1,0,0],[0,0,0,1]]
=> [[0,1,0,0],[0,0,0,1],[1,-1,1,0],[0,1,0,0]]
=> 4 = 5 - 1
[1,1,1,0,0,1,0,0]
=> [[0,0,1,0],[1,0,0,0],[0,1,-1,1],[0,0,1,0]]
=> [[0,1,0,0],[0,0,1,0],[1,0,0,0],[0,0,0,1]]
=> 2 = 3 - 1
[1,1,1,0,1,0,0,0]
=> [[0,0,1,0],[1,0,-1,1],[0,1,0,0],[0,0,1,0]]
=> [[0,0,0,1],[0,1,0,0],[1,-1,1,0],[0,1,0,0]]
=> 5 = 6 - 1
[1,1,1,1,0,0,0,0]
=> [[0,0,0,1],[1,0,0,0],[0,1,0,0],[0,0,1,0]]
=> [[0,1,0,0],[0,0,1,0],[1,-1,0,1],[0,1,0,0]]
=> 3 = 4 - 1
[1,0,1,0,1,0,1,0,1,0]
=> [[1,0,0,0,0],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,1,0],[0,0,0,0,1]]
=> [[0,0,1,0,0],[0,1,-1,1,0],[1,-1,1,-1,1],[0,1,-1,1,0],[0,0,1,0,0]]
=> 7 = 8 - 1
[1,0,1,0,1,0,1,1,0,0]
=> [[1,0,0,0,0],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,0,1],[0,0,0,1,0]]
=> [[0,0,1,0,0],[0,1,-1,1,0],[1,-1,1,0,0],[0,1,0,0,0],[0,0,0,0,1]]
=> 5 = 6 - 1
[1,0,1,0,1,1,0,0,1,0]
=> [[1,0,0,0,0],[0,1,0,0,0],[0,0,0,1,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [[0,0,1,0,0],[0,1,0,0,0],[1,0,0,0,0],[0,0,0,0,1],[0,0,0,1,0]]
=> 4 = 5 - 1
[1,0,1,0,1,1,0,1,0,0]
=> [[1,0,0,0,0],[0,1,0,0,0],[0,0,0,1,0],[0,0,1,-1,1],[0,0,0,1,0]]
=> [[0,0,1,0,0],[0,1,0,0,0],[1,0,0,0,0],[0,0,0,1,0],[0,0,0,0,1]]
=> 3 = 4 - 1
[1,0,1,0,1,1,1,0,0,0]
=> [[1,0,0,0,0],[0,1,0,0,0],[0,0,0,0,1],[0,0,1,0,0],[0,0,0,1,0]]
=> [[0,0,1,0,0],[0,1,-1,1,0],[1,-1,1,0,0],[0,1,-1,0,1],[0,0,1,0,0]]
=> 6 = 7 - 1
[1,0,1,1,0,0,1,0,1,0]
=> [[1,0,0,0,0],[0,0,1,0,0],[0,1,0,0,0],[0,0,0,1,0],[0,0,0,0,1]]
=> [[0,1,0,0,0],[1,0,0,0,0],[0,0,0,0,1],[0,0,0,1,0],[0,0,1,0,0]]
=> 4 = 5 - 1
[1,0,1,1,0,0,1,1,0,0]
=> [[1,0,0,0,0],[0,0,1,0,0],[0,1,0,0,0],[0,0,0,0,1],[0,0,0,1,0]]
=> [[0,1,0,0,0],[1,0,0,0,0],[0,0,0,1,0],[0,0,1,0,0],[0,0,0,0,1]]
=> 2 = 3 - 1
[1,0,1,1,0,1,0,0,1,0]
=> [[1,0,0,0,0],[0,0,1,0,0],[0,1,-1,1,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [[0,1,0,0,0],[1,0,0,0,0],[0,0,1,0,0],[0,0,0,0,1],[0,0,0,1,0]]
=> 2 = 3 - 1
[1,0,1,1,0,1,0,1,0,0]
=> [[1,0,0,0,0],[0,0,1,0,0],[0,1,-1,1,0],[0,0,1,-1,1],[0,0,0,1,0]]
=> [[0,1,0,0,0],[1,0,0,0,0],[0,0,1,0,0],[0,0,0,1,0],[0,0,0,0,1]]
=> 1 = 2 - 1
[1,0,1,1,0,1,1,0,0,0]
=> [[1,0,0,0,0],[0,0,1,0,0],[0,1,-1,0,1],[0,0,1,0,0],[0,0,0,1,0]]
=> [[0,1,0,0,0],[1,0,0,0,0],[0,0,0,1,0],[0,0,0,0,1],[0,0,1,0,0]]
=> 3 = 4 - 1
[1,0,1,1,1,0,0,0,1,0]
=> [[1,0,0,0,0],[0,0,0,1,0],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [[0,0,1,0,0],[0,1,0,0,0],[1,-1,0,0,1],[0,1,-1,1,0],[0,0,1,0,0]]
=> 6 = 7 - 1
[1,0,1,1,1,0,0,1,0,0]
=> [[1,0,0,0,0],[0,0,0,1,0],[0,1,0,0,0],[0,0,1,-1,1],[0,0,0,1,0]]
=> [[0,0,1,0,0],[0,1,0,0,0],[1,-1,0,1,0],[0,1,0,0,0],[0,0,0,0,1]]
=> 4 = 5 - 1
[1,0,1,1,1,0,1,0,0,0]
=> [[1,0,0,0,0],[0,0,0,1,0],[0,1,0,-1,1],[0,0,1,0,0],[0,0,0,1,0]]
=> [[0,0,1,0,0],[0,1,-1,0,1],[1,-1,1,0,0],[0,1,-1,1,0],[0,0,1,0,0]]
=> 7 = 8 - 1
[1,0,1,1,1,1,0,0,0,0]
=> [[1,0,0,0,0],[0,0,0,0,1],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,1,0]]
=> [[0,0,1,0,0],[0,1,0,0,0],[1,-1,0,1,0],[0,1,-1,0,1],[0,0,1,0,0]]
=> 5 = 6 - 1
[1,1,0,0,1,0,1,0,1,0]
=> [[0,1,0,0,0],[1,0,0,0,0],[0,0,1,0,0],[0,0,0,1,0],[0,0,0,0,1]]
=> [[1,0,0,0,0],[0,0,0,1,0],[0,0,1,-1,1],[0,1,-1,1,0],[0,0,1,0,0]]
=> 5 = 6 - 1
[1,1,0,0,1,0,1,1,0,0]
=> [[0,1,0,0,0],[1,0,0,0,0],[0,0,1,0,0],[0,0,0,0,1],[0,0,0,1,0]]
=> [[1,0,0,0,0],[0,0,0,1,0],[0,0,1,0,0],[0,1,0,0,0],[0,0,0,0,1]]
=> 3 = 4 - 1
[1,1,0,0,1,1,0,0,1,0]
=> [[0,1,0,0,0],[1,0,0,0,0],[0,0,0,1,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [[1,0,0,0,0],[0,0,1,0,0],[0,1,0,0,0],[0,0,0,0,1],[0,0,0,1,0]]
=> 2 = 3 - 1
[1,1,0,0,1,1,0,1,0,0]
=> [[0,1,0,0,0],[1,0,0,0,0],[0,0,0,1,0],[0,0,1,-1,1],[0,0,0,1,0]]
=> [[1,0,0,0,0],[0,0,1,0,0],[0,1,0,0,0],[0,0,0,1,0],[0,0,0,0,1]]
=> 1 = 2 - 1
[1,1,0,0,1,1,1,0,0,0]
=> [[0,1,0,0,0],[1,0,0,0,0],[0,0,0,0,1],[0,0,1,0,0],[0,0,0,1,0]]
=> [[1,0,0,0,0],[0,0,0,1,0],[0,0,1,0,0],[0,1,-1,0,1],[0,0,1,0,0]]
=> 4 = 5 - 1
[1,1,0,1,0,0,1,0,1,0]
=> [[0,1,0,0,0],[1,-1,1,0,0],[0,1,0,0,0],[0,0,0,1,0],[0,0,0,0,1]]
=> [[1,0,0,0,0],[0,1,0,0,0],[0,0,0,0,1],[0,0,0,1,0],[0,0,1,0,0]]
=> 3 = 4 - 1
[1,1,0,1,0,0,1,1,0,0]
=> [[0,1,0,0,0],[1,-1,1,0,0],[0,1,0,0,0],[0,0,0,0,1],[0,0,0,1,0]]
=> [[1,0,0,0,0],[0,1,0,0,0],[0,0,0,1,0],[0,0,1,0,0],[0,0,0,0,1]]
=> 1 = 2 - 1
[1,1,0,1,0,1,0,0,1,0]
=> [[0,1,0,0,0],[1,-1,1,0,0],[0,1,-1,1,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [[1,0,0,0,0],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,0,1],[0,0,0,1,0]]
=> 1 = 2 - 1
[1,1,0,1,0,1,0,1,0,0]
=> [[0,1,0,0,0],[1,-1,1,0,0],[0,1,-1,1,0],[0,0,1,-1,1],[0,0,0,1,0]]
=> [[1,0,0,0,0],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,1,0],[0,0,0,0,1]]
=> 0 = 1 - 1
[1,1,0,1,0,1,1,0,0,0]
=> [[0,1,0,0,0],[1,-1,1,0,0],[0,1,-1,0,1],[0,0,1,0,0],[0,0,0,1,0]]
=> [[1,0,0,0,0],[0,1,0,0,0],[0,0,0,1,0],[0,0,0,0,1],[0,0,1,0,0]]
=> 2 = 3 - 1
[1,1,0,1,1,0,0,0,1,0]
=> [[0,1,0,0,0],[1,-1,0,1,0],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [[1,0,0,0,0],[0,0,1,0,0],[0,0,0,0,1],[0,1,-1,1,0],[0,0,1,0,0]]
=> 4 = 5 - 1
[1,1,0,1,1,0,0,1,0,0]
=> [[0,1,0,0,0],[1,-1,0,1,0],[0,1,0,0,0],[0,0,1,-1,1],[0,0,0,1,0]]
=> [[1,0,0,0,0],[0,0,1,0,0],[0,0,0,1,0],[0,1,0,0,0],[0,0,0,0,1]]
=> 2 = 3 - 1
[1,1,0,1,1,0,1,0,0,0]
=> [[0,1,0,0,0],[1,-1,0,1,0],[0,1,0,-1,1],[0,0,1,0,0],[0,0,0,1,0]]
=> [[1,0,0,0,0],[0,0,0,0,1],[0,0,1,0,0],[0,1,-1,1,0],[0,0,1,0,0]]
=> 5 = 6 - 1
[1,1,0,1,1,1,0,0,0,0]
=> [[0,1,0,0,0],[1,-1,0,0,1],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,1,0]]
=> [[1,0,0,0,0],[0,0,1,0,0],[0,0,0,1,0],[0,1,-1,0,1],[0,0,1,0,0]]
=> 3 = 4 - 1
Description
The inversion number of the alternating sign matrix. If we denote the entries of the alternating sign matrix as $a_{i,j}$, the inversion number is defined as $$\sum_{i > k}\sum_{j < \ell} a_{i,j}a_{k,\ell}.$$ When restricted to permutation matrices, this gives the usual inversion number of the permutation.
Matching statistic: St000795
Mp00199: Dyck paths prime Dyck pathDyck paths
Mp00121: Dyck paths Cori-Le Borgne involutionDyck paths
Mp00119: Dyck paths to 321-avoiding permutation (Krattenthaler)Permutations
St000795: Permutations ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[1,0]
=> [1,1,0,0]
=> [1,1,0,0]
=> [2,1] => 1
[1,0,1,0]
=> [1,1,0,1,0,0]
=> [1,0,1,1,0,0]
=> [1,3,2] => 1
[1,1,0,0]
=> [1,1,1,0,0,0]
=> [1,1,1,0,0,0]
=> [3,1,2] => 2
[1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,0]
=> [1,0,1,0,1,1,0,0]
=> [1,2,4,3] => 1
[1,0,1,1,0,0]
=> [1,1,0,1,1,0,0,0]
=> [1,1,0,1,1,0,0,0]
=> [2,4,1,3] => 4
[1,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0]
=> [1,1,1,0,0,0,1,0]
=> [3,1,2,4] => 2
[1,1,0,1,0,0]
=> [1,1,1,0,1,0,0,0]
=> [1,0,1,1,1,0,0,0]
=> [1,4,2,3] => 2
[1,1,1,0,0,0]
=> [1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,0]
=> [4,1,2,3] => 3
[1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> [1,2,3,5,4] => 1
[1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> [2,3,5,1,4] => 6
[1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> [1,1,0,1,1,0,0,0,1,0]
=> [2,4,1,3,5] => 4
[1,0,1,1,0,1,0,0]
=> [1,1,0,1,1,0,1,0,0,0]
=> [1,0,1,1,0,1,1,0,0,0]
=> [1,3,5,2,4] => 4
[1,0,1,1,1,0,0,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> [1,1,1,0,1,1,0,0,0,0]
=> [3,5,1,2,4] => 5
[1,1,0,0,1,0,1,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> [1,1,1,0,0,0,1,0,1,0]
=> [3,1,2,4,5] => 2
[1,1,0,0,1,1,0,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> [2,1,5,3,4] => 3
[1,1,0,1,0,0,1,0]
=> [1,1,1,0,1,0,0,1,0,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> [1,4,2,3,5] => 2
[1,1,0,1,0,1,0,0]
=> [1,1,1,0,1,0,1,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> [1,2,5,3,4] => 2
[1,1,0,1,1,0,0,0]
=> [1,1,1,0,1,1,0,0,0,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> [2,5,1,3,4] => 5
[1,1,1,0,0,0,1,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> [4,1,2,5,3] => 6
[1,1,1,0,0,1,0,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> [1,1,1,1,0,0,0,0,1,0]
=> [4,1,2,3,5] => 3
[1,1,1,0,1,0,0,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,5,2,3,4] => 3
[1,1,1,1,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [5,1,2,3,4] => 4
[1,0,1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,2,3,4,6,5] => 1
[1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,0,1,1,0,0,0]
=> [1,1,0,1,0,1,0,1,1,0,0,0]
=> [2,3,4,6,1,5] => 8
[1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,0,1,1,0,0,1,0,0]
=> [1,1,0,1,0,1,1,0,0,0,1,0]
=> [2,3,5,1,4,6] => 6
[1,0,1,0,1,1,0,1,0,0]
=> [1,1,0,1,0,1,1,0,1,0,0,0]
=> [1,0,1,1,0,1,0,1,1,0,0,0]
=> [1,3,4,6,2,5] => 6
[1,0,1,0,1,1,1,0,0,0]
=> [1,1,0,1,0,1,1,1,0,0,0,0]
=> [1,1,1,0,1,0,1,1,0,0,0,0]
=> [3,4,6,1,2,5] => 7
[1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,1,1,0,0,1,0,1,0,0]
=> [1,1,0,1,1,0,0,0,1,0,1,0]
=> [2,4,1,3,5,6] => 4
[1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,1,1,0,0,1,1,0,0,0]
=> [1,1,0,0,1,1,0,1,1,0,0,0]
=> [2,1,4,6,3,5] => 5
[1,0,1,1,0,1,0,0,1,0]
=> [1,1,0,1,1,0,1,0,0,1,0,0]
=> [1,0,1,1,0,1,1,0,0,0,1,0]
=> [1,3,5,2,4,6] => 4
[1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,1,1,0,1,0,1,0,0,0]
=> [1,0,1,0,1,1,0,1,1,0,0,0]
=> [1,2,4,6,3,5] => 4
[1,0,1,1,0,1,1,0,0,0]
=> [1,1,0,1,1,0,1,1,0,0,0,0]
=> [1,1,0,1,1,0,1,1,0,0,0,0]
=> [2,4,6,1,3,5] => 7
[1,0,1,1,1,0,0,0,1,0]
=> [1,1,0,1,1,1,0,0,0,1,0,0]
=> [1,1,1,0,1,1,0,0,0,1,0,0]
=> [3,5,1,2,6,4] => 8
[1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,1,1,1,0,0,1,0,0,0]
=> [1,1,1,0,1,1,0,0,0,0,1,0]
=> [3,5,1,2,4,6] => 5
[1,0,1,1,1,0,1,0,0,0]
=> [1,1,0,1,1,1,0,1,0,0,0,0]
=> [1,0,1,1,1,0,1,1,0,0,0,0]
=> [1,4,6,2,3,5] => 5
[1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,0,1,1,0,0,0,0,0]
=> [4,6,1,2,3,5] => 6
[1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,0,0,1,0,1,0,1,0,0]
=> [1,1,1,0,0,0,1,0,1,0,1,0]
=> [3,1,2,4,5,6] => 2
[1,1,0,0,1,0,1,1,0,0]
=> [1,1,1,0,0,1,0,1,1,0,0,0]
=> [1,1,0,1,0,0,1,1,1,0,0,0]
=> [2,3,1,6,4,5] => 5
[1,1,0,0,1,1,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,1,0,0]
=> [1,1,0,0,1,1,1,0,0,0,1,0]
=> [2,1,5,3,4,6] => 3
[1,1,0,0,1,1,0,1,0,0]
=> [1,1,1,0,0,1,1,0,1,0,0,0]
=> [1,0,1,1,0,0,1,1,1,0,0,0]
=> [1,3,2,6,4,5] => 3
[1,1,0,0,1,1,1,0,0,0]
=> [1,1,1,0,0,1,1,1,0,0,0,0]
=> [1,1,1,0,0,1,1,1,0,0,0,0]
=> [3,1,6,2,4,5] => 7
[1,1,0,1,0,0,1,0,1,0]
=> [1,1,1,0,1,0,0,1,0,1,0,0]
=> [1,0,1,1,1,0,0,0,1,0,1,0]
=> [1,4,2,3,5,6] => 2
[1,1,0,1,0,0,1,1,0,0]
=> [1,1,1,0,1,0,0,1,1,0,0,0]
=> [1,1,0,0,1,0,1,1,1,0,0,0]
=> [2,1,3,6,4,5] => 3
[1,1,0,1,0,1,0,0,1,0]
=> [1,1,1,0,1,0,1,0,0,1,0,0]
=> [1,0,1,0,1,1,1,0,0,0,1,0]
=> [1,2,5,3,4,6] => 2
[1,1,0,1,0,1,0,1,0,0]
=> [1,1,1,0,1,0,1,0,1,0,0,0]
=> [1,0,1,0,1,0,1,1,1,0,0,0]
=> [1,2,3,6,4,5] => 2
[1,1,0,1,0,1,1,0,0,0]
=> [1,1,1,0,1,0,1,1,0,0,0,0]
=> [1,1,0,1,0,1,1,1,0,0,0,0]
=> [2,3,6,1,4,5] => 7
[1,1,0,1,1,0,0,0,1,0]
=> [1,1,1,0,1,1,0,0,0,1,0,0]
=> [1,1,0,1,1,1,0,0,0,1,0,0]
=> [2,5,1,3,6,4] => 8
[1,1,0,1,1,0,0,1,0,0]
=> [1,1,1,0,1,1,0,0,1,0,0,0]
=> [1,1,0,1,1,1,0,0,0,0,1,0]
=> [2,5,1,3,4,6] => 5
[1,1,0,1,1,0,1,0,0,0]
=> [1,1,1,0,1,1,0,1,0,0,0,0]
=> [1,0,1,1,0,1,1,1,0,0,0,0]
=> [1,3,6,2,4,5] => 5
[1,1,0,1,1,1,0,0,0,0]
=> [1,1,1,0,1,1,1,0,0,0,0,0]
=> [1,1,1,0,1,1,1,0,0,0,0,0]
=> [3,6,1,2,4,5] => 6
Description
The mad of a permutation. According to [1], this is the sum of twice the number of occurrences of the vincular pattern of $(2\underline{31})$ plus the number of occurrences of the vincular patterns $(\underline{31}2)$ and $(\underline{21})$, where matches of the underlined letters must be adjacent.
Mp00027: Dyck paths to partitionInteger partitions
Mp00230: Integer partitions parallelogram polyominoDyck paths
Mp00035: Dyck paths to alternating sign matrixAlternating sign matrices
St000197: Alternating sign matrices ⟶ ℤResult quality: 69% values known / values provided: 69%distinct values known / distinct values provided: 88%
Values
[1,0]
=> []
=> []
=> []
=> ? = 1
[1,0,1,0]
=> [1]
=> [1,0]
=> [[1]]
=> 1
[1,1,0,0]
=> []
=> []
=> []
=> ? = 2
[1,0,1,0,1,0]
=> [2,1]
=> [1,0,1,1,0,0]
=> [[1,0,0],[0,0,1],[0,1,0]]
=> 3
[1,0,1,1,0,0]
=> [1,1]
=> [1,1,0,0]
=> [[0,1],[1,0]]
=> 2
[1,1,0,0,1,0]
=> [2]
=> [1,0,1,0]
=> [[1,0],[0,1]]
=> 2
[1,1,0,1,0,0]
=> [1]
=> [1,0]
=> [[1]]
=> 1
[1,1,1,0,0,0]
=> []
=> []
=> []
=> ? = 4
[1,0,1,0,1,0,1,0]
=> [3,2,1]
=> [1,0,1,1,1,0,0,1,0,0]
=> [[1,0,0,0,0],[0,0,0,1,0],[0,1,0,0,0],[0,0,1,-1,1],[0,0,0,1,0]]
=> 6
[1,0,1,0,1,1,0,0]
=> [2,2,1]
=> [1,1,1,0,0,1,0,0]
=> [[0,0,1,0],[1,0,0,0],[0,1,-1,1],[0,0,1,0]]
=> 5
[1,0,1,1,0,0,1,0]
=> [3,1,1]
=> [1,0,1,0,1,1,0,1,0,0]
=> [[1,0,0,0,0],[0,1,0,0,0],[0,0,0,1,0],[0,0,1,-1,1],[0,0,0,1,0]]
=> 6
[1,0,1,1,0,1,0,0]
=> [2,1,1]
=> [1,0,1,1,0,1,0,0]
=> [[1,0,0,0],[0,0,1,0],[0,1,-1,1],[0,0,1,0]]
=> 5
[1,0,1,1,1,0,0,0]
=> [1,1,1]
=> [1,1,0,1,0,0]
=> [[0,1,0],[1,-1,1],[0,1,0]]
=> 4
[1,1,0,0,1,0,1,0]
=> [3,2]
=> [1,0,1,1,1,0,0,0]
=> [[1,0,0,0],[0,0,0,1],[0,1,0,0],[0,0,1,0]]
=> 4
[1,1,0,0,1,1,0,0]
=> [2,2]
=> [1,1,1,0,0,0]
=> [[0,0,1],[1,0,0],[0,1,0]]
=> 3
[1,1,0,1,0,0,1,0]
=> [3,1]
=> [1,0,1,0,1,1,0,0]
=> [[1,0,0,0],[0,1,0,0],[0,0,0,1],[0,0,1,0]]
=> 4
[1,1,0,1,0,1,0,0]
=> [2,1]
=> [1,0,1,1,0,0]
=> [[1,0,0],[0,0,1],[0,1,0]]
=> 3
[1,1,0,1,1,0,0,0]
=> [1,1]
=> [1,1,0,0]
=> [[0,1],[1,0]]
=> 2
[1,1,1,0,0,0,1,0]
=> [3]
=> [1,0,1,0,1,0]
=> [[1,0,0],[0,1,0],[0,0,1]]
=> 3
[1,1,1,0,0,1,0,0]
=> [2]
=> [1,0,1,0]
=> [[1,0],[0,1]]
=> 2
[1,1,1,0,1,0,0,0]
=> [1]
=> [1,0]
=> [[1]]
=> 1
[1,1,1,1,0,0,0,0]
=> []
=> []
=> []
=> ? = 2
[1,0,1,0,1,0,1,0,1,0]
=> [4,3,2,1]
=> [1,0,1,1,1,0,1,1,0,0,0,1,0,0]
=> [[1,0,0,0,0,0,0],[0,0,0,1,0,0,0],[0,1,0,-1,0,1,0],[0,0,1,0,0,0,0],[0,0,0,1,0,0,0],[0,0,0,0,1,-1,1],[0,0,0,0,0,1,0]]
=> ? ∊ {2,2,3,3,3,4,4,5,6,7,7,8,8,8,8,8}
[1,0,1,0,1,0,1,1,0,0]
=> [3,3,2,1]
=> [1,1,1,0,1,1,0,0,0,1,0,0]
=> [[0,0,1,0,0,0],[1,0,-1,0,1,0],[0,1,0,0,0,0],[0,0,1,0,0,0],[0,0,0,1,-1,1],[0,0,0,0,1,0]]
=> ? ∊ {2,2,3,3,3,4,4,5,6,7,7,8,8,8,8,8}
[1,0,1,0,1,1,0,0,1,0]
=> [4,2,2,1]
=> [1,0,1,0,1,1,1,1,0,0,0,1,0,0]
=> [[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,0,0,1,0],[0,0,1,0,0,0,0],[0,0,0,1,0,0,0],[0,0,0,0,1,-1,1],[0,0,0,0,0,1,0]]
=> ? ∊ {2,2,3,3,3,4,4,5,6,7,7,8,8,8,8,8}
[1,0,1,0,1,1,0,1,0,0]
=> [3,2,2,1]
=> [1,0,1,1,1,1,0,0,0,1,0,0]
=> [[1,0,0,0,0,0],[0,0,0,0,1,0],[0,1,0,0,0,0],[0,0,1,0,0,0],[0,0,0,1,-1,1],[0,0,0,0,1,0]]
=> ? ∊ {2,2,3,3,3,4,4,5,6,7,7,8,8,8,8,8}
[1,0,1,0,1,1,1,0,0,0]
=> [2,2,2,1]
=> [1,1,1,1,0,0,0,1,0,0]
=> [[0,0,0,1,0],[1,0,0,0,0],[0,1,0,0,0],[0,0,1,-1,1],[0,0,0,1,0]]
=> 6
[1,0,1,1,0,0,1,0,1,0]
=> [4,3,1,1]
=> [1,0,1,1,1,0,1,0,0,1,0,1,0,0]
=> [[1,0,0,0,0,0,0],[0,0,0,1,0,0,0],[0,1,0,-1,1,0,0],[0,0,1,0,0,0,0],[0,0,0,1,-1,1,0],[0,0,0,0,1,-1,1],[0,0,0,0,0,1,0]]
=> ? ∊ {2,2,3,3,3,4,4,5,6,7,7,8,8,8,8,8}
[1,0,1,1,0,0,1,1,0,0]
=> [3,3,1,1]
=> [1,1,1,0,1,0,0,1,0,1,0,0]
=> [[0,0,1,0,0,0],[1,0,-1,1,0,0],[0,1,0,0,0,0],[0,0,1,-1,1,0],[0,0,0,1,-1,1],[0,0,0,0,1,0]]
=> ? ∊ {2,2,3,3,3,4,4,5,6,7,7,8,8,8,8,8}
[1,0,1,1,0,1,0,0,1,0]
=> [4,2,1,1]
=> [1,0,1,0,1,1,1,0,0,1,0,1,0,0]
=> [[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,0,1,0,0],[0,0,1,0,0,0,0],[0,0,0,1,-1,1,0],[0,0,0,0,1,-1,1],[0,0,0,0,0,1,0]]
=> ? ∊ {2,2,3,3,3,4,4,5,6,7,7,8,8,8,8,8}
[1,0,1,1,0,1,0,1,0,0]
=> [3,2,1,1]
=> [1,0,1,1,1,0,0,1,0,1,0,0]
=> [[1,0,0,0,0,0],[0,0,0,1,0,0],[0,1,0,0,0,0],[0,0,1,-1,1,0],[0,0,0,1,-1,1],[0,0,0,0,1,0]]
=> ? ∊ {2,2,3,3,3,4,4,5,6,7,7,8,8,8,8,8}
[1,0,1,1,0,1,1,0,0,0]
=> [2,2,1,1]
=> [1,1,1,0,0,1,0,1,0,0]
=> [[0,0,1,0,0],[1,0,0,0,0],[0,1,-1,1,0],[0,0,1,-1,1],[0,0,0,1,0]]
=> 7
[1,0,1,1,1,0,0,0,1,0]
=> [4,1,1,1]
=> [1,0,1,0,1,0,1,1,0,1,0,1,0,0]
=> [[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,1,0,0,0,0],[0,0,0,0,1,0,0],[0,0,0,1,-1,1,0],[0,0,0,0,1,-1,1],[0,0,0,0,0,1,0]]
=> ? ∊ {2,2,3,3,3,4,4,5,6,7,7,8,8,8,8,8}
[1,0,1,1,1,0,0,1,0,0]
=> [3,1,1,1]
=> [1,0,1,0,1,1,0,1,0,1,0,0]
=> [[1,0,0,0,0,0],[0,1,0,0,0,0],[0,0,0,1,0,0],[0,0,1,-1,1,0],[0,0,0,1,-1,1],[0,0,0,0,1,0]]
=> ? ∊ {2,2,3,3,3,4,4,5,6,7,7,8,8,8,8,8}
[1,0,1,1,1,0,1,0,0,0]
=> [2,1,1,1]
=> [1,0,1,1,0,1,0,1,0,0]
=> [[1,0,0,0,0],[0,0,1,0,0],[0,1,-1,1,0],[0,0,1,-1,1],[0,0,0,1,0]]
=> 7
[1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1]
=> [1,1,0,1,0,1,0,0]
=> [[0,1,0,0],[1,-1,1,0],[0,1,-1,1],[0,0,1,0]]
=> 6
[1,1,0,0,1,0,1,0,1,0]
=> [4,3,2]
=> [1,0,1,1,1,0,1,1,0,0,0,0]
=> [[1,0,0,0,0,0],[0,0,0,1,0,0],[0,1,0,-1,0,1],[0,0,1,0,0,0],[0,0,0,1,0,0],[0,0,0,0,1,0]]
=> ? ∊ {2,2,3,3,3,4,4,5,6,7,7,8,8,8,8,8}
[1,1,0,0,1,0,1,1,0,0]
=> [3,3,2]
=> [1,1,1,0,1,1,0,0,0,0]
=> [[0,0,1,0,0],[1,0,-1,0,1],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,1,0]]
=> 6
[1,1,0,0,1,1,0,0,1,0]
=> [4,2,2]
=> [1,0,1,0,1,1,1,1,0,0,0,0]
=> [[1,0,0,0,0,0],[0,1,0,0,0,0],[0,0,0,0,0,1],[0,0,1,0,0,0],[0,0,0,1,0,0],[0,0,0,0,1,0]]
=> ? ∊ {2,2,3,3,3,4,4,5,6,7,7,8,8,8,8,8}
[1,1,0,0,1,1,0,1,0,0]
=> [3,2,2]
=> [1,0,1,1,1,1,0,0,0,0]
=> [[1,0,0,0,0],[0,0,0,0,1],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,1,0]]
=> 5
[1,1,0,0,1,1,1,0,0,0]
=> [2,2,2]
=> [1,1,1,1,0,0,0,0]
=> [[0,0,0,1],[1,0,0,0],[0,1,0,0],[0,0,1,0]]
=> 4
[1,1,0,1,0,0,1,0,1,0]
=> [4,3,1]
=> [1,0,1,1,1,0,1,0,0,1,0,0]
=> [[1,0,0,0,0,0],[0,0,0,1,0,0],[0,1,0,-1,1,0],[0,0,1,0,0,0],[0,0,0,1,-1,1],[0,0,0,0,1,0]]
=> ? ∊ {2,2,3,3,3,4,4,5,6,7,7,8,8,8,8,8}
[1,1,0,1,0,0,1,1,0,0]
=> [3,3,1]
=> [1,1,1,0,1,0,0,1,0,0]
=> [[0,0,1,0,0],[1,0,-1,1,0],[0,1,0,0,0],[0,0,1,-1,1],[0,0,0,1,0]]
=> 7
[1,1,0,1,0,1,0,0,1,0]
=> [4,2,1]
=> [1,0,1,0,1,1,1,0,0,1,0,0]
=> [[1,0,0,0,0,0],[0,1,0,0,0,0],[0,0,0,0,1,0],[0,0,1,0,0,0],[0,0,0,1,-1,1],[0,0,0,0,1,0]]
=> ? ∊ {2,2,3,3,3,4,4,5,6,7,7,8,8,8,8,8}
[1,1,0,1,0,1,0,1,0,0]
=> [3,2,1]
=> [1,0,1,1,1,0,0,1,0,0]
=> [[1,0,0,0,0],[0,0,0,1,0],[0,1,0,0,0],[0,0,1,-1,1],[0,0,0,1,0]]
=> 6
[1,1,0,1,0,1,1,0,0,0]
=> [2,2,1]
=> [1,1,1,0,0,1,0,0]
=> [[0,0,1,0],[1,0,0,0],[0,1,-1,1],[0,0,1,0]]
=> 5
[1,1,0,1,1,0,0,0,1,0]
=> [4,1,1]
=> [1,0,1,0,1,0,1,1,0,1,0,0]
=> [[1,0,0,0,0,0],[0,1,0,0,0,0],[0,0,1,0,0,0],[0,0,0,0,1,0],[0,0,0,1,-1,1],[0,0,0,0,1,0]]
=> ? ∊ {2,2,3,3,3,4,4,5,6,7,7,8,8,8,8,8}
[1,1,0,1,1,0,0,1,0,0]
=> [3,1,1]
=> [1,0,1,0,1,1,0,1,0,0]
=> [[1,0,0,0,0],[0,1,0,0,0],[0,0,0,1,0],[0,0,1,-1,1],[0,0,0,1,0]]
=> 6
[1,1,0,1,1,0,1,0,0,0]
=> [2,1,1]
=> [1,0,1,1,0,1,0,0]
=> [[1,0,0,0],[0,0,1,0],[0,1,-1,1],[0,0,1,0]]
=> 5
[1,1,0,1,1,1,0,0,0,0]
=> [1,1,1]
=> [1,1,0,1,0,0]
=> [[0,1,0],[1,-1,1],[0,1,0]]
=> 4
[1,1,1,0,0,0,1,0,1,0]
=> [4,3]
=> [1,0,1,1,1,0,1,0,0,0]
=> [[1,0,0,0,0],[0,0,0,1,0],[0,1,0,-1,1],[0,0,1,0,0],[0,0,0,1,0]]
=> 6
[1,1,1,0,0,0,1,1,0,0]
=> [3,3]
=> [1,1,1,0,1,0,0,0]
=> [[0,0,1,0],[1,0,-1,1],[0,1,0,0],[0,0,1,0]]
=> 5
[1,1,1,0,0,1,0,0,1,0]
=> [4,2]
=> [1,0,1,0,1,1,1,0,0,0]
=> [[1,0,0,0,0],[0,1,0,0,0],[0,0,0,0,1],[0,0,1,0,0],[0,0,0,1,0]]
=> 5
[1,1,1,0,0,1,0,1,0,0]
=> [3,2]
=> [1,0,1,1,1,0,0,0]
=> [[1,0,0,0],[0,0,0,1],[0,1,0,0],[0,0,1,0]]
=> 4
[1,1,1,0,0,1,1,0,0,0]
=> [2,2]
=> [1,1,1,0,0,0]
=> [[0,0,1],[1,0,0],[0,1,0]]
=> 3
[1,1,1,0,1,0,0,0,1,0]
=> [4,1]
=> [1,0,1,0,1,0,1,1,0,0]
=> [[1,0,0,0,0],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,0,1],[0,0,0,1,0]]
=> 5
[1,1,1,0,1,0,0,1,0,0]
=> [3,1]
=> [1,0,1,0,1,1,0,0]
=> [[1,0,0,0],[0,1,0,0],[0,0,0,1],[0,0,1,0]]
=> 4
[1,1,1,0,1,0,1,0,0,0]
=> [2,1]
=> [1,0,1,1,0,0]
=> [[1,0,0],[0,0,1],[0,1,0]]
=> 3
[1,1,1,0,1,1,0,0,0,0]
=> [1,1]
=> [1,1,0,0]
=> [[0,1],[1,0]]
=> 2
[1,1,1,1,0,0,0,0,1,0]
=> [4]
=> [1,0,1,0,1,0,1,0]
=> [[1,0,0,0],[0,1,0,0],[0,0,1,0],[0,0,0,1]]
=> 4
[1,1,1,1,0,0,0,1,0,0]
=> [3]
=> [1,0,1,0,1,0]
=> [[1,0,0],[0,1,0],[0,0,1]]
=> 3
[1,1,1,1,0,0,1,0,0,0]
=> [2]
=> [1,0,1,0]
=> [[1,0],[0,1]]
=> 2
[1,1,1,1,0,1,0,0,0,0]
=> [1]
=> [1,0]
=> [[1]]
=> 1
[1,1,1,1,1,0,0,0,0,0]
=> []
=> []
=> []
=> ? ∊ {2,2,3,3,3,4,4,5,6,7,7,8,8,8,8,8}
Description
The number of entries equal to positive one in the alternating sign matrix.
Mp00099: Dyck paths bounce pathDyck paths
Mp00101: Dyck paths decomposition reverseDyck paths
Mp00327: Dyck paths inverse Kreweras complementDyck paths
St001232: Dyck paths ⟶ ℤResult quality: 64% values known / values provided: 64%distinct values known / distinct values provided: 75%
Values
[1,0]
=> [1,0]
=> [1,0]
=> [1,0]
=> 0 = 1 - 1
[1,0,1,0]
=> [1,0,1,0]
=> [1,1,0,0]
=> [1,0,1,0]
=> 1 = 2 - 1
[1,1,0,0]
=> [1,1,0,0]
=> [1,0,1,0]
=> [1,1,0,0]
=> 0 = 1 - 1
[1,0,1,0,1,0]
=> [1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> [1,0,1,0,1,0]
=> ? = 4 - 1
[1,0,1,1,0,0]
=> [1,0,1,1,0,0]
=> [1,1,0,1,0,0]
=> [1,1,0,0,1,0]
=> 1 = 2 - 1
[1,1,0,0,1,0]
=> [1,1,0,0,1,0]
=> [1,1,0,0,1,0]
=> [1,0,1,1,0,0]
=> 2 = 3 - 1
[1,1,0,1,0,0]
=> [1,0,1,1,0,0]
=> [1,1,0,1,0,0]
=> [1,1,0,0,1,0]
=> 1 = 2 - 1
[1,1,1,0,0,0]
=> [1,1,1,0,0,0]
=> [1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> 0 = 1 - 1
[1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> ? ∊ {5,5,6,6} - 1
[1,0,1,0,1,1,0,0]
=> [1,0,1,0,1,1,0,0]
=> [1,1,1,0,1,0,0,0]
=> [1,0,1,1,0,0,1,0]
=> 3 = 4 - 1
[1,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0]
=> [1,1,0,1,0,0,1,0]
=> ? ∊ {5,5,6,6} - 1
[1,0,1,1,0,1,0,0]
=> [1,0,1,0,1,1,0,0]
=> [1,1,1,0,1,0,0,0]
=> [1,0,1,1,0,0,1,0]
=> 3 = 4 - 1
[1,0,1,1,1,0,0,0]
=> [1,0,1,1,1,0,0,0]
=> [1,1,0,1,0,1,0,0]
=> [1,1,1,0,0,0,1,0]
=> 1 = 2 - 1
[1,1,0,0,1,0,1,0]
=> [1,1,0,0,1,0,1,0]
=> [1,1,1,0,0,0,1,0]
=> [1,0,1,0,1,1,0,0]
=> ? ∊ {5,5,6,6} - 1
[1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> [1,1,0,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0]
=> 2 = 3 - 1
[1,1,0,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0]
=> [1,1,0,1,0,0,1,0]
=> ? ∊ {5,5,6,6} - 1
[1,1,0,1,0,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> [1,1,0,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0]
=> 2 = 3 - 1
[1,1,0,1,1,0,0,0]
=> [1,0,1,1,1,0,0,0]
=> [1,1,0,1,0,1,0,0]
=> [1,1,1,0,0,0,1,0]
=> 1 = 2 - 1
[1,1,1,0,0,0,1,0]
=> [1,1,1,0,0,0,1,0]
=> [1,1,0,0,1,0,1,0]
=> [1,0,1,1,1,0,0,0]
=> 3 = 4 - 1
[1,1,1,0,0,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> [1,1,0,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0]
=> 2 = 3 - 1
[1,1,1,0,1,0,0,0]
=> [1,0,1,1,1,0,0,0]
=> [1,1,0,1,0,1,0,0]
=> [1,1,1,0,0,0,1,0]
=> 1 = 2 - 1
[1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> 0 = 1 - 1
[1,0,1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> ? ∊ {4,4,4,5,6,6,6,6,7,7,7,7,7,8,8,8,8,8} - 1
[1,0,1,0,1,0,1,1,0,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> ? ∊ {4,4,4,5,6,6,6,6,7,7,7,7,7,8,8,8,8,8} - 1
[1,0,1,0,1,1,0,0,1,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> [1,0,1,1,0,1,0,0,1,0]
=> ? ∊ {4,4,4,5,6,6,6,6,7,7,7,7,7,8,8,8,8,8} - 1
[1,0,1,0,1,1,0,1,0,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> ? ∊ {4,4,4,5,6,6,6,6,7,7,7,7,7,8,8,8,8,8} - 1
[1,0,1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,0,1,0,1,0,0,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> 4 = 5 - 1
[1,0,1,1,0,0,1,0,1,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> [1,1,0,1,0,1,0,0,1,0]
=> ? ∊ {4,4,4,5,6,6,6,6,7,7,7,7,7,8,8,8,8,8} - 1
[1,0,1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> [1,1,1,0,1,0,0,1,0,0]
=> [1,1,1,0,0,1,0,0,1,0]
=> ? ∊ {4,4,4,5,6,6,6,6,7,7,7,7,7,8,8,8,8,8} - 1
[1,0,1,1,0,1,0,0,1,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> [1,0,1,1,0,1,0,0,1,0]
=> ? ∊ {4,4,4,5,6,6,6,6,7,7,7,7,7,8,8,8,8,8} - 1
[1,0,1,1,0,1,0,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> [1,1,1,0,1,0,0,1,0,0]
=> [1,1,1,0,0,1,0,0,1,0]
=> ? ∊ {4,4,4,5,6,6,6,6,7,7,7,7,7,8,8,8,8,8} - 1
[1,0,1,1,0,1,1,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,0,1,0,1,0,0,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> 4 = 5 - 1
[1,0,1,1,1,0,0,0,1,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> [1,1,0,1,1,0,0,0,1,0]
=> 5 = 6 - 1
[1,0,1,1,1,0,0,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> [1,1,1,0,1,0,0,1,0,0]
=> [1,1,1,0,0,1,0,0,1,0]
=> ? ∊ {4,4,4,5,6,6,6,6,7,7,7,7,7,8,8,8,8,8} - 1
[1,0,1,1,1,0,1,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,0,1,0,1,0,0,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> 4 = 5 - 1
[1,0,1,1,1,1,0,0,0,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> [1,1,1,1,0,0,0,0,1,0]
=> 1 = 2 - 1
[1,1,0,0,1,0,1,0,1,0]
=> [1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0,1,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> ? ∊ {4,4,4,5,6,6,6,6,7,7,7,7,7,8,8,8,8,8} - 1
[1,1,0,0,1,0,1,1,0,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> [1,1,1,0,1,0,0,0,1,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> 4 = 5 - 1
[1,1,0,0,1,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0,1,0]
=> [1,1,0,1,0,0,1,1,0,0]
=> ? ∊ {4,4,4,5,6,6,6,6,7,7,7,7,7,8,8,8,8,8} - 1
[1,1,0,0,1,1,0,1,0,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> [1,1,1,0,1,0,0,0,1,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> 4 = 5 - 1
[1,1,0,0,1,1,1,0,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> [1,1,0,1,0,1,0,0,1,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> 2 = 3 - 1
[1,1,0,1,0,0,1,0,1,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> [1,1,0,1,0,1,0,0,1,0]
=> ? ∊ {4,4,4,5,6,6,6,6,7,7,7,7,7,8,8,8,8,8} - 1
[1,1,0,1,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> [1,1,1,0,1,0,0,1,0,0]
=> [1,1,1,0,0,1,0,0,1,0]
=> ? ∊ {4,4,4,5,6,6,6,6,7,7,7,7,7,8,8,8,8,8} - 1
[1,1,0,1,0,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0,1,0]
=> [1,1,0,1,0,0,1,1,0,0]
=> ? ∊ {4,4,4,5,6,6,6,6,7,7,7,7,7,8,8,8,8,8} - 1
[1,1,0,1,0,1,0,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> [1,1,1,0,1,0,0,1,0,0]
=> [1,1,1,0,0,1,0,0,1,0]
=> ? ∊ {4,4,4,5,6,6,6,6,7,7,7,7,7,8,8,8,8,8} - 1
[1,1,0,1,0,1,1,0,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> [1,1,0,1,0,1,0,0,1,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> 2 = 3 - 1
[1,1,0,1,1,0,0,0,1,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> [1,1,0,1,1,0,0,0,1,0]
=> 5 = 6 - 1
[1,1,0,1,1,0,0,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> [1,1,1,0,1,0,0,1,0,0]
=> [1,1,1,0,0,1,0,0,1,0]
=> ? ∊ {4,4,4,5,6,6,6,6,7,7,7,7,7,8,8,8,8,8} - 1
[1,1,0,1,1,0,1,0,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> [1,1,0,1,0,1,0,0,1,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> 2 = 3 - 1
[1,1,0,1,1,1,0,0,0,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> [1,1,1,1,0,0,0,0,1,0]
=> 1 = 2 - 1
[1,1,1,0,0,0,1,0,1,0]
=> [1,1,1,0,0,0,1,0,1,0]
=> [1,1,1,0,0,0,1,0,1,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> ? ∊ {4,4,4,5,6,6,6,6,7,7,7,7,7,8,8,8,8,8} - 1
[1,1,1,0,0,0,1,1,0,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> [1,1,0,1,0,0,1,0,1,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> 3 = 4 - 1
[1,1,1,0,0,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0,1,0]
=> [1,1,0,1,0,0,1,1,0,0]
=> ? ∊ {4,4,4,5,6,6,6,6,7,7,7,7,7,8,8,8,8,8} - 1
[1,1,1,0,0,1,0,1,0,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> [1,1,0,1,0,0,1,0,1,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> 3 = 4 - 1
[1,1,1,0,0,1,1,0,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> [1,1,0,1,0,1,0,0,1,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> 2 = 3 - 1
[1,1,1,0,1,0,0,0,1,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> [1,1,0,1,1,0,0,0,1,0]
=> 5 = 6 - 1
[1,1,1,0,1,0,0,1,0,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> [1,1,0,1,0,0,1,0,1,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> 3 = 4 - 1
[1,1,1,0,1,0,1,0,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> [1,1,0,1,0,1,0,0,1,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> 2 = 3 - 1
[1,1,1,0,1,1,0,0,0,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> [1,1,1,1,0,0,0,0,1,0]
=> 1 = 2 - 1
[1,1,1,1,0,0,0,0,1,0]
=> [1,1,1,1,0,0,0,0,1,0]
=> [1,1,0,0,1,0,1,0,1,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> 4 = 5 - 1
[1,1,1,1,0,0,0,1,0,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> [1,1,0,1,0,0,1,0,1,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> 3 = 4 - 1
[1,1,1,1,0,0,1,0,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> [1,1,0,1,0,1,0,0,1,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> 2 = 3 - 1
[1,1,1,1,0,1,0,0,0,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> [1,1,1,1,0,0,0,0,1,0]
=> 1 = 2 - 1
[1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> 0 = 1 - 1
Description
The number of indecomposable modules with projective dimension 2 for Nakayama algebras with global dimension at most 2.
Mp00035: Dyck paths to alternating sign matrixAlternating sign matrices
Mp00001: Alternating sign matrices to semistandard tableau via monotone trianglesSemistandard tableaux
Mp00214: Semistandard tableaux subcrystalPosets
St000528: Posets ⟶ ℤResult quality: 62% values known / values provided: 62%distinct values known / distinct values provided: 62%
Values
[1,0]
=> [[1]]
=> [[1]]
=> ([],1)
=> 1
[1,0,1,0]
=> [[1,0],[0,1]]
=> [[1,1],[2]]
=> ([],1)
=> 1
[1,1,0,0]
=> [[0,1],[1,0]]
=> [[1,2],[2]]
=> ([(0,1)],2)
=> 2
[1,0,1,0,1,0]
=> [[1,0,0],[0,1,0],[0,0,1]]
=> [[1,1,1],[2,2],[3]]
=> ([],1)
=> 1
[1,0,1,1,0,0]
=> [[1,0,0],[0,0,1],[0,1,0]]
=> [[1,1,1],[2,3],[3]]
=> ([(0,1)],2)
=> 2
[1,1,0,0,1,0]
=> [[0,1,0],[1,0,0],[0,0,1]]
=> [[1,1,2],[2,2],[3]]
=> ([(0,1)],2)
=> 2
[1,1,0,1,0,0]
=> [[0,1,0],[1,-1,1],[0,1,0]]
=> [[1,1,2],[2,3],[3]]
=> ([(0,2),(2,1)],3)
=> 3
[1,1,1,0,0,0]
=> [[0,0,1],[1,0,0],[0,1,0]]
=> [[1,1,3],[2,3],[3]]
=> ([(0,3),(2,1),(3,2)],4)
=> 4
[1,0,1,0,1,0,1,0]
=> [[1,0,0,0],[0,1,0,0],[0,0,1,0],[0,0,0,1]]
=> [[1,1,1,1],[2,2,2],[3,3],[4]]
=> ([],1)
=> 1
[1,0,1,0,1,1,0,0]
=> [[1,0,0,0],[0,1,0,0],[0,0,0,1],[0,0,1,0]]
=> [[1,1,1,1],[2,2,2],[3,4],[4]]
=> ([(0,1)],2)
=> 2
[1,0,1,1,0,0,1,0]
=> [[1,0,0,0],[0,0,1,0],[0,1,0,0],[0,0,0,1]]
=> [[1,1,1,1],[2,2,3],[3,3],[4]]
=> ([(0,1)],2)
=> 2
[1,0,1,1,0,1,0,0]
=> [[1,0,0,0],[0,0,1,0],[0,1,-1,1],[0,0,1,0]]
=> [[1,1,1,1],[2,2,3],[3,4],[4]]
=> ([(0,2),(2,1)],3)
=> 3
[1,0,1,1,1,0,0,0]
=> [[1,0,0,0],[0,0,0,1],[0,1,0,0],[0,0,1,0]]
=> [[1,1,1,1],[2,2,4],[3,4],[4]]
=> ([(0,3),(2,1),(3,2)],4)
=> 4
[1,1,0,0,1,0,1,0]
=> [[0,1,0,0],[1,0,0,0],[0,0,1,0],[0,0,0,1]]
=> [[1,1,1,2],[2,2,2],[3,3],[4]]
=> ([(0,1)],2)
=> 2
[1,1,0,0,1,1,0,0]
=> [[0,1,0,0],[1,0,0,0],[0,0,0,1],[0,0,1,0]]
=> [[1,1,1,2],[2,2,2],[3,4],[4]]
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 3
[1,1,0,1,0,0,1,0]
=> [[0,1,0,0],[1,-1,1,0],[0,1,0,0],[0,0,0,1]]
=> [[1,1,1,2],[2,2,3],[3,3],[4]]
=> ([(0,2),(2,1)],3)
=> 3
[1,1,0,1,0,1,0,0]
=> [[0,1,0,0],[1,-1,1,0],[0,1,-1,1],[0,0,1,0]]
=> [[1,1,1,2],[2,2,3],[3,4],[4]]
=> ([(0,3),(2,1),(3,2)],4)
=> 4
[1,1,0,1,1,0,0,0]
=> [[0,1,0,0],[1,-1,0,1],[0,1,0,0],[0,0,1,0]]
=> [[1,1,1,2],[2,2,4],[3,4],[4]]
=> ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
=> ? ∊ {5,6,6}
[1,1,1,0,0,0,1,0]
=> [[0,0,1,0],[1,0,0,0],[0,1,0,0],[0,0,0,1]]
=> [[1,1,1,3],[2,2,3],[3,3],[4]]
=> ([(0,3),(2,1),(3,2)],4)
=> 4
[1,1,1,0,0,1,0,0]
=> [[0,0,1,0],[1,0,0,0],[0,1,-1,1],[0,0,1,0]]
=> [[1,1,1,3],[2,2,3],[3,4],[4]]
=> ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
=> 5
[1,1,1,0,1,0,0,0]
=> [[0,0,1,0],[1,0,-1,1],[0,1,0,0],[0,0,1,0]]
=> [[1,1,1,3],[2,2,4],[3,4],[4]]
=> ([(0,5),(1,7),(2,8),(3,6),(4,3),(4,8),(5,2),(5,4),(6,7),(8,1),(8,6)],9)
=> ? ∊ {5,6,6}
[1,1,1,1,0,0,0,0]
=> [[0,0,0,1],[1,0,0,0],[0,1,0,0],[0,0,1,0]]
=> [[1,1,1,4],[2,2,4],[3,4],[4]]
=> ([(0,5),(2,7),(3,7),(4,1),(5,6),(6,2),(6,3),(7,4)],8)
=> ? ∊ {5,6,6}
[1,0,1,0,1,0,1,0,1,0]
=> [[1,0,0,0,0],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,1,0],[0,0,0,0,1]]
=> [[1,1,1,1,1],[2,2,2,2],[3,3,3],[4,4],[5]]
=> ([],1)
=> 1
[1,0,1,0,1,0,1,1,0,0]
=> [[1,0,0,0,0],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,0,1],[0,0,0,1,0]]
=> [[1,1,1,1,1],[2,2,2,2],[3,3,3],[4,5],[5]]
=> ([(0,1)],2)
=> 2
[1,0,1,0,1,1,0,0,1,0]
=> [[1,0,0,0,0],[0,1,0,0,0],[0,0,0,1,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [[1,1,1,1,1],[2,2,2,2],[3,3,4],[4,4],[5]]
=> ([(0,1)],2)
=> 2
[1,0,1,0,1,1,0,1,0,0]
=> [[1,0,0,0,0],[0,1,0,0,0],[0,0,0,1,0],[0,0,1,-1,1],[0,0,0,1,0]]
=> [[1,1,1,1,1],[2,2,2,2],[3,3,4],[4,5],[5]]
=> ([(0,2),(2,1)],3)
=> 3
[1,0,1,0,1,1,1,0,0,0]
=> [[1,0,0,0,0],[0,1,0,0,0],[0,0,0,0,1],[0,0,1,0,0],[0,0,0,1,0]]
=> [[1,1,1,1,1],[2,2,2,2],[3,3,5],[4,5],[5]]
=> ([(0,3),(2,1),(3,2)],4)
=> 4
[1,0,1,1,0,0,1,0,1,0]
=> [[1,0,0,0,0],[0,0,1,0,0],[0,1,0,0,0],[0,0,0,1,0],[0,0,0,0,1]]
=> [[1,1,1,1,1],[2,2,2,3],[3,3,3],[4,4],[5]]
=> ([(0,1)],2)
=> 2
[1,0,1,1,0,0,1,1,0,0]
=> [[1,0,0,0,0],[0,0,1,0,0],[0,1,0,0,0],[0,0,0,0,1],[0,0,0,1,0]]
=> [[1,1,1,1,1],[2,2,2,3],[3,3,3],[4,5],[5]]
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 3
[1,0,1,1,0,1,0,0,1,0]
=> [[1,0,0,0,0],[0,0,1,0,0],[0,1,-1,1,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [[1,1,1,1,1],[2,2,2,3],[3,3,4],[4,4],[5]]
=> ([(0,2),(2,1)],3)
=> 3
[1,0,1,1,0,1,0,1,0,0]
=> [[1,0,0,0,0],[0,0,1,0,0],[0,1,-1,1,0],[0,0,1,-1,1],[0,0,0,1,0]]
=> [[1,1,1,1,1],[2,2,2,3],[3,3,4],[4,5],[5]]
=> ([(0,3),(2,1),(3,2)],4)
=> 4
[1,0,1,1,0,1,1,0,0,0]
=> [[1,0,0,0,0],[0,0,1,0,0],[0,1,-1,0,1],[0,0,1,0,0],[0,0,0,1,0]]
=> [[1,1,1,1,1],[2,2,2,3],[3,3,5],[4,5],[5]]
=> ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
=> ? ∊ {5,5,5,5,6,6,6,6,6,6,6,7,7,7,7,7,8,8,8,8,8}
[1,0,1,1,1,0,0,0,1,0]
=> [[1,0,0,0,0],[0,0,0,1,0],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [[1,1,1,1,1],[2,2,2,4],[3,3,4],[4,4],[5]]
=> ([(0,3),(2,1),(3,2)],4)
=> 4
[1,0,1,1,1,0,0,1,0,0]
=> [[1,0,0,0,0],[0,0,0,1,0],[0,1,0,0,0],[0,0,1,-1,1],[0,0,0,1,0]]
=> [[1,1,1,1,1],[2,2,2,4],[3,3,4],[4,5],[5]]
=> ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
=> 5
[1,0,1,1,1,0,1,0,0,0]
=> [[1,0,0,0,0],[0,0,0,1,0],[0,1,0,-1,1],[0,0,1,0,0],[0,0,0,1,0]]
=> [[1,1,1,1,1],[2,2,2,4],[3,3,5],[4,5],[5]]
=> ([(0,5),(1,7),(2,8),(3,6),(4,3),(4,8),(5,2),(5,4),(6,7),(8,1),(8,6)],9)
=> ? ∊ {5,5,5,5,6,6,6,6,6,6,6,7,7,7,7,7,8,8,8,8,8}
[1,0,1,1,1,1,0,0,0,0]
=> [[1,0,0,0,0],[0,0,0,0,1],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,1,0]]
=> [[1,1,1,1,1],[2,2,2,5],[3,3,5],[4,5],[5]]
=> ([(0,5),(2,7),(3,7),(4,1),(5,6),(6,2),(6,3),(7,4)],8)
=> ? ∊ {5,5,5,5,6,6,6,6,6,6,6,7,7,7,7,7,8,8,8,8,8}
[1,1,0,0,1,0,1,0,1,0]
=> [[0,1,0,0,0],[1,0,0,0,0],[0,0,1,0,0],[0,0,0,1,0],[0,0,0,0,1]]
=> [[1,1,1,1,2],[2,2,2,2],[3,3,3],[4,4],[5]]
=> ([(0,1)],2)
=> 2
[1,1,0,0,1,0,1,1,0,0]
=> [[0,1,0,0,0],[1,0,0,0,0],[0,0,1,0,0],[0,0,0,0,1],[0,0,0,1,0]]
=> [[1,1,1,1,2],[2,2,2,2],[3,3,3],[4,5],[5]]
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 3
[1,1,0,0,1,1,0,0,1,0]
=> [[0,1,0,0,0],[1,0,0,0,0],[0,0,0,1,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [[1,1,1,1,2],[2,2,2,2],[3,3,4],[4,4],[5]]
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 3
[1,1,0,0,1,1,0,1,0,0]
=> [[0,1,0,0,0],[1,0,0,0,0],[0,0,0,1,0],[0,0,1,-1,1],[0,0,0,1,0]]
=> [[1,1,1,1,2],[2,2,2,2],[3,3,4],[4,5],[5]]
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 4
[1,1,0,0,1,1,1,0,0,0]
=> [[0,1,0,0,0],[1,0,0,0,0],[0,0,0,0,1],[0,0,1,0,0],[0,0,0,1,0]]
=> [[1,1,1,1,2],[2,2,2,2],[3,3,5],[4,5],[5]]
=> ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ? ∊ {5,5,5,5,6,6,6,6,6,6,6,7,7,7,7,7,8,8,8,8,8}
[1,1,0,1,0,0,1,0,1,0]
=> [[0,1,0,0,0],[1,-1,1,0,0],[0,1,0,0,0],[0,0,0,1,0],[0,0,0,0,1]]
=> [[1,1,1,1,2],[2,2,2,3],[3,3,3],[4,4],[5]]
=> ([(0,2),(2,1)],3)
=> 3
[1,1,0,1,0,0,1,1,0,0]
=> [[0,1,0,0,0],[1,-1,1,0,0],[0,1,0,0,0],[0,0,0,0,1],[0,0,0,1,0]]
=> [[1,1,1,1,2],[2,2,2,3],[3,3,3],[4,5],[5]]
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 4
[1,1,0,1,0,1,0,0,1,0]
=> [[0,1,0,0,0],[1,-1,1,0,0],[0,1,-1,1,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [[1,1,1,1,2],[2,2,2,3],[3,3,4],[4,4],[5]]
=> ([(0,3),(2,1),(3,2)],4)
=> 4
[1,1,0,1,0,1,0,1,0,0]
=> [[0,1,0,0,0],[1,-1,1,0,0],[0,1,-1,1,0],[0,0,1,-1,1],[0,0,0,1,0]]
=> [[1,1,1,1,2],[2,2,2,3],[3,3,4],[4,5],[5]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 5
[1,1,0,1,0,1,1,0,0,0]
=> [[0,1,0,0,0],[1,-1,1,0,0],[0,1,-1,0,1],[0,0,1,0,0],[0,0,0,1,0]]
=> [[1,1,1,1,2],[2,2,2,3],[3,3,5],[4,5],[5]]
=> ([(0,5),(1,8),(2,7),(3,2),(3,6),(4,1),(4,6),(5,3),(5,4),(6,7),(6,8),(7,9),(8,9)],10)
=> ? ∊ {5,5,5,5,6,6,6,6,6,6,6,7,7,7,7,7,8,8,8,8,8}
[1,1,0,1,1,0,0,0,1,0]
=> [[0,1,0,0,0],[1,-1,0,1,0],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [[1,1,1,1,2],[2,2,2,4],[3,3,4],[4,4],[5]]
=> ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
=> ? ∊ {5,5,5,5,6,6,6,6,6,6,6,7,7,7,7,7,8,8,8,8,8}
[1,1,0,1,1,0,0,1,0,0]
=> [[0,1,0,0,0],[1,-1,0,1,0],[0,1,0,0,0],[0,0,1,-1,1],[0,0,0,1,0]]
=> [[1,1,1,1,2],[2,2,2,4],[3,3,4],[4,5],[5]]
=> ([(0,3),(0,5),(1,8),(2,7),(3,6),(4,2),(4,9),(5,1),(5,6),(6,4),(6,8),(8,9),(9,7)],10)
=> ? ∊ {5,5,5,5,6,6,6,6,6,6,6,7,7,7,7,7,8,8,8,8,8}
[1,1,0,1,1,0,1,0,0,0]
=> [[0,1,0,0,0],[1,-1,0,1,0],[0,1,0,-1,1],[0,0,1,0,0],[0,0,0,1,0]]
=> [[1,1,1,1,2],[2,2,2,4],[3,3,5],[4,5],[5]]
=> ([(0,6),(1,9),(1,10),(2,8),(3,7),(4,3),(4,12),(5,2),(5,12),(6,4),(6,5),(7,9),(7,11),(8,10),(8,11),(9,13),(10,13),(11,13),(12,1),(12,7),(12,8)],14)
=> ? ∊ {5,5,5,5,6,6,6,6,6,6,6,7,7,7,7,7,8,8,8,8,8}
[1,1,0,1,1,1,0,0,0,0]
=> [[0,1,0,0,0],[1,-1,0,0,1],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,1,0]]
=> [[1,1,1,1,2],[2,2,2,5],[3,3,5],[4,5],[5]]
=> ([(0,7),(1,11),(2,8),(3,9),(3,13),(4,9),(4,12),(5,1),(5,10),(6,3),(6,4),(6,8),(7,2),(7,6),(8,12),(8,13),(9,5),(9,14),(10,11),(12,14),(13,14),(14,10)],15)
=> ? ∊ {5,5,5,5,6,6,6,6,6,6,6,7,7,7,7,7,8,8,8,8,8}
[1,1,1,0,0,0,1,0,1,0]
=> [[0,0,1,0,0],[1,0,0,0,0],[0,1,0,0,0],[0,0,0,1,0],[0,0,0,0,1]]
=> [[1,1,1,1,3],[2,2,2,3],[3,3,3],[4,4],[5]]
=> ([(0,3),(2,1),(3,2)],4)
=> 4
[1,1,1,0,0,0,1,1,0,0]
=> [[0,0,1,0,0],[1,0,0,0,0],[0,1,0,0,0],[0,0,0,0,1],[0,0,0,1,0]]
=> [[1,1,1,1,3],[2,2,2,3],[3,3,3],[4,5],[5]]
=> ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ? ∊ {5,5,5,5,6,6,6,6,6,6,6,7,7,7,7,7,8,8,8,8,8}
[1,1,1,0,0,1,0,0,1,0]
=> [[0,0,1,0,0],[1,0,0,0,0],[0,1,-1,1,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [[1,1,1,1,3],[2,2,2,3],[3,3,4],[4,4],[5]]
=> ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
=> 5
[1,1,1,0,0,1,0,1,0,0]
=> [[0,0,1,0,0],[1,0,0,0,0],[0,1,-1,1,0],[0,0,1,-1,1],[0,0,0,1,0]]
=> [[1,1,1,1,3],[2,2,2,3],[3,3,4],[4,5],[5]]
=> ([(0,3),(0,5),(1,7),(3,6),(4,2),(5,1),(5,6),(6,7),(7,4)],8)
=> ? ∊ {5,5,5,5,6,6,6,6,6,6,6,7,7,7,7,7,8,8,8,8,8}
[1,1,1,0,0,1,1,0,0,0]
=> [[0,0,1,0,0],[1,0,0,0,0],[0,1,-1,0,1],[0,0,1,0,0],[0,0,0,1,0]]
=> [[1,1,1,1,3],[2,2,2,3],[3,3,5],[4,5],[5]]
=> ([(0,5),(0,6),(1,3),(1,13),(2,4),(2,12),(3,10),(4,8),(5,11),(6,2),(6,11),(8,9),(9,7),(10,7),(11,1),(11,12),(12,8),(12,13),(13,9),(13,10)],14)
=> ? ∊ {5,5,5,5,6,6,6,6,6,6,6,7,7,7,7,7,8,8,8,8,8}
[1,1,1,0,1,0,0,0,1,0]
=> [[0,0,1,0,0],[1,0,-1,1,0],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [[1,1,1,1,3],[2,2,2,4],[3,3,4],[4,4],[5]]
=> ([(0,5),(1,7),(2,8),(3,6),(4,3),(4,8),(5,2),(5,4),(6,7),(8,1),(8,6)],9)
=> ? ∊ {5,5,5,5,6,6,6,6,6,6,6,7,7,7,7,7,8,8,8,8,8}
[1,1,1,0,1,0,0,1,0,0]
=> [[0,0,1,0,0],[1,0,-1,1,0],[0,1,0,0,0],[0,0,1,-1,1],[0,0,0,1,0]]
=> [[1,1,1,1,3],[2,2,2,4],[3,3,4],[4,5],[5]]
=> ([(0,4),(0,6),(1,10),(2,9),(3,7),(4,8),(5,3),(5,11),(6,1),(6,8),(7,9),(8,5),(8,10),(10,11),(11,2),(11,7)],12)
=> ? ∊ {5,5,5,5,6,6,6,6,6,6,6,7,7,7,7,7,8,8,8,8,8}
[1,1,1,0,1,0,1,0,0,0]
=> [[0,0,1,0,0],[1,0,-1,1,0],[0,1,0,-1,1],[0,0,1,0,0],[0,0,0,1,0]]
=> [[1,1,1,1,3],[2,2,2,4],[3,3,5],[4,5],[5]]
=> ([(0,7),(1,11),(1,14),(2,10),(3,8),(4,9),(5,3),(5,13),(6,4),(6,13),(7,5),(7,6),(8,12),(8,14),(9,11),(9,12),(11,15),(12,15),(13,1),(13,8),(13,9),(14,2),(14,15),(15,10)],16)
=> ? ∊ {5,5,5,5,6,6,6,6,6,6,6,7,7,7,7,7,8,8,8,8,8}
[1,1,1,0,1,1,0,0,0,0]
=> [[0,0,1,0,0],[1,0,-1,0,1],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,1,0]]
=> [[1,1,1,1,3],[2,2,2,5],[3,3,5],[4,5],[5]]
=> ([(0,1),(1,4),(1,5),(2,16),(3,6),(3,17),(4,18),(5,7),(5,8),(5,18),(6,13),(7,11),(7,14),(8,10),(8,11),(10,19),(11,3),(11,19),(12,9),(13,9),(14,16),(14,19),(15,12),(16,15),(17,12),(17,13),(18,2),(18,10),(18,14),(19,15),(19,17)],20)
=> ? ∊ {5,5,5,5,6,6,6,6,6,6,6,7,7,7,7,7,8,8,8,8,8}
[1,1,1,1,0,0,0,0,1,0]
=> [[0,0,0,1,0],[1,0,0,0,0],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [[1,1,1,1,4],[2,2,2,4],[3,3,4],[4,4],[5]]
=> ([(0,5),(2,7),(3,7),(4,1),(5,6),(6,2),(6,3),(7,4)],8)
=> ? ∊ {5,5,5,5,6,6,6,6,6,6,6,7,7,7,7,7,8,8,8,8,8}
[1,1,1,1,0,0,0,1,0,0]
=> [[0,0,0,1,0],[1,0,0,0,0],[0,1,0,0,0],[0,0,1,-1,1],[0,0,0,1,0]]
=> [[1,1,1,1,4],[2,2,2,4],[3,3,4],[4,5],[5]]
=> ([(0,4),(0,7),(2,10),(3,9),(4,8),(5,3),(5,11),(6,1),(7,5),(7,8),(8,11),(9,10),(10,6),(11,2),(11,9)],12)
=> ? ∊ {5,5,5,5,6,6,6,6,6,6,6,7,7,7,7,7,8,8,8,8,8}
[1,1,1,1,0,0,1,0,0,0]
=> [[0,0,0,1,0],[1,0,0,0,0],[0,1,0,-1,1],[0,0,1,0,0],[0,0,0,1,0]]
=> [[1,1,1,1,4],[2,2,2,4],[3,3,5],[4,5],[5]]
=> ([(0,6),(0,7),(2,5),(2,16),(3,4),(3,17),(4,14),(5,12),(6,13),(7,2),(7,13),(8,10),(8,11),(9,18),(10,18),(11,18),(12,15),(13,3),(13,16),(14,9),(14,10),(15,9),(15,11),(16,12),(16,17),(17,8),(17,14),(17,15),(18,1)],19)
=> ? ∊ {5,5,5,5,6,6,6,6,6,6,6,7,7,7,7,7,8,8,8,8,8}
[1,1,1,1,0,1,0,0,0,0]
=> [[0,0,0,1,0],[1,0,0,-1,1],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,1,0]]
=> [[1,1,1,1,4],[2,2,2,5],[3,3,5],[4,5],[5]]
=> ([(0,2),(1,6),(2,4),(2,5),(3,7),(3,22),(4,23),(5,9),(5,10),(5,23),(6,20),(7,15),(8,12),(8,14),(9,13),(9,17),(10,13),(10,18),(12,1),(13,3),(13,24),(14,19),(15,16),(16,11),(17,14),(17,24),(18,12),(18,24),(19,21),(20,11),(21,16),(21,20),(22,15),(22,21),(23,8),(23,17),(23,18),(24,19),(24,22)],25)
=> ? ∊ {5,5,5,5,6,6,6,6,6,6,6,7,7,7,7,7,8,8,8,8,8}
[1,1,1,1,1,0,0,0,0,0]
=> [[0,0,0,0,1],[1,0,0,0,0],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,1,0]]
=> [[1,1,1,1,5],[2,2,2,5],[3,3,5],[4,5],[5]]
=> ([(0,9),(1,13),(2,14),(4,12),(5,11),(6,1),(6,12),(7,3),(8,5),(8,15),(9,10),(10,4),(10,6),(11,14),(12,8),(12,13),(13,15),(14,7),(15,2),(15,11)],16)
=> ? ∊ {5,5,5,5,6,6,6,6,6,6,6,7,7,7,7,7,8,8,8,8,8}
Description
The height of a poset. This equals the rank of the poset [[St000080]] plus one.
Mp00035: Dyck paths to alternating sign matrixAlternating sign matrices
Mp00001: Alternating sign matrices to semistandard tableau via monotone trianglesSemistandard tableaux
Mp00214: Semistandard tableaux subcrystalPosets
St000912: Posets ⟶ ℤResult quality: 62% values known / values provided: 62%distinct values known / distinct values provided: 62%
Values
[1,0]
=> [[1]]
=> [[1]]
=> ([],1)
=> 1
[1,0,1,0]
=> [[1,0],[0,1]]
=> [[1,1],[2]]
=> ([],1)
=> 1
[1,1,0,0]
=> [[0,1],[1,0]]
=> [[1,2],[2]]
=> ([(0,1)],2)
=> 2
[1,0,1,0,1,0]
=> [[1,0,0],[0,1,0],[0,0,1]]
=> [[1,1,1],[2,2],[3]]
=> ([],1)
=> 1
[1,0,1,1,0,0]
=> [[1,0,0],[0,0,1],[0,1,0]]
=> [[1,1,1],[2,3],[3]]
=> ([(0,1)],2)
=> 2
[1,1,0,0,1,0]
=> [[0,1,0],[1,0,0],[0,0,1]]
=> [[1,1,2],[2,2],[3]]
=> ([(0,1)],2)
=> 2
[1,1,0,1,0,0]
=> [[0,1,0],[1,-1,1],[0,1,0]]
=> [[1,1,2],[2,3],[3]]
=> ([(0,2),(2,1)],3)
=> 3
[1,1,1,0,0,0]
=> [[0,0,1],[1,0,0],[0,1,0]]
=> [[1,1,3],[2,3],[3]]
=> ([(0,3),(2,1),(3,2)],4)
=> 4
[1,0,1,0,1,0,1,0]
=> [[1,0,0,0],[0,1,0,0],[0,0,1,0],[0,0,0,1]]
=> [[1,1,1,1],[2,2,2],[3,3],[4]]
=> ([],1)
=> 1
[1,0,1,0,1,1,0,0]
=> [[1,0,0,0],[0,1,0,0],[0,0,0,1],[0,0,1,0]]
=> [[1,1,1,1],[2,2,2],[3,4],[4]]
=> ([(0,1)],2)
=> 2
[1,0,1,1,0,0,1,0]
=> [[1,0,0,0],[0,0,1,0],[0,1,0,0],[0,0,0,1]]
=> [[1,1,1,1],[2,2,3],[3,3],[4]]
=> ([(0,1)],2)
=> 2
[1,0,1,1,0,1,0,0]
=> [[1,0,0,0],[0,0,1,0],[0,1,-1,1],[0,0,1,0]]
=> [[1,1,1,1],[2,2,3],[3,4],[4]]
=> ([(0,2),(2,1)],3)
=> 3
[1,0,1,1,1,0,0,0]
=> [[1,0,0,0],[0,0,0,1],[0,1,0,0],[0,0,1,0]]
=> [[1,1,1,1],[2,2,4],[3,4],[4]]
=> ([(0,3),(2,1),(3,2)],4)
=> 4
[1,1,0,0,1,0,1,0]
=> [[0,1,0,0],[1,0,0,0],[0,0,1,0],[0,0,0,1]]
=> [[1,1,1,2],[2,2,2],[3,3],[4]]
=> ([(0,1)],2)
=> 2
[1,1,0,0,1,1,0,0]
=> [[0,1,0,0],[1,0,0,0],[0,0,0,1],[0,0,1,0]]
=> [[1,1,1,2],[2,2,2],[3,4],[4]]
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 3
[1,1,0,1,0,0,1,0]
=> [[0,1,0,0],[1,-1,1,0],[0,1,0,0],[0,0,0,1]]
=> [[1,1,1,2],[2,2,3],[3,3],[4]]
=> ([(0,2),(2,1)],3)
=> 3
[1,1,0,1,0,1,0,0]
=> [[0,1,0,0],[1,-1,1,0],[0,1,-1,1],[0,0,1,0]]
=> [[1,1,1,2],[2,2,3],[3,4],[4]]
=> ([(0,3),(2,1),(3,2)],4)
=> 4
[1,1,0,1,1,0,0,0]
=> [[0,1,0,0],[1,-1,0,1],[0,1,0,0],[0,0,1,0]]
=> [[1,1,1,2],[2,2,4],[3,4],[4]]
=> ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
=> ? ∊ {5,6,6}
[1,1,1,0,0,0,1,0]
=> [[0,0,1,0],[1,0,0,0],[0,1,0,0],[0,0,0,1]]
=> [[1,1,1,3],[2,2,3],[3,3],[4]]
=> ([(0,3),(2,1),(3,2)],4)
=> 4
[1,1,1,0,0,1,0,0]
=> [[0,0,1,0],[1,0,0,0],[0,1,-1,1],[0,0,1,0]]
=> [[1,1,1,3],[2,2,3],[3,4],[4]]
=> ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
=> 5
[1,1,1,0,1,0,0,0]
=> [[0,0,1,0],[1,0,-1,1],[0,1,0,0],[0,0,1,0]]
=> [[1,1,1,3],[2,2,4],[3,4],[4]]
=> ([(0,5),(1,7),(2,8),(3,6),(4,3),(4,8),(5,2),(5,4),(6,7),(8,1),(8,6)],9)
=> ? ∊ {5,6,6}
[1,1,1,1,0,0,0,0]
=> [[0,0,0,1],[1,0,0,0],[0,1,0,0],[0,0,1,0]]
=> [[1,1,1,4],[2,2,4],[3,4],[4]]
=> ([(0,5),(2,7),(3,7),(4,1),(5,6),(6,2),(6,3),(7,4)],8)
=> ? ∊ {5,6,6}
[1,0,1,0,1,0,1,0,1,0]
=> [[1,0,0,0,0],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,1,0],[0,0,0,0,1]]
=> [[1,1,1,1,1],[2,2,2,2],[3,3,3],[4,4],[5]]
=> ([],1)
=> 1
[1,0,1,0,1,0,1,1,0,0]
=> [[1,0,0,0,0],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,0,1],[0,0,0,1,0]]
=> [[1,1,1,1,1],[2,2,2,2],[3,3,3],[4,5],[5]]
=> ([(0,1)],2)
=> 2
[1,0,1,0,1,1,0,0,1,0]
=> [[1,0,0,0,0],[0,1,0,0,0],[0,0,0,1,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [[1,1,1,1,1],[2,2,2,2],[3,3,4],[4,4],[5]]
=> ([(0,1)],2)
=> 2
[1,0,1,0,1,1,0,1,0,0]
=> [[1,0,0,0,0],[0,1,0,0,0],[0,0,0,1,0],[0,0,1,-1,1],[0,0,0,1,0]]
=> [[1,1,1,1,1],[2,2,2,2],[3,3,4],[4,5],[5]]
=> ([(0,2),(2,1)],3)
=> 3
[1,0,1,0,1,1,1,0,0,0]
=> [[1,0,0,0,0],[0,1,0,0,0],[0,0,0,0,1],[0,0,1,0,0],[0,0,0,1,0]]
=> [[1,1,1,1,1],[2,2,2,2],[3,3,5],[4,5],[5]]
=> ([(0,3),(2,1),(3,2)],4)
=> 4
[1,0,1,1,0,0,1,0,1,0]
=> [[1,0,0,0,0],[0,0,1,0,0],[0,1,0,0,0],[0,0,0,1,0],[0,0,0,0,1]]
=> [[1,1,1,1,1],[2,2,2,3],[3,3,3],[4,4],[5]]
=> ([(0,1)],2)
=> 2
[1,0,1,1,0,0,1,1,0,0]
=> [[1,0,0,0,0],[0,0,1,0,0],[0,1,0,0,0],[0,0,0,0,1],[0,0,0,1,0]]
=> [[1,1,1,1,1],[2,2,2,3],[3,3,3],[4,5],[5]]
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 3
[1,0,1,1,0,1,0,0,1,0]
=> [[1,0,0,0,0],[0,0,1,0,0],[0,1,-1,1,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [[1,1,1,1,1],[2,2,2,3],[3,3,4],[4,4],[5]]
=> ([(0,2),(2,1)],3)
=> 3
[1,0,1,1,0,1,0,1,0,0]
=> [[1,0,0,0,0],[0,0,1,0,0],[0,1,-1,1,0],[0,0,1,-1,1],[0,0,0,1,0]]
=> [[1,1,1,1,1],[2,2,2,3],[3,3,4],[4,5],[5]]
=> ([(0,3),(2,1),(3,2)],4)
=> 4
[1,0,1,1,0,1,1,0,0,0]
=> [[1,0,0,0,0],[0,0,1,0,0],[0,1,-1,0,1],[0,0,1,0,0],[0,0,0,1,0]]
=> [[1,1,1,1,1],[2,2,2,3],[3,3,5],[4,5],[5]]
=> ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
=> ? ∊ {4,4,5,5,6,6,6,6,6,6,6,7,7,7,7,7,8,8,8,8,8}
[1,0,1,1,1,0,0,0,1,0]
=> [[1,0,0,0,0],[0,0,0,1,0],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [[1,1,1,1,1],[2,2,2,4],[3,3,4],[4,4],[5]]
=> ([(0,3),(2,1),(3,2)],4)
=> 4
[1,0,1,1,1,0,0,1,0,0]
=> [[1,0,0,0,0],[0,0,0,1,0],[0,1,0,0,0],[0,0,1,-1,1],[0,0,0,1,0]]
=> [[1,1,1,1,1],[2,2,2,4],[3,3,4],[4,5],[5]]
=> ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
=> 5
[1,0,1,1,1,0,1,0,0,0]
=> [[1,0,0,0,0],[0,0,0,1,0],[0,1,0,-1,1],[0,0,1,0,0],[0,0,0,1,0]]
=> [[1,1,1,1,1],[2,2,2,4],[3,3,5],[4,5],[5]]
=> ([(0,5),(1,7),(2,8),(3,6),(4,3),(4,8),(5,2),(5,4),(6,7),(8,1),(8,6)],9)
=> ? ∊ {4,4,5,5,6,6,6,6,6,6,6,7,7,7,7,7,8,8,8,8,8}
[1,0,1,1,1,1,0,0,0,0]
=> [[1,0,0,0,0],[0,0,0,0,1],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,1,0]]
=> [[1,1,1,1,1],[2,2,2,5],[3,3,5],[4,5],[5]]
=> ([(0,5),(2,7),(3,7),(4,1),(5,6),(6,2),(6,3),(7,4)],8)
=> ? ∊ {4,4,5,5,6,6,6,6,6,6,6,7,7,7,7,7,8,8,8,8,8}
[1,1,0,0,1,0,1,0,1,0]
=> [[0,1,0,0,0],[1,0,0,0,0],[0,0,1,0,0],[0,0,0,1,0],[0,0,0,0,1]]
=> [[1,1,1,1,2],[2,2,2,2],[3,3,3],[4,4],[5]]
=> ([(0,1)],2)
=> 2
[1,1,0,0,1,0,1,1,0,0]
=> [[0,1,0,0,0],[1,0,0,0,0],[0,0,1,0,0],[0,0,0,0,1],[0,0,0,1,0]]
=> [[1,1,1,1,2],[2,2,2,2],[3,3,3],[4,5],[5]]
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 3
[1,1,0,0,1,1,0,0,1,0]
=> [[0,1,0,0,0],[1,0,0,0,0],[0,0,0,1,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [[1,1,1,1,2],[2,2,2,2],[3,3,4],[4,4],[5]]
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 3
[1,1,0,0,1,1,0,1,0,0]
=> [[0,1,0,0,0],[1,0,0,0,0],[0,0,0,1,0],[0,0,1,-1,1],[0,0,0,1,0]]
=> [[1,1,1,1,2],[2,2,2,2],[3,3,4],[4,5],[5]]
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 5
[1,1,0,0,1,1,1,0,0,0]
=> [[0,1,0,0,0],[1,0,0,0,0],[0,0,0,0,1],[0,0,1,0,0],[0,0,0,1,0]]
=> [[1,1,1,1,2],[2,2,2,2],[3,3,5],[4,5],[5]]
=> ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ? ∊ {4,4,5,5,6,6,6,6,6,6,6,7,7,7,7,7,8,8,8,8,8}
[1,1,0,1,0,0,1,0,1,0]
=> [[0,1,0,0,0],[1,-1,1,0,0],[0,1,0,0,0],[0,0,0,1,0],[0,0,0,0,1]]
=> [[1,1,1,1,2],[2,2,2,3],[3,3,3],[4,4],[5]]
=> ([(0,2),(2,1)],3)
=> 3
[1,1,0,1,0,0,1,1,0,0]
=> [[0,1,0,0,0],[1,-1,1,0,0],[0,1,0,0,0],[0,0,0,0,1],[0,0,0,1,0]]
=> [[1,1,1,1,2],[2,2,2,3],[3,3,3],[4,5],[5]]
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 5
[1,1,0,1,0,1,0,0,1,0]
=> [[0,1,0,0,0],[1,-1,1,0,0],[0,1,-1,1,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [[1,1,1,1,2],[2,2,2,3],[3,3,4],[4,4],[5]]
=> ([(0,3),(2,1),(3,2)],4)
=> 4
[1,1,0,1,0,1,0,1,0,0]
=> [[0,1,0,0,0],[1,-1,1,0,0],[0,1,-1,1,0],[0,0,1,-1,1],[0,0,0,1,0]]
=> [[1,1,1,1,2],[2,2,2,3],[3,3,4],[4,5],[5]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 5
[1,1,0,1,0,1,1,0,0,0]
=> [[0,1,0,0,0],[1,-1,1,0,0],[0,1,-1,0,1],[0,0,1,0,0],[0,0,0,1,0]]
=> [[1,1,1,1,2],[2,2,2,3],[3,3,5],[4,5],[5]]
=> ([(0,5),(1,8),(2,7),(3,2),(3,6),(4,1),(4,6),(5,3),(5,4),(6,7),(6,8),(7,9),(8,9)],10)
=> ? ∊ {4,4,5,5,6,6,6,6,6,6,6,7,7,7,7,7,8,8,8,8,8}
[1,1,0,1,1,0,0,0,1,0]
=> [[0,1,0,0,0],[1,-1,0,1,0],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [[1,1,1,1,2],[2,2,2,4],[3,3,4],[4,4],[5]]
=> ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
=> ? ∊ {4,4,5,5,6,6,6,6,6,6,6,7,7,7,7,7,8,8,8,8,8}
[1,1,0,1,1,0,0,1,0,0]
=> [[0,1,0,0,0],[1,-1,0,1,0],[0,1,0,0,0],[0,0,1,-1,1],[0,0,0,1,0]]
=> [[1,1,1,1,2],[2,2,2,4],[3,3,4],[4,5],[5]]
=> ([(0,3),(0,5),(1,8),(2,7),(3,6),(4,2),(4,9),(5,1),(5,6),(6,4),(6,8),(8,9),(9,7)],10)
=> ? ∊ {4,4,5,5,6,6,6,6,6,6,6,7,7,7,7,7,8,8,8,8,8}
[1,1,0,1,1,0,1,0,0,0]
=> [[0,1,0,0,0],[1,-1,0,1,0],[0,1,0,-1,1],[0,0,1,0,0],[0,0,0,1,0]]
=> [[1,1,1,1,2],[2,2,2,4],[3,3,5],[4,5],[5]]
=> ([(0,6),(1,9),(1,10),(2,8),(3,7),(4,3),(4,12),(5,2),(5,12),(6,4),(6,5),(7,9),(7,11),(8,10),(8,11),(9,13),(10,13),(11,13),(12,1),(12,7),(12,8)],14)
=> ? ∊ {4,4,5,5,6,6,6,6,6,6,6,7,7,7,7,7,8,8,8,8,8}
[1,1,0,1,1,1,0,0,0,0]
=> [[0,1,0,0,0],[1,-1,0,0,1],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,1,0]]
=> [[1,1,1,1,2],[2,2,2,5],[3,3,5],[4,5],[5]]
=> ([(0,7),(1,11),(2,8),(3,9),(3,13),(4,9),(4,12),(5,1),(5,10),(6,3),(6,4),(6,8),(7,2),(7,6),(8,12),(8,13),(9,5),(9,14),(10,11),(12,14),(13,14),(14,10)],15)
=> ? ∊ {4,4,5,5,6,6,6,6,6,6,6,7,7,7,7,7,8,8,8,8,8}
[1,1,1,0,0,0,1,0,1,0]
=> [[0,0,1,0,0],[1,0,0,0,0],[0,1,0,0,0],[0,0,0,1,0],[0,0,0,0,1]]
=> [[1,1,1,1,3],[2,2,2,3],[3,3,3],[4,4],[5]]
=> ([(0,3),(2,1),(3,2)],4)
=> 4
[1,1,1,0,0,0,1,1,0,0]
=> [[0,0,1,0,0],[1,0,0,0,0],[0,1,0,0,0],[0,0,0,0,1],[0,0,0,1,0]]
=> [[1,1,1,1,3],[2,2,2,3],[3,3,3],[4,5],[5]]
=> ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ? ∊ {4,4,5,5,6,6,6,6,6,6,6,7,7,7,7,7,8,8,8,8,8}
[1,1,1,0,0,1,0,0,1,0]
=> [[0,0,1,0,0],[1,0,0,0,0],[0,1,-1,1,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [[1,1,1,1,3],[2,2,2,3],[3,3,4],[4,4],[5]]
=> ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
=> 5
[1,1,1,0,0,1,0,1,0,0]
=> [[0,0,1,0,0],[1,0,0,0,0],[0,1,-1,1,0],[0,0,1,-1,1],[0,0,0,1,0]]
=> [[1,1,1,1,3],[2,2,2,3],[3,3,4],[4,5],[5]]
=> ([(0,3),(0,5),(1,7),(3,6),(4,2),(5,1),(5,6),(6,7),(7,4)],8)
=> ? ∊ {4,4,5,5,6,6,6,6,6,6,6,7,7,7,7,7,8,8,8,8,8}
[1,1,1,0,0,1,1,0,0,0]
=> [[0,0,1,0,0],[1,0,0,0,0],[0,1,-1,0,1],[0,0,1,0,0],[0,0,0,1,0]]
=> [[1,1,1,1,3],[2,2,2,3],[3,3,5],[4,5],[5]]
=> ([(0,5),(0,6),(1,3),(1,13),(2,4),(2,12),(3,10),(4,8),(5,11),(6,2),(6,11),(8,9),(9,7),(10,7),(11,1),(11,12),(12,8),(12,13),(13,9),(13,10)],14)
=> ? ∊ {4,4,5,5,6,6,6,6,6,6,6,7,7,7,7,7,8,8,8,8,8}
[1,1,1,0,1,0,0,0,1,0]
=> [[0,0,1,0,0],[1,0,-1,1,0],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [[1,1,1,1,3],[2,2,2,4],[3,3,4],[4,4],[5]]
=> ([(0,5),(1,7),(2,8),(3,6),(4,3),(4,8),(5,2),(5,4),(6,7),(8,1),(8,6)],9)
=> ? ∊ {4,4,5,5,6,6,6,6,6,6,6,7,7,7,7,7,8,8,8,8,8}
[1,1,1,0,1,0,0,1,0,0]
=> [[0,0,1,0,0],[1,0,-1,1,0],[0,1,0,0,0],[0,0,1,-1,1],[0,0,0,1,0]]
=> [[1,1,1,1,3],[2,2,2,4],[3,3,4],[4,5],[5]]
=> ([(0,4),(0,6),(1,10),(2,9),(3,7),(4,8),(5,3),(5,11),(6,1),(6,8),(7,9),(8,5),(8,10),(10,11),(11,2),(11,7)],12)
=> ? ∊ {4,4,5,5,6,6,6,6,6,6,6,7,7,7,7,7,8,8,8,8,8}
[1,1,1,0,1,0,1,0,0,0]
=> [[0,0,1,0,0],[1,0,-1,1,0],[0,1,0,-1,1],[0,0,1,0,0],[0,0,0,1,0]]
=> [[1,1,1,1,3],[2,2,2,4],[3,3,5],[4,5],[5]]
=> ([(0,7),(1,11),(1,14),(2,10),(3,8),(4,9),(5,3),(5,13),(6,4),(6,13),(7,5),(7,6),(8,12),(8,14),(9,11),(9,12),(11,15),(12,15),(13,1),(13,8),(13,9),(14,2),(14,15),(15,10)],16)
=> ? ∊ {4,4,5,5,6,6,6,6,6,6,6,7,7,7,7,7,8,8,8,8,8}
[1,1,1,0,1,1,0,0,0,0]
=> [[0,0,1,0,0],[1,0,-1,0,1],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,1,0]]
=> [[1,1,1,1,3],[2,2,2,5],[3,3,5],[4,5],[5]]
=> ([(0,1),(1,4),(1,5),(2,16),(3,6),(3,17),(4,18),(5,7),(5,8),(5,18),(6,13),(7,11),(7,14),(8,10),(8,11),(10,19),(11,3),(11,19),(12,9),(13,9),(14,16),(14,19),(15,12),(16,15),(17,12),(17,13),(18,2),(18,10),(18,14),(19,15),(19,17)],20)
=> ? ∊ {4,4,5,5,6,6,6,6,6,6,6,7,7,7,7,7,8,8,8,8,8}
[1,1,1,1,0,0,0,0,1,0]
=> [[0,0,0,1,0],[1,0,0,0,0],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [[1,1,1,1,4],[2,2,2,4],[3,3,4],[4,4],[5]]
=> ([(0,5),(2,7),(3,7),(4,1),(5,6),(6,2),(6,3),(7,4)],8)
=> ? ∊ {4,4,5,5,6,6,6,6,6,6,6,7,7,7,7,7,8,8,8,8,8}
[1,1,1,1,0,0,0,1,0,0]
=> [[0,0,0,1,0],[1,0,0,0,0],[0,1,0,0,0],[0,0,1,-1,1],[0,0,0,1,0]]
=> [[1,1,1,1,4],[2,2,2,4],[3,3,4],[4,5],[5]]
=> ([(0,4),(0,7),(2,10),(3,9),(4,8),(5,3),(5,11),(6,1),(7,5),(7,8),(8,11),(9,10),(10,6),(11,2),(11,9)],12)
=> ? ∊ {4,4,5,5,6,6,6,6,6,6,6,7,7,7,7,7,8,8,8,8,8}
[1,1,1,1,0,0,1,0,0,0]
=> [[0,0,0,1,0],[1,0,0,0,0],[0,1,0,-1,1],[0,0,1,0,0],[0,0,0,1,0]]
=> [[1,1,1,1,4],[2,2,2,4],[3,3,5],[4,5],[5]]
=> ([(0,6),(0,7),(2,5),(2,16),(3,4),(3,17),(4,14),(5,12),(6,13),(7,2),(7,13),(8,10),(8,11),(9,18),(10,18),(11,18),(12,15),(13,3),(13,16),(14,9),(14,10),(15,9),(15,11),(16,12),(16,17),(17,8),(17,14),(17,15),(18,1)],19)
=> ? ∊ {4,4,5,5,6,6,6,6,6,6,6,7,7,7,7,7,8,8,8,8,8}
[1,1,1,1,0,1,0,0,0,0]
=> [[0,0,0,1,0],[1,0,0,-1,1],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,1,0]]
=> [[1,1,1,1,4],[2,2,2,5],[3,3,5],[4,5],[5]]
=> ([(0,2),(1,6),(2,4),(2,5),(3,7),(3,22),(4,23),(5,9),(5,10),(5,23),(6,20),(7,15),(8,12),(8,14),(9,13),(9,17),(10,13),(10,18),(12,1),(13,3),(13,24),(14,19),(15,16),(16,11),(17,14),(17,24),(18,12),(18,24),(19,21),(20,11),(21,16),(21,20),(22,15),(22,21),(23,8),(23,17),(23,18),(24,19),(24,22)],25)
=> ? ∊ {4,4,5,5,6,6,6,6,6,6,6,7,7,7,7,7,8,8,8,8,8}
[1,1,1,1,1,0,0,0,0,0]
=> [[0,0,0,0,1],[1,0,0,0,0],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,1,0]]
=> [[1,1,1,1,5],[2,2,2,5],[3,3,5],[4,5],[5]]
=> ([(0,9),(1,13),(2,14),(4,12),(5,11),(6,1),(6,12),(7,3),(8,5),(8,15),(9,10),(10,4),(10,6),(11,14),(12,8),(12,13),(13,15),(14,7),(15,2),(15,11)],16)
=> ? ∊ {4,4,5,5,6,6,6,6,6,6,6,7,7,7,7,7,8,8,8,8,8}
Description
The number of maximal antichains in a poset.
Mp00035: Dyck paths to alternating sign matrixAlternating sign matrices
Mp00001: Alternating sign matrices to semistandard tableau via monotone trianglesSemistandard tableaux
Mp00214: Semistandard tableaux subcrystalPosets
St001636: Posets ⟶ ℤResult quality: 62% values known / values provided: 62%distinct values known / distinct values provided: 62%
Values
[1,0]
=> [[1]]
=> [[1]]
=> ([],1)
=> 1
[1,0,1,0]
=> [[1,0],[0,1]]
=> [[1,1],[2]]
=> ([],1)
=> 1
[1,1,0,0]
=> [[0,1],[1,0]]
=> [[1,2],[2]]
=> ([(0,1)],2)
=> 2
[1,0,1,0,1,0]
=> [[1,0,0],[0,1,0],[0,0,1]]
=> [[1,1,1],[2,2],[3]]
=> ([],1)
=> 1
[1,0,1,1,0,0]
=> [[1,0,0],[0,0,1],[0,1,0]]
=> [[1,1,1],[2,3],[3]]
=> ([(0,1)],2)
=> 2
[1,1,0,0,1,0]
=> [[0,1,0],[1,0,0],[0,0,1]]
=> [[1,1,2],[2,2],[3]]
=> ([(0,1)],2)
=> 2
[1,1,0,1,0,0]
=> [[0,1,0],[1,-1,1],[0,1,0]]
=> [[1,1,2],[2,3],[3]]
=> ([(0,2),(2,1)],3)
=> 3
[1,1,1,0,0,0]
=> [[0,0,1],[1,0,0],[0,1,0]]
=> [[1,1,3],[2,3],[3]]
=> ([(0,3),(2,1),(3,2)],4)
=> 4
[1,0,1,0,1,0,1,0]
=> [[1,0,0,0],[0,1,0,0],[0,0,1,0],[0,0,0,1]]
=> [[1,1,1,1],[2,2,2],[3,3],[4]]
=> ([],1)
=> 1
[1,0,1,0,1,1,0,0]
=> [[1,0,0,0],[0,1,0,0],[0,0,0,1],[0,0,1,0]]
=> [[1,1,1,1],[2,2,2],[3,4],[4]]
=> ([(0,1)],2)
=> 2
[1,0,1,1,0,0,1,0]
=> [[1,0,0,0],[0,0,1,0],[0,1,0,0],[0,0,0,1]]
=> [[1,1,1,1],[2,2,3],[3,3],[4]]
=> ([(0,1)],2)
=> 2
[1,0,1,1,0,1,0,0]
=> [[1,0,0,0],[0,0,1,0],[0,1,-1,1],[0,0,1,0]]
=> [[1,1,1,1],[2,2,3],[3,4],[4]]
=> ([(0,2),(2,1)],3)
=> 3
[1,0,1,1,1,0,0,0]
=> [[1,0,0,0],[0,0,0,1],[0,1,0,0],[0,0,1,0]]
=> [[1,1,1,1],[2,2,4],[3,4],[4]]
=> ([(0,3),(2,1),(3,2)],4)
=> 4
[1,1,0,0,1,0,1,0]
=> [[0,1,0,0],[1,0,0,0],[0,0,1,0],[0,0,0,1]]
=> [[1,1,1,2],[2,2,2],[3,3],[4]]
=> ([(0,1)],2)
=> 2
[1,1,0,0,1,1,0,0]
=> [[0,1,0,0],[1,0,0,0],[0,0,0,1],[0,0,1,0]]
=> [[1,1,1,2],[2,2,2],[3,4],[4]]
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 3
[1,1,0,1,0,0,1,0]
=> [[0,1,0,0],[1,-1,1,0],[0,1,0,0],[0,0,0,1]]
=> [[1,1,1,2],[2,2,3],[3,3],[4]]
=> ([(0,2),(2,1)],3)
=> 3
[1,1,0,1,0,1,0,0]
=> [[0,1,0,0],[1,-1,1,0],[0,1,-1,1],[0,0,1,0]]
=> [[1,1,1,2],[2,2,3],[3,4],[4]]
=> ([(0,3),(2,1),(3,2)],4)
=> 4
[1,1,0,1,1,0,0,0]
=> [[0,1,0,0],[1,-1,0,1],[0,1,0,0],[0,0,1,0]]
=> [[1,1,1,2],[2,2,4],[3,4],[4]]
=> ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
=> ? ∊ {5,6,6}
[1,1,1,0,0,0,1,0]
=> [[0,0,1,0],[1,0,0,0],[0,1,0,0],[0,0,0,1]]
=> [[1,1,1,3],[2,2,3],[3,3],[4]]
=> ([(0,3),(2,1),(3,2)],4)
=> 4
[1,1,1,0,0,1,0,0]
=> [[0,0,1,0],[1,0,0,0],[0,1,-1,1],[0,0,1,0]]
=> [[1,1,1,3],[2,2,3],[3,4],[4]]
=> ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
=> 5
[1,1,1,0,1,0,0,0]
=> [[0,0,1,0],[1,0,-1,1],[0,1,0,0],[0,0,1,0]]
=> [[1,1,1,3],[2,2,4],[3,4],[4]]
=> ([(0,5),(1,7),(2,8),(3,6),(4,3),(4,8),(5,2),(5,4),(6,7),(8,1),(8,6)],9)
=> ? ∊ {5,6,6}
[1,1,1,1,0,0,0,0]
=> [[0,0,0,1],[1,0,0,0],[0,1,0,0],[0,0,1,0]]
=> [[1,1,1,4],[2,2,4],[3,4],[4]]
=> ([(0,5),(2,7),(3,7),(4,1),(5,6),(6,2),(6,3),(7,4)],8)
=> ? ∊ {5,6,6}
[1,0,1,0,1,0,1,0,1,0]
=> [[1,0,0,0,0],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,1,0],[0,0,0,0,1]]
=> [[1,1,1,1,1],[2,2,2,2],[3,3,3],[4,4],[5]]
=> ([],1)
=> 1
[1,0,1,0,1,0,1,1,0,0]
=> [[1,0,0,0,0],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,0,1],[0,0,0,1,0]]
=> [[1,1,1,1,1],[2,2,2,2],[3,3,3],[4,5],[5]]
=> ([(0,1)],2)
=> 2
[1,0,1,0,1,1,0,0,1,0]
=> [[1,0,0,0,0],[0,1,0,0,0],[0,0,0,1,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [[1,1,1,1,1],[2,2,2,2],[3,3,4],[4,4],[5]]
=> ([(0,1)],2)
=> 2
[1,0,1,0,1,1,0,1,0,0]
=> [[1,0,0,0,0],[0,1,0,0,0],[0,0,0,1,0],[0,0,1,-1,1],[0,0,0,1,0]]
=> [[1,1,1,1,1],[2,2,2,2],[3,3,4],[4,5],[5]]
=> ([(0,2),(2,1)],3)
=> 3
[1,0,1,0,1,1,1,0,0,0]
=> [[1,0,0,0,0],[0,1,0,0,0],[0,0,0,0,1],[0,0,1,0,0],[0,0,0,1,0]]
=> [[1,1,1,1,1],[2,2,2,2],[3,3,5],[4,5],[5]]
=> ([(0,3),(2,1),(3,2)],4)
=> 4
[1,0,1,1,0,0,1,0,1,0]
=> [[1,0,0,0,0],[0,0,1,0,0],[0,1,0,0,0],[0,0,0,1,0],[0,0,0,0,1]]
=> [[1,1,1,1,1],[2,2,2,3],[3,3,3],[4,4],[5]]
=> ([(0,1)],2)
=> 2
[1,0,1,1,0,0,1,1,0,0]
=> [[1,0,0,0,0],[0,0,1,0,0],[0,1,0,0,0],[0,0,0,0,1],[0,0,0,1,0]]
=> [[1,1,1,1,1],[2,2,2,3],[3,3,3],[4,5],[5]]
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 3
[1,0,1,1,0,1,0,0,1,0]
=> [[1,0,0,0,0],[0,0,1,0,0],[0,1,-1,1,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [[1,1,1,1,1],[2,2,2,3],[3,3,4],[4,4],[5]]
=> ([(0,2),(2,1)],3)
=> 3
[1,0,1,1,0,1,0,1,0,0]
=> [[1,0,0,0,0],[0,0,1,0,0],[0,1,-1,1,0],[0,0,1,-1,1],[0,0,0,1,0]]
=> [[1,1,1,1,1],[2,2,2,3],[3,3,4],[4,5],[5]]
=> ([(0,3),(2,1),(3,2)],4)
=> 4
[1,0,1,1,0,1,1,0,0,0]
=> [[1,0,0,0,0],[0,0,1,0,0],[0,1,-1,0,1],[0,0,1,0,0],[0,0,0,1,0]]
=> [[1,1,1,1,1],[2,2,2,3],[3,3,5],[4,5],[5]]
=> ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
=> ? ∊ {5,5,5,5,6,6,6,6,6,6,6,7,7,7,7,7,8,8,8,8,8}
[1,0,1,1,1,0,0,0,1,0]
=> [[1,0,0,0,0],[0,0,0,1,0],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [[1,1,1,1,1],[2,2,2,4],[3,3,4],[4,4],[5]]
=> ([(0,3),(2,1),(3,2)],4)
=> 4
[1,0,1,1,1,0,0,1,0,0]
=> [[1,0,0,0,0],[0,0,0,1,0],[0,1,0,0,0],[0,0,1,-1,1],[0,0,0,1,0]]
=> [[1,1,1,1,1],[2,2,2,4],[3,3,4],[4,5],[5]]
=> ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
=> 5
[1,0,1,1,1,0,1,0,0,0]
=> [[1,0,0,0,0],[0,0,0,1,0],[0,1,0,-1,1],[0,0,1,0,0],[0,0,0,1,0]]
=> [[1,1,1,1,1],[2,2,2,4],[3,3,5],[4,5],[5]]
=> ([(0,5),(1,7),(2,8),(3,6),(4,3),(4,8),(5,2),(5,4),(6,7),(8,1),(8,6)],9)
=> ? ∊ {5,5,5,5,6,6,6,6,6,6,6,7,7,7,7,7,8,8,8,8,8}
[1,0,1,1,1,1,0,0,0,0]
=> [[1,0,0,0,0],[0,0,0,0,1],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,1,0]]
=> [[1,1,1,1,1],[2,2,2,5],[3,3,5],[4,5],[5]]
=> ([(0,5),(2,7),(3,7),(4,1),(5,6),(6,2),(6,3),(7,4)],8)
=> ? ∊ {5,5,5,5,6,6,6,6,6,6,6,7,7,7,7,7,8,8,8,8,8}
[1,1,0,0,1,0,1,0,1,0]
=> [[0,1,0,0,0],[1,0,0,0,0],[0,0,1,0,0],[0,0,0,1,0],[0,0,0,0,1]]
=> [[1,1,1,1,2],[2,2,2,2],[3,3,3],[4,4],[5]]
=> ([(0,1)],2)
=> 2
[1,1,0,0,1,0,1,1,0,0]
=> [[0,1,0,0,0],[1,0,0,0,0],[0,0,1,0,0],[0,0,0,0,1],[0,0,0,1,0]]
=> [[1,1,1,1,2],[2,2,2,2],[3,3,3],[4,5],[5]]
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 3
[1,1,0,0,1,1,0,0,1,0]
=> [[0,1,0,0,0],[1,0,0,0,0],[0,0,0,1,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [[1,1,1,1,2],[2,2,2,2],[3,3,4],[4,4],[5]]
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 3
[1,1,0,0,1,1,0,1,0,0]
=> [[0,1,0,0,0],[1,0,0,0,0],[0,0,0,1,0],[0,0,1,-1,1],[0,0,0,1,0]]
=> [[1,1,1,1,2],[2,2,2,2],[3,3,4],[4,5],[5]]
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 4
[1,1,0,0,1,1,1,0,0,0]
=> [[0,1,0,0,0],[1,0,0,0,0],[0,0,0,0,1],[0,0,1,0,0],[0,0,0,1,0]]
=> [[1,1,1,1,2],[2,2,2,2],[3,3,5],[4,5],[5]]
=> ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ? ∊ {5,5,5,5,6,6,6,6,6,6,6,7,7,7,7,7,8,8,8,8,8}
[1,1,0,1,0,0,1,0,1,0]
=> [[0,1,0,0,0],[1,-1,1,0,0],[0,1,0,0,0],[0,0,0,1,0],[0,0,0,0,1]]
=> [[1,1,1,1,2],[2,2,2,3],[3,3,3],[4,4],[5]]
=> ([(0,2),(2,1)],3)
=> 3
[1,1,0,1,0,0,1,1,0,0]
=> [[0,1,0,0,0],[1,-1,1,0,0],[0,1,0,0,0],[0,0,0,0,1],[0,0,0,1,0]]
=> [[1,1,1,1,2],[2,2,2,3],[3,3,3],[4,5],[5]]
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 4
[1,1,0,1,0,1,0,0,1,0]
=> [[0,1,0,0,0],[1,-1,1,0,0],[0,1,-1,1,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [[1,1,1,1,2],[2,2,2,3],[3,3,4],[4,4],[5]]
=> ([(0,3),(2,1),(3,2)],4)
=> 4
[1,1,0,1,0,1,0,1,0,0]
=> [[0,1,0,0,0],[1,-1,1,0,0],[0,1,-1,1,0],[0,0,1,-1,1],[0,0,0,1,0]]
=> [[1,1,1,1,2],[2,2,2,3],[3,3,4],[4,5],[5]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 5
[1,1,0,1,0,1,1,0,0,0]
=> [[0,1,0,0,0],[1,-1,1,0,0],[0,1,-1,0,1],[0,0,1,0,0],[0,0,0,1,0]]
=> [[1,1,1,1,2],[2,2,2,3],[3,3,5],[4,5],[5]]
=> ([(0,5),(1,8),(2,7),(3,2),(3,6),(4,1),(4,6),(5,3),(5,4),(6,7),(6,8),(7,9),(8,9)],10)
=> ? ∊ {5,5,5,5,6,6,6,6,6,6,6,7,7,7,7,7,8,8,8,8,8}
[1,1,0,1,1,0,0,0,1,0]
=> [[0,1,0,0,0],[1,-1,0,1,0],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [[1,1,1,1,2],[2,2,2,4],[3,3,4],[4,4],[5]]
=> ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
=> ? ∊ {5,5,5,5,6,6,6,6,6,6,6,7,7,7,7,7,8,8,8,8,8}
[1,1,0,1,1,0,0,1,0,0]
=> [[0,1,0,0,0],[1,-1,0,1,0],[0,1,0,0,0],[0,0,1,-1,1],[0,0,0,1,0]]
=> [[1,1,1,1,2],[2,2,2,4],[3,3,4],[4,5],[5]]
=> ([(0,3),(0,5),(1,8),(2,7),(3,6),(4,2),(4,9),(5,1),(5,6),(6,4),(6,8),(8,9),(9,7)],10)
=> ? ∊ {5,5,5,5,6,6,6,6,6,6,6,7,7,7,7,7,8,8,8,8,8}
[1,1,0,1,1,0,1,0,0,0]
=> [[0,1,0,0,0],[1,-1,0,1,0],[0,1,0,-1,1],[0,0,1,0,0],[0,0,0,1,0]]
=> [[1,1,1,1,2],[2,2,2,4],[3,3,5],[4,5],[5]]
=> ([(0,6),(1,9),(1,10),(2,8),(3,7),(4,3),(4,12),(5,2),(5,12),(6,4),(6,5),(7,9),(7,11),(8,10),(8,11),(9,13),(10,13),(11,13),(12,1),(12,7),(12,8)],14)
=> ? ∊ {5,5,5,5,6,6,6,6,6,6,6,7,7,7,7,7,8,8,8,8,8}
[1,1,0,1,1,1,0,0,0,0]
=> [[0,1,0,0,0],[1,-1,0,0,1],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,1,0]]
=> [[1,1,1,1,2],[2,2,2,5],[3,3,5],[4,5],[5]]
=> ([(0,7),(1,11),(2,8),(3,9),(3,13),(4,9),(4,12),(5,1),(5,10),(6,3),(6,4),(6,8),(7,2),(7,6),(8,12),(8,13),(9,5),(9,14),(10,11),(12,14),(13,14),(14,10)],15)
=> ? ∊ {5,5,5,5,6,6,6,6,6,6,6,7,7,7,7,7,8,8,8,8,8}
[1,1,1,0,0,0,1,0,1,0]
=> [[0,0,1,0,0],[1,0,0,0,0],[0,1,0,0,0],[0,0,0,1,0],[0,0,0,0,1]]
=> [[1,1,1,1,3],[2,2,2,3],[3,3,3],[4,4],[5]]
=> ([(0,3),(2,1),(3,2)],4)
=> 4
[1,1,1,0,0,0,1,1,0,0]
=> [[0,0,1,0,0],[1,0,0,0,0],[0,1,0,0,0],[0,0,0,0,1],[0,0,0,1,0]]
=> [[1,1,1,1,3],[2,2,2,3],[3,3,3],[4,5],[5]]
=> ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ? ∊ {5,5,5,5,6,6,6,6,6,6,6,7,7,7,7,7,8,8,8,8,8}
[1,1,1,0,0,1,0,0,1,0]
=> [[0,0,1,0,0],[1,0,0,0,0],[0,1,-1,1,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [[1,1,1,1,3],[2,2,2,3],[3,3,4],[4,4],[5]]
=> ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
=> 5
[1,1,1,0,0,1,0,1,0,0]
=> [[0,0,1,0,0],[1,0,0,0,0],[0,1,-1,1,0],[0,0,1,-1,1],[0,0,0,1,0]]
=> [[1,1,1,1,3],[2,2,2,3],[3,3,4],[4,5],[5]]
=> ([(0,3),(0,5),(1,7),(3,6),(4,2),(5,1),(5,6),(6,7),(7,4)],8)
=> ? ∊ {5,5,5,5,6,6,6,6,6,6,6,7,7,7,7,7,8,8,8,8,8}
[1,1,1,0,0,1,1,0,0,0]
=> [[0,0,1,0,0],[1,0,0,0,0],[0,1,-1,0,1],[0,0,1,0,0],[0,0,0,1,0]]
=> [[1,1,1,1,3],[2,2,2,3],[3,3,5],[4,5],[5]]
=> ([(0,5),(0,6),(1,3),(1,13),(2,4),(2,12),(3,10),(4,8),(5,11),(6,2),(6,11),(8,9),(9,7),(10,7),(11,1),(11,12),(12,8),(12,13),(13,9),(13,10)],14)
=> ? ∊ {5,5,5,5,6,6,6,6,6,6,6,7,7,7,7,7,8,8,8,8,8}
[1,1,1,0,1,0,0,0,1,0]
=> [[0,0,1,0,0],[1,0,-1,1,0],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [[1,1,1,1,3],[2,2,2,4],[3,3,4],[4,4],[5]]
=> ([(0,5),(1,7),(2,8),(3,6),(4,3),(4,8),(5,2),(5,4),(6,7),(8,1),(8,6)],9)
=> ? ∊ {5,5,5,5,6,6,6,6,6,6,6,7,7,7,7,7,8,8,8,8,8}
[1,1,1,0,1,0,0,1,0,0]
=> [[0,0,1,0,0],[1,0,-1,1,0],[0,1,0,0,0],[0,0,1,-1,1],[0,0,0,1,0]]
=> [[1,1,1,1,3],[2,2,2,4],[3,3,4],[4,5],[5]]
=> ([(0,4),(0,6),(1,10),(2,9),(3,7),(4,8),(5,3),(5,11),(6,1),(6,8),(7,9),(8,5),(8,10),(10,11),(11,2),(11,7)],12)
=> ? ∊ {5,5,5,5,6,6,6,6,6,6,6,7,7,7,7,7,8,8,8,8,8}
[1,1,1,0,1,0,1,0,0,0]
=> [[0,0,1,0,0],[1,0,-1,1,0],[0,1,0,-1,1],[0,0,1,0,0],[0,0,0,1,0]]
=> [[1,1,1,1,3],[2,2,2,4],[3,3,5],[4,5],[5]]
=> ([(0,7),(1,11),(1,14),(2,10),(3,8),(4,9),(5,3),(5,13),(6,4),(6,13),(7,5),(7,6),(8,12),(8,14),(9,11),(9,12),(11,15),(12,15),(13,1),(13,8),(13,9),(14,2),(14,15),(15,10)],16)
=> ? ∊ {5,5,5,5,6,6,6,6,6,6,6,7,7,7,7,7,8,8,8,8,8}
[1,1,1,0,1,1,0,0,0,0]
=> [[0,0,1,0,0],[1,0,-1,0,1],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,1,0]]
=> [[1,1,1,1,3],[2,2,2,5],[3,3,5],[4,5],[5]]
=> ([(0,1),(1,4),(1,5),(2,16),(3,6),(3,17),(4,18),(5,7),(5,8),(5,18),(6,13),(7,11),(7,14),(8,10),(8,11),(10,19),(11,3),(11,19),(12,9),(13,9),(14,16),(14,19),(15,12),(16,15),(17,12),(17,13),(18,2),(18,10),(18,14),(19,15),(19,17)],20)
=> ? ∊ {5,5,5,5,6,6,6,6,6,6,6,7,7,7,7,7,8,8,8,8,8}
[1,1,1,1,0,0,0,0,1,0]
=> [[0,0,0,1,0],[1,0,0,0,0],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [[1,1,1,1,4],[2,2,2,4],[3,3,4],[4,4],[5]]
=> ([(0,5),(2,7),(3,7),(4,1),(5,6),(6,2),(6,3),(7,4)],8)
=> ? ∊ {5,5,5,5,6,6,6,6,6,6,6,7,7,7,7,7,8,8,8,8,8}
[1,1,1,1,0,0,0,1,0,0]
=> [[0,0,0,1,0],[1,0,0,0,0],[0,1,0,0,0],[0,0,1,-1,1],[0,0,0,1,0]]
=> [[1,1,1,1,4],[2,2,2,4],[3,3,4],[4,5],[5]]
=> ([(0,4),(0,7),(2,10),(3,9),(4,8),(5,3),(5,11),(6,1),(7,5),(7,8),(8,11),(9,10),(10,6),(11,2),(11,9)],12)
=> ? ∊ {5,5,5,5,6,6,6,6,6,6,6,7,7,7,7,7,8,8,8,8,8}
[1,1,1,1,0,0,1,0,0,0]
=> [[0,0,0,1,0],[1,0,0,0,0],[0,1,0,-1,1],[0,0,1,0,0],[0,0,0,1,0]]
=> [[1,1,1,1,4],[2,2,2,4],[3,3,5],[4,5],[5]]
=> ([(0,6),(0,7),(2,5),(2,16),(3,4),(3,17),(4,14),(5,12),(6,13),(7,2),(7,13),(8,10),(8,11),(9,18),(10,18),(11,18),(12,15),(13,3),(13,16),(14,9),(14,10),(15,9),(15,11),(16,12),(16,17),(17,8),(17,14),(17,15),(18,1)],19)
=> ? ∊ {5,5,5,5,6,6,6,6,6,6,6,7,7,7,7,7,8,8,8,8,8}
[1,1,1,1,0,1,0,0,0,0]
=> [[0,0,0,1,0],[1,0,0,-1,1],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,1,0]]
=> [[1,1,1,1,4],[2,2,2,5],[3,3,5],[4,5],[5]]
=> ([(0,2),(1,6),(2,4),(2,5),(3,7),(3,22),(4,23),(5,9),(5,10),(5,23),(6,20),(7,15),(8,12),(8,14),(9,13),(9,17),(10,13),(10,18),(12,1),(13,3),(13,24),(14,19),(15,16),(16,11),(17,14),(17,24),(18,12),(18,24),(19,21),(20,11),(21,16),(21,20),(22,15),(22,21),(23,8),(23,17),(23,18),(24,19),(24,22)],25)
=> ? ∊ {5,5,5,5,6,6,6,6,6,6,6,7,7,7,7,7,8,8,8,8,8}
[1,1,1,1,1,0,0,0,0,0]
=> [[0,0,0,0,1],[1,0,0,0,0],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,1,0]]
=> [[1,1,1,1,5],[2,2,2,5],[3,3,5],[4,5],[5]]
=> ([(0,9),(1,13),(2,14),(4,12),(5,11),(6,1),(6,12),(7,3),(8,5),(8,15),(9,10),(10,4),(10,6),(11,14),(12,8),(12,13),(13,15),(14,7),(15,2),(15,11)],16)
=> ? ∊ {5,5,5,5,6,6,6,6,6,6,6,7,7,7,7,7,8,8,8,8,8}
Description
The number of indecomposable injective modules with projective dimension at most one in the incidence algebra of the poset.
Mp00035: Dyck paths to alternating sign matrixAlternating sign matrices
Mp00001: Alternating sign matrices to semistandard tableau via monotone trianglesSemistandard tableaux
Mp00214: Semistandard tableaux subcrystalPosets
St000080: Posets ⟶ ℤResult quality: 62% values known / values provided: 62%distinct values known / distinct values provided: 62%
Values
[1,0]
=> [[1]]
=> [[1]]
=> ([],1)
=> 0 = 1 - 1
[1,0,1,0]
=> [[1,0],[0,1]]
=> [[1,1],[2]]
=> ([],1)
=> 0 = 1 - 1
[1,1,0,0]
=> [[0,1],[1,0]]
=> [[1,2],[2]]
=> ([(0,1)],2)
=> 1 = 2 - 1
[1,0,1,0,1,0]
=> [[1,0,0],[0,1,0],[0,0,1]]
=> [[1,1,1],[2,2],[3]]
=> ([],1)
=> 0 = 1 - 1
[1,0,1,1,0,0]
=> [[1,0,0],[0,0,1],[0,1,0]]
=> [[1,1,1],[2,3],[3]]
=> ([(0,1)],2)
=> 1 = 2 - 1
[1,1,0,0,1,0]
=> [[0,1,0],[1,0,0],[0,0,1]]
=> [[1,1,2],[2,2],[3]]
=> ([(0,1)],2)
=> 1 = 2 - 1
[1,1,0,1,0,0]
=> [[0,1,0],[1,-1,1],[0,1,0]]
=> [[1,1,2],[2,3],[3]]
=> ([(0,2),(2,1)],3)
=> 2 = 3 - 1
[1,1,1,0,0,0]
=> [[0,0,1],[1,0,0],[0,1,0]]
=> [[1,1,3],[2,3],[3]]
=> ([(0,3),(2,1),(3,2)],4)
=> 3 = 4 - 1
[1,0,1,0,1,0,1,0]
=> [[1,0,0,0],[0,1,0,0],[0,0,1,0],[0,0,0,1]]
=> [[1,1,1,1],[2,2,2],[3,3],[4]]
=> ([],1)
=> 0 = 1 - 1
[1,0,1,0,1,1,0,0]
=> [[1,0,0,0],[0,1,0,0],[0,0,0,1],[0,0,1,0]]
=> [[1,1,1,1],[2,2,2],[3,4],[4]]
=> ([(0,1)],2)
=> 1 = 2 - 1
[1,0,1,1,0,0,1,0]
=> [[1,0,0,0],[0,0,1,0],[0,1,0,0],[0,0,0,1]]
=> [[1,1,1,1],[2,2,3],[3,3],[4]]
=> ([(0,1)],2)
=> 1 = 2 - 1
[1,0,1,1,0,1,0,0]
=> [[1,0,0,0],[0,0,1,0],[0,1,-1,1],[0,0,1,0]]
=> [[1,1,1,1],[2,2,3],[3,4],[4]]
=> ([(0,2),(2,1)],3)
=> 2 = 3 - 1
[1,0,1,1,1,0,0,0]
=> [[1,0,0,0],[0,0,0,1],[0,1,0,0],[0,0,1,0]]
=> [[1,1,1,1],[2,2,4],[3,4],[4]]
=> ([(0,3),(2,1),(3,2)],4)
=> 3 = 4 - 1
[1,1,0,0,1,0,1,0]
=> [[0,1,0,0],[1,0,0,0],[0,0,1,0],[0,0,0,1]]
=> [[1,1,1,2],[2,2,2],[3,3],[4]]
=> ([(0,1)],2)
=> 1 = 2 - 1
[1,1,0,0,1,1,0,0]
=> [[0,1,0,0],[1,0,0,0],[0,0,0,1],[0,0,1,0]]
=> [[1,1,1,2],[2,2,2],[3,4],[4]]
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2 = 3 - 1
[1,1,0,1,0,0,1,0]
=> [[0,1,0,0],[1,-1,1,0],[0,1,0,0],[0,0,0,1]]
=> [[1,1,1,2],[2,2,3],[3,3],[4]]
=> ([(0,2),(2,1)],3)
=> 2 = 3 - 1
[1,1,0,1,0,1,0,0]
=> [[0,1,0,0],[1,-1,1,0],[0,1,-1,1],[0,0,1,0]]
=> [[1,1,1,2],[2,2,3],[3,4],[4]]
=> ([(0,3),(2,1),(3,2)],4)
=> 3 = 4 - 1
[1,1,0,1,1,0,0,0]
=> [[0,1,0,0],[1,-1,0,1],[0,1,0,0],[0,0,1,0]]
=> [[1,1,1,2],[2,2,4],[3,4],[4]]
=> ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
=> ? ∊ {5,6,6} - 1
[1,1,1,0,0,0,1,0]
=> [[0,0,1,0],[1,0,0,0],[0,1,0,0],[0,0,0,1]]
=> [[1,1,1,3],[2,2,3],[3,3],[4]]
=> ([(0,3),(2,1),(3,2)],4)
=> 3 = 4 - 1
[1,1,1,0,0,1,0,0]
=> [[0,0,1,0],[1,0,0,0],[0,1,-1,1],[0,0,1,0]]
=> [[1,1,1,3],[2,2,3],[3,4],[4]]
=> ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
=> 4 = 5 - 1
[1,1,1,0,1,0,0,0]
=> [[0,0,1,0],[1,0,-1,1],[0,1,0,0],[0,0,1,0]]
=> [[1,1,1,3],[2,2,4],[3,4],[4]]
=> ([(0,5),(1,7),(2,8),(3,6),(4,3),(4,8),(5,2),(5,4),(6,7),(8,1),(8,6)],9)
=> ? ∊ {5,6,6} - 1
[1,1,1,1,0,0,0,0]
=> [[0,0,0,1],[1,0,0,0],[0,1,0,0],[0,0,1,0]]
=> [[1,1,1,4],[2,2,4],[3,4],[4]]
=> ([(0,5),(2,7),(3,7),(4,1),(5,6),(6,2),(6,3),(7,4)],8)
=> ? ∊ {5,6,6} - 1
[1,0,1,0,1,0,1,0,1,0]
=> [[1,0,0,0,0],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,1,0],[0,0,0,0,1]]
=> [[1,1,1,1,1],[2,2,2,2],[3,3,3],[4,4],[5]]
=> ([],1)
=> 0 = 1 - 1
[1,0,1,0,1,0,1,1,0,0]
=> [[1,0,0,0,0],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,0,1],[0,0,0,1,0]]
=> [[1,1,1,1,1],[2,2,2,2],[3,3,3],[4,5],[5]]
=> ([(0,1)],2)
=> 1 = 2 - 1
[1,0,1,0,1,1,0,0,1,0]
=> [[1,0,0,0,0],[0,1,0,0,0],[0,0,0,1,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [[1,1,1,1,1],[2,2,2,2],[3,3,4],[4,4],[5]]
=> ([(0,1)],2)
=> 1 = 2 - 1
[1,0,1,0,1,1,0,1,0,0]
=> [[1,0,0,0,0],[0,1,0,0,0],[0,0,0,1,0],[0,0,1,-1,1],[0,0,0,1,0]]
=> [[1,1,1,1,1],[2,2,2,2],[3,3,4],[4,5],[5]]
=> ([(0,2),(2,1)],3)
=> 2 = 3 - 1
[1,0,1,0,1,1,1,0,0,0]
=> [[1,0,0,0,0],[0,1,0,0,0],[0,0,0,0,1],[0,0,1,0,0],[0,0,0,1,0]]
=> [[1,1,1,1,1],[2,2,2,2],[3,3,5],[4,5],[5]]
=> ([(0,3),(2,1),(3,2)],4)
=> 3 = 4 - 1
[1,0,1,1,0,0,1,0,1,0]
=> [[1,0,0,0,0],[0,0,1,0,0],[0,1,0,0,0],[0,0,0,1,0],[0,0,0,0,1]]
=> [[1,1,1,1,1],[2,2,2,3],[3,3,3],[4,4],[5]]
=> ([(0,1)],2)
=> 1 = 2 - 1
[1,0,1,1,0,0,1,1,0,0]
=> [[1,0,0,0,0],[0,0,1,0,0],[0,1,0,0,0],[0,0,0,0,1],[0,0,0,1,0]]
=> [[1,1,1,1,1],[2,2,2,3],[3,3,3],[4,5],[5]]
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2 = 3 - 1
[1,0,1,1,0,1,0,0,1,0]
=> [[1,0,0,0,0],[0,0,1,0,0],[0,1,-1,1,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [[1,1,1,1,1],[2,2,2,3],[3,3,4],[4,4],[5]]
=> ([(0,2),(2,1)],3)
=> 2 = 3 - 1
[1,0,1,1,0,1,0,1,0,0]
=> [[1,0,0,0,0],[0,0,1,0,0],[0,1,-1,1,0],[0,0,1,-1,1],[0,0,0,1,0]]
=> [[1,1,1,1,1],[2,2,2,3],[3,3,4],[4,5],[5]]
=> ([(0,3),(2,1),(3,2)],4)
=> 3 = 4 - 1
[1,0,1,1,0,1,1,0,0,0]
=> [[1,0,0,0,0],[0,0,1,0,0],[0,1,-1,0,1],[0,0,1,0,0],[0,0,0,1,0]]
=> [[1,1,1,1,1],[2,2,2,3],[3,3,5],[4,5],[5]]
=> ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
=> ? ∊ {5,5,5,5,6,6,6,6,6,6,6,7,7,7,7,7,8,8,8,8,8} - 1
[1,0,1,1,1,0,0,0,1,0]
=> [[1,0,0,0,0],[0,0,0,1,0],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [[1,1,1,1,1],[2,2,2,4],[3,3,4],[4,4],[5]]
=> ([(0,3),(2,1),(3,2)],4)
=> 3 = 4 - 1
[1,0,1,1,1,0,0,1,0,0]
=> [[1,0,0,0,0],[0,0,0,1,0],[0,1,0,0,0],[0,0,1,-1,1],[0,0,0,1,0]]
=> [[1,1,1,1,1],[2,2,2,4],[3,3,4],[4,5],[5]]
=> ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
=> 4 = 5 - 1
[1,0,1,1,1,0,1,0,0,0]
=> [[1,0,0,0,0],[0,0,0,1,0],[0,1,0,-1,1],[0,0,1,0,0],[0,0,0,1,0]]
=> [[1,1,1,1,1],[2,2,2,4],[3,3,5],[4,5],[5]]
=> ([(0,5),(1,7),(2,8),(3,6),(4,3),(4,8),(5,2),(5,4),(6,7),(8,1),(8,6)],9)
=> ? ∊ {5,5,5,5,6,6,6,6,6,6,6,7,7,7,7,7,8,8,8,8,8} - 1
[1,0,1,1,1,1,0,0,0,0]
=> [[1,0,0,0,0],[0,0,0,0,1],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,1,0]]
=> [[1,1,1,1,1],[2,2,2,5],[3,3,5],[4,5],[5]]
=> ([(0,5),(2,7),(3,7),(4,1),(5,6),(6,2),(6,3),(7,4)],8)
=> ? ∊ {5,5,5,5,6,6,6,6,6,6,6,7,7,7,7,7,8,8,8,8,8} - 1
[1,1,0,0,1,0,1,0,1,0]
=> [[0,1,0,0,0],[1,0,0,0,0],[0,0,1,0,0],[0,0,0,1,0],[0,0,0,0,1]]
=> [[1,1,1,1,2],[2,2,2,2],[3,3,3],[4,4],[5]]
=> ([(0,1)],2)
=> 1 = 2 - 1
[1,1,0,0,1,0,1,1,0,0]
=> [[0,1,0,0,0],[1,0,0,0,0],[0,0,1,0,0],[0,0,0,0,1],[0,0,0,1,0]]
=> [[1,1,1,1,2],[2,2,2,2],[3,3,3],[4,5],[5]]
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2 = 3 - 1
[1,1,0,0,1,1,0,0,1,0]
=> [[0,1,0,0,0],[1,0,0,0,0],[0,0,0,1,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [[1,1,1,1,2],[2,2,2,2],[3,3,4],[4,4],[5]]
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2 = 3 - 1
[1,1,0,0,1,1,0,1,0,0]
=> [[0,1,0,0,0],[1,0,0,0,0],[0,0,0,1,0],[0,0,1,-1,1],[0,0,0,1,0]]
=> [[1,1,1,1,2],[2,2,2,2],[3,3,4],[4,5],[5]]
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 3 = 4 - 1
[1,1,0,0,1,1,1,0,0,0]
=> [[0,1,0,0,0],[1,0,0,0,0],[0,0,0,0,1],[0,0,1,0,0],[0,0,0,1,0]]
=> [[1,1,1,1,2],[2,2,2,2],[3,3,5],[4,5],[5]]
=> ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ? ∊ {5,5,5,5,6,6,6,6,6,6,6,7,7,7,7,7,8,8,8,8,8} - 1
[1,1,0,1,0,0,1,0,1,0]
=> [[0,1,0,0,0],[1,-1,1,0,0],[0,1,0,0,0],[0,0,0,1,0],[0,0,0,0,1]]
=> [[1,1,1,1,2],[2,2,2,3],[3,3,3],[4,4],[5]]
=> ([(0,2),(2,1)],3)
=> 2 = 3 - 1
[1,1,0,1,0,0,1,1,0,0]
=> [[0,1,0,0,0],[1,-1,1,0,0],[0,1,0,0,0],[0,0,0,0,1],[0,0,0,1,0]]
=> [[1,1,1,1,2],[2,2,2,3],[3,3,3],[4,5],[5]]
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 3 = 4 - 1
[1,1,0,1,0,1,0,0,1,0]
=> [[0,1,0,0,0],[1,-1,1,0,0],[0,1,-1,1,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [[1,1,1,1,2],[2,2,2,3],[3,3,4],[4,4],[5]]
=> ([(0,3),(2,1),(3,2)],4)
=> 3 = 4 - 1
[1,1,0,1,0,1,0,1,0,0]
=> [[0,1,0,0,0],[1,-1,1,0,0],[0,1,-1,1,0],[0,0,1,-1,1],[0,0,0,1,0]]
=> [[1,1,1,1,2],[2,2,2,3],[3,3,4],[4,5],[5]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 4 = 5 - 1
[1,1,0,1,0,1,1,0,0,0]
=> [[0,1,0,0,0],[1,-1,1,0,0],[0,1,-1,0,1],[0,0,1,0,0],[0,0,0,1,0]]
=> [[1,1,1,1,2],[2,2,2,3],[3,3,5],[4,5],[5]]
=> ([(0,5),(1,8),(2,7),(3,2),(3,6),(4,1),(4,6),(5,3),(5,4),(6,7),(6,8),(7,9),(8,9)],10)
=> ? ∊ {5,5,5,5,6,6,6,6,6,6,6,7,7,7,7,7,8,8,8,8,8} - 1
[1,1,0,1,1,0,0,0,1,0]
=> [[0,1,0,0,0],[1,-1,0,1,0],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [[1,1,1,1,2],[2,2,2,4],[3,3,4],[4,4],[5]]
=> ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
=> ? ∊ {5,5,5,5,6,6,6,6,6,6,6,7,7,7,7,7,8,8,8,8,8} - 1
[1,1,0,1,1,0,0,1,0,0]
=> [[0,1,0,0,0],[1,-1,0,1,0],[0,1,0,0,0],[0,0,1,-1,1],[0,0,0,1,0]]
=> [[1,1,1,1,2],[2,2,2,4],[3,3,4],[4,5],[5]]
=> ([(0,3),(0,5),(1,8),(2,7),(3,6),(4,2),(4,9),(5,1),(5,6),(6,4),(6,8),(8,9),(9,7)],10)
=> ? ∊ {5,5,5,5,6,6,6,6,6,6,6,7,7,7,7,7,8,8,8,8,8} - 1
[1,1,0,1,1,0,1,0,0,0]
=> [[0,1,0,0,0],[1,-1,0,1,0],[0,1,0,-1,1],[0,0,1,0,0],[0,0,0,1,0]]
=> [[1,1,1,1,2],[2,2,2,4],[3,3,5],[4,5],[5]]
=> ([(0,6),(1,9),(1,10),(2,8),(3,7),(4,3),(4,12),(5,2),(5,12),(6,4),(6,5),(7,9),(7,11),(8,10),(8,11),(9,13),(10,13),(11,13),(12,1),(12,7),(12,8)],14)
=> ? ∊ {5,5,5,5,6,6,6,6,6,6,6,7,7,7,7,7,8,8,8,8,8} - 1
[1,1,0,1,1,1,0,0,0,0]
=> [[0,1,0,0,0],[1,-1,0,0,1],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,1,0]]
=> [[1,1,1,1,2],[2,2,2,5],[3,3,5],[4,5],[5]]
=> ([(0,7),(1,11),(2,8),(3,9),(3,13),(4,9),(4,12),(5,1),(5,10),(6,3),(6,4),(6,8),(7,2),(7,6),(8,12),(8,13),(9,5),(9,14),(10,11),(12,14),(13,14),(14,10)],15)
=> ? ∊ {5,5,5,5,6,6,6,6,6,6,6,7,7,7,7,7,8,8,8,8,8} - 1
[1,1,1,0,0,0,1,0,1,0]
=> [[0,0,1,0,0],[1,0,0,0,0],[0,1,0,0,0],[0,0,0,1,0],[0,0,0,0,1]]
=> [[1,1,1,1,3],[2,2,2,3],[3,3,3],[4,4],[5]]
=> ([(0,3),(2,1),(3,2)],4)
=> 3 = 4 - 1
[1,1,1,0,0,0,1,1,0,0]
=> [[0,0,1,0,0],[1,0,0,0,0],[0,1,0,0,0],[0,0,0,0,1],[0,0,0,1,0]]
=> [[1,1,1,1,3],[2,2,2,3],[3,3,3],[4,5],[5]]
=> ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ? ∊ {5,5,5,5,6,6,6,6,6,6,6,7,7,7,7,7,8,8,8,8,8} - 1
[1,1,1,0,0,1,0,0,1,0]
=> [[0,0,1,0,0],[1,0,0,0,0],[0,1,-1,1,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [[1,1,1,1,3],[2,2,2,3],[3,3,4],[4,4],[5]]
=> ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
=> 4 = 5 - 1
[1,1,1,0,0,1,0,1,0,0]
=> [[0,0,1,0,0],[1,0,0,0,0],[0,1,-1,1,0],[0,0,1,-1,1],[0,0,0,1,0]]
=> [[1,1,1,1,3],[2,2,2,3],[3,3,4],[4,5],[5]]
=> ([(0,3),(0,5),(1,7),(3,6),(4,2),(5,1),(5,6),(6,7),(7,4)],8)
=> ? ∊ {5,5,5,5,6,6,6,6,6,6,6,7,7,7,7,7,8,8,8,8,8} - 1
[1,1,1,0,0,1,1,0,0,0]
=> [[0,0,1,0,0],[1,0,0,0,0],[0,1,-1,0,1],[0,0,1,0,0],[0,0,0,1,0]]
=> [[1,1,1,1,3],[2,2,2,3],[3,3,5],[4,5],[5]]
=> ([(0,5),(0,6),(1,3),(1,13),(2,4),(2,12),(3,10),(4,8),(5,11),(6,2),(6,11),(8,9),(9,7),(10,7),(11,1),(11,12),(12,8),(12,13),(13,9),(13,10)],14)
=> ? ∊ {5,5,5,5,6,6,6,6,6,6,6,7,7,7,7,7,8,8,8,8,8} - 1
[1,1,1,0,1,0,0,0,1,0]
=> [[0,0,1,0,0],[1,0,-1,1,0],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [[1,1,1,1,3],[2,2,2,4],[3,3,4],[4,4],[5]]
=> ([(0,5),(1,7),(2,8),(3,6),(4,3),(4,8),(5,2),(5,4),(6,7),(8,1),(8,6)],9)
=> ? ∊ {5,5,5,5,6,6,6,6,6,6,6,7,7,7,7,7,8,8,8,8,8} - 1
[1,1,1,0,1,0,0,1,0,0]
=> [[0,0,1,0,0],[1,0,-1,1,0],[0,1,0,0,0],[0,0,1,-1,1],[0,0,0,1,0]]
=> [[1,1,1,1,3],[2,2,2,4],[3,3,4],[4,5],[5]]
=> ([(0,4),(0,6),(1,10),(2,9),(3,7),(4,8),(5,3),(5,11),(6,1),(6,8),(7,9),(8,5),(8,10),(10,11),(11,2),(11,7)],12)
=> ? ∊ {5,5,5,5,6,6,6,6,6,6,6,7,7,7,7,7,8,8,8,8,8} - 1
[1,1,1,0,1,0,1,0,0,0]
=> [[0,0,1,0,0],[1,0,-1,1,0],[0,1,0,-1,1],[0,0,1,0,0],[0,0,0,1,0]]
=> [[1,1,1,1,3],[2,2,2,4],[3,3,5],[4,5],[5]]
=> ([(0,7),(1,11),(1,14),(2,10),(3,8),(4,9),(5,3),(5,13),(6,4),(6,13),(7,5),(7,6),(8,12),(8,14),(9,11),(9,12),(11,15),(12,15),(13,1),(13,8),(13,9),(14,2),(14,15),(15,10)],16)
=> ? ∊ {5,5,5,5,6,6,6,6,6,6,6,7,7,7,7,7,8,8,8,8,8} - 1
[1,1,1,0,1,1,0,0,0,0]
=> [[0,0,1,0,0],[1,0,-1,0,1],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,1,0]]
=> [[1,1,1,1,3],[2,2,2,5],[3,3,5],[4,5],[5]]
=> ([(0,1),(1,4),(1,5),(2,16),(3,6),(3,17),(4,18),(5,7),(5,8),(5,18),(6,13),(7,11),(7,14),(8,10),(8,11),(10,19),(11,3),(11,19),(12,9),(13,9),(14,16),(14,19),(15,12),(16,15),(17,12),(17,13),(18,2),(18,10),(18,14),(19,15),(19,17)],20)
=> ? ∊ {5,5,5,5,6,6,6,6,6,6,6,7,7,7,7,7,8,8,8,8,8} - 1
[1,1,1,1,0,0,0,0,1,0]
=> [[0,0,0,1,0],[1,0,0,0,0],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [[1,1,1,1,4],[2,2,2,4],[3,3,4],[4,4],[5]]
=> ([(0,5),(2,7),(3,7),(4,1),(5,6),(6,2),(6,3),(7,4)],8)
=> ? ∊ {5,5,5,5,6,6,6,6,6,6,6,7,7,7,7,7,8,8,8,8,8} - 1
[1,1,1,1,0,0,0,1,0,0]
=> [[0,0,0,1,0],[1,0,0,0,0],[0,1,0,0,0],[0,0,1,-1,1],[0,0,0,1,0]]
=> [[1,1,1,1,4],[2,2,2,4],[3,3,4],[4,5],[5]]
=> ([(0,4),(0,7),(2,10),(3,9),(4,8),(5,3),(5,11),(6,1),(7,5),(7,8),(8,11),(9,10),(10,6),(11,2),(11,9)],12)
=> ? ∊ {5,5,5,5,6,6,6,6,6,6,6,7,7,7,7,7,8,8,8,8,8} - 1
[1,1,1,1,0,0,1,0,0,0]
=> [[0,0,0,1,0],[1,0,0,0,0],[0,1,0,-1,1],[0,0,1,0,0],[0,0,0,1,0]]
=> [[1,1,1,1,4],[2,2,2,4],[3,3,5],[4,5],[5]]
=> ([(0,6),(0,7),(2,5),(2,16),(3,4),(3,17),(4,14),(5,12),(6,13),(7,2),(7,13),(8,10),(8,11),(9,18),(10,18),(11,18),(12,15),(13,3),(13,16),(14,9),(14,10),(15,9),(15,11),(16,12),(16,17),(17,8),(17,14),(17,15),(18,1)],19)
=> ? ∊ {5,5,5,5,6,6,6,6,6,6,6,7,7,7,7,7,8,8,8,8,8} - 1
[1,1,1,1,0,1,0,0,0,0]
=> [[0,0,0,1,0],[1,0,0,-1,1],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,1,0]]
=> [[1,1,1,1,4],[2,2,2,5],[3,3,5],[4,5],[5]]
=> ([(0,2),(1,6),(2,4),(2,5),(3,7),(3,22),(4,23),(5,9),(5,10),(5,23),(6,20),(7,15),(8,12),(8,14),(9,13),(9,17),(10,13),(10,18),(12,1),(13,3),(13,24),(14,19),(15,16),(16,11),(17,14),(17,24),(18,12),(18,24),(19,21),(20,11),(21,16),(21,20),(22,15),(22,21),(23,8),(23,17),(23,18),(24,19),(24,22)],25)
=> ? ∊ {5,5,5,5,6,6,6,6,6,6,6,7,7,7,7,7,8,8,8,8,8} - 1
[1,1,1,1,1,0,0,0,0,0]
=> [[0,0,0,0,1],[1,0,0,0,0],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,1,0]]
=> [[1,1,1,1,5],[2,2,2,5],[3,3,5],[4,5],[5]]
=> ([(0,9),(1,13),(2,14),(4,12),(5,11),(6,1),(6,12),(7,3),(8,5),(8,15),(9,10),(10,4),(10,6),(11,14),(12,8),(12,13),(13,15),(14,7),(15,2),(15,11)],16)
=> ? ∊ {5,5,5,5,6,6,6,6,6,6,6,7,7,7,7,7,8,8,8,8,8} - 1
Description
The rank of the poset.
Mp00035: Dyck paths to alternating sign matrixAlternating sign matrices
Mp00001: Alternating sign matrices to semistandard tableau via monotone trianglesSemistandard tableaux
Mp00214: Semistandard tableaux subcrystalPosets
St001782: Posets ⟶ ℤResult quality: 62% values known / values provided: 62%distinct values known / distinct values provided: 62%
Values
[1,0]
=> [[1]]
=> [[1]]
=> ([],1)
=> 2 = 1 + 1
[1,0,1,0]
=> [[1,0],[0,1]]
=> [[1,1],[2]]
=> ([],1)
=> 2 = 1 + 1
[1,1,0,0]
=> [[0,1],[1,0]]
=> [[1,2],[2]]
=> ([(0,1)],2)
=> 3 = 2 + 1
[1,0,1,0,1,0]
=> [[1,0,0],[0,1,0],[0,0,1]]
=> [[1,1,1],[2,2],[3]]
=> ([],1)
=> 2 = 1 + 1
[1,0,1,1,0,0]
=> [[1,0,0],[0,0,1],[0,1,0]]
=> [[1,1,1],[2,3],[3]]
=> ([(0,1)],2)
=> 3 = 2 + 1
[1,1,0,0,1,0]
=> [[0,1,0],[1,0,0],[0,0,1]]
=> [[1,1,2],[2,2],[3]]
=> ([(0,1)],2)
=> 3 = 2 + 1
[1,1,0,1,0,0]
=> [[0,1,0],[1,-1,1],[0,1,0]]
=> [[1,1,2],[2,3],[3]]
=> ([(0,2),(2,1)],3)
=> 4 = 3 + 1
[1,1,1,0,0,0]
=> [[0,0,1],[1,0,0],[0,1,0]]
=> [[1,1,3],[2,3],[3]]
=> ([(0,3),(2,1),(3,2)],4)
=> 5 = 4 + 1
[1,0,1,0,1,0,1,0]
=> [[1,0,0,0],[0,1,0,0],[0,0,1,0],[0,0,0,1]]
=> [[1,1,1,1],[2,2,2],[3,3],[4]]
=> ([],1)
=> 2 = 1 + 1
[1,0,1,0,1,1,0,0]
=> [[1,0,0,0],[0,1,0,0],[0,0,0,1],[0,0,1,0]]
=> [[1,1,1,1],[2,2,2],[3,4],[4]]
=> ([(0,1)],2)
=> 3 = 2 + 1
[1,0,1,1,0,0,1,0]
=> [[1,0,0,0],[0,0,1,0],[0,1,0,0],[0,0,0,1]]
=> [[1,1,1,1],[2,2,3],[3,3],[4]]
=> ([(0,1)],2)
=> 3 = 2 + 1
[1,0,1,1,0,1,0,0]
=> [[1,0,0,0],[0,0,1,0],[0,1,-1,1],[0,0,1,0]]
=> [[1,1,1,1],[2,2,3],[3,4],[4]]
=> ([(0,2),(2,1)],3)
=> 4 = 3 + 1
[1,0,1,1,1,0,0,0]
=> [[1,0,0,0],[0,0,0,1],[0,1,0,0],[0,0,1,0]]
=> [[1,1,1,1],[2,2,4],[3,4],[4]]
=> ([(0,3),(2,1),(3,2)],4)
=> 5 = 4 + 1
[1,1,0,0,1,0,1,0]
=> [[0,1,0,0],[1,0,0,0],[0,0,1,0],[0,0,0,1]]
=> [[1,1,1,2],[2,2,2],[3,3],[4]]
=> ([(0,1)],2)
=> 3 = 2 + 1
[1,1,0,0,1,1,0,0]
=> [[0,1,0,0],[1,0,0,0],[0,0,0,1],[0,0,1,0]]
=> [[1,1,1,2],[2,2,2],[3,4],[4]]
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 4 = 3 + 1
[1,1,0,1,0,0,1,0]
=> [[0,1,0,0],[1,-1,1,0],[0,1,0,0],[0,0,0,1]]
=> [[1,1,1,2],[2,2,3],[3,3],[4]]
=> ([(0,2),(2,1)],3)
=> 4 = 3 + 1
[1,1,0,1,0,1,0,0]
=> [[0,1,0,0],[1,-1,1,0],[0,1,-1,1],[0,0,1,0]]
=> [[1,1,1,2],[2,2,3],[3,4],[4]]
=> ([(0,3),(2,1),(3,2)],4)
=> 5 = 4 + 1
[1,1,0,1,1,0,0,0]
=> [[0,1,0,0],[1,-1,0,1],[0,1,0,0],[0,0,1,0]]
=> [[1,1,1,2],[2,2,4],[3,4],[4]]
=> ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
=> ? ∊ {5,6,6} + 1
[1,1,1,0,0,0,1,0]
=> [[0,0,1,0],[1,0,0,0],[0,1,0,0],[0,0,0,1]]
=> [[1,1,1,3],[2,2,3],[3,3],[4]]
=> ([(0,3),(2,1),(3,2)],4)
=> 5 = 4 + 1
[1,1,1,0,0,1,0,0]
=> [[0,0,1,0],[1,0,0,0],[0,1,-1,1],[0,0,1,0]]
=> [[1,1,1,3],[2,2,3],[3,4],[4]]
=> ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
=> 6 = 5 + 1
[1,1,1,0,1,0,0,0]
=> [[0,0,1,0],[1,0,-1,1],[0,1,0,0],[0,0,1,0]]
=> [[1,1,1,3],[2,2,4],[3,4],[4]]
=> ([(0,5),(1,7),(2,8),(3,6),(4,3),(4,8),(5,2),(5,4),(6,7),(8,1),(8,6)],9)
=> ? ∊ {5,6,6} + 1
[1,1,1,1,0,0,0,0]
=> [[0,0,0,1],[1,0,0,0],[0,1,0,0],[0,0,1,0]]
=> [[1,1,1,4],[2,2,4],[3,4],[4]]
=> ([(0,5),(2,7),(3,7),(4,1),(5,6),(6,2),(6,3),(7,4)],8)
=> ? ∊ {5,6,6} + 1
[1,0,1,0,1,0,1,0,1,0]
=> [[1,0,0,0,0],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,1,0],[0,0,0,0,1]]
=> [[1,1,1,1,1],[2,2,2,2],[3,3,3],[4,4],[5]]
=> ([],1)
=> 2 = 1 + 1
[1,0,1,0,1,0,1,1,0,0]
=> [[1,0,0,0,0],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,0,1],[0,0,0,1,0]]
=> [[1,1,1,1,1],[2,2,2,2],[3,3,3],[4,5],[5]]
=> ([(0,1)],2)
=> 3 = 2 + 1
[1,0,1,0,1,1,0,0,1,0]
=> [[1,0,0,0,0],[0,1,0,0,0],[0,0,0,1,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [[1,1,1,1,1],[2,2,2,2],[3,3,4],[4,4],[5]]
=> ([(0,1)],2)
=> 3 = 2 + 1
[1,0,1,0,1,1,0,1,0,0]
=> [[1,0,0,0,0],[0,1,0,0,0],[0,0,0,1,0],[0,0,1,-1,1],[0,0,0,1,0]]
=> [[1,1,1,1,1],[2,2,2,2],[3,3,4],[4,5],[5]]
=> ([(0,2),(2,1)],3)
=> 4 = 3 + 1
[1,0,1,0,1,1,1,0,0,0]
=> [[1,0,0,0,0],[0,1,0,0,0],[0,0,0,0,1],[0,0,1,0,0],[0,0,0,1,0]]
=> [[1,1,1,1,1],[2,2,2,2],[3,3,5],[4,5],[5]]
=> ([(0,3),(2,1),(3,2)],4)
=> 5 = 4 + 1
[1,0,1,1,0,0,1,0,1,0]
=> [[1,0,0,0,0],[0,0,1,0,0],[0,1,0,0,0],[0,0,0,1,0],[0,0,0,0,1]]
=> [[1,1,1,1,1],[2,2,2,3],[3,3,3],[4,4],[5]]
=> ([(0,1)],2)
=> 3 = 2 + 1
[1,0,1,1,0,0,1,1,0,0]
=> [[1,0,0,0,0],[0,0,1,0,0],[0,1,0,0,0],[0,0,0,0,1],[0,0,0,1,0]]
=> [[1,1,1,1,1],[2,2,2,3],[3,3,3],[4,5],[5]]
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 4 = 3 + 1
[1,0,1,1,0,1,0,0,1,0]
=> [[1,0,0,0,0],[0,0,1,0,0],[0,1,-1,1,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [[1,1,1,1,1],[2,2,2,3],[3,3,4],[4,4],[5]]
=> ([(0,2),(2,1)],3)
=> 4 = 3 + 1
[1,0,1,1,0,1,0,1,0,0]
=> [[1,0,0,0,0],[0,0,1,0,0],[0,1,-1,1,0],[0,0,1,-1,1],[0,0,0,1,0]]
=> [[1,1,1,1,1],[2,2,2,3],[3,3,4],[4,5],[5]]
=> ([(0,3),(2,1),(3,2)],4)
=> 5 = 4 + 1
[1,0,1,1,0,1,1,0,0,0]
=> [[1,0,0,0,0],[0,0,1,0,0],[0,1,-1,0,1],[0,0,1,0,0],[0,0,0,1,0]]
=> [[1,1,1,1,1],[2,2,2,3],[3,3,5],[4,5],[5]]
=> ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
=> ? ∊ {5,5,5,5,6,6,6,6,6,6,6,7,7,7,7,7,8,8,8,8,8} + 1
[1,0,1,1,1,0,0,0,1,0]
=> [[1,0,0,0,0],[0,0,0,1,0],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [[1,1,1,1,1],[2,2,2,4],[3,3,4],[4,4],[5]]
=> ([(0,3),(2,1),(3,2)],4)
=> 5 = 4 + 1
[1,0,1,1,1,0,0,1,0,0]
=> [[1,0,0,0,0],[0,0,0,1,0],[0,1,0,0,0],[0,0,1,-1,1],[0,0,0,1,0]]
=> [[1,1,1,1,1],[2,2,2,4],[3,3,4],[4,5],[5]]
=> ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
=> 6 = 5 + 1
[1,0,1,1,1,0,1,0,0,0]
=> [[1,0,0,0,0],[0,0,0,1,0],[0,1,0,-1,1],[0,0,1,0,0],[0,0,0,1,0]]
=> [[1,1,1,1,1],[2,2,2,4],[3,3,5],[4,5],[5]]
=> ([(0,5),(1,7),(2,8),(3,6),(4,3),(4,8),(5,2),(5,4),(6,7),(8,1),(8,6)],9)
=> ? ∊ {5,5,5,5,6,6,6,6,6,6,6,7,7,7,7,7,8,8,8,8,8} + 1
[1,0,1,1,1,1,0,0,0,0]
=> [[1,0,0,0,0],[0,0,0,0,1],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,1,0]]
=> [[1,1,1,1,1],[2,2,2,5],[3,3,5],[4,5],[5]]
=> ([(0,5),(2,7),(3,7),(4,1),(5,6),(6,2),(6,3),(7,4)],8)
=> ? ∊ {5,5,5,5,6,6,6,6,6,6,6,7,7,7,7,7,8,8,8,8,8} + 1
[1,1,0,0,1,0,1,0,1,0]
=> [[0,1,0,0,0],[1,0,0,0,0],[0,0,1,0,0],[0,0,0,1,0],[0,0,0,0,1]]
=> [[1,1,1,1,2],[2,2,2,2],[3,3,3],[4,4],[5]]
=> ([(0,1)],2)
=> 3 = 2 + 1
[1,1,0,0,1,0,1,1,0,0]
=> [[0,1,0,0,0],[1,0,0,0,0],[0,0,1,0,0],[0,0,0,0,1],[0,0,0,1,0]]
=> [[1,1,1,1,2],[2,2,2,2],[3,3,3],[4,5],[5]]
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 4 = 3 + 1
[1,1,0,0,1,1,0,0,1,0]
=> [[0,1,0,0,0],[1,0,0,0,0],[0,0,0,1,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [[1,1,1,1,2],[2,2,2,2],[3,3,4],[4,4],[5]]
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 4 = 3 + 1
[1,1,0,0,1,1,0,1,0,0]
=> [[0,1,0,0,0],[1,0,0,0,0],[0,0,0,1,0],[0,0,1,-1,1],[0,0,0,1,0]]
=> [[1,1,1,1,2],[2,2,2,2],[3,3,4],[4,5],[5]]
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 5 = 4 + 1
[1,1,0,0,1,1,1,0,0,0]
=> [[0,1,0,0,0],[1,0,0,0,0],[0,0,0,0,1],[0,0,1,0,0],[0,0,0,1,0]]
=> [[1,1,1,1,2],[2,2,2,2],[3,3,5],[4,5],[5]]
=> ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ? ∊ {5,5,5,5,6,6,6,6,6,6,6,7,7,7,7,7,8,8,8,8,8} + 1
[1,1,0,1,0,0,1,0,1,0]
=> [[0,1,0,0,0],[1,-1,1,0,0],[0,1,0,0,0],[0,0,0,1,0],[0,0,0,0,1]]
=> [[1,1,1,1,2],[2,2,2,3],[3,3,3],[4,4],[5]]
=> ([(0,2),(2,1)],3)
=> 4 = 3 + 1
[1,1,0,1,0,0,1,1,0,0]
=> [[0,1,0,0,0],[1,-1,1,0,0],[0,1,0,0,0],[0,0,0,0,1],[0,0,0,1,0]]
=> [[1,1,1,1,2],[2,2,2,3],[3,3,3],[4,5],[5]]
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 5 = 4 + 1
[1,1,0,1,0,1,0,0,1,0]
=> [[0,1,0,0,0],[1,-1,1,0,0],[0,1,-1,1,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [[1,1,1,1,2],[2,2,2,3],[3,3,4],[4,4],[5]]
=> ([(0,3),(2,1),(3,2)],4)
=> 5 = 4 + 1
[1,1,0,1,0,1,0,1,0,0]
=> [[0,1,0,0,0],[1,-1,1,0,0],[0,1,-1,1,0],[0,0,1,-1,1],[0,0,0,1,0]]
=> [[1,1,1,1,2],[2,2,2,3],[3,3,4],[4,5],[5]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 6 = 5 + 1
[1,1,0,1,0,1,1,0,0,0]
=> [[0,1,0,0,0],[1,-1,1,0,0],[0,1,-1,0,1],[0,0,1,0,0],[0,0,0,1,0]]
=> [[1,1,1,1,2],[2,2,2,3],[3,3,5],[4,5],[5]]
=> ([(0,5),(1,8),(2,7),(3,2),(3,6),(4,1),(4,6),(5,3),(5,4),(6,7),(6,8),(7,9),(8,9)],10)
=> ? ∊ {5,5,5,5,6,6,6,6,6,6,6,7,7,7,7,7,8,8,8,8,8} + 1
[1,1,0,1,1,0,0,0,1,0]
=> [[0,1,0,0,0],[1,-1,0,1,0],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [[1,1,1,1,2],[2,2,2,4],[3,3,4],[4,4],[5]]
=> ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
=> ? ∊ {5,5,5,5,6,6,6,6,6,6,6,7,7,7,7,7,8,8,8,8,8} + 1
[1,1,0,1,1,0,0,1,0,0]
=> [[0,1,0,0,0],[1,-1,0,1,0],[0,1,0,0,0],[0,0,1,-1,1],[0,0,0,1,0]]
=> [[1,1,1,1,2],[2,2,2,4],[3,3,4],[4,5],[5]]
=> ([(0,3),(0,5),(1,8),(2,7),(3,6),(4,2),(4,9),(5,1),(5,6),(6,4),(6,8),(8,9),(9,7)],10)
=> ? ∊ {5,5,5,5,6,6,6,6,6,6,6,7,7,7,7,7,8,8,8,8,8} + 1
[1,1,0,1,1,0,1,0,0,0]
=> [[0,1,0,0,0],[1,-1,0,1,0],[0,1,0,-1,1],[0,0,1,0,0],[0,0,0,1,0]]
=> [[1,1,1,1,2],[2,2,2,4],[3,3,5],[4,5],[5]]
=> ([(0,6),(1,9),(1,10),(2,8),(3,7),(4,3),(4,12),(5,2),(5,12),(6,4),(6,5),(7,9),(7,11),(8,10),(8,11),(9,13),(10,13),(11,13),(12,1),(12,7),(12,8)],14)
=> ? ∊ {5,5,5,5,6,6,6,6,6,6,6,7,7,7,7,7,8,8,8,8,8} + 1
[1,1,0,1,1,1,0,0,0,0]
=> [[0,1,0,0,0],[1,-1,0,0,1],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,1,0]]
=> [[1,1,1,1,2],[2,2,2,5],[3,3,5],[4,5],[5]]
=> ([(0,7),(1,11),(2,8),(3,9),(3,13),(4,9),(4,12),(5,1),(5,10),(6,3),(6,4),(6,8),(7,2),(7,6),(8,12),(8,13),(9,5),(9,14),(10,11),(12,14),(13,14),(14,10)],15)
=> ? ∊ {5,5,5,5,6,6,6,6,6,6,6,7,7,7,7,7,8,8,8,8,8} + 1
[1,1,1,0,0,0,1,0,1,0]
=> [[0,0,1,0,0],[1,0,0,0,0],[0,1,0,0,0],[0,0,0,1,0],[0,0,0,0,1]]
=> [[1,1,1,1,3],[2,2,2,3],[3,3,3],[4,4],[5]]
=> ([(0,3),(2,1),(3,2)],4)
=> 5 = 4 + 1
[1,1,1,0,0,0,1,1,0,0]
=> [[0,0,1,0,0],[1,0,0,0,0],[0,1,0,0,0],[0,0,0,0,1],[0,0,0,1,0]]
=> [[1,1,1,1,3],[2,2,2,3],[3,3,3],[4,5],[5]]
=> ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ? ∊ {5,5,5,5,6,6,6,6,6,6,6,7,7,7,7,7,8,8,8,8,8} + 1
[1,1,1,0,0,1,0,0,1,0]
=> [[0,0,1,0,0],[1,0,0,0,0],[0,1,-1,1,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [[1,1,1,1,3],[2,2,2,3],[3,3,4],[4,4],[5]]
=> ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
=> 6 = 5 + 1
[1,1,1,0,0,1,0,1,0,0]
=> [[0,0,1,0,0],[1,0,0,0,0],[0,1,-1,1,0],[0,0,1,-1,1],[0,0,0,1,0]]
=> [[1,1,1,1,3],[2,2,2,3],[3,3,4],[4,5],[5]]
=> ([(0,3),(0,5),(1,7),(3,6),(4,2),(5,1),(5,6),(6,7),(7,4)],8)
=> ? ∊ {5,5,5,5,6,6,6,6,6,6,6,7,7,7,7,7,8,8,8,8,8} + 1
[1,1,1,0,0,1,1,0,0,0]
=> [[0,0,1,0,0],[1,0,0,0,0],[0,1,-1,0,1],[0,0,1,0,0],[0,0,0,1,0]]
=> [[1,1,1,1,3],[2,2,2,3],[3,3,5],[4,5],[5]]
=> ([(0,5),(0,6),(1,3),(1,13),(2,4),(2,12),(3,10),(4,8),(5,11),(6,2),(6,11),(8,9),(9,7),(10,7),(11,1),(11,12),(12,8),(12,13),(13,9),(13,10)],14)
=> ? ∊ {5,5,5,5,6,6,6,6,6,6,6,7,7,7,7,7,8,8,8,8,8} + 1
[1,1,1,0,1,0,0,0,1,0]
=> [[0,0,1,0,0],[1,0,-1,1,0],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [[1,1,1,1,3],[2,2,2,4],[3,3,4],[4,4],[5]]
=> ([(0,5),(1,7),(2,8),(3,6),(4,3),(4,8),(5,2),(5,4),(6,7),(8,1),(8,6)],9)
=> ? ∊ {5,5,5,5,6,6,6,6,6,6,6,7,7,7,7,7,8,8,8,8,8} + 1
[1,1,1,0,1,0,0,1,0,0]
=> [[0,0,1,0,0],[1,0,-1,1,0],[0,1,0,0,0],[0,0,1,-1,1],[0,0,0,1,0]]
=> [[1,1,1,1,3],[2,2,2,4],[3,3,4],[4,5],[5]]
=> ([(0,4),(0,6),(1,10),(2,9),(3,7),(4,8),(5,3),(5,11),(6,1),(6,8),(7,9),(8,5),(8,10),(10,11),(11,2),(11,7)],12)
=> ? ∊ {5,5,5,5,6,6,6,6,6,6,6,7,7,7,7,7,8,8,8,8,8} + 1
[1,1,1,0,1,0,1,0,0,0]
=> [[0,0,1,0,0],[1,0,-1,1,0],[0,1,0,-1,1],[0,0,1,0,0],[0,0,0,1,0]]
=> [[1,1,1,1,3],[2,2,2,4],[3,3,5],[4,5],[5]]
=> ([(0,7),(1,11),(1,14),(2,10),(3,8),(4,9),(5,3),(5,13),(6,4),(6,13),(7,5),(7,6),(8,12),(8,14),(9,11),(9,12),(11,15),(12,15),(13,1),(13,8),(13,9),(14,2),(14,15),(15,10)],16)
=> ? ∊ {5,5,5,5,6,6,6,6,6,6,6,7,7,7,7,7,8,8,8,8,8} + 1
[1,1,1,0,1,1,0,0,0,0]
=> [[0,0,1,0,0],[1,0,-1,0,1],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,1,0]]
=> [[1,1,1,1,3],[2,2,2,5],[3,3,5],[4,5],[5]]
=> ([(0,1),(1,4),(1,5),(2,16),(3,6),(3,17),(4,18),(5,7),(5,8),(5,18),(6,13),(7,11),(7,14),(8,10),(8,11),(10,19),(11,3),(11,19),(12,9),(13,9),(14,16),(14,19),(15,12),(16,15),(17,12),(17,13),(18,2),(18,10),(18,14),(19,15),(19,17)],20)
=> ? ∊ {5,5,5,5,6,6,6,6,6,6,6,7,7,7,7,7,8,8,8,8,8} + 1
[1,1,1,1,0,0,0,0,1,0]
=> [[0,0,0,1,0],[1,0,0,0,0],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [[1,1,1,1,4],[2,2,2,4],[3,3,4],[4,4],[5]]
=> ([(0,5),(2,7),(3,7),(4,1),(5,6),(6,2),(6,3),(7,4)],8)
=> ? ∊ {5,5,5,5,6,6,6,6,6,6,6,7,7,7,7,7,8,8,8,8,8} + 1
[1,1,1,1,0,0,0,1,0,0]
=> [[0,0,0,1,0],[1,0,0,0,0],[0,1,0,0,0],[0,0,1,-1,1],[0,0,0,1,0]]
=> [[1,1,1,1,4],[2,2,2,4],[3,3,4],[4,5],[5]]
=> ([(0,4),(0,7),(2,10),(3,9),(4,8),(5,3),(5,11),(6,1),(7,5),(7,8),(8,11),(9,10),(10,6),(11,2),(11,9)],12)
=> ? ∊ {5,5,5,5,6,6,6,6,6,6,6,7,7,7,7,7,8,8,8,8,8} + 1
[1,1,1,1,0,0,1,0,0,0]
=> [[0,0,0,1,0],[1,0,0,0,0],[0,1,0,-1,1],[0,0,1,0,0],[0,0,0,1,0]]
=> [[1,1,1,1,4],[2,2,2,4],[3,3,5],[4,5],[5]]
=> ([(0,6),(0,7),(2,5),(2,16),(3,4),(3,17),(4,14),(5,12),(6,13),(7,2),(7,13),(8,10),(8,11),(9,18),(10,18),(11,18),(12,15),(13,3),(13,16),(14,9),(14,10),(15,9),(15,11),(16,12),(16,17),(17,8),(17,14),(17,15),(18,1)],19)
=> ? ∊ {5,5,5,5,6,6,6,6,6,6,6,7,7,7,7,7,8,8,8,8,8} + 1
[1,1,1,1,0,1,0,0,0,0]
=> [[0,0,0,1,0],[1,0,0,-1,1],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,1,0]]
=> [[1,1,1,1,4],[2,2,2,5],[3,3,5],[4,5],[5]]
=> ([(0,2),(1,6),(2,4),(2,5),(3,7),(3,22),(4,23),(5,9),(5,10),(5,23),(6,20),(7,15),(8,12),(8,14),(9,13),(9,17),(10,13),(10,18),(12,1),(13,3),(13,24),(14,19),(15,16),(16,11),(17,14),(17,24),(18,12),(18,24),(19,21),(20,11),(21,16),(21,20),(22,15),(22,21),(23,8),(23,17),(23,18),(24,19),(24,22)],25)
=> ? ∊ {5,5,5,5,6,6,6,6,6,6,6,7,7,7,7,7,8,8,8,8,8} + 1
[1,1,1,1,1,0,0,0,0,0]
=> [[0,0,0,0,1],[1,0,0,0,0],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,1,0]]
=> [[1,1,1,1,5],[2,2,2,5],[3,3,5],[4,5],[5]]
=> ([(0,9),(1,13),(2,14),(4,12),(5,11),(6,1),(6,12),(7,3),(8,5),(8,15),(9,10),(10,4),(10,6),(11,14),(12,8),(12,13),(13,15),(14,7),(15,2),(15,11)],16)
=> ? ∊ {5,5,5,5,6,6,6,6,6,6,6,7,7,7,7,7,8,8,8,8,8} + 1
Description
The order of rowmotion on the set of order ideals of a poset.
The following 223 statistics, ordered by result quality, also match your data. Click on any of them to see the details.
St000373The number of weak exceedences of a permutation that are also mid-points of a decreasing subsequence of length $3$. St000680The Grundy value for Hackendot on posets. St000906The length of the shortest maximal chain in a poset. St001892The flag excedance statistic of a signed permutation. St000189The number of elements in the poset. St000983The length of the longest alternating subword. St001343The dimension of the reduced incidence algebra of a poset. St001645The pebbling number of a connected graph. St001717The largest size of an interval in a poset. St000104The number of facets in the order polytope of this poset. St000151The number of facets in the chain polytope of the poset. St001300The rank of the boundary operator in degree 1 of the chain complex of the order complex of the poset. St000777The number of distinct eigenvalues of the distance Laplacian of a connected graph. St000454The largest eigenvalue of a graph if it is integral. St000656The number of cuts of a poset. St000186The sum of the first row in a Gelfand-Tsetlin pattern. St000456The monochromatic index of a connected graph. St000004The major index of a permutation. St000334The maz index, the major index of a permutation after replacing fixed points by zeros. St000339The maf index of a permutation. St000446The disorder of a permutation. St000794The mak of a permutation. St000371The number of mid points of decreasing subsequences of length 3 in a permutation. St000483The number of times a permutation switches from increasing to decreasing or decreasing to increasing. St000455The second largest eigenvalue of a graph if it is integral. St001583The projective dimension of the simple module corresponding to the point in the poset of the symmetric group under bruhat order. St001877Number of indecomposable injective modules with projective dimension 2. St000337The lec statistic, the sum of the inversion numbers of the hook factors of a permutation. St000356The number of occurrences of the pattern 13-2. St001879The number of indecomposable summands of the top of the first syzygy of the dual of the regular module in the incidence algebra of the lattice. St001880The number of 2-Gorenstein indecomposable injective modules in the incidence algebra of the lattice. St000670The reversal length of a permutation. St001083The number of boxed occurrences of 132 in a permutation. St001894The depth of a signed permutation. St000441The number of successions of a permutation. St000366The number of double descents of a permutation. St000422The energy of a graph, if it is integral. St000490The intertwining number of a set partition. St000499The rcb statistic of a set partition. St000662The staircase size of the code of a permutation. St001582The grades of the simple modules corresponding to the points in the poset of the symmetric group under the Bruhat order. St001861The number of Bruhat lower covers of a permutation. St000028The number of stack-sorts needed to sort a permutation. St001330The hat guessing number of a graph. St000054The first entry of the permutation. St000725The smallest label of a leaf of the increasing binary tree associated to a permutation. St000123The difference in Coxeter length of a permutation and its image under the Simion-Schmidt map. St000223The number of nestings in the permutation. St001060The distinguishing index of a graph. St001875The number of simple modules with projective dimension at most 1. St001090The number of pop-stack-sorts needed to sort a permutation. St000119The number of occurrences of the pattern 321 in a permutation. St000451The length of the longest pattern of the form k 1 2. St001198The number of simple modules in the algebra $eAe$ with projective dimension at most 1 in the corresponding Nakayama algebra $A$ with minimal faithful projective-injective module $eA$. St001206The maximal dimension of an indecomposable projective $eAe$-module (that is the height of the corresponding Dyck path) of the corresponding Nakayama algebra with minimal faithful projective-injective module $eA$. St000208Number of integral Gelfand-Tsetlin polytopes with prescribed top row and integer partition weight. St000460The hook length of the last cell along the main diagonal of an integer partition. St000474Dyson's crank of a partition. St000566The number of ways to select a row of a Ferrers shape and two cells in this row. St000618The number of self-evacuating tableaux of given shape. St000667The greatest common divisor of the parts of the partition. St000668The least common multiple of the parts of the partition. St000681The Grundy value of Chomp on Ferrers diagrams. St000691The number of changes of a binary word. St000698The number of 2-rim hooks removed from an integer partition to obtain its associated 2-core. St000706The product of the factorials of the multiplicities of an integer partition. St000708The product of the parts of an integer partition. St000714The number of semistandard Young tableau of given shape, with entries at most 2. St000770The major index of an integer partition when read from bottom to top. St000870The product of the hook lengths of the diagonal cells in an integer partition. St000933The number of multipartitions of sizes given by an integer partition. St000937The number of positive values of the symmetric group character corresponding to the partition. St000939The number of characters of the symmetric group whose value on the partition is positive. St000993The multiplicity of the largest part of an integer partition. St001176The size of a partition minus its first part. St001199The dominant dimension of $eAe$ for the corresponding Nakayama algebra $A$ with minimal faithful projective-injective module $eA$. St001200The number of simple modules in $eAe$ with projective dimension at most 2 in the corresponding Nakayama algebra $A$ with minimal faithful projective-injective module $eA$. St001249Sum of the odd parts of a partition. St001250The number of parts of a partition that are not congruent 0 modulo 3. St001279The sum of the parts of an integer partition that are at least two. St001280The number of parts of an integer partition that are at least two. St001384The number of boxes in the diagram of a partition that do not lie in the largest triangle it contains. St001389The number of partitions of the same length below the given integer partition. St001498The normalised height of a Nakayama algebra with magnitude 1. St001527The cyclic permutation representation number of an integer partition. St001602The multiplicity of the irreducible representation corresponding to a partition in the relabelling action on endofunctions. St001606The multiplicity of the irreducible representation corresponding to a partition in the relabelling action on set partitions. St001610The number of coloured endofunctions such that the multiplicities of colours are given by a partition. St001914The size of the orbit of an integer partition in Bulgarian solitaire. St001933The largest multiplicity of a part in an integer partition. St001961The sum of the greatest common divisors of all pairs of parts. St000359The number of occurrences of the pattern 23-1. St001882The number of occurrences of a type-B 231 pattern in a signed permutation. St000039The number of crossings of a permutation. St000043The number of crossings plus two-nestings of a perfect matching. St000173The segment statistic of a semistandard tableau. St000360The number of occurrences of the pattern 32-1. St000491The number of inversions of a set partition. St000565The major index of a set partition. St000581The number of occurrences of the pattern {{1,3},{2}} such that 1 is minimal, 2 is maximal. St000585The number of occurrences of the pattern {{1,3},{2}} such that 2 is maximal, (1,3) are consecutive in a block. St000594The number of occurrences of the pattern {{1,3},{2}} such that 1,2 are minimal, (1,3) are consecutive in a block. St000610The number of occurrences of the pattern {{1,3},{2}} such that 2 is maximal. St000613The number of occurrences of the pattern {{1,3},{2}} such that 2 is minimal, 3 is maximal, (1,3) are consecutive in a block. St001388The number of non-attacking neighbors of a permutation. St001415The length of the longest palindromic prefix of a binary word. St001513The number of nested exceedences of a permutation. St001549The number of restricted non-inversions between exceedances. St001683The number of distinct positions of the pattern letter 3 in occurrences of 132 in a permutation. St001687The number of distinct positions of the pattern letter 2 in occurrences of 213 in a permutation. St001727The number of invisible inversions of a permutation. St001843The Z-index of a set partition. St000021The number of descents of a permutation. St000058The order of a permutation. St000307The number of rowmotion orbits of a poset. St000333The dez statistic, the number of descents of a permutation after replacing fixed points by zeros. St000354The number of recoils of a permutation. St000485The length of the longest cycle of a permutation. St000570The Edelman-Greene number of a permutation. St000771The largest multiplicity of a distance Laplacian eigenvalue in a connected graph. St000774The maximal multiplicity of a Laplacian eigenvalue in a graph. St000829The Ulam distance of a permutation to the identity permutation. St000886The number of permutations with the same antidiagonal sums. St000887The maximal number of nonzero entries on a diagonal of a permutation matrix. St001246The maximal difference between two consecutive entries of a permutation. St001270The bandwidth of a graph. St001282The number of graphs with the same chromatic polynomial. St001405The number of bonds in a permutation. St001489The maximum of the number of descents and the number of inverse descents. St001632The number of indecomposable injective modules $I$ with $dim Ext^1(I,A)=1$ for the incidence algebra A of a poset. St001652The length of a longest interval of consecutive numbers. St001662The length of the longest factor of consecutive numbers in a permutation. St001722The number of minimal chains with small intervals between a binary word and the top element. St001760The number of prefix or suffix reversals needed to sort a permutation. St001778The largest greatest common divisor of an element and its image in a permutation. St001821The sorting index of a signed permutation. St001874Lusztig's a-function for the symmetric group. St000006The dinv of a Dyck path. St000034The maximum defect over any reduced expression for a permutation and any subexpression. St000091The descent variation of a composition. St000136The dinv of a parking function. St000174The flush statistic of a semistandard tableau. St000194The number of primary dinversion pairs of a labelled dyck path corresponding to a parking function. St000216The absolute length of a permutation. St000316The number of non-left-to-right-maxima of a permutation. St000317The cycle descent number of a permutation. St000325The width of the tree associated to a permutation. St000355The number of occurrences of the pattern 21-3. St000357The number of occurrences of the pattern 12-3. St000358The number of occurrences of the pattern 31-2. St000365The number of double ascents of a permutation. St000367The number of simsun double descents of a permutation. St000453The number of distinct Laplacian eigenvalues of a graph. St000470The number of runs in a permutation. St000496The rcs statistic of a set partition. St000497The lcb statistic of a set partition. St000498The lcs statistic of a set partition. St000502The number of successions of a set partitions. St000516The number of stretching pairs of a permutation. St000534The number of 2-rises of a permutation. St000538The number of even inversions of a permutation. St000539The number of odd inversions of a permutation. St000559The number of occurrences of the pattern {{1,3},{2,4}} in a set partition. St000560The number of occurrences of the pattern {{1,2},{3,4}} in a set partition. St000563The number of overlapping pairs of blocks of a set partition. St000576The number of occurrences of the pattern {{1},{2}} such that 1 is a maximal and 2 a minimal element. St000589The number of occurrences of the pattern {{1},{2,3}} such that 1 is maximal, (2,3) are consecutive in a block. St000590The number of occurrences of the pattern {{1},{2,3}} such that 2 is minimal, 1 is maximal, (2,3) are consecutive in a block. St000598The number of occurrences of the pattern {{1},{2,3}} such that 1,2 are minimal, 3 is maximal, (2,3) are consecutive in a block. St000601The number of occurrences of the pattern {{1},{2,3}} such that 1,2 are minimal, (2,3) are consecutive in a block. St000606The number of occurrences of the pattern {{1},{2,3}} such that 1,3 are maximal, (2,3) are consecutive in a block. St000609The number of occurrences of the pattern {{1},{2,3}} such that 1,2 are minimal. St000611The number of occurrences of the pattern {{1},{2,3}} such that 1 is maximal. St000624The normalized sum of the minimal distances to a greater element. St000638The number of up-down runs of a permutation. St000646The number of big ascents of a permutation. St000675The number of centered multitunnels of a Dyck path. St000710The number of big deficiencies of a permutation. St000711The number of big exceedences of a permutation. St000724The label of the leaf of the path following the smaller label in the increasing binary tree associated to a permutation. St000732The number of double deficiencies of a permutation. St000802The number of occurrences of the vincular pattern |321 in a permutation. St000809The reduced reflection length of the permutation. St000836The number of descents of distance 2 of a permutation. St000866The number of admissible inversions of a permutation in the sense of Shareshian-Wachs. St000961The shifted major index of a permutation. St000963The 2-shifted major index of a permutation. St001078The minimal number of occurrences of (12) in a factorization of a permutation into transpositions (12) and cycles (1,. St001082The number of boxed occurrences of 123 in a permutation. St001116The game chromatic number of a graph. St001171The vector space dimension of $Ext_A^1(I_o,A)$ when $I_o$ is the tilting module corresponding to the permutation $o$ in the Auslander algebra $A$ of $K[x]/(x^n)$. St001207The Lowey length of the algebra $A/T$ when $T$ is the 1-tilting module corresponding to the permutation in the Auslander algebra of $K[x]/(x^n)$. St001209The pmaj statistic of a parking function. St001233The number of indecomposable 2-dimensional modules with projective dimension one. St001315The dissociation number of a graph. St001403The number of vertical separators in a permutation. St001439The number of even weak deficiencies and of odd weak exceedences. St001535The number of cyclic alignments of a permutation. St001559The number of transpositions that are smaller or equal to a permutation in Bruhat order while not being inversions. St001572The minimal number of edges to remove to make a graph bipartite. St001573The minimal number of edges to remove to make a graph triangle-free. St001594The number of indecomposable projective modules in the Nakayama algebra corresponding to the Dyck path such that the UC-condition is satisfied. St001640The number of ascent tops in the permutation such that all smaller elements appear before. St001685The number of distinct positions of the pattern letter 1 in occurrences of 132 in a permutation. St001726The number of visible inversions of a permutation. St001744The number of occurrences of the arrow pattern 1-2 with an arrow from 1 to 2 in a permutation. St001745The number of occurrences of the arrow pattern 13 with an arrow from 1 to 2 in a permutation. St001772The number of occurrences of the signed pattern 12 in a signed permutation. St001781The interlacing number of a set partition. St001810The number of fixed points of a permutation smaller than its largest moved point. St001811The Castelnuovo-Mumford regularity of a permutation. St001841The number of inversions of a set partition. St001906Half of the difference between the total displacement and the number of inversions and the reflection length of a permutation. St000100The number of linear extensions of a poset. St000264The girth of a graph, which is not a tree. St000633The size of the automorphism group of a poset. St000882The number of connected components of short braid edges in the graph of braid moves of a permutation. St001570The minimal number of edges to add to make a graph Hamiltonian. St001644The dimension of a graph. St000850The number of 1/2-balanced pairs in a poset. St001623The number of doubly irreducible elements of a lattice. St001633The number of simple modules with projective dimension two in the incidence algebra of the poset. St001812The biclique partition number of a graph.