searching the database
Your data matches 162 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
(click to perform a complete search on your data)
Matching statistic: St001024
(load all 8 compositions to match this statistic)
(load all 8 compositions to match this statistic)
St001024: Dyck paths ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[1,0]
=> 1 = 2 - 1
[1,0,1,0]
=> 2 = 3 - 1
[1,1,0,0]
=> 1 = 2 - 1
[1,0,1,0,1,0]
=> 3 = 4 - 1
[1,0,1,1,0,0]
=> 2 = 3 - 1
[1,1,0,0,1,0]
=> 1 = 2 - 1
[1,1,0,1,0,0]
=> 2 = 3 - 1
[1,1,1,0,0,0]
=> 1 = 2 - 1
[1,0,1,0,1,0,1,0]
=> 4 = 5 - 1
[1,0,1,0,1,1,0,0]
=> 3 = 4 - 1
[1,0,1,1,0,0,1,0]
=> 2 = 3 - 1
[1,0,1,1,0,1,0,0]
=> 3 = 4 - 1
[1,0,1,1,1,0,0,0]
=> 2 = 3 - 1
[1,1,0,0,1,0,1,0]
=> 2 = 3 - 1
[1,1,0,0,1,1,0,0]
=> 1 = 2 - 1
[1,1,0,1,0,0,1,0]
=> 3 = 4 - 1
[1,1,0,1,0,1,0,0]
=> 2 = 3 - 1
[1,1,0,1,1,0,0,0]
=> 2 = 3 - 1
[1,1,1,0,0,0,1,0]
=> 1 = 2 - 1
[1,1,1,0,0,1,0,0]
=> 1 = 2 - 1
[1,1,1,0,1,0,0,0]
=> 2 = 3 - 1
[1,1,1,1,0,0,0,0]
=> 1 = 2 - 1
[1,0,1,0,1,0,1,0,1,0]
=> 5 = 6 - 1
[1,0,1,0,1,0,1,1,0,0]
=> 4 = 5 - 1
[1,0,1,0,1,1,0,0,1,0]
=> 3 = 4 - 1
[1,0,1,0,1,1,0,1,0,0]
=> 4 = 5 - 1
[1,0,1,0,1,1,1,0,0,0]
=> 3 = 4 - 1
[1,0,1,1,0,0,1,0,1,0]
=> 2 = 3 - 1
[1,0,1,1,0,0,1,1,0,0]
=> 2 = 3 - 1
[1,0,1,1,0,1,0,0,1,0]
=> 4 = 5 - 1
[1,0,1,1,0,1,0,1,0,0]
=> 3 = 4 - 1
[1,0,1,1,0,1,1,0,0,0]
=> 3 = 4 - 1
[1,0,1,1,1,0,0,0,1,0]
=> 2 = 3 - 1
[1,0,1,1,1,0,0,1,0,0]
=> 2 = 3 - 1
[1,0,1,1,1,0,1,0,0,0]
=> 3 = 4 - 1
[1,0,1,1,1,1,0,0,0,0]
=> 2 = 3 - 1
[1,1,0,0,1,0,1,0,1,0]
=> 3 = 4 - 1
[1,1,0,0,1,0,1,1,0,0]
=> 2 = 3 - 1
[1,1,0,0,1,1,0,0,1,0]
=> 1 = 2 - 1
[1,1,0,0,1,1,0,1,0,0]
=> 2 = 3 - 1
[1,1,0,0,1,1,1,0,0,0]
=> 1 = 2 - 1
[1,1,0,1,0,0,1,0,1,0]
=> 4 = 5 - 1
[1,1,0,1,0,0,1,1,0,0]
=> 3 = 4 - 1
[1,1,0,1,0,1,0,0,1,0]
=> 3 = 4 - 1
[1,1,0,1,0,1,0,1,0,0]
=> 3 = 4 - 1
[1,1,0,1,0,1,1,0,0,0]
=> 2 = 3 - 1
[1,1,0,1,1,0,0,0,1,0]
=> 2 = 3 - 1
[1,1,0,1,1,0,0,1,0,0]
=> 3 = 4 - 1
[1,1,0,1,1,0,1,0,0,0]
=> 2 = 3 - 1
[1,1,0,1,1,1,0,0,0,0]
=> 2 = 3 - 1
Description
Maximum of dominant dimensions of the simple modules in the Nakayama algebra corresponding to the Dyck path.
Matching statistic: St000686
Mp00199: Dyck paths —prime Dyck path⟶ Dyck paths
Mp00101: Dyck paths —decomposition reverse⟶ Dyck paths
Mp00121: Dyck paths —Cori-Le Borgne involution⟶ Dyck paths
St000686: Dyck paths ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00101: Dyck paths —decomposition reverse⟶ Dyck paths
Mp00121: Dyck paths —Cori-Le Borgne involution⟶ Dyck paths
St000686: Dyck paths ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[1,0]
=> [1,1,0,0]
=> [1,0,1,0]
=> [1,0,1,0]
=> 2
[1,0,1,0]
=> [1,1,0,1,0,0]
=> [1,0,1,1,0,0]
=> [1,1,0,1,0,0]
=> 2
[1,1,0,0]
=> [1,1,1,0,0,0]
=> [1,0,1,0,1,0]
=> [1,0,1,0,1,0]
=> 3
[1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,0]
=> [1,0,1,1,1,0,0,0]
=> [1,1,1,0,1,0,0,0]
=> 2
[1,0,1,1,0,0]
=> [1,1,0,1,1,0,0,0]
=> [1,0,1,1,0,1,0,0]
=> [1,0,1,1,0,1,0,0]
=> 3
[1,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0]
=> [1,0,1,1,0,0,1,0]
=> [1,1,0,1,0,0,1,0]
=> 3
[1,1,0,1,0,0]
=> [1,1,1,0,1,0,0,0]
=> [1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,0,0]
=> 2
[1,1,1,0,0,0]
=> [1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0]
=> 4
[1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> 2
[1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> [1,0,1,1,1,0,1,0,0,0]
=> [1,0,1,1,1,0,1,0,0,0]
=> 3
[1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> [1,0,1,1,1,0,0,1,0,0]
=> [1,1,1,0,1,0,0,0,1,0]
=> 3
[1,0,1,1,0,1,0,0]
=> [1,1,0,1,1,0,1,0,0,0]
=> [1,0,1,1,0,1,1,0,0,0]
=> [1,1,0,1,1,0,1,0,0,0]
=> 2
[1,0,1,1,1,0,0,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> [1,0,1,1,0,1,0,1,0,0]
=> [1,0,1,0,1,1,0,1,0,0]
=> 4
[1,1,0,0,1,0,1,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> [1,1,1,0,1,0,0,1,0,0]
=> 2
[1,1,0,0,1,1,0,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> [1,0,1,1,0,1,0,0,1,0]
=> [1,0,1,1,0,1,0,0,1,0]
=> 4
[1,1,0,1,0,0,1,0]
=> [1,1,1,0,1,0,0,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,1,0,0]
=> 3
[1,1,0,1,0,1,0,0]
=> [1,1,1,0,1,0,1,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,0,1,0,1,0,0,0]
=> 2
[1,1,0,1,1,0,0,0]
=> [1,1,1,0,1,1,0,0,0,0]
=> [1,0,1,0,1,1,0,1,0,0]
=> [1,0,1,1,0,1,0,1,0,0]
=> 3
[1,1,1,0,0,0,1,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,1,0,0,1,0,1,0]
=> 4
[1,1,1,0,0,1,0,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,0,1,0,0,1,0]
=> 3
[1,1,1,0,1,0,0,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> 3
[1,1,1,1,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> 5
[1,0,1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,1,0,0]
=> [1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1,0,1,0,0,0,0,0]
=> 2
[1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,0,1,1,0,0,0]
=> [1,0,1,1,1,1,0,1,0,0,0,0]
=> [1,0,1,1,1,1,0,1,0,0,0,0]
=> 3
[1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,0,1,1,0,0,1,0,0]
=> [1,0,1,1,1,1,0,0,1,0,0,0]
=> [1,1,1,1,0,1,0,0,0,0,1,0]
=> 3
[1,0,1,0,1,1,0,1,0,0]
=> [1,1,0,1,0,1,1,0,1,0,0,0]
=> [1,0,1,1,1,0,1,1,0,0,0,0]
=> [1,1,0,1,1,1,0,1,0,0,0,0]
=> 2
[1,0,1,0,1,1,1,0,0,0]
=> [1,1,0,1,0,1,1,1,0,0,0,0]
=> [1,0,1,1,1,0,1,0,1,0,0,0]
=> [1,0,1,0,1,1,1,0,1,0,0,0]
=> 4
[1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,1,1,0,0,1,0,1,0,0]
=> [1,0,1,1,1,1,0,0,0,1,0,0]
=> [1,1,1,1,0,1,0,0,0,1,0,0]
=> 2
[1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,1,1,0,0,1,1,0,0,0]
=> [1,0,1,1,1,0,1,0,0,1,0,0]
=> [1,0,1,1,1,0,1,0,0,0,1,0]
=> 4
[1,0,1,1,0,1,0,0,1,0]
=> [1,1,0,1,1,0,1,0,0,1,0,0]
=> [1,0,1,1,1,0,0,1,1,0,0,0]
=> [1,1,0,0,1,1,1,0,1,0,0,0]
=> 3
[1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,1,1,0,1,0,1,0,0,0]
=> [1,0,1,1,0,1,1,1,0,0,0,0]
=> [1,1,1,0,1,1,0,1,0,0,0,0]
=> 2
[1,0,1,1,0,1,1,0,0,0]
=> [1,1,0,1,1,0,1,1,0,0,0,0]
=> [1,0,1,1,0,1,1,0,1,0,0,0]
=> [1,0,1,1,0,1,1,0,1,0,0,0]
=> 3
[1,0,1,1,1,0,0,0,1,0]
=> [1,1,0,1,1,1,0,0,0,1,0,0]
=> [1,0,1,1,1,0,0,1,0,1,0,0]
=> [1,1,1,0,1,0,0,0,1,0,1,0]
=> 4
[1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,1,1,1,0,0,1,0,0,0]
=> [1,0,1,1,0,1,1,0,0,1,0,0]
=> [1,1,0,1,1,0,1,0,0,0,1,0]
=> 3
[1,0,1,1,1,0,1,0,0,0]
=> [1,1,0,1,1,1,0,1,0,0,0,0]
=> [1,0,1,1,0,1,0,1,1,0,0,0]
=> [1,1,0,1,0,1,1,0,1,0,0,0]
=> 3
[1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,1,1,1,1,0,0,0,0,0]
=> [1,0,1,1,0,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,1,0,1,0,0]
=> 5
[1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,0,0,1,0,1,0,1,0,0]
=> [1,0,1,1,1,1,0,0,0,0,1,0]
=> [1,1,1,1,0,1,0,0,1,0,0,0]
=> 2
[1,1,0,0,1,0,1,1,0,0]
=> [1,1,1,0,0,1,0,1,1,0,0,0]
=> [1,0,1,1,1,0,1,0,0,0,1,0]
=> [1,0,1,1,1,0,1,0,0,1,0,0]
=> 3
[1,1,0,0,1,1,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,1,0,0]
=> [1,0,1,1,1,0,0,1,0,0,1,0]
=> [1,1,1,0,1,0,0,1,0,0,1,0]
=> 3
[1,1,0,0,1,1,0,1,0,0]
=> [1,1,1,0,0,1,1,0,1,0,0,0]
=> [1,0,1,1,0,1,1,0,0,0,1,0]
=> [1,1,0,1,1,0,1,0,0,1,0,0]
=> 2
[1,1,0,0,1,1,1,0,0,0]
=> [1,1,1,0,0,1,1,1,0,0,0,0]
=> [1,0,1,1,0,1,0,1,0,0,1,0]
=> [1,0,1,0,1,1,0,1,0,0,1,0]
=> 5
[1,1,0,1,0,0,1,0,1,0]
=> [1,1,1,0,1,0,0,1,0,1,0,0]
=> [1,0,1,1,1,0,0,0,1,1,0,0]
=> [1,1,1,0,1,0,0,0,1,1,0,0]
=> 3
[1,1,0,1,0,0,1,1,0,0]
=> [1,1,1,0,1,0,0,1,1,0,0,0]
=> [1,0,1,1,0,1,0,0,1,1,0,0]
=> [1,1,0,0,1,0,1,1,0,1,0,0]
=> 4
[1,1,0,1,0,1,0,0,1,0]
=> [1,1,1,0,1,0,1,0,0,1,0,0]
=> [1,0,1,1,0,0,1,1,1,0,0,0]
=> [1,1,1,0,0,1,1,0,1,0,0,0]
=> 2
[1,1,0,1,0,1,0,1,0,0]
=> [1,1,1,0,1,0,1,0,1,0,0,0]
=> [1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,1,0,1,0,0,0,0]
=> 2
[1,1,0,1,0,1,1,0,0,0]
=> [1,1,1,0,1,0,1,1,0,0,0,0]
=> [1,0,1,0,1,1,1,0,1,0,0,0]
=> [1,0,1,1,1,0,1,0,1,0,0,0]
=> 3
[1,1,0,1,1,0,0,0,1,0]
=> [1,1,1,0,1,1,0,0,0,1,0,0]
=> [1,0,1,1,0,0,1,1,0,1,0,0]
=> [1,0,1,1,0,0,1,1,0,1,0,0]
=> 3
[1,1,0,1,1,0,0,1,0,0]
=> [1,1,1,0,1,1,0,0,1,0,0,0]
=> [1,0,1,0,1,1,1,0,0,1,0,0]
=> [1,1,1,0,1,0,1,0,0,0,1,0]
=> 3
[1,1,0,1,1,0,1,0,0,0]
=> [1,1,1,0,1,1,0,1,0,0,0,0]
=> [1,0,1,0,1,1,0,1,1,0,0,0]
=> [1,1,0,1,1,0,1,0,1,0,0,0]
=> 3
[1,1,0,1,1,1,0,0,0,0]
=> [1,1,1,0,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,0,1,0,1,1,0,1,0,1,0,0]
=> 4
Description
The finitistic dominant dimension of a Dyck path.
To every LNakayama algebra there is a corresponding Dyck path, see also [[St000684]]. We associate the finitistic dominant dimension of the algebra to the corresponding Dyck path.
Matching statistic: St000771
(load all 41 compositions to match this statistic)
(load all 41 compositions to match this statistic)
Mp00025: Dyck paths —to 132-avoiding permutation⟶ Permutations
Mp00160: Permutations —graph of inversions⟶ Graphs
St000771: Graphs ⟶ ℤResult quality: 67% ●values known / values provided: 67%●distinct values known / distinct values provided: 83%
Mp00160: Permutations —graph of inversions⟶ Graphs
St000771: Graphs ⟶ ℤResult quality: 67% ●values known / values provided: 67%●distinct values known / distinct values provided: 83%
Values
[1,0]
=> [1] => ([],1)
=> 1 = 2 - 1
[1,0,1,0]
=> [2,1] => ([(0,1)],2)
=> 1 = 2 - 1
[1,1,0,0]
=> [1,2] => ([],2)
=> ? = 3 - 1
[1,0,1,0,1,0]
=> [3,2,1] => ([(0,1),(0,2),(1,2)],3)
=> 2 = 3 - 1
[1,0,1,1,0,0]
=> [2,3,1] => ([(0,2),(1,2)],3)
=> 1 = 2 - 1
[1,1,0,0,1,0]
=> [3,1,2] => ([(0,2),(1,2)],3)
=> 1 = 2 - 1
[1,1,0,1,0,0]
=> [2,1,3] => ([(1,2)],3)
=> ? ∊ {3,4} - 1
[1,1,1,0,0,0]
=> [1,2,3] => ([],3)
=> ? ∊ {3,4} - 1
[1,0,1,0,1,0,1,0]
=> [4,3,2,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 3 = 4 - 1
[1,0,1,0,1,1,0,0]
=> [3,4,2,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 2 = 3 - 1
[1,0,1,1,0,0,1,0]
=> [4,2,3,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 2 = 3 - 1
[1,0,1,1,0,1,0,0]
=> [3,2,4,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> 1 = 2 - 1
[1,0,1,1,1,0,0,0]
=> [2,3,4,1] => ([(0,3),(1,3),(2,3)],4)
=> 2 = 3 - 1
[1,1,0,0,1,0,1,0]
=> [4,3,1,2] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 2 = 3 - 1
[1,1,0,0,1,1,0,0]
=> [3,4,1,2] => ([(0,2),(0,3),(1,2),(1,3)],4)
=> 2 = 3 - 1
[1,1,0,1,0,0,1,0]
=> [4,2,1,3] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> 1 = 2 - 1
[1,1,0,1,0,1,0,0]
=> [3,2,1,4] => ([(1,2),(1,3),(2,3)],4)
=> ? ∊ {2,2,4,4,5} - 1
[1,1,0,1,1,0,0,0]
=> [2,3,1,4] => ([(1,3),(2,3)],4)
=> ? ∊ {2,2,4,4,5} - 1
[1,1,1,0,0,0,1,0]
=> [4,1,2,3] => ([(0,3),(1,3),(2,3)],4)
=> 2 = 3 - 1
[1,1,1,0,0,1,0,0]
=> [3,1,2,4] => ([(1,3),(2,3)],4)
=> ? ∊ {2,2,4,4,5} - 1
[1,1,1,0,1,0,0,0]
=> [2,1,3,4] => ([(2,3)],4)
=> ? ∊ {2,2,4,4,5} - 1
[1,1,1,1,0,0,0,0]
=> [1,2,3,4] => ([],4)
=> ? ∊ {2,2,4,4,5} - 1
[1,0,1,0,1,0,1,0,1,0]
=> [5,4,3,2,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4 = 5 - 1
[1,0,1,0,1,0,1,1,0,0]
=> [4,5,3,2,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3 = 4 - 1
[1,0,1,0,1,1,0,0,1,0]
=> [5,3,4,2,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3 = 4 - 1
[1,0,1,0,1,1,0,1,0,0]
=> [4,3,5,2,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2 = 3 - 1
[1,0,1,0,1,1,1,0,0,0]
=> [3,4,5,2,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2 = 3 - 1
[1,0,1,1,0,0,1,0,1,0]
=> [5,4,2,3,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3 = 4 - 1
[1,0,1,1,0,0,1,1,0,0]
=> [4,5,2,3,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> 2 = 3 - 1
[1,0,1,1,0,1,0,0,1,0]
=> [5,3,2,4,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2 = 3 - 1
[1,0,1,1,0,1,0,1,0,0]
=> [4,3,2,5,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2 = 3 - 1
[1,0,1,1,0,1,1,0,0,0]
=> [3,4,2,5,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1 = 2 - 1
[1,0,1,1,1,0,0,0,1,0]
=> [5,2,3,4,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2 = 3 - 1
[1,0,1,1,1,0,0,1,0,0]
=> [4,2,3,5,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1 = 2 - 1
[1,0,1,1,1,0,1,0,0,0]
=> [3,2,4,5,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 2 = 3 - 1
[1,0,1,1,1,1,0,0,0,0]
=> [2,3,4,5,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 3 = 4 - 1
[1,1,0,0,1,0,1,0,1,0]
=> [5,4,3,1,2] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3 = 4 - 1
[1,1,0,0,1,0,1,1,0,0]
=> [4,5,3,1,2] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> 2 = 3 - 1
[1,1,0,0,1,1,0,0,1,0]
=> [5,3,4,1,2] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> 2 = 3 - 1
[1,1,0,0,1,1,0,1,0,0]
=> [4,3,5,1,2] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> 1 = 2 - 1
[1,1,0,0,1,1,1,0,0,0]
=> [3,4,5,1,2] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> 2 = 3 - 1
[1,1,0,1,0,0,1,0,1,0]
=> [5,4,2,1,3] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2 = 3 - 1
[1,1,0,1,0,0,1,1,0,0]
=> [4,5,2,1,3] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> 1 = 2 - 1
[1,1,0,1,0,1,0,0,1,0]
=> [5,3,2,1,4] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2 = 3 - 1
[1,1,0,1,0,1,0,1,0,0]
=> [4,3,2,1,5] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {2,2,2,3,3,4,4,4,4,4,5,5,5,6} - 1
[1,1,0,1,0,1,1,0,0,0]
=> [3,4,2,1,5] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {2,2,2,3,3,4,4,4,4,4,5,5,5,6} - 1
[1,1,0,1,1,0,0,0,1,0]
=> [5,2,3,1,4] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1 = 2 - 1
[1,1,0,1,1,0,0,1,0,0]
=> [4,2,3,1,5] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {2,2,2,3,3,4,4,4,4,4,5,5,5,6} - 1
[1,1,0,1,1,0,1,0,0,0]
=> [3,2,4,1,5] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {2,2,2,3,3,4,4,4,4,4,5,5,5,6} - 1
[1,1,0,1,1,1,0,0,0,0]
=> [2,3,4,1,5] => ([(1,4),(2,4),(3,4)],5)
=> ? ∊ {2,2,2,3,3,4,4,4,4,4,5,5,5,6} - 1
[1,1,1,0,0,0,1,0,1,0]
=> [5,4,1,2,3] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2 = 3 - 1
[1,1,1,0,0,0,1,1,0,0]
=> [4,5,1,2,3] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> 2 = 3 - 1
[1,1,1,0,0,1,0,0,1,0]
=> [5,3,1,2,4] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1 = 2 - 1
[1,1,1,0,0,1,0,1,0,0]
=> [4,3,1,2,5] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {2,2,2,3,3,4,4,4,4,4,5,5,5,6} - 1
[1,1,1,0,0,1,1,0,0,0]
=> [3,4,1,2,5] => ([(1,3),(1,4),(2,3),(2,4)],5)
=> ? ∊ {2,2,2,3,3,4,4,4,4,4,5,5,5,6} - 1
[1,1,1,0,1,0,0,0,1,0]
=> [5,2,1,3,4] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 2 = 3 - 1
[1,1,1,0,1,0,0,1,0,0]
=> [4,2,1,3,5] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {2,2,2,3,3,4,4,4,4,4,5,5,5,6} - 1
[1,1,1,0,1,0,1,0,0,0]
=> [3,2,1,4,5] => ([(2,3),(2,4),(3,4)],5)
=> ? ∊ {2,2,2,3,3,4,4,4,4,4,5,5,5,6} - 1
[1,1,1,0,1,1,0,0,0,0]
=> [2,3,1,4,5] => ([(2,4),(3,4)],5)
=> ? ∊ {2,2,2,3,3,4,4,4,4,4,5,5,5,6} - 1
[1,1,1,1,0,0,0,0,1,0]
=> [5,1,2,3,4] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 3 = 4 - 1
[1,1,1,1,0,0,0,1,0,0]
=> [4,1,2,3,5] => ([(1,4),(2,4),(3,4)],5)
=> ? ∊ {2,2,2,3,3,4,4,4,4,4,5,5,5,6} - 1
[1,1,1,1,0,0,1,0,0,0]
=> [3,1,2,4,5] => ([(2,4),(3,4)],5)
=> ? ∊ {2,2,2,3,3,4,4,4,4,4,5,5,5,6} - 1
[1,1,1,1,0,1,0,0,0,0]
=> [2,1,3,4,5] => ([(3,4)],5)
=> ? ∊ {2,2,2,3,3,4,4,4,4,4,5,5,5,6} - 1
[1,1,1,1,1,0,0,0,0,0]
=> [1,2,3,4,5] => ([],5)
=> ? ∊ {2,2,2,3,3,4,4,4,4,4,5,5,5,6} - 1
[1,0,1,0,1,0,1,0,1,0,1,0]
=> [6,5,4,3,2,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 5 = 6 - 1
[1,0,1,0,1,0,1,0,1,1,0,0]
=> [5,6,4,3,2,1] => ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 4 = 5 - 1
[1,0,1,0,1,0,1,1,0,0,1,0]
=> [6,4,5,3,2,1] => ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 4 = 5 - 1
[1,0,1,0,1,0,1,1,0,1,0,0]
=> [5,4,6,3,2,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3 = 4 - 1
[1,0,1,0,1,0,1,1,1,0,0,0]
=> [4,5,6,3,2,1] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3 = 4 - 1
[1,0,1,0,1,1,0,0,1,0,1,0]
=> [6,5,3,4,2,1] => ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 4 = 5 - 1
[1,0,1,0,1,1,0,0,1,1,0,0]
=> [5,6,3,4,2,1] => ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3 = 4 - 1
[1,0,1,0,1,1,0,1,0,0,1,0]
=> [6,4,3,5,2,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3 = 4 - 1
[1,1,0,1,0,1,0,1,0,1,0,0]
=> [5,4,3,2,1,6] => ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,6,6,6,6,7} - 1
[1,1,0,1,0,1,0,1,1,0,0,0]
=> [4,5,3,2,1,6] => ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,6,6,6,6,7} - 1
[1,1,0,1,0,1,1,0,0,1,0,0]
=> [5,3,4,2,1,6] => ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,6,6,6,6,7} - 1
[1,1,0,1,0,1,1,0,1,0,0,0]
=> [4,3,5,2,1,6] => ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,6,6,6,6,7} - 1
[1,1,0,1,0,1,1,1,0,0,0,0]
=> [3,4,5,2,1,6] => ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,6,6,6,6,7} - 1
[1,1,0,1,1,0,0,1,0,1,0,0]
=> [5,4,2,3,1,6] => ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,6,6,6,6,7} - 1
[1,1,0,1,1,0,0,1,1,0,0,0]
=> [4,5,2,3,1,6] => ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,6,6,6,6,7} - 1
[1,1,0,1,1,0,1,0,0,1,0,0]
=> [5,3,2,4,1,6] => ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,6,6,6,6,7} - 1
[1,1,0,1,1,0,1,0,1,0,0,0]
=> [4,3,2,5,1,6] => ([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,6,6,6,6,7} - 1
[1,1,0,1,1,0,1,1,0,0,0,0]
=> [3,4,2,5,1,6] => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,6,6,6,6,7} - 1
[1,1,0,1,1,1,0,0,0,1,0,0]
=> [5,2,3,4,1,6] => ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,6,6,6,6,7} - 1
[1,1,0,1,1,1,0,0,1,0,0,0]
=> [4,2,3,5,1,6] => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,6,6,6,6,7} - 1
[1,1,0,1,1,1,0,1,0,0,0,0]
=> [3,2,4,5,1,6] => ([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,6,6,6,6,7} - 1
[1,1,0,1,1,1,1,0,0,0,0,0]
=> [2,3,4,5,1,6] => ([(1,5),(2,5),(3,5),(4,5)],6)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,6,6,6,6,7} - 1
[1,1,1,0,0,1,0,1,0,1,0,0]
=> [5,4,3,1,2,6] => ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,6,6,6,6,7} - 1
[1,1,1,0,0,1,0,1,1,0,0,0]
=> [4,5,3,1,2,6] => ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,6,6,6,6,7} - 1
[1,1,1,0,0,1,1,0,0,1,0,0]
=> [5,3,4,1,2,6] => ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,6,6,6,6,7} - 1
[1,1,1,0,0,1,1,0,1,0,0,0]
=> [4,3,5,1,2,6] => ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,6,6,6,6,7} - 1
[1,1,1,0,0,1,1,1,0,0,0,0]
=> [3,4,5,1,2,6] => ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,6,6,6,6,7} - 1
[1,1,1,0,1,0,0,1,0,1,0,0]
=> [5,4,2,1,3,6] => ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,6,6,6,6,7} - 1
[1,1,1,0,1,0,0,1,1,0,0,0]
=> [4,5,2,1,3,6] => ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,6,6,6,6,7} - 1
[1,1,1,0,1,0,1,0,0,1,0,0]
=> [5,3,2,1,4,6] => ([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,6,6,6,6,7} - 1
[1,1,1,0,1,0,1,0,1,0,0,0]
=> [4,3,2,1,5,6] => ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,6,6,6,6,7} - 1
[1,1,1,0,1,0,1,1,0,0,0,0]
=> [3,4,2,1,5,6] => ([(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,6,6,6,6,7} - 1
[1,1,1,0,1,1,0,0,0,1,0,0]
=> [5,2,3,1,4,6] => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,6,6,6,6,7} - 1
[1,1,1,0,1,1,0,0,1,0,0,0]
=> [4,2,3,1,5,6] => ([(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,6,6,6,6,7} - 1
[1,1,1,0,1,1,0,1,0,0,0,0]
=> [3,2,4,1,5,6] => ([(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,6,6,6,6,7} - 1
[1,1,1,0,1,1,1,0,0,0,0,0]
=> [2,3,4,1,5,6] => ([(2,5),(3,5),(4,5)],6)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,6,6,6,6,7} - 1
Description
The largest multiplicity of a distance Laplacian eigenvalue in a connected graph.
The distance Laplacian of a graph is the (symmetric) matrix with row and column sums $0$, which has the negative distances between two vertices as its off-diagonal entries. This statistic is the largest multiplicity of an eigenvalue.
For example, the cycle on four vertices has distance Laplacian
$$
\left(\begin{array}{rrrr}
4 & -1 & -2 & -1 \\
-1 & 4 & -1 & -2 \\
-2 & -1 & 4 & -1 \\
-1 & -2 & -1 & 4
\end{array}\right).
$$
Its eigenvalues are $0,4,4,6$, so the statistic is $2$.
The path on four vertices has eigenvalues $0, 4.7\dots, 6, 9.2\dots$ and therefore statistic $1$.
Matching statistic: St000806
(load all 5 compositions to match this statistic)
(load all 5 compositions to match this statistic)
Mp00100: Dyck paths —touch composition⟶ Integer compositions
Mp00133: Integer compositions —delta morphism⟶ Integer compositions
St000806: Integer compositions ⟶ ℤResult quality: 67% ●values known / values provided: 67%●distinct values known / distinct values provided: 83%
Mp00133: Integer compositions —delta morphism⟶ Integer compositions
St000806: Integer compositions ⟶ ℤResult quality: 67% ●values known / values provided: 67%●distinct values known / distinct values provided: 83%
Values
[1,0]
=> [1] => [1] => ? = 2
[1,0,1,0]
=> [1,1] => [2] => 3
[1,1,0,0]
=> [2] => [1] => ? = 2
[1,0,1,0,1,0]
=> [1,1,1] => [3] => 4
[1,0,1,1,0,0]
=> [1,2] => [1,1] => 3
[1,1,0,0,1,0]
=> [2,1] => [1,1] => 3
[1,1,0,1,0,0]
=> [3] => [1] => ? ∊ {2,2}
[1,1,1,0,0,0]
=> [3] => [1] => ? ∊ {2,2}
[1,0,1,0,1,0,1,0]
=> [1,1,1,1] => [4] => 5
[1,0,1,0,1,1,0,0]
=> [1,1,2] => [2,1] => 4
[1,0,1,1,0,0,1,0]
=> [1,2,1] => [1,1,1] => 4
[1,0,1,1,0,1,0,0]
=> [1,3] => [1,1] => 3
[1,0,1,1,1,0,0,0]
=> [1,3] => [1,1] => 3
[1,1,0,0,1,0,1,0]
=> [2,1,1] => [1,2] => 4
[1,1,0,0,1,1,0,0]
=> [2,2] => [2] => 3
[1,1,0,1,0,0,1,0]
=> [3,1] => [1,1] => 3
[1,1,0,1,0,1,0,0]
=> [4] => [1] => ? ∊ {2,2,2,2,3}
[1,1,0,1,1,0,0,0]
=> [4] => [1] => ? ∊ {2,2,2,2,3}
[1,1,1,0,0,0,1,0]
=> [3,1] => [1,1] => 3
[1,1,1,0,0,1,0,0]
=> [4] => [1] => ? ∊ {2,2,2,2,3}
[1,1,1,0,1,0,0,0]
=> [4] => [1] => ? ∊ {2,2,2,2,3}
[1,1,1,1,0,0,0,0]
=> [4] => [1] => ? ∊ {2,2,2,2,3}
[1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1] => [5] => 6
[1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,2] => [3,1] => 5
[1,0,1,0,1,1,0,0,1,0]
=> [1,1,2,1] => [2,1,1] => 5
[1,0,1,0,1,1,0,1,0,0]
=> [1,1,3] => [2,1] => 4
[1,0,1,0,1,1,1,0,0,0]
=> [1,1,3] => [2,1] => 4
[1,0,1,1,0,0,1,0,1,0]
=> [1,2,1,1] => [1,1,2] => 5
[1,0,1,1,0,0,1,1,0,0]
=> [1,2,2] => [1,2] => 4
[1,0,1,1,0,1,0,0,1,0]
=> [1,3,1] => [1,1,1] => 4
[1,0,1,1,0,1,0,1,0,0]
=> [1,4] => [1,1] => 3
[1,0,1,1,0,1,1,0,0,0]
=> [1,4] => [1,1] => 3
[1,0,1,1,1,0,0,0,1,0]
=> [1,3,1] => [1,1,1] => 4
[1,0,1,1,1,0,0,1,0,0]
=> [1,4] => [1,1] => 3
[1,0,1,1,1,0,1,0,0,0]
=> [1,4] => [1,1] => 3
[1,0,1,1,1,1,0,0,0,0]
=> [1,4] => [1,1] => 3
[1,1,0,0,1,0,1,0,1,0]
=> [2,1,1,1] => [1,3] => 5
[1,1,0,0,1,0,1,1,0,0]
=> [2,1,2] => [1,1,1] => 4
[1,1,0,0,1,1,0,0,1,0]
=> [2,2,1] => [2,1] => 4
[1,1,0,0,1,1,0,1,0,0]
=> [2,3] => [1,1] => 3
[1,1,0,0,1,1,1,0,0,0]
=> [2,3] => [1,1] => 3
[1,1,0,1,0,0,1,0,1,0]
=> [3,1,1] => [1,2] => 4
[1,1,0,1,0,0,1,1,0,0]
=> [3,2] => [1,1] => 3
[1,1,0,1,0,1,0,0,1,0]
=> [4,1] => [1,1] => 3
[1,1,0,1,0,1,0,1,0,0]
=> [5] => [1] => ? ∊ {2,2,2,2,2,2,2,2,2,3,3,3,4,4}
[1,1,0,1,0,1,1,0,0,0]
=> [5] => [1] => ? ∊ {2,2,2,2,2,2,2,2,2,3,3,3,4,4}
[1,1,0,1,1,0,0,0,1,0]
=> [4,1] => [1,1] => 3
[1,1,0,1,1,0,0,1,0,0]
=> [5] => [1] => ? ∊ {2,2,2,2,2,2,2,2,2,3,3,3,4,4}
[1,1,0,1,1,0,1,0,0,0]
=> [5] => [1] => ? ∊ {2,2,2,2,2,2,2,2,2,3,3,3,4,4}
[1,1,0,1,1,1,0,0,0,0]
=> [5] => [1] => ? ∊ {2,2,2,2,2,2,2,2,2,3,3,3,4,4}
[1,1,1,0,0,0,1,0,1,0]
=> [3,1,1] => [1,2] => 4
[1,1,1,0,0,0,1,1,0,0]
=> [3,2] => [1,1] => 3
[1,1,1,0,0,1,0,0,1,0]
=> [4,1] => [1,1] => 3
[1,1,1,0,0,1,0,1,0,0]
=> [5] => [1] => ? ∊ {2,2,2,2,2,2,2,2,2,3,3,3,4,4}
[1,1,1,0,0,1,1,0,0,0]
=> [5] => [1] => ? ∊ {2,2,2,2,2,2,2,2,2,3,3,3,4,4}
[1,1,1,0,1,0,0,0,1,0]
=> [4,1] => [1,1] => 3
[1,1,1,0,1,0,0,1,0,0]
=> [5] => [1] => ? ∊ {2,2,2,2,2,2,2,2,2,3,3,3,4,4}
[1,1,1,0,1,0,1,0,0,0]
=> [5] => [1] => ? ∊ {2,2,2,2,2,2,2,2,2,3,3,3,4,4}
[1,1,1,0,1,1,0,0,0,0]
=> [5] => [1] => ? ∊ {2,2,2,2,2,2,2,2,2,3,3,3,4,4}
[1,1,1,1,0,0,0,0,1,0]
=> [4,1] => [1,1] => 3
[1,1,1,1,0,0,0,1,0,0]
=> [5] => [1] => ? ∊ {2,2,2,2,2,2,2,2,2,3,3,3,4,4}
[1,1,1,1,0,0,1,0,0,0]
=> [5] => [1] => ? ∊ {2,2,2,2,2,2,2,2,2,3,3,3,4,4}
[1,1,1,1,0,1,0,0,0,0]
=> [5] => [1] => ? ∊ {2,2,2,2,2,2,2,2,2,3,3,3,4,4}
[1,1,1,1,1,0,0,0,0,0]
=> [5] => [1] => ? ∊ {2,2,2,2,2,2,2,2,2,3,3,3,4,4}
[1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1] => [6] => 7
[1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,2] => [4,1] => 6
[1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,2,1] => [3,1,1] => 6
[1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,3] => [3,1] => 5
[1,0,1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,3] => [3,1] => 5
[1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,2,1,1] => [2,1,2] => 6
[1,0,1,0,1,1,0,0,1,1,0,0]
=> [1,1,2,2] => [2,2] => 4
[1,0,1,0,1,1,0,1,0,0,1,0]
=> [1,1,3,1] => [2,1,1] => 5
[1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,1,4] => [2,1] => 4
[1,1,0,1,0,1,0,1,0,1,0,0]
=> [6] => [1] => ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5}
[1,1,0,1,0,1,0,1,1,0,0,0]
=> [6] => [1] => ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5}
[1,1,0,1,0,1,1,0,0,1,0,0]
=> [6] => [1] => ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5}
[1,1,0,1,0,1,1,0,1,0,0,0]
=> [6] => [1] => ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5}
[1,1,0,1,0,1,1,1,0,0,0,0]
=> [6] => [1] => ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5}
[1,1,0,1,1,0,0,1,0,1,0,0]
=> [6] => [1] => ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5}
[1,1,0,1,1,0,0,1,1,0,0,0]
=> [6] => [1] => ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5}
[1,1,0,1,1,0,1,0,0,1,0,0]
=> [6] => [1] => ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5}
[1,1,0,1,1,0,1,0,1,0,0,0]
=> [6] => [1] => ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5}
[1,1,0,1,1,0,1,1,0,0,0,0]
=> [6] => [1] => ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5}
[1,1,0,1,1,1,0,0,0,1,0,0]
=> [6] => [1] => ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5}
[1,1,0,1,1,1,0,0,1,0,0,0]
=> [6] => [1] => ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5}
[1,1,0,1,1,1,0,1,0,0,0,0]
=> [6] => [1] => ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5}
[1,1,0,1,1,1,1,0,0,0,0,0]
=> [6] => [1] => ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5}
[1,1,1,0,0,1,0,1,0,1,0,0]
=> [6] => [1] => ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5}
[1,1,1,0,0,1,0,1,1,0,0,0]
=> [6] => [1] => ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5}
[1,1,1,0,0,1,1,0,0,1,0,0]
=> [6] => [1] => ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5}
[1,1,1,0,0,1,1,0,1,0,0,0]
=> [6] => [1] => ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5}
[1,1,1,0,0,1,1,1,0,0,0,0]
=> [6] => [1] => ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5}
[1,1,1,0,1,0,0,1,0,1,0,0]
=> [6] => [1] => ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5}
[1,1,1,0,1,0,0,1,1,0,0,0]
=> [6] => [1] => ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5}
[1,1,1,0,1,0,1,0,0,1,0,0]
=> [6] => [1] => ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5}
[1,1,1,0,1,0,1,0,1,0,0,0]
=> [6] => [1] => ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5}
[1,1,1,0,1,0,1,1,0,0,0,0]
=> [6] => [1] => ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5}
[1,1,1,0,1,1,0,0,0,1,0,0]
=> [6] => [1] => ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5}
[1,1,1,0,1,1,0,0,1,0,0,0]
=> [6] => [1] => ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5}
[1,1,1,0,1,1,0,1,0,0,0,0]
=> [6] => [1] => ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5}
Description
The semiperimeter of the associated bargraph.
Interpret the composition as the sequence of heights of the bars of a bargraph. This statistic is the semiperimeter of the polygon determined by the axis and the bargraph. Put differently, it is the sum of the number of up steps and the number of horizontal steps when regarding the bargraph as a path with up, horizontal and down steps.
Matching statistic: St000259
(load all 11 compositions to match this statistic)
(load all 11 compositions to match this statistic)
Mp00201: Dyck paths —Ringel⟶ Permutations
Mp00065: Permutations —permutation poset⟶ Posets
Mp00074: Posets —to graph⟶ Graphs
St000259: Graphs ⟶ ℤResult quality: 66% ●values known / values provided: 66%●distinct values known / distinct values provided: 83%
Mp00065: Permutations —permutation poset⟶ Posets
Mp00074: Posets —to graph⟶ Graphs
St000259: Graphs ⟶ ℤResult quality: 66% ●values known / values provided: 66%●distinct values known / distinct values provided: 83%
Values
[1,0]
=> [2,1] => ([],2)
=> ([],2)
=> ? = 2
[1,0,1,0]
=> [3,1,2] => ([(1,2)],3)
=> ([(1,2)],3)
=> ? ∊ {2,3}
[1,1,0,0]
=> [2,3,1] => ([(1,2)],3)
=> ([(1,2)],3)
=> ? ∊ {2,3}
[1,0,1,0,1,0]
=> [4,1,2,3] => ([(1,2),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> ? ∊ {2,2,4}
[1,0,1,1,0,0]
=> [3,1,4,2] => ([(0,3),(1,2),(1,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> 3
[1,1,0,0,1,0]
=> [2,4,1,3] => ([(0,3),(1,2),(1,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> 3
[1,1,0,1,0,0]
=> [4,3,1,2] => ([(2,3)],4)
=> ([(2,3)],4)
=> ? ∊ {2,2,4}
[1,1,1,0,0,0]
=> [2,3,4,1] => ([(1,2),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> ? ∊ {2,2,4}
[1,0,1,0,1,0,1,0]
=> [5,1,2,3,4] => ([(1,4),(3,2),(4,3)],5)
=> ([(1,4),(2,3),(3,4)],5)
=> ? ∊ {2,2,4,4,4,5}
[1,0,1,0,1,1,0,0]
=> [4,1,2,5,3] => ([(0,4),(1,2),(2,3),(2,4)],5)
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> 3
[1,0,1,1,0,0,1,0]
=> [3,1,5,2,4] => ([(0,3),(0,4),(1,2),(1,3),(2,4)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> 2
[1,0,1,1,0,1,0,0]
=> [5,1,4,2,3] => ([(1,3),(1,4),(4,2)],5)
=> ([(1,4),(2,3),(3,4)],5)
=> ? ∊ {2,2,4,4,4,5}
[1,0,1,1,1,0,0,0]
=> [3,1,4,5,2] => ([(0,4),(1,2),(1,4),(4,3)],5)
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> 3
[1,1,0,0,1,0,1,0]
=> [2,5,1,3,4] => ([(0,4),(1,2),(1,4),(4,3)],5)
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> 3
[1,1,0,0,1,1,0,0]
=> [2,4,1,5,3] => ([(0,3),(0,4),(1,2),(1,3),(2,4)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> 2
[1,1,0,1,0,0,1,0]
=> [5,3,1,2,4] => ([(1,4),(2,3),(3,4)],5)
=> ([(1,4),(2,3),(3,4)],5)
=> ? ∊ {2,2,4,4,4,5}
[1,1,0,1,0,1,0,0]
=> [5,4,1,2,3] => ([(2,3),(3,4)],5)
=> ([(2,4),(3,4)],5)
=> ? ∊ {2,2,4,4,4,5}
[1,1,0,1,1,0,0,0]
=> [4,3,1,5,2] => ([(0,4),(1,4),(2,3),(2,4)],5)
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> 3
[1,1,1,0,0,0,1,0]
=> [2,3,5,1,4] => ([(0,4),(1,2),(2,3),(2,4)],5)
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> 3
[1,1,1,0,0,1,0,0]
=> [2,5,4,1,3] => ([(0,4),(1,2),(1,3),(1,4)],5)
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> 3
[1,1,1,0,1,0,0,0]
=> [5,3,4,1,2] => ([(1,4),(2,3)],5)
=> ([(1,4),(2,3)],5)
=> ? ∊ {2,2,4,4,4,5}
[1,1,1,1,0,0,0,0]
=> [2,3,4,5,1] => ([(1,4),(3,2),(4,3)],5)
=> ([(1,4),(2,3),(3,4)],5)
=> ? ∊ {2,2,4,4,4,5}
[1,0,1,0,1,0,1,0,1,0]
=> [6,1,2,3,4,5] => ([(1,5),(3,4),(4,2),(5,3)],6)
=> ([(1,5),(2,4),(3,4),(3,5)],6)
=> ? ∊ {2,2,2,2,3,4,4,4,4,4,5,5,5,5,6}
[1,0,1,0,1,0,1,1,0,0]
=> [5,1,2,3,6,4] => ([(0,5),(1,3),(3,4),(4,2),(4,5)],6)
=> ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> 4
[1,0,1,0,1,1,0,0,1,0]
=> [4,1,2,6,3,5] => ([(0,4),(0,5),(1,2),(2,3),(2,5),(3,4)],6)
=> ([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6)
=> 3
[1,0,1,0,1,1,0,1,0,0]
=> [6,1,2,5,3,4] => ([(1,5),(4,3),(5,2),(5,4)],6)
=> ([(1,5),(2,5),(3,4),(4,5)],6)
=> ? ∊ {2,2,2,2,3,4,4,4,4,4,5,5,5,5,6}
[1,0,1,0,1,1,1,0,0,0]
=> [4,1,2,5,6,3] => ([(0,5),(1,4),(4,2),(4,5),(5,3)],6)
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> 3
[1,0,1,1,0,0,1,0,1,0]
=> [3,1,6,2,4,5] => ([(0,4),(0,5),(1,2),(1,4),(2,5),(5,3)],6)
=> ([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6)
=> 3
[1,0,1,1,0,0,1,1,0,0]
=> [3,1,5,2,6,4] => ([(0,2),(0,5),(1,4),(1,5),(2,3),(2,4),(5,3)],6)
=> ([(0,1),(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> 2
[1,0,1,1,0,1,0,0,1,0]
=> [6,1,4,2,3,5] => ([(1,3),(1,4),(2,5),(3,5),(4,2)],6)
=> ([(1,4),(1,5),(2,3),(2,5),(3,4)],6)
=> ? ∊ {2,2,2,2,3,4,4,4,4,4,5,5,5,5,6}
[1,0,1,1,0,1,0,1,0,0]
=> [6,1,5,2,3,4] => ([(1,3),(1,5),(4,2),(5,4)],6)
=> ([(1,5),(2,4),(3,4),(3,5)],6)
=> ? ∊ {2,2,2,2,3,4,4,4,4,4,5,5,5,5,6}
[1,0,1,1,0,1,1,0,0,0]
=> [5,1,4,2,6,3] => ([(0,5),(1,3),(1,4),(3,5),(4,2),(4,5)],6)
=> ([(0,5),(1,4),(2,3),(2,4),(3,5),(4,5)],6)
=> 3
[1,0,1,1,1,0,0,0,1,0]
=> [3,1,4,6,2,5] => ([(0,4),(1,2),(1,4),(2,5),(4,3),(4,5)],6)
=> ([(0,5),(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> 3
[1,0,1,1,1,0,0,1,0,0]
=> [3,1,6,5,2,4] => ([(0,2),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3)],6)
=> ([(0,1),(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> 2
[1,0,1,1,1,0,1,0,0,0]
=> [6,1,4,5,2,3] => ([(1,4),(1,5),(4,3),(5,2)],6)
=> ([(1,5),(2,4),(3,4),(3,5)],6)
=> ? ∊ {2,2,2,2,3,4,4,4,4,4,5,5,5,5,6}
[1,0,1,1,1,1,0,0,0,0]
=> [3,1,4,5,6,2] => ([(0,5),(1,3),(1,5),(4,2),(5,4)],6)
=> ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> 4
[1,1,0,0,1,0,1,0,1,0]
=> [2,6,1,3,4,5] => ([(0,5),(1,3),(1,5),(4,2),(5,4)],6)
=> ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> 4
[1,1,0,0,1,0,1,1,0,0]
=> [2,5,1,3,6,4] => ([(0,4),(1,2),(1,4),(2,5),(4,3),(4,5)],6)
=> ([(0,5),(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> 3
[1,1,0,0,1,1,0,0,1,0]
=> [2,4,1,6,3,5] => ([(0,2),(0,5),(1,4),(1,5),(2,3),(2,4),(5,3)],6)
=> ([(0,1),(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> 2
[1,1,0,0,1,1,0,1,0,0]
=> [2,6,1,5,3,4] => ([(0,4),(0,5),(1,3),(1,4),(1,5),(5,2)],6)
=> ([(0,5),(1,4),(2,3),(2,4),(3,5),(4,5)],6)
=> 3
[1,1,0,0,1,1,1,0,0,0]
=> [2,4,1,5,6,3] => ([(0,4),(0,5),(1,2),(1,4),(2,5),(5,3)],6)
=> ([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6)
=> 3
[1,1,0,1,0,0,1,0,1,0]
=> [6,3,1,2,4,5] => ([(1,5),(2,3),(3,5),(5,4)],6)
=> ([(1,5),(2,5),(3,4),(4,5)],6)
=> ? ∊ {2,2,2,2,3,4,4,4,4,4,5,5,5,5,6}
[1,1,0,1,0,0,1,1,0,0]
=> [5,3,1,2,6,4] => ([(0,5),(1,4),(1,5),(2,3),(3,4),(3,5)],6)
=> ([(0,5),(1,4),(2,3),(2,4),(3,5),(4,5)],6)
=> 3
[1,1,0,1,0,1,0,0,1,0]
=> [6,4,1,2,3,5] => ([(1,5),(2,3),(3,4),(4,5)],6)
=> ([(1,5),(2,4),(3,4),(3,5)],6)
=> ? ∊ {2,2,2,2,3,4,4,4,4,4,5,5,5,5,6}
[1,1,0,1,0,1,0,1,0,0]
=> [5,6,1,2,3,4] => ([(0,5),(1,3),(4,2),(5,4)],6)
=> ([(0,1),(2,5),(3,4),(4,5)],6)
=> ? ∊ {2,2,2,2,3,4,4,4,4,4,5,5,5,5,6}
[1,1,0,1,0,1,1,0,0,0]
=> [5,4,1,2,6,3] => ([(0,5),(1,5),(2,3),(3,4),(3,5)],6)
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> 3
[1,1,0,1,1,0,0,0,1,0]
=> [4,3,1,6,2,5] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(3,5)],6)
=> ([(0,1),(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> 2
[1,1,0,1,1,0,0,1,0,0]
=> [6,3,1,5,2,4] => ([(1,4),(1,5),(2,3),(2,4),(3,5)],6)
=> ([(1,4),(1,5),(2,3),(2,5),(3,4)],6)
=> ? ∊ {2,2,2,2,3,4,4,4,4,4,5,5,5,5,6}
[1,1,0,1,1,0,1,0,0,0]
=> [6,4,1,5,2,3] => ([(1,5),(2,3),(2,5),(3,4)],6)
=> ([(1,5),(2,4),(3,4),(3,5)],6)
=> ? ∊ {2,2,2,2,3,4,4,4,4,4,5,5,5,5,6}
[1,1,0,1,1,1,0,0,0,0]
=> [4,3,1,5,6,2] => ([(0,5),(1,5),(2,3),(2,5),(5,4)],6)
=> ([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> 3
[1,1,1,0,0,0,1,0,1,0]
=> [2,3,6,1,4,5] => ([(0,5),(1,4),(4,2),(4,5),(5,3)],6)
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> 3
[1,1,1,0,0,0,1,1,0,0]
=> [2,3,5,1,6,4] => ([(0,4),(0,5),(1,2),(2,3),(2,5),(3,4)],6)
=> ([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6)
=> 3
[1,1,1,0,0,1,0,0,1,0]
=> [2,6,4,1,3,5] => ([(0,4),(1,2),(1,3),(1,4),(3,5),(4,5)],6)
=> ([(0,5),(1,4),(2,3),(2,4),(3,5),(4,5)],6)
=> 3
[1,1,1,0,0,1,0,1,0,0]
=> [2,6,5,1,3,4] => ([(0,5),(1,2),(1,3),(1,5),(5,4)],6)
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> 3
[1,1,1,0,0,1,1,0,0,0]
=> [2,5,4,1,6,3] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(2,5),(3,5)],6)
=> ([(0,1),(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> 2
[1,1,1,0,1,0,0,0,1,0]
=> [6,3,4,1,2,5] => ([(1,4),(2,3),(3,5),(4,5)],6)
=> ([(1,5),(2,4),(3,4),(3,5)],6)
=> ? ∊ {2,2,2,2,3,4,4,4,4,4,5,5,5,5,6}
[1,1,1,0,1,0,0,1,0,0]
=> [6,3,5,1,2,4] => ([(1,4),(2,3),(2,5),(4,5)],6)
=> ([(1,5),(2,4),(3,4),(3,5)],6)
=> ? ∊ {2,2,2,2,3,4,4,4,4,4,5,5,5,5,6}
[1,1,1,0,1,0,1,0,0,0]
=> [6,5,4,1,2,3] => ([(3,4),(4,5)],6)
=> ([(3,5),(4,5)],6)
=> ? ∊ {2,2,2,2,3,4,4,4,4,4,5,5,5,5,6}
[1,1,1,0,1,1,0,0,0,0]
=> [5,3,4,1,6,2] => ([(0,5),(1,4),(2,3),(2,5),(4,5)],6)
=> ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> 4
[1,1,1,1,0,0,0,0,1,0]
=> [2,3,4,6,1,5] => ([(0,5),(1,3),(3,4),(4,2),(4,5)],6)
=> ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> 4
[1,1,1,1,0,0,0,1,0,0]
=> [2,3,6,5,1,4] => ([(0,5),(1,4),(4,2),(4,3),(4,5)],6)
=> ([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> 3
[1,1,1,1,0,0,1,0,0,0]
=> [2,6,4,5,1,3] => ([(0,5),(1,3),(1,4),(1,5),(4,2)],6)
=> ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> 4
[1,1,1,1,0,1,0,0,0,0]
=> [6,3,4,5,1,2] => ([(1,3),(2,4),(4,5)],6)
=> ([(1,2),(3,5),(4,5)],6)
=> ? ∊ {2,2,2,2,3,4,4,4,4,4,5,5,5,5,6}
[1,1,1,1,1,0,0,0,0,0]
=> [2,3,4,5,6,1] => ([(1,5),(3,4),(4,2),(5,3)],6)
=> ([(1,5),(2,4),(3,4),(3,5)],6)
=> ? ∊ {2,2,2,2,3,4,4,4,4,4,5,5,5,5,6}
[1,0,1,0,1,0,1,0,1,0,1,0]
=> [7,1,2,3,4,5,6] => ([(1,6),(3,5),(4,3),(5,2),(6,4)],7)
=> ([(1,6),(2,5),(3,4),(3,5),(4,6)],7)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,6,6,6,7}
[1,0,1,0,1,0,1,0,1,1,0,0]
=> [6,1,2,3,4,7,5] => ([(0,6),(1,4),(3,5),(4,3),(5,2),(5,6)],7)
=> ([(0,6),(1,4),(2,3),(3,6),(4,5),(5,6)],7)
=> 5
[1,0,1,0,1,0,1,1,0,0,1,0]
=> [5,1,2,3,7,4,6] => ([(0,5),(0,6),(1,3),(2,6),(3,4),(4,2),(4,5)],7)
=> ([(0,5),(1,2),(1,4),(2,3),(3,6),(4,6),(5,6)],7)
=> 4
[1,0,1,0,1,0,1,1,0,1,0,0]
=> [7,1,2,3,6,4,5] => ([(1,5),(4,3),(5,6),(6,2),(6,4)],7)
=> ([(1,6),(2,5),(3,4),(4,6),(5,6)],7)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,6,6,6,7}
[1,0,1,0,1,0,1,1,1,0,0,0]
=> [5,1,2,3,6,7,4] => ([(0,6),(1,4),(4,5),(5,2),(5,6),(6,3)],7)
=> ([(0,6),(1,5),(2,5),(3,4),(4,6),(5,6)],7)
=> 4
[1,0,1,0,1,1,0,0,1,0,1,0]
=> [4,1,2,7,3,5,6] => ([(0,5),(0,6),(1,4),(3,6),(4,3),(4,5),(6,2)],7)
=> ([(0,6),(1,5),(2,3),(2,5),(3,6),(4,5),(4,6)],7)
=> 4
[1,0,1,0,1,1,0,0,1,1,0,0]
=> [4,1,2,6,3,7,5] => ([(0,2),(1,5),(1,6),(2,3),(2,6),(3,4),(3,5),(6,4)],7)
=> ([(0,6),(1,2),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> 3
[1,0,1,0,1,1,0,1,0,0,1,0]
=> [7,1,2,5,3,4,6] => ([(1,5),(2,6),(3,6),(4,3),(5,2),(5,4)],7)
=> ([(1,6),(2,3),(2,5),(3,4),(4,6),(5,6)],7)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,6,6,6,7}
[1,0,1,0,1,1,0,1,0,1,0,0]
=> [7,1,2,6,3,4,5] => ([(1,6),(4,5),(5,3),(6,2),(6,4)],7)
=> ([(1,6),(2,6),(3,4),(4,5),(5,6)],7)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,6,6,6,7}
[1,0,1,0,1,1,0,1,1,0,0,0]
=> [6,1,2,5,3,7,4] => ([(0,6),(1,5),(3,6),(4,2),(4,6),(5,3),(5,4)],7)
=> ([(0,4),(1,6),(2,5),(3,5),(3,6),(4,5),(4,6)],7)
=> 4
[1,0,1,0,1,1,1,0,0,0,1,0]
=> [4,1,2,5,7,3,6] => ([(0,6),(1,4),(3,5),(4,3),(4,6),(6,2),(6,5)],7)
=> ([(0,6),(1,6),(2,5),(3,4),(3,6),(4,5),(5,6)],7)
=> 3
[1,0,1,0,1,1,1,0,0,1,0,0]
=> [4,1,2,7,6,3,5] => ([(0,3),(1,4),(1,5),(1,6),(2,6),(3,2),(3,4),(3,5)],7)
=> ([(0,6),(1,2),(1,6),(2,5),(3,5),(3,6),(4,5),(4,6)],7)
=> 3
[1,0,1,0,1,1,1,0,1,0,0,0]
=> [7,1,2,5,6,3,4] => ([(1,6),(4,3),(5,2),(6,4),(6,5)],7)
=> ([(1,6),(2,5),(3,4),(4,6),(5,6)],7)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,6,6,6,7}
[1,0,1,0,1,1,1,1,0,0,0,0]
=> [4,1,2,5,6,7,3] => ([(0,6),(1,4),(4,3),(4,6),(5,2),(6,5)],7)
=> ([(0,6),(1,5),(2,5),(3,4),(4,6),(5,6)],7)
=> 4
[1,0,1,1,0,0,1,0,1,0,1,0]
=> [3,1,7,2,4,5,6] => ([(0,5),(0,6),(1,3),(1,6),(3,5),(4,2),(5,4)],7)
=> ([(0,5),(1,2),(1,4),(2,3),(3,6),(4,6),(5,6)],7)
=> 4
[1,0,1,1,0,0,1,0,1,1,0,0]
=> [3,1,6,2,4,7,5] => ([(0,3),(0,6),(1,5),(1,6),(3,5),(5,2),(5,4),(6,4)],7)
=> ([(0,6),(1,2),(1,6),(2,5),(3,5),(3,6),(4,5),(4,6)],7)
=> 3
[1,0,1,1,0,0,1,1,0,0,1,0]
=> [3,1,5,2,7,4,6] => ([(0,2),(0,6),(1,5),(1,6),(2,4),(2,5),(5,3),(6,3),(6,4)],7)
=> ([(0,5),(0,6),(1,5),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5)],7)
=> 2
[1,0,1,1,0,0,1,1,0,1,0,0]
=> [3,1,7,2,6,4,5] => ([(0,3),(0,6),(1,4),(1,5),(1,6),(3,4),(3,5),(5,2)],7)
=> ([(0,6),(1,2),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> 3
[1,0,1,1,0,1,0,0,1,0,1,0]
=> [7,1,4,2,3,5,6] => ([(1,3),(1,5),(2,6),(3,6),(5,2),(6,4)],7)
=> ([(1,6),(2,3),(2,5),(3,4),(4,6),(5,6)],7)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,6,6,6,7}
[1,0,1,1,0,1,0,1,0,0,1,0]
=> [7,1,5,2,3,4,6] => ([(1,3),(1,5),(2,6),(3,6),(4,2),(5,4)],7)
=> ([(1,5),(1,6),(2,3),(2,4),(3,6),(4,5)],7)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,6,6,6,7}
[1,0,1,1,0,1,1,0,0,1,0,0]
=> [7,1,4,2,6,3,5] => ([(1,3),(1,4),(2,5),(3,5),(3,6),(4,2),(4,6)],7)
=> ([(1,2),(1,6),(2,5),(3,5),(3,6),(4,5),(4,6)],7)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,6,6,6,7}
[1,0,1,1,0,1,1,0,1,0,0,0]
=> [7,1,5,2,6,3,4] => ([(1,3),(1,5),(3,6),(4,2),(5,4),(5,6)],7)
=> ([(1,5),(2,3),(2,4),(3,6),(4,6),(5,6)],7)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,6,6,6,7}
[1,0,1,1,1,0,1,0,0,0,1,0]
=> [7,1,4,5,2,3,6] => ([(1,4),(1,5),(2,6),(3,6),(4,3),(5,2)],7)
=> ([(1,5),(1,6),(2,3),(2,4),(3,6),(4,5)],7)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,6,6,6,7}
[1,0,1,1,1,0,1,0,0,1,0,0]
=> [7,1,4,6,2,3,5] => ([(1,4),(1,5),(3,6),(4,3),(5,2),(5,6)],7)
=> ([(1,6),(2,3),(2,5),(3,4),(4,6),(5,6)],7)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,6,6,6,7}
[1,0,1,1,1,0,1,0,1,0,0,0]
=> [7,1,6,5,2,3,4] => ([(1,3),(1,4),(1,6),(5,2),(6,5)],7)
=> ([(1,6),(2,6),(3,4),(4,5),(5,6)],7)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,6,6,6,7}
[1,0,1,1,1,1,0,1,0,0,0,0]
=> [7,1,4,5,6,2,3] => ([(1,5),(1,6),(4,3),(5,4),(6,2)],7)
=> ([(1,6),(2,5),(3,4),(3,5),(4,6)],7)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,6,6,6,7}
[1,1,0,1,0,0,1,0,1,0,1,0]
=> [7,3,1,2,4,5,6] => ([(1,6),(2,3),(3,6),(4,5),(6,4)],7)
=> ([(1,6),(2,5),(3,4),(4,6),(5,6)],7)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,6,6,6,7}
[1,1,0,1,0,0,1,1,0,1,0,0]
=> [7,3,1,2,6,4,5] => ([(1,5),(1,6),(2,4),(4,5),(4,6),(6,3)],7)
=> ([(1,6),(2,5),(3,4),(3,5),(4,6),(5,6)],7)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,6,6,6,7}
[1,1,0,1,0,1,0,0,1,0,1,0]
=> [7,4,1,2,3,5,6] => ([(1,6),(2,3),(3,5),(5,6),(6,4)],7)
=> ([(1,6),(2,6),(3,4),(4,5),(5,6)],7)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,6,6,6,7}
[1,1,0,1,0,1,0,1,0,1,0,0]
=> [7,6,1,2,3,4,5] => ([(2,6),(4,5),(5,3),(6,4)],7)
=> ([(2,6),(3,5),(4,5),(4,6)],7)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,6,6,6,7}
[1,1,0,1,0,1,1,0,0,1,0,0]
=> [7,4,1,2,6,3,5] => ([(1,5),(1,6),(2,3),(3,4),(3,6),(4,5)],7)
=> ([(1,6),(2,3),(2,5),(3,4),(4,6),(5,6)],7)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,6,6,6,7}
[1,1,0,1,1,0,0,1,0,0,1,0]
=> [7,3,1,5,2,4,6] => ([(1,4),(1,6),(2,3),(2,4),(3,6),(4,5),(6,5)],7)
=> ([(1,2),(1,6),(2,5),(3,5),(3,6),(4,5),(4,6)],7)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,6,6,6,7}
[1,1,0,1,1,0,0,1,0,1,0,0]
=> [7,3,1,6,2,4,5] => ([(1,5),(1,6),(2,3),(2,5),(3,6),(6,4)],7)
=> ([(1,6),(2,3),(2,5),(3,4),(4,6),(5,6)],7)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,6,6,6,7}
[1,1,0,1,1,0,1,0,0,0,1,0]
=> [7,4,1,5,2,3,6] => ([(1,5),(2,3),(2,5),(3,4),(4,6),(5,6)],7)
=> ([(1,6),(2,3),(2,5),(3,4),(4,6),(5,6)],7)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,6,6,6,7}
[1,1,0,1,1,0,1,0,0,1,0,0]
=> [7,4,1,6,2,3,5] => ([(1,5),(1,6),(2,3),(2,5),(3,4),(4,6)],7)
=> ([(1,5),(1,6),(2,3),(2,4),(3,6),(4,5)],7)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,6,6,6,7}
[1,1,0,1,1,0,1,0,1,0,0,0]
=> [6,7,1,5,2,3,4] => ([(0,4),(1,3),(1,6),(5,2),(6,5)],7)
=> ([(0,1),(2,5),(3,4),(4,6),(5,6)],7)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,6,6,6,7}
Description
The diameter of a connected graph.
This is the greatest distance between any pair of vertices.
Matching statistic: St000723
Mp00233: Dyck paths —skew partition⟶ Skew partitions
Mp00181: Skew partitions —row lengths⟶ Integer compositions
Mp00184: Integer compositions —to threshold graph⟶ Graphs
St000723: Graphs ⟶ ℤResult quality: 63% ●values known / values provided: 63%●distinct values known / distinct values provided: 100%
Mp00181: Skew partitions —row lengths⟶ Integer compositions
Mp00184: Integer compositions —to threshold graph⟶ Graphs
St000723: Graphs ⟶ ℤResult quality: 63% ●values known / values provided: 63%●distinct values known / distinct values provided: 100%
Values
[1,0]
=> [[1],[]]
=> [1] => ([],1)
=> 1 = 2 - 1
[1,0,1,0]
=> [[1,1],[]]
=> [1,1] => ([(0,1)],2)
=> 1 = 2 - 1
[1,1,0,0]
=> [[2],[]]
=> [2] => ([],2)
=> 2 = 3 - 1
[1,0,1,0,1,0]
=> [[1,1,1],[]]
=> [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> 1 = 2 - 1
[1,0,1,1,0,0]
=> [[2,1],[]]
=> [2,1] => ([(0,2),(1,2)],3)
=> 2 = 3 - 1
[1,1,0,0,1,0]
=> [[2,2],[1]]
=> [1,2] => ([(1,2)],3)
=> 1 = 2 - 1
[1,1,0,1,0,0]
=> [[3],[]]
=> [3] => ([],3)
=> 3 = 4 - 1
[1,1,1,0,0,0]
=> [[2,2],[]]
=> [2,2] => ([(1,3),(2,3)],4)
=> 2 = 3 - 1
[1,0,1,0,1,0,1,0]
=> [[1,1,1,1],[]]
=> [1,1,1,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 1 = 2 - 1
[1,0,1,0,1,1,0,0]
=> [[2,1,1],[]]
=> [2,1,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 2 = 3 - 1
[1,0,1,1,0,0,1,0]
=> [[2,2,1],[1]]
=> [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> 1 = 2 - 1
[1,0,1,1,0,1,0,0]
=> [[3,1],[]]
=> [3,1] => ([(0,3),(1,3),(2,3)],4)
=> 3 = 4 - 1
[1,0,1,1,1,0,0,0]
=> [[2,2,1],[]]
=> [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2 = 3 - 1
[1,1,0,0,1,0,1,0]
=> [[2,2,2],[1,1]]
=> [1,1,2] => ([(1,2),(1,3),(2,3)],4)
=> 1 = 2 - 1
[1,1,0,0,1,1,0,0]
=> [[3,2],[1]]
=> [2,2] => ([(1,3),(2,3)],4)
=> 2 = 3 - 1
[1,1,0,1,0,0,1,0]
=> [[3,3],[2]]
=> [1,3] => ([(2,3)],4)
=> 2 = 3 - 1
[1,1,0,1,0,1,0,0]
=> [[4],[]]
=> [4] => ([],4)
=> 4 = 5 - 1
[1,1,0,1,1,0,0,0]
=> [[3,3],[1]]
=> [2,3] => ([(2,4),(3,4)],5)
=> 2 = 3 - 1
[1,1,1,0,0,0,1,0]
=> [[2,2,2],[1]]
=> [1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> 1 = 2 - 1
[1,1,1,0,0,1,0,0]
=> [[3,2],[]]
=> [3,2] => ([(1,4),(2,4),(3,4)],5)
=> 3 = 4 - 1
[1,1,1,0,1,0,0,0]
=> [[2,2,2],[]]
=> [2,2,2] => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2 = 3 - 1
[1,1,1,1,0,0,0,0]
=> [[3,3],[]]
=> [3,3] => ([(2,5),(3,5),(4,5)],6)
=> 3 = 4 - 1
[1,0,1,0,1,0,1,0,1,0]
=> [[1,1,1,1,1],[]]
=> [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1 = 2 - 1
[1,0,1,0,1,0,1,1,0,0]
=> [[2,1,1,1],[]]
=> [2,1,1,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2 = 3 - 1
[1,0,1,0,1,1,0,0,1,0]
=> [[2,2,1,1],[1]]
=> [1,2,1,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1 = 2 - 1
[1,0,1,0,1,1,0,1,0,0]
=> [[3,1,1],[]]
=> [3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3 = 4 - 1
[1,0,1,0,1,1,1,0,0,0]
=> [[2,2,1,1],[]]
=> [2,2,1,1] => ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2 = 3 - 1
[1,0,1,1,0,0,1,0,1,0]
=> [[2,2,2,1],[1,1]]
=> [1,1,2,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1 = 2 - 1
[1,0,1,1,0,0,1,1,0,0]
=> [[3,2,1],[1]]
=> [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2 = 3 - 1
[1,0,1,1,0,1,0,0,1,0]
=> [[3,3,1],[2]]
=> [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 2 = 3 - 1
[1,0,1,1,0,1,0,1,0,0]
=> [[4,1],[]]
=> [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 4 = 5 - 1
[1,0,1,1,0,1,1,0,0,0]
=> [[3,3,1],[1]]
=> [2,3,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2 = 3 - 1
[1,0,1,1,1,0,0,0,1,0]
=> [[2,2,2,1],[1]]
=> [1,2,2,1] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1 = 2 - 1
[1,0,1,1,1,0,0,1,0,0]
=> [[3,2,1],[]]
=> [3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3 = 4 - 1
[1,0,1,1,1,0,1,0,0,0]
=> [[2,2,2,1],[]]
=> [2,2,2,1] => ([(0,6),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 2 = 3 - 1
[1,0,1,1,1,1,0,0,0,0]
=> [[3,3,1],[]]
=> [3,3,1] => ([(0,6),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 3 = 4 - 1
[1,1,0,0,1,0,1,0,1,0]
=> [[2,2,2,2],[1,1,1]]
=> [1,1,1,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1 = 2 - 1
[1,1,0,0,1,0,1,1,0,0]
=> [[3,2,2],[1,1]]
=> [2,1,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2 = 3 - 1
[1,1,0,0,1,1,0,0,1,0]
=> [[3,3,2],[2,1]]
=> [1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> 1 = 2 - 1
[1,1,0,0,1,1,0,1,0,0]
=> [[4,2],[1]]
=> [3,2] => ([(1,4),(2,4),(3,4)],5)
=> 3 = 4 - 1
[1,1,0,0,1,1,1,0,0,0]
=> [[3,3,2],[1,1]]
=> [2,2,2] => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2 = 3 - 1
[1,1,0,1,0,0,1,0,1,0]
=> [[3,3,3],[2,2]]
=> [1,1,3] => ([(2,3),(2,4),(3,4)],5)
=> 2 = 3 - 1
[1,1,0,1,0,0,1,1,0,0]
=> [[4,3],[2]]
=> [2,3] => ([(2,4),(3,4)],5)
=> 2 = 3 - 1
[1,1,0,1,0,1,0,0,1,0]
=> [[4,4],[3]]
=> [1,4] => ([(3,4)],5)
=> 3 = 4 - 1
[1,1,0,1,0,1,0,1,0,0]
=> [[5],[]]
=> [5] => ([],5)
=> 5 = 6 - 1
[1,1,0,1,0,1,1,0,0,0]
=> [[4,4],[2]]
=> [2,4] => ([(3,5),(4,5)],6)
=> 3 = 4 - 1
[1,1,0,1,1,0,0,0,1,0]
=> [[3,3,3],[2,1]]
=> [1,2,3] => ([(2,5),(3,4),(3,5),(4,5)],6)
=> 2 = 3 - 1
[1,1,0,1,1,0,0,1,0,0]
=> [[4,3],[1]]
=> [3,3] => ([(2,5),(3,5),(4,5)],6)
=> 3 = 4 - 1
[1,1,0,1,1,0,1,0,0,0]
=> [[3,3,3],[1,1]]
=> [2,2,3] => ([(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 2 = 3 - 1
[1,1,0,1,1,1,0,0,0,0]
=> [[4,4],[1]]
=> [3,4] => ([(3,6),(4,6),(5,6)],7)
=> 3 = 4 - 1
[1,1,1,0,1,0,1,0,0,0]
=> [[2,2,2,2],[]]
=> [2,2,2,2] => ([(1,7),(2,6),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? ∊ {2,3,4,4,5} - 1
[1,1,1,0,1,1,0,0,0,0]
=> [[3,3,2],[]]
=> [3,3,2] => ([(1,7),(2,7),(3,6),(3,7),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? ∊ {2,3,4,4,5} - 1
[1,1,1,1,0,0,1,0,0,0]
=> [[3,3,3],[1]]
=> [2,3,3] => ([(2,7),(3,7),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? ∊ {2,3,4,4,5} - 1
[1,1,1,1,0,1,0,0,0,0]
=> [[4,4],[]]
=> [4,4] => ([(3,7),(4,7),(5,7),(6,7)],8)
=> ? ∊ {2,3,4,4,5} - 1
[1,1,1,1,1,0,0,0,0,0]
=> [[3,3,3],[]]
=> [3,3,3] => ([(2,8),(3,8),(4,7),(4,8),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> ? ∊ {2,3,4,4,5} - 1
[1,0,1,0,1,1,1,0,1,0,0,0]
=> [[2,2,2,1,1],[]]
=> [2,2,2,1,1] => ([(0,6),(0,7),(1,5),(1,6),(1,7),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? ∊ {2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,6,6,6} - 1
[1,0,1,0,1,1,1,1,0,0,0,0]
=> [[3,3,1,1],[]]
=> [3,3,1,1] => ([(0,6),(0,7),(1,6),(1,7),(2,5),(2,6),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? ∊ {2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,6,6,6} - 1
[1,0,1,1,0,1,1,0,1,0,0,0]
=> [[3,3,3,1],[1,1]]
=> [2,2,3,1] => ([(0,7),(1,7),(2,6),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? ∊ {2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,6,6,6} - 1
[1,0,1,1,0,1,1,1,0,0,0,0]
=> [[4,4,1],[1]]
=> [3,4,1] => ([(0,7),(1,7),(2,7),(3,6),(3,7),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? ∊ {2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,6,6,6} - 1
[1,0,1,1,1,0,0,1,1,0,0,0]
=> [[3,3,2,1],[1]]
=> [2,3,2,1] => ([(0,7),(1,6),(1,7),(2,6),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? ∊ {2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,6,6,6} - 1
[1,0,1,1,1,0,1,0,0,0,1,0]
=> [[2,2,2,2,1],[1]]
=> [1,2,2,2,1] => ([(0,7),(1,6),(1,7),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? ∊ {2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,6,6,6} - 1
[1,0,1,1,1,0,1,0,0,1,0,0]
=> [[3,2,2,1],[]]
=> [3,2,2,1] => ([(0,7),(1,6),(1,7),(2,5),(2,6),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? ∊ {2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,6,6,6} - 1
[1,0,1,1,1,0,1,0,1,0,0,0]
=> [[2,2,2,2,1],[]]
=> [2,2,2,2,1] => ([(0,8),(1,7),(1,8),(2,6),(2,7),(2,8),(3,5),(3,6),(3,7),(3,8),(4,5),(4,6),(4,7),(4,8),(5,6),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> ? ∊ {2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,6,6,6} - 1
[1,0,1,1,1,0,1,1,0,0,0,0]
=> [[3,3,2,1],[]]
=> [3,3,2,1] => ([(0,8),(1,7),(1,8),(2,7),(2,8),(3,6),(3,7),(3,8),(4,6),(4,7),(4,8),(5,6),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> ? ∊ {2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,6,6,6} - 1
[1,0,1,1,1,1,0,0,0,0,1,0]
=> [[3,3,3,1],[2]]
=> [1,3,3,1] => ([(0,7),(1,7),(2,6),(2,7),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? ∊ {2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,6,6,6} - 1
[1,0,1,1,1,1,0,0,0,1,0,0]
=> [[4,3,1],[]]
=> [4,3,1] => ([(0,7),(1,7),(2,6),(2,7),(3,6),(3,7),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? ∊ {2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,6,6,6} - 1
[1,0,1,1,1,1,0,0,1,0,0,0]
=> [[3,3,3,1],[1]]
=> [2,3,3,1] => ([(0,8),(1,8),(2,7),(2,8),(3,7),(3,8),(4,6),(4,7),(4,8),(5,6),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> ? ∊ {2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,6,6,6} - 1
[1,0,1,1,1,1,0,1,0,0,0,0]
=> [[4,4,1],[]]
=> [4,4,1] => ([(0,8),(1,8),(2,8),(3,7),(3,8),(4,7),(4,8),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> ? ∊ {2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,6,6,6} - 1
[1,0,1,1,1,1,1,0,0,0,0,0]
=> [[3,3,3,1],[]]
=> [3,3,3,1] => ([(0,9),(1,9),(2,8),(2,9),(3,8),(3,9),(4,7),(4,8),(4,9),(5,7),(5,8),(5,9),(6,7),(6,8),(6,9),(7,8),(7,9),(8,9)],10)
=> ? ∊ {2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,6,6,6} - 1
[1,1,0,0,1,1,1,0,1,0,0,0]
=> [[3,3,3,2],[1,1,1]]
=> [2,2,2,2] => ([(1,7),(2,6),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? ∊ {2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,6,6,6} - 1
[1,1,0,0,1,1,1,1,0,0,0,0]
=> [[4,4,2],[1,1]]
=> [3,3,2] => ([(1,7),(2,7),(3,6),(3,7),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? ∊ {2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,6,6,6} - 1
[1,1,0,1,0,1,1,0,1,0,0,0]
=> [[4,4,4],[2,2]]
=> [2,2,4] => ([(3,7),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? ∊ {2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,6,6,6} - 1
[1,1,0,1,0,1,1,1,0,0,0,0]
=> [[5,5],[2]]
=> [3,5] => ([(4,7),(5,7),(6,7)],8)
=> ? ∊ {2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,6,6,6} - 1
[1,1,0,1,1,0,0,1,1,0,0,0]
=> [[4,4,3],[2,1]]
=> [2,3,3] => ([(2,7),(3,7),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? ∊ {2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,6,6,6} - 1
[1,1,0,1,1,0,1,0,0,0,1,0]
=> [[3,3,3,3],[2,1,1]]
=> [1,2,2,3] => ([(2,7),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? ∊ {2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,6,6,6} - 1
[1,1,0,1,1,0,1,0,0,1,0,0]
=> [[4,3,3],[1,1]]
=> [3,2,3] => ([(2,7),(3,6),(3,7),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? ∊ {2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,6,6,6} - 1
[1,1,0,1,1,0,1,0,1,0,0,0]
=> [[3,3,3,3],[1,1,1]]
=> [2,2,2,3] => ([(2,8),(3,7),(3,8),(4,6),(4,7),(4,8),(5,6),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> ? ∊ {2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,6,6,6} - 1
[1,1,0,1,1,0,1,1,0,0,0,0]
=> [[4,4,3],[1,1]]
=> [3,3,3] => ([(2,8),(3,8),(4,7),(4,8),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> ? ∊ {2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,6,6,6} - 1
[1,1,0,1,1,1,0,0,0,0,1,0]
=> [[4,4,4],[3,1]]
=> [1,3,4] => ([(3,7),(4,7),(5,6),(5,7),(6,7)],8)
=> ? ∊ {2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,6,6,6} - 1
[1,1,0,1,1,1,0,0,0,1,0,0]
=> [[5,4],[1]]
=> [4,4] => ([(3,7),(4,7),(5,7),(6,7)],8)
=> ? ∊ {2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,6,6,6} - 1
[1,1,0,1,1,1,0,0,1,0,0,0]
=> [[4,4,4],[2,1]]
=> [2,3,4] => ([(3,8),(4,8),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> ? ∊ {2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,6,6,6} - 1
[1,1,0,1,1,1,0,1,0,0,0,0]
=> [[5,5],[1]]
=> [4,5] => ([(4,8),(5,8),(6,8),(7,8)],9)
=> ? ∊ {2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,6,6,6} - 1
[1,1,0,1,1,1,1,0,0,0,0,0]
=> [[4,4,4],[1,1]]
=> [3,3,4] => ([(3,9),(4,9),(5,8),(5,9),(6,8),(6,9),(7,8),(7,9),(8,9)],10)
=> ? ∊ {2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,6,6,6} - 1
[1,1,1,0,0,0,1,1,1,0,0,0]
=> [[3,3,2,2],[1,1]]
=> [2,2,2,2] => ([(1,7),(2,6),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? ∊ {2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,6,6,6} - 1
[1,1,1,0,0,1,0,1,1,0,0,0]
=> [[4,4,2],[2]]
=> [2,4,2] => ([(1,7),(2,7),(3,7),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? ∊ {2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,6,6,6} - 1
[1,1,1,0,0,1,1,0,0,0,1,0]
=> [[3,3,3,2],[2,1]]
=> [1,2,3,2] => ([(1,7),(2,7),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? ∊ {2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,6,6,6} - 1
[1,1,1,0,0,1,1,0,0,1,0,0]
=> [[4,3,2],[1]]
=> [3,3,2] => ([(1,7),(2,7),(3,6),(3,7),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? ∊ {2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,6,6,6} - 1
[1,1,1,0,0,1,1,0,1,0,0,0]
=> [[3,3,3,2],[1,1]]
=> [2,2,3,2] => ([(1,8),(2,8),(3,7),(3,8),(4,6),(4,7),(4,8),(5,6),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> ? ∊ {2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,6,6,6} - 1
[1,1,1,0,0,1,1,1,0,0,0,0]
=> [[4,4,2],[1]]
=> [3,4,2] => ([(1,8),(2,8),(3,8),(4,7),(4,8),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> ? ∊ {2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,6,6,6} - 1
[1,1,1,0,1,0,0,0,1,0,1,0]
=> [[2,2,2,2,2],[1,1]]
=> [1,1,2,2,2] => ([(1,7),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? ∊ {2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,6,6,6} - 1
[1,1,1,0,1,0,0,0,1,1,0,0]
=> [[3,2,2,2],[1]]
=> [2,2,2,2] => ([(1,7),(2,6),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? ∊ {2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,6,6,6} - 1
[1,1,1,0,1,0,0,1,0,0,1,0]
=> [[3,3,2,2],[2]]
=> [1,3,2,2] => ([(1,7),(2,6),(2,7),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? ∊ {2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,6,6,6} - 1
[1,1,1,0,1,0,0,1,0,1,0,0]
=> [[4,2,2],[]]
=> [4,2,2] => ([(1,7),(2,6),(2,7),(3,6),(3,7),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? ∊ {2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,6,6,6} - 1
[1,1,1,0,1,0,0,1,1,0,0,0]
=> [[3,3,2,2],[1]]
=> [2,3,2,2] => ([(1,8),(2,7),(2,8),(3,7),(3,8),(4,6),(4,7),(4,8),(5,6),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> ? ∊ {2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,6,6,6} - 1
[1,1,1,0,1,0,1,0,0,0,1,0]
=> [[2,2,2,2,2],[1]]
=> [1,2,2,2,2] => ([(1,8),(2,7),(2,8),(3,6),(3,7),(3,8),(4,5),(4,6),(4,7),(4,8),(5,6),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> ? ∊ {2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,6,6,6} - 1
[1,1,1,0,1,0,1,0,0,1,0,0]
=> [[3,2,2,2],[]]
=> [3,2,2,2] => ([(1,8),(2,7),(2,8),(3,6),(3,7),(3,8),(4,6),(4,7),(4,8),(5,6),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> ? ∊ {2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,6,6,6} - 1
[1,1,1,0,1,0,1,0,1,0,0,0]
=> [[2,2,2,2,2],[]]
=> [2,2,2,2,2] => ([(1,9),(2,8),(2,9),(3,7),(3,8),(3,9),(4,6),(4,7),(4,8),(4,9),(5,6),(5,7),(5,8),(5,9),(6,7),(6,8),(6,9),(7,8),(7,9),(8,9)],10)
=> ? ∊ {2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,6,6,6} - 1
[1,1,1,0,1,0,1,1,0,0,0,0]
=> [[3,3,2,2],[]]
=> [3,3,2,2] => ([(1,9),(2,8),(2,9),(3,8),(3,9),(4,7),(4,8),(4,9),(5,7),(5,8),(5,9),(6,7),(6,8),(6,9),(7,8),(7,9),(8,9)],10)
=> ? ∊ {2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,6,6,6} - 1
[1,1,1,0,1,1,0,0,0,0,1,0]
=> [[3,3,3,2],[2]]
=> [1,3,3,2] => ([(1,8),(2,8),(3,7),(3,8),(4,7),(4,8),(5,6),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> ? ∊ {2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,6,6,6} - 1
[1,1,1,0,1,1,0,0,0,1,0,0]
=> [[4,3,2],[]]
=> [4,3,2] => ([(1,8),(2,8),(3,7),(3,8),(4,7),(4,8),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> ? ∊ {2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,6,6,6} - 1
Description
The maximal cardinality of a set of vertices with the same neighbourhood in a graph.
The set of so called mating graphs, for which this statistic equals $1$, is enumerated by [1].
Matching statistic: St000725
(load all 2 compositions to match this statistic)
(load all 2 compositions to match this statistic)
Mp00199: Dyck paths —prime Dyck path⟶ Dyck paths
Mp00032: Dyck paths —inverse zeta map⟶ Dyck paths
Mp00023: Dyck paths —to non-crossing permutation⟶ Permutations
St000725: Permutations ⟶ ℤResult quality: 57% ●values known / values provided: 57%●distinct values known / distinct values provided: 100%
Mp00032: Dyck paths —inverse zeta map⟶ Dyck paths
Mp00023: Dyck paths —to non-crossing permutation⟶ Permutations
St000725: Permutations ⟶ ℤResult quality: 57% ●values known / values provided: 57%●distinct values known / distinct values provided: 100%
Values
[1,0]
=> [1,1,0,0]
=> [1,0,1,0]
=> [1,2] => 2
[1,0,1,0]
=> [1,1,0,1,0,0]
=> [1,1,0,0,1,0]
=> [2,1,3] => 2
[1,1,0,0]
=> [1,1,1,0,0,0]
=> [1,0,1,0,1,0]
=> [1,2,3] => 3
[1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> [2,1,4,3] => 2
[1,0,1,1,0,0]
=> [1,1,0,1,1,0,0,0]
=> [1,0,1,1,0,0,1,0]
=> [1,3,2,4] => 3
[1,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0]
=> [1,1,0,1,0,0,1,0]
=> [2,3,1,4] => 3
[1,1,0,1,0,0]
=> [1,1,1,0,1,0,0,0]
=> [1,1,0,0,1,0,1,0]
=> [2,1,3,4] => 2
[1,1,1,0,0,0]
=> [1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> [1,2,3,4] => 4
[1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> [3,2,1,5,4] => 3
[1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> [1,3,2,5,4] => 3
[1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> [1,1,1,0,0,1,0,0,1,0]
=> [3,2,4,1,5] => 3
[1,0,1,1,0,1,0,0]
=> [1,1,0,1,1,0,1,0,0,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> [2,1,3,5,4] => 2
[1,0,1,1,1,0,0,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> [1,2,4,3,5] => 4
[1,1,0,0,1,0,1,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> [1,1,0,0,1,1,0,1,0,0]
=> [2,1,4,5,3] => 2
[1,1,0,0,1,1,0,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> [1,0,1,1,0,1,0,0,1,0]
=> [1,3,4,2,5] => 4
[1,1,0,1,0,0,1,0]
=> [1,1,1,0,1,0,0,1,0,0]
=> [1,1,0,1,0,0,1,1,0,0]
=> [2,3,1,5,4] => 3
[1,1,0,1,0,1,0,0]
=> [1,1,1,0,1,0,1,0,0,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> [2,1,4,3,5] => 2
[1,1,0,1,1,0,0,0]
=> [1,1,1,0,1,1,0,0,0,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> [1,3,2,4,5] => 3
[1,1,1,0,0,0,1,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> [1,1,0,1,0,1,0,0,1,0]
=> [2,3,4,1,5] => 4
[1,1,1,0,0,1,0,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> [1,1,0,1,0,0,1,0,1,0]
=> [2,3,1,4,5] => 3
[1,1,1,0,1,0,0,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> [1,1,0,0,1,0,1,0,1,0]
=> [2,1,3,4,5] => 2
[1,1,1,1,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,2,3,4,5] => 5
[1,0,1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,1,0,0]
=> [1,1,1,0,0,0,1,1,1,0,0,0]
=> [3,2,1,6,5,4] => 3
[1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,0,1,1,0,0,0]
=> [1,0,1,1,1,0,0,0,1,1,0,0]
=> [1,4,3,2,6,5] => 4
[1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,0,1,1,0,0,1,0,0]
=> [1,1,1,0,0,1,1,0,0,0,1,0]
=> [3,2,5,4,1,6] => 3
[1,0,1,0,1,1,0,1,0,0]
=> [1,1,0,1,0,1,1,0,1,0,0,0]
=> [1,1,1,0,0,0,1,0,1,1,0,0]
=> [3,2,1,4,6,5] => 3
[1,0,1,0,1,1,1,0,0,0]
=> [1,1,0,1,0,1,1,1,0,0,0,0]
=> [1,0,1,0,1,1,0,0,1,1,0,0]
=> [1,2,4,3,6,5] => 4
[1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,1,1,0,0,1,0,1,0,0]
=> [1,1,0,0,1,1,1,0,0,1,0,0]
=> [2,1,5,4,6,3] => 2
[1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,1,1,0,0,1,1,0,0,0]
=> [1,0,1,1,1,0,0,1,0,0,1,0]
=> [1,4,3,5,2,6] => 4
[1,0,1,1,0,1,0,0,1,0]
=> [1,1,0,1,1,0,1,0,0,1,0,0]
=> [1,1,0,1,1,0,0,0,1,1,0,0]
=> [2,4,3,1,6,5] => 4
[1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,1,1,0,1,0,1,0,0,0]
=> [1,1,1,0,0,0,1,1,0,0,1,0]
=> [3,2,1,5,4,6] => 3
[1,0,1,1,0,1,1,0,0,0]
=> [1,1,0,1,1,0,1,1,0,0,0,0]
=> [1,0,1,1,0,0,1,0,1,1,0,0]
=> [1,3,2,4,6,5] => 3
[1,0,1,1,1,0,0,0,1,0]
=> [1,1,0,1,1,1,0,0,0,1,0,0]
=> [1,1,0,1,1,0,0,1,0,0,1,0]
=> [2,4,3,5,1,6] => 4
[1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,1,1,1,0,0,1,0,0,0]
=> [1,1,1,0,0,1,0,0,1,0,1,0]
=> [3,2,4,1,5,6] => 3
[1,0,1,1,1,0,1,0,0,0]
=> [1,1,0,1,1,1,0,1,0,0,0,0]
=> [1,1,0,0,1,0,1,0,1,1,0,0]
=> [2,1,3,4,6,5] => 2
[1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,1,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,2,3,5,4,6] => 5
[1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,0,0,1,0,1,0,1,0,0]
=> [1,1,1,0,1,0,0,0,1,1,0,0]
=> [4,2,3,1,6,5] => 3
[1,1,0,0,1,0,1,1,0,0]
=> [1,1,1,0,0,1,0,1,1,0,0,0]
=> [1,0,1,1,0,0,1,1,0,1,0,0]
=> [1,3,2,5,6,4] => 3
[1,1,0,0,1,1,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,1,0,0]
=> [1,1,1,0,1,0,0,1,0,0,1,0]
=> [4,2,3,5,1,6] => 4
[1,1,0,0,1,1,0,1,0,0]
=> [1,1,1,0,0,1,1,0,1,0,0,0]
=> [1,1,0,0,1,0,1,1,0,1,0,0]
=> [2,1,3,5,6,4] => 2
[1,1,0,0,1,1,1,0,0,0]
=> [1,1,1,0,0,1,1,1,0,0,0,0]
=> [1,0,1,0,1,1,0,1,0,0,1,0]
=> [1,2,4,5,3,6] => 5
[1,1,0,1,0,0,1,0,1,0]
=> [1,1,1,0,1,0,0,1,0,1,0,0]
=> [1,1,1,0,0,0,1,1,0,1,0,0]
=> [3,2,1,5,6,4] => 3
[1,1,0,1,0,0,1,1,0,0]
=> [1,1,1,0,1,0,0,1,1,0,0,0]
=> [1,0,1,1,0,1,0,0,1,1,0,0]
=> [1,3,4,2,6,5] => 4
[1,1,0,1,0,1,0,0,1,0]
=> [1,1,1,0,1,0,1,0,0,1,0,0]
=> [1,1,1,0,0,1,0,0,1,1,0,0]
=> [3,2,4,1,6,5] => 3
[1,1,0,1,0,1,0,1,0,0]
=> [1,1,1,0,1,0,1,0,1,0,0,0]
=> [1,1,0,0,1,1,0,0,1,1,0,0]
=> [2,1,4,3,6,5] => 2
[1,1,0,1,0,1,1,0,0,0]
=> [1,1,1,0,1,0,1,1,0,0,0,0]
=> [1,0,1,1,0,0,1,1,0,0,1,0]
=> [1,3,2,5,4,6] => 3
[1,1,0,1,1,0,0,0,1,0]
=> [1,1,1,0,1,1,0,0,0,1,0,0]
=> [1,1,1,0,0,1,0,1,0,0,1,0]
=> [3,2,4,5,1,6] => 3
[1,1,0,1,1,0,0,1,0,0]
=> [1,1,1,0,1,1,0,0,1,0,0,0]
=> [1,1,0,1,0,0,1,0,1,1,0,0]
=> [2,3,1,4,6,5] => 3
[1,1,0,1,1,0,1,0,0,0]
=> [1,1,1,0,1,1,0,1,0,0,0,0]
=> [1,1,0,0,1,0,1,1,0,0,1,0]
=> [2,1,3,5,4,6] => 2
[1,1,0,1,1,1,0,0,0,0]
=> [1,1,1,0,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,2,4,3,5,6] => 4
[1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> [1,1,1,1,0,0,0,0,1,1,1,0,0,0]
=> [4,3,2,1,7,6,5] => ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5}
[1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,0,1,0,1,1,0,0,1,0,0]
=> [1,1,1,1,0,0,0,1,1,0,0,0,1,0]
=> [4,3,2,6,5,1,7] => ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5}
[1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,1,0,1,0,1,0,1,1,0,1,0,0,0]
=> [1,1,1,0,0,0,1,0,1,1,1,0,0,0]
=> [3,2,1,4,7,6,5] => ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5}
[1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,1,0,1,1,0,0,1,0,1,0,0]
=> [1,1,0,0,1,1,1,0,0,1,1,0,0,0]
=> [2,1,5,4,7,6,3] => ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5}
[1,0,1,0,1,1,0,1,0,0,1,0]
=> [1,1,0,1,0,1,1,0,1,0,0,1,0,0]
=> [1,1,0,1,1,0,0,0,1,1,1,0,0,0]
=> [2,4,3,1,7,6,5] => ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5}
[1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,1,0,1,1,0,1,0,1,0,0,0]
=> [1,1,1,0,0,0,1,1,1,0,0,0,1,0]
=> [3,2,1,6,5,4,7] => ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5}
[1,0,1,0,1,1,1,0,0,0,1,0]
=> [1,1,0,1,0,1,1,1,0,0,0,1,0,0]
=> [1,1,0,1,1,0,0,1,1,0,0,0,1,0]
=> [2,4,3,6,5,1,7] => ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5}
[1,0,1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,1,0,1,1,1,0,0,1,0,0,0]
=> [1,1,1,0,0,1,1,0,0,0,1,0,1,0]
=> [3,2,5,4,1,6,7] => ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5}
[1,0,1,0,1,1,1,0,1,0,0,0]
=> [1,1,0,1,0,1,1,1,0,1,0,0,0,0]
=> [1,1,1,0,0,0,1,0,1,0,1,1,0,0]
=> [3,2,1,4,5,7,6] => ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5}
[1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,0,1,1,0,0,1,0,1,0,1,0,0]
=> [1,1,1,1,0,0,1,0,0,0,1,1,0,0]
=> [5,3,2,4,1,7,6] => ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5}
[1,0,1,1,0,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,0,1,1,0,0,1,0,0]
=> [1,1,1,1,0,0,1,0,0,1,0,0,1,0]
=> [5,3,2,4,6,1,7] => ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5}
[1,0,1,1,0,0,1,1,0,1,0,0]
=> [1,1,0,1,1,0,0,1,1,0,1,0,0,0]
=> [1,1,0,0,1,0,1,1,1,0,0,1,0,0]
=> [2,1,3,6,5,7,4] => ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5}
[1,0,1,1,0,1,0,0,1,0,1,0]
=> [1,1,0,1,1,0,1,0,0,1,0,1,0,0]
=> [1,1,1,0,0,0,1,1,0,1,1,0,0,0]
=> [3,2,1,5,7,6,4] => ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5}
[1,0,1,1,0,1,0,1,0,0,1,0]
=> [1,1,0,1,1,0,1,0,1,0,0,1,0,0]
=> [1,1,1,0,0,1,0,0,1,1,1,0,0,0]
=> [3,2,4,1,7,6,5] => ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5}
[1,0,1,1,0,1,0,1,0,1,0,0]
=> [1,1,0,1,1,0,1,0,1,0,1,0,0,0]
=> [1,1,0,0,1,1,1,0,0,0,1,1,0,0]
=> [2,1,5,4,3,7,6] => ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5}
[1,0,1,1,0,1,1,0,0,0,1,0]
=> [1,1,0,1,1,0,1,1,0,0,0,1,0,0]
=> [1,1,1,0,0,1,0,1,1,0,0,0,1,0]
=> [3,2,4,6,5,1,7] => ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5}
[1,0,1,1,0,1,1,0,0,1,0,0]
=> [1,1,0,1,1,0,1,1,0,0,1,0,0,0]
=> [1,1,0,1,1,0,0,0,1,0,1,1,0,0]
=> [2,4,3,1,5,7,6] => ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5}
[1,0,1,1,0,1,1,0,1,0,0,0]
=> [1,1,0,1,1,0,1,1,0,1,0,0,0,0]
=> [1,1,1,0,0,0,1,0,1,1,0,0,1,0]
=> [3,2,1,4,6,5,7] => ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5}
[1,0,1,1,1,0,0,0,1,0,1,0]
=> [1,1,0,1,1,1,0,0,0,1,0,1,0,0]
=> [1,1,0,0,1,1,0,1,1,0,0,1,0,0]
=> [2,1,4,6,5,7,3] => ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5}
[1,0,1,1,1,0,0,1,0,0,1,0]
=> [1,1,0,1,1,1,0,0,1,0,0,1,0,0]
=> [1,1,0,1,0,0,1,1,1,0,0,1,0,0]
=> [2,3,1,6,5,7,4] => ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5}
[1,0,1,1,1,0,0,1,0,1,0,0]
=> [1,1,0,1,1,1,0,0,1,0,1,0,0,0]
=> [1,1,0,0,1,1,1,0,0,1,0,0,1,0]
=> [2,1,5,4,6,3,7] => ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5}
[1,0,1,1,1,0,1,0,0,0,1,0]
=> [1,1,0,1,1,1,0,1,0,0,0,1,0,0]
=> [1,1,0,1,0,1,1,0,0,0,1,1,0,0]
=> [2,3,5,4,1,7,6] => ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5}
[1,0,1,1,1,0,1,0,0,1,0,0]
=> [1,1,0,1,1,1,0,1,0,0,1,0,0,0]
=> [1,1,0,1,1,0,0,0,1,1,0,0,1,0]
=> [2,4,3,1,6,5,7] => ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5}
[1,0,1,1,1,0,1,0,1,0,0,0]
=> [1,1,0,1,1,1,0,1,0,1,0,0,0,0]
=> [1,1,1,0,0,0,1,1,0,0,1,0,1,0]
=> [3,2,1,5,4,6,7] => ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5}
[1,0,1,1,1,1,0,0,0,0,1,0]
=> [1,1,0,1,1,1,1,0,0,0,0,1,0,0]
=> [1,1,0,1,0,1,1,0,0,1,0,0,1,0]
=> [2,3,5,4,6,1,7] => ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5}
[1,0,1,1,1,1,0,0,0,1,0,0]
=> [1,1,0,1,1,1,1,0,0,0,1,0,0,0]
=> [1,1,0,1,1,0,0,1,0,0,1,0,1,0]
=> [2,4,3,5,1,6,7] => ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5}
[1,0,1,1,1,1,0,0,1,0,0,0]
=> [1,1,0,1,1,1,1,0,0,1,0,0,0,0]
=> [1,1,1,0,0,1,0,0,1,0,1,0,1,0]
=> [3,2,4,1,5,6,7] => ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5}
[1,0,1,1,1,1,0,1,0,0,0,0]
=> [1,1,0,1,1,1,1,0,1,0,0,0,0,0]
=> [1,1,0,0,1,0,1,0,1,0,1,1,0,0]
=> [2,1,3,4,5,7,6] => ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5}
[1,1,0,0,1,0,1,0,1,0,1,0]
=> [1,1,1,0,0,1,0,1,0,1,0,1,0,0]
=> [1,1,1,0,0,0,1,1,1,0,1,0,0,0]
=> [3,2,1,7,5,6,4] => ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5}
[1,1,0,0,1,0,1,0,1,1,0,0]
=> [1,1,1,0,0,1,0,1,0,1,1,0,0,0]
=> [1,0,1,1,1,0,1,0,0,0,1,1,0,0]
=> [1,5,3,4,2,7,6] => ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5}
[1,1,0,0,1,0,1,1,0,0,1,0]
=> [1,1,1,0,0,1,0,1,1,0,0,1,0,0]
=> [1,1,1,0,0,1,1,0,1,0,0,0,1,0]
=> [3,2,6,4,5,1,7] => ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5}
[1,1,0,0,1,0,1,1,0,1,0,0]
=> [1,1,1,0,0,1,0,1,1,0,1,0,0,0]
=> [1,1,1,0,1,0,0,0,1,0,1,1,0,0]
=> [4,2,3,1,5,7,6] => ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5}
[1,1,0,0,1,1,0,0,1,0,1,0]
=> [1,1,1,0,0,1,1,0,0,1,0,1,0,0]
=> [1,1,0,0,1,1,1,0,1,0,0,1,0,0]
=> [2,1,6,4,5,7,3] => ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5}
[1,1,0,0,1,1,0,0,1,1,0,0]
=> [1,1,1,0,0,1,1,0,0,1,1,0,0,0]
=> [1,0,1,1,1,0,1,0,0,1,0,0,1,0]
=> [1,5,3,4,6,2,7] => ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5}
[1,1,0,0,1,1,0,1,0,0,1,0]
=> [1,1,1,0,0,1,1,0,1,0,0,1,0,0]
=> [1,1,0,1,1,0,1,0,0,0,1,1,0,0]
=> [2,5,3,4,1,7,6] => ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5}
[1,1,0,0,1,1,0,1,0,1,0,0]
=> [1,1,1,0,0,1,1,0,1,0,1,0,0,0]
=> [1,1,1,0,1,0,0,0,1,1,0,0,1,0]
=> [4,2,3,1,6,5,7] => ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5}
[1,1,0,0,1,1,1,0,0,0,1,0]
=> [1,1,1,0,0,1,1,1,0,0,0,1,0,0]
=> [1,1,0,1,1,0,1,0,0,1,0,0,1,0]
=> [2,5,3,4,6,1,7] => ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5}
[1,1,0,0,1,1,1,0,0,1,0,0]
=> [1,1,1,0,0,1,1,1,0,0,1,0,0,0]
=> [1,1,1,0,1,0,0,1,0,0,1,0,1,0]
=> [4,2,3,5,1,6,7] => ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5}
[1,1,0,0,1,1,1,0,1,0,0,0]
=> [1,1,1,0,0,1,1,1,0,1,0,0,0,0]
=> [1,1,0,0,1,0,1,0,1,1,0,1,0,0]
=> [2,1,3,4,6,7,5] => ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5}
[1,1,0,1,0,0,1,0,1,0,1,0]
=> [1,1,1,0,1,0,0,1,0,1,0,1,0,0]
=> [1,1,1,0,1,0,0,0,1,1,1,0,0,0]
=> [4,2,3,1,7,6,5] => ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5}
[1,1,0,1,0,0,1,1,0,0,1,0]
=> [1,1,1,0,1,0,0,1,1,0,0,1,0,0]
=> [1,1,1,0,1,0,0,1,1,0,0,0,1,0]
=> [4,2,3,6,5,1,7] => ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5}
[1,1,0,1,0,0,1,1,0,1,0,0]
=> [1,1,1,0,1,0,0,1,1,0,1,0,0,0]
=> [1,1,1,0,0,0,1,0,1,1,0,1,0,0]
=> [3,2,1,4,6,7,5] => ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5}
[1,1,0,1,0,1,0,0,1,0,1,0]
=> [1,1,1,0,1,0,1,0,0,1,0,1,0,0]
=> [1,1,1,0,0,0,1,1,1,0,0,1,0,0]
=> [3,2,1,6,5,7,4] => ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5}
[1,1,0,1,0,1,0,1,0,0,1,0]
=> [1,1,1,0,1,0,1,0,1,0,0,1,0,0]
=> [1,1,1,0,0,1,1,0,0,0,1,1,0,0]
=> [3,2,5,4,1,7,6] => ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5}
[1,1,0,1,0,1,0,1,0,1,0,0]
=> [1,1,1,0,1,0,1,0,1,0,1,0,0,0]
=> [1,1,1,0,0,0,1,1,0,0,1,1,0,0]
=> [3,2,1,5,4,7,6] => ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5}
[1,1,0,1,0,1,1,0,0,0,1,0]
=> [1,1,1,0,1,0,1,1,0,0,0,1,0,0]
=> [1,1,1,0,0,1,1,0,0,1,0,0,1,0]
=> [3,2,5,4,6,1,7] => ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5}
[1,1,0,1,0,1,1,0,0,1,0,0]
=> [1,1,1,0,1,0,1,1,0,0,1,0,0,0]
=> [1,1,1,0,0,1,0,0,1,0,1,1,0,0]
=> [3,2,4,1,5,7,6] => ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5}
[1,1,0,1,0,1,1,0,1,0,0,0]
=> [1,1,1,0,1,0,1,1,0,1,0,0,0,0]
=> [1,1,0,0,1,0,1,1,0,0,1,1,0,0]
=> [2,1,3,5,4,7,6] => ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5}
[1,1,0,1,1,0,0,0,1,0,1,0]
=> [1,1,1,0,1,1,0,0,0,1,0,1,0,0]
=> [1,1,0,0,1,1,1,0,0,1,0,1,0,0]
=> [2,1,5,4,6,7,3] => ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5}
[1,1,0,1,1,0,0,1,0,0,1,0]
=> [1,1,1,0,1,1,0,0,1,0,0,1,0,0]
=> [1,1,0,1,1,0,0,0,1,1,0,1,0,0]
=> [2,4,3,1,6,7,5] => ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5}
Description
The smallest label of a leaf of the increasing binary tree associated to a permutation.
Matching statistic: St000264
(load all 23 compositions to match this statistic)
(load all 23 compositions to match this statistic)
Mp00201: Dyck paths —Ringel⟶ Permutations
Mp00223: Permutations —runsort⟶ Permutations
Mp00160: Permutations —graph of inversions⟶ Graphs
St000264: Graphs ⟶ ℤResult quality: 33% ●values known / values provided: 54%●distinct values known / distinct values provided: 33%
Mp00223: Permutations —runsort⟶ Permutations
Mp00160: Permutations —graph of inversions⟶ Graphs
St000264: Graphs ⟶ ℤResult quality: 33% ●values known / values provided: 54%●distinct values known / distinct values provided: 33%
Values
[1,0]
=> [2,1] => [1,2] => ([],2)
=> ? = 2
[1,0,1,0]
=> [3,1,2] => [1,2,3] => ([],3)
=> ? ∊ {2,3}
[1,1,0,0]
=> [2,3,1] => [1,2,3] => ([],3)
=> ? ∊ {2,3}
[1,0,1,0,1,0]
=> [4,1,2,3] => [1,2,3,4] => ([],4)
=> ? ∊ {2,2,3,3,4}
[1,0,1,1,0,0]
=> [3,1,4,2] => [1,4,2,3] => ([(1,3),(2,3)],4)
=> ? ∊ {2,2,3,3,4}
[1,1,0,0,1,0]
=> [2,4,1,3] => [1,3,2,4] => ([(2,3)],4)
=> ? ∊ {2,2,3,3,4}
[1,1,0,1,0,0]
=> [4,3,1,2] => [1,2,3,4] => ([],4)
=> ? ∊ {2,2,3,3,4}
[1,1,1,0,0,0]
=> [2,3,4,1] => [1,2,3,4] => ([],4)
=> ? ∊ {2,2,3,3,4}
[1,0,1,0,1,0,1,0]
=> [5,1,2,3,4] => [1,2,3,4,5] => ([],5)
=> ? ∊ {2,2,2,2,3,3,3,3,4,4,5}
[1,0,1,0,1,1,0,0]
=> [4,1,2,5,3] => [1,2,5,3,4] => ([(2,4),(3,4)],5)
=> ? ∊ {2,2,2,2,3,3,3,3,4,4,5}
[1,0,1,1,0,0,1,0]
=> [3,1,5,2,4] => [1,5,2,4,3] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> 3
[1,0,1,1,0,1,0,0]
=> [5,1,4,2,3] => [1,4,2,3,5] => ([(2,4),(3,4)],5)
=> ? ∊ {2,2,2,2,3,3,3,3,4,4,5}
[1,0,1,1,1,0,0,0]
=> [3,1,4,5,2] => [1,4,5,2,3] => ([(1,3),(1,4),(2,3),(2,4)],5)
=> 4
[1,1,0,0,1,0,1,0]
=> [2,5,1,3,4] => [1,3,4,2,5] => ([(2,4),(3,4)],5)
=> ? ∊ {2,2,2,2,3,3,3,3,4,4,5}
[1,1,0,0,1,1,0,0]
=> [2,4,1,5,3] => [1,5,2,4,3] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> 3
[1,1,0,1,0,0,1,0]
=> [5,3,1,2,4] => [1,2,4,3,5] => ([(3,4)],5)
=> ? ∊ {2,2,2,2,3,3,3,3,4,4,5}
[1,1,0,1,0,1,0,0]
=> [5,4,1,2,3] => [1,2,3,4,5] => ([],5)
=> ? ∊ {2,2,2,2,3,3,3,3,4,4,5}
[1,1,0,1,1,0,0,0]
=> [4,3,1,5,2] => [1,5,2,3,4] => ([(1,4),(2,4),(3,4)],5)
=> ? ∊ {2,2,2,2,3,3,3,3,4,4,5}
[1,1,1,0,0,0,1,0]
=> [2,3,5,1,4] => [1,4,2,3,5] => ([(2,4),(3,4)],5)
=> ? ∊ {2,2,2,2,3,3,3,3,4,4,5}
[1,1,1,0,0,1,0,0]
=> [2,5,4,1,3] => [1,3,2,5,4] => ([(1,4),(2,3)],5)
=> ? ∊ {2,2,2,2,3,3,3,3,4,4,5}
[1,1,1,0,1,0,0,0]
=> [5,3,4,1,2] => [1,2,3,4,5] => ([],5)
=> ? ∊ {2,2,2,2,3,3,3,3,4,4,5}
[1,1,1,1,0,0,0,0]
=> [2,3,4,5,1] => [1,2,3,4,5] => ([],5)
=> ? ∊ {2,2,2,2,3,3,3,3,4,4,5}
[1,0,1,0,1,0,1,0,1,0]
=> [6,1,2,3,4,5] => [1,2,3,4,5,6] => ([],6)
=> ? ∊ {2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,5,5,5,5,6}
[1,0,1,0,1,0,1,1,0,0]
=> [5,1,2,3,6,4] => [1,2,3,6,4,5] => ([(3,5),(4,5)],6)
=> ? ∊ {2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,5,5,5,5,6}
[1,0,1,0,1,1,0,0,1,0]
=> [4,1,2,6,3,5] => [1,2,6,3,5,4] => ([(2,5),(3,4),(3,5),(4,5)],6)
=> 3
[1,0,1,0,1,1,0,1,0,0]
=> [6,1,2,5,3,4] => [1,2,5,3,4,6] => ([(3,5),(4,5)],6)
=> ? ∊ {2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,5,5,5,5,6}
[1,0,1,0,1,1,1,0,0,0]
=> [4,1,2,5,6,3] => [1,2,5,6,3,4] => ([(2,4),(2,5),(3,4),(3,5)],6)
=> 4
[1,0,1,1,0,0,1,0,1,0]
=> [3,1,6,2,4,5] => [1,6,2,4,5,3] => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
[1,0,1,1,0,0,1,1,0,0]
=> [3,1,5,2,6,4] => [1,5,2,6,3,4] => ([(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> 4
[1,0,1,1,0,1,0,0,1,0]
=> [6,1,4,2,3,5] => [1,4,2,3,5,6] => ([(3,5),(4,5)],6)
=> ? ∊ {2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,5,5,5,5,6}
[1,0,1,1,0,1,0,1,0,0]
=> [6,1,5,2,3,4] => [1,5,2,3,4,6] => ([(2,5),(3,5),(4,5)],6)
=> ? ∊ {2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,5,5,5,5,6}
[1,0,1,1,0,1,1,0,0,0]
=> [5,1,4,2,6,3] => [1,4,2,6,3,5] => ([(1,5),(2,4),(3,4),(3,5)],6)
=> ? ∊ {2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,5,5,5,5,6}
[1,0,1,1,1,0,0,0,1,0]
=> [3,1,4,6,2,5] => [1,4,6,2,5,3] => ([(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> 3
[1,0,1,1,1,0,0,1,0,0]
=> [3,1,6,5,2,4] => [1,6,2,4,3,5] => ([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
[1,0,1,1,1,0,1,0,0,0]
=> [6,1,4,5,2,3] => [1,4,5,2,3,6] => ([(2,4),(2,5),(3,4),(3,5)],6)
=> 4
[1,0,1,1,1,1,0,0,0,0]
=> [3,1,4,5,6,2] => [1,4,5,6,2,3] => ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> 4
[1,1,0,0,1,0,1,0,1,0]
=> [2,6,1,3,4,5] => [1,3,4,5,2,6] => ([(2,5),(3,5),(4,5)],6)
=> ? ∊ {2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,5,5,5,5,6}
[1,1,0,0,1,0,1,1,0,0]
=> [2,5,1,3,6,4] => [1,3,6,2,5,4] => ([(1,4),(2,3),(2,5),(3,5),(4,5)],6)
=> 3
[1,1,0,0,1,1,0,0,1,0]
=> [2,4,1,6,3,5] => [1,6,2,4,3,5] => ([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
[1,1,0,0,1,1,0,1,0,0]
=> [2,6,1,5,3,4] => [1,5,2,6,3,4] => ([(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> 4
[1,1,0,0,1,1,1,0,0,0]
=> [2,4,1,5,6,3] => [1,5,6,2,4,3] => ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)
=> 3
[1,1,0,1,0,0,1,0,1,0]
=> [6,3,1,2,4,5] => [1,2,4,5,3,6] => ([(3,5),(4,5)],6)
=> ? ∊ {2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,5,5,5,5,6}
[1,1,0,1,0,0,1,1,0,0]
=> [5,3,1,2,6,4] => [1,2,6,3,4,5] => ([(2,5),(3,5),(4,5)],6)
=> ? ∊ {2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,5,5,5,5,6}
[1,1,0,1,0,1,0,0,1,0]
=> [6,4,1,2,3,5] => [1,2,3,5,4,6] => ([(4,5)],6)
=> ? ∊ {2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,5,5,5,5,6}
[1,1,0,1,0,1,0,1,0,0]
=> [5,6,1,2,3,4] => [1,2,3,4,5,6] => ([],6)
=> ? ∊ {2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,5,5,5,5,6}
[1,1,0,1,0,1,1,0,0,0]
=> [5,4,1,2,6,3] => [1,2,6,3,4,5] => ([(2,5),(3,5),(4,5)],6)
=> ? ∊ {2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,5,5,5,5,6}
[1,1,0,1,1,0,0,0,1,0]
=> [4,3,1,6,2,5] => [1,6,2,5,3,4] => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
[1,1,0,1,1,0,0,1,0,0]
=> [6,3,1,5,2,4] => [1,5,2,4,3,6] => ([(2,5),(3,4),(3,5),(4,5)],6)
=> 3
[1,1,0,1,1,0,1,0,0,0]
=> [6,4,1,5,2,3] => [1,5,2,3,4,6] => ([(2,5),(3,5),(4,5)],6)
=> ? ∊ {2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,5,5,5,5,6}
[1,1,0,1,1,1,0,0,0,0]
=> [4,3,1,5,6,2] => [1,5,6,2,3,4] => ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> 4
[1,1,1,0,0,0,1,0,1,0]
=> [2,3,6,1,4,5] => [1,4,5,2,3,6] => ([(2,4),(2,5),(3,4),(3,5)],6)
=> 4
[1,1,1,0,0,0,1,1,0,0]
=> [2,3,5,1,6,4] => [1,6,2,3,5,4] => ([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
[1,1,1,0,0,1,0,0,1,0]
=> [2,6,4,1,3,5] => [1,3,5,2,6,4] => ([(1,5),(2,4),(3,4),(3,5)],6)
=> ? ∊ {2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,5,5,5,5,6}
[1,1,1,0,0,1,0,1,0,0]
=> [2,6,5,1,3,4] => [1,3,4,2,6,5] => ([(1,2),(3,5),(4,5)],6)
=> ? ∊ {2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,5,5,5,5,6}
[1,1,1,0,0,1,1,0,0,0]
=> [2,5,4,1,6,3] => [1,6,2,5,3,4] => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
[1,1,1,0,1,0,0,0,1,0]
=> [6,3,4,1,2,5] => [1,2,5,3,4,6] => ([(3,5),(4,5)],6)
=> ? ∊ {2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,5,5,5,5,6}
[1,1,1,0,1,0,0,1,0,0]
=> [6,3,5,1,2,4] => [1,2,4,3,5,6] => ([(4,5)],6)
=> ? ∊ {2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,5,5,5,5,6}
[1,1,1,0,1,0,1,0,0,0]
=> [6,5,4,1,2,3] => [1,2,3,4,5,6] => ([],6)
=> ? ∊ {2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,5,5,5,5,6}
[1,1,1,0,1,1,0,0,0,0]
=> [5,3,4,1,6,2] => [1,6,2,3,4,5] => ([(1,5),(2,5),(3,5),(4,5)],6)
=> ? ∊ {2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,5,5,5,5,6}
[1,1,1,1,0,0,0,0,1,0]
=> [2,3,4,6,1,5] => [1,5,2,3,4,6] => ([(2,5),(3,5),(4,5)],6)
=> ? ∊ {2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,5,5,5,5,6}
[1,1,1,1,0,0,0,1,0,0]
=> [2,3,6,5,1,4] => [1,4,2,3,6,5] => ([(1,2),(3,5),(4,5)],6)
=> ? ∊ {2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,5,5,5,5,6}
[1,1,1,1,0,0,1,0,0,0]
=> [2,6,4,5,1,3] => [1,3,2,6,4,5] => ([(1,2),(3,5),(4,5)],6)
=> ? ∊ {2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,5,5,5,5,6}
[1,1,1,1,0,1,0,0,0,0]
=> [6,3,4,5,1,2] => [1,2,3,4,5,6] => ([],6)
=> ? ∊ {2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,5,5,5,5,6}
[1,1,1,1,1,0,0,0,0,0]
=> [2,3,4,5,6,1] => [1,2,3,4,5,6] => ([],6)
=> ? ∊ {2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,5,5,5,5,6}
[1,0,1,0,1,0,1,0,1,0,1,0]
=> [7,1,2,3,4,5,6] => [1,2,3,4,5,6,7] => ([],7)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,7}
[1,0,1,0,1,0,1,0,1,1,0,0]
=> [6,1,2,3,4,7,5] => [1,2,3,4,7,5,6] => ([(4,6),(5,6)],7)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,7}
[1,0,1,0,1,0,1,1,0,0,1,0]
=> [5,1,2,3,7,4,6] => [1,2,3,7,4,6,5] => ([(3,6),(4,5),(4,6),(5,6)],7)
=> 3
[1,0,1,0,1,0,1,1,0,1,0,0]
=> [7,1,2,3,6,4,5] => [1,2,3,6,4,5,7] => ([(4,6),(5,6)],7)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,7}
[1,0,1,0,1,0,1,1,1,0,0,0]
=> [5,1,2,3,6,7,4] => [1,2,3,6,7,4,5] => ([(3,5),(3,6),(4,5),(4,6)],7)
=> 4
[1,0,1,0,1,1,0,0,1,0,1,0]
=> [4,1,2,7,3,5,6] => [1,2,7,3,5,6,4] => ([(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 3
[1,0,1,0,1,1,0,0,1,1,0,0]
=> [4,1,2,6,3,7,5] => [1,2,6,3,7,4,5] => ([(2,6),(3,4),(3,5),(4,6),(5,6)],7)
=> 4
[1,0,1,0,1,1,0,1,0,0,1,0]
=> [7,1,2,5,3,4,6] => [1,2,5,3,4,6,7] => ([(4,6),(5,6)],7)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,7}
[1,0,1,0,1,1,0,1,0,1,0,0]
=> [7,1,2,6,3,4,5] => [1,2,6,3,4,5,7] => ([(3,6),(4,6),(5,6)],7)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,7}
[1,0,1,0,1,1,0,1,1,0,0,0]
=> [6,1,2,5,3,7,4] => [1,2,5,3,7,4,6] => ([(2,6),(3,5),(4,5),(4,6)],7)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,7}
[1,0,1,0,1,1,1,0,0,0,1,0]
=> [4,1,2,5,7,3,6] => [1,2,5,7,3,6,4] => ([(2,3),(2,6),(3,5),(4,5),(4,6),(5,6)],7)
=> 3
[1,0,1,0,1,1,1,0,0,1,0,0]
=> [4,1,2,7,6,3,5] => [1,2,7,3,5,4,6] => ([(2,6),(3,6),(4,5),(4,6),(5,6)],7)
=> 3
[1,0,1,0,1,1,1,0,1,0,0,0]
=> [7,1,2,5,6,3,4] => [1,2,5,6,3,4,7] => ([(3,5),(3,6),(4,5),(4,6)],7)
=> 4
[1,0,1,0,1,1,1,1,0,0,0,0]
=> [4,1,2,5,6,7,3] => [1,2,5,6,7,3,4] => ([(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> 4
[1,0,1,1,0,0,1,0,1,0,1,0]
=> [3,1,7,2,4,5,6] => [1,7,2,4,5,6,3] => ([(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 3
[1,0,1,1,0,0,1,0,1,1,0,0]
=> [3,1,6,2,4,7,5] => [1,6,2,4,7,3,5] => ([(1,6),(2,3),(2,6),(3,5),(4,5),(4,6),(5,6)],7)
=> 3
[1,0,1,1,0,0,1,1,0,0,1,0]
=> [3,1,5,2,7,4,6] => [1,5,2,7,3,4,6] => ([(1,6),(2,5),(3,5),(3,6),(4,5),(4,6)],7)
=> 4
[1,0,1,1,0,0,1,1,0,1,0,0]
=> [3,1,7,2,6,4,5] => [1,7,2,6,3,4,5] => ([(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 3
[1,0,1,1,0,0,1,1,1,0,0,0]
=> [3,1,5,2,6,7,4] => [1,5,2,6,7,3,4] => ([(1,6),(2,4),(2,5),(3,4),(3,5),(4,6),(5,6)],7)
=> 4
[1,0,1,1,0,1,0,0,1,0,1,0]
=> [7,1,4,2,3,5,6] => [1,4,2,3,5,6,7] => ([(4,6),(5,6)],7)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,7}
[1,0,1,1,0,1,1,0,0,0,1,0]
=> [5,1,4,2,7,3,6] => [1,4,2,7,3,6,5] => ([(1,5),(2,3),(2,6),(3,6),(4,5),(4,6)],7)
=> 3
[1,0,1,1,0,1,1,0,1,0,0,0]
=> [7,1,5,2,6,3,4] => [1,5,2,6,3,4,7] => ([(2,6),(3,4),(3,5),(4,6),(5,6)],7)
=> 4
[1,0,1,1,0,1,1,1,0,0,0,0]
=> [5,1,4,2,6,7,3] => [1,4,2,6,7,3,5] => ([(1,5),(2,3),(2,4),(3,6),(4,6),(5,6)],7)
=> 4
[1,0,1,1,1,0,0,0,1,0,1,0]
=> [3,1,4,7,2,5,6] => [1,4,7,2,5,6,3] => ([(1,2),(1,6),(2,5),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 3
[1,0,1,1,1,0,0,0,1,1,0,0]
=> [3,1,4,6,2,7,5] => [1,4,6,2,7,3,5] => ([(1,4),(1,6),(2,3),(2,6),(3,5),(4,5),(5,6)],7)
=> 4
[1,0,1,1,1,0,0,1,0,0,1,0]
=> [3,1,7,5,2,4,6] => [1,7,2,4,6,3,5] => ([(1,6),(2,5),(2,6),(3,4),(3,6),(4,5),(4,6),(5,6)],7)
=> 3
[1,0,1,1,1,0,0,1,0,1,0,0]
=> [3,1,7,6,2,4,5] => [1,7,2,4,5,3,6] => ([(1,6),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 3
[1,0,1,1,1,0,0,1,1,0,0,0]
=> [3,1,6,5,2,7,4] => [1,6,2,7,3,4,5] => ([(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> 4
[1,0,1,1,1,0,1,0,0,0,1,0]
=> [7,1,4,5,2,3,6] => [1,4,5,2,3,6,7] => ([(3,5),(3,6),(4,5),(4,6)],7)
=> 4
[1,0,1,1,1,0,1,0,0,1,0,0]
=> [7,1,4,6,2,3,5] => [1,4,6,2,3,5,7] => ([(2,6),(3,4),(3,5),(4,6),(5,6)],7)
=> 4
[1,0,1,1,1,0,1,1,0,0,0,0]
=> [6,1,4,5,2,7,3] => [1,4,5,2,7,3,6] => ([(1,5),(2,3),(2,4),(3,6),(4,6),(5,6)],7)
=> 4
[1,0,1,1,1,1,0,0,0,0,1,0]
=> [3,1,4,5,7,2,6] => [1,4,5,7,2,6,3] => ([(1,4),(1,6),(2,4),(2,6),(3,5),(3,6),(4,5),(5,6)],7)
=> 3
[1,0,1,1,1,1,0,0,0,1,0,0]
=> [3,1,4,7,6,2,5] => [1,4,7,2,5,3,6] => ([(1,6),(2,3),(2,6),(3,5),(4,5),(4,6),(5,6)],7)
=> 3
[1,0,1,1,1,1,0,0,1,0,0,0]
=> [3,1,7,5,6,2,4] => [1,7,2,4,3,5,6] => ([(1,6),(2,6),(3,6),(4,5),(4,6),(5,6)],7)
=> 3
[1,0,1,1,1,1,0,1,0,0,0,0]
=> [7,1,4,5,6,2,3] => [1,4,5,6,2,3,7] => ([(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> 4
[1,0,1,1,1,1,1,0,0,0,0,0]
=> [3,1,4,5,6,7,2] => [1,4,5,6,7,2,3] => ([(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> 4
Description
The girth of a graph, which is not a tree.
This is the length of the shortest cycle in the graph.
Matching statistic: St000365
(load all 4 compositions to match this statistic)
(load all 4 compositions to match this statistic)
Mp00201: Dyck paths —Ringel⟶ Permutations
Mp00087: Permutations —inverse first fundamental transformation⟶ Permutations
Mp00149: Permutations —Lehmer code rotation⟶ Permutations
St000365: Permutations ⟶ ℤResult quality: 53% ●values known / values provided: 53%●distinct values known / distinct values provided: 100%
Mp00087: Permutations —inverse first fundamental transformation⟶ Permutations
Mp00149: Permutations —Lehmer code rotation⟶ Permutations
St000365: Permutations ⟶ ℤResult quality: 53% ●values known / values provided: 53%●distinct values known / distinct values provided: 100%
Values
[1,0]
=> [2,1] => [2,1] => [1,2] => 0 = 2 - 2
[1,0,1,0]
=> [3,1,2] => [3,2,1] => [1,2,3] => 1 = 3 - 2
[1,1,0,0]
=> [2,3,1] => [3,1,2] => [1,3,2] => 0 = 2 - 2
[1,0,1,0,1,0]
=> [4,1,2,3] => [4,3,2,1] => [1,2,3,4] => 2 = 4 - 2
[1,0,1,1,0,0]
=> [3,1,4,2] => [4,2,1,3] => [1,4,3,2] => 0 = 2 - 2
[1,1,0,0,1,0]
=> [2,4,1,3] => [4,3,1,2] => [1,2,4,3] => 1 = 3 - 2
[1,1,0,1,0,0]
=> [4,3,1,2] => [4,2,3,1] => [1,4,2,3] => 0 = 2 - 2
[1,1,1,0,0,0]
=> [2,3,4,1] => [4,1,2,3] => [1,3,4,2] => 1 = 3 - 2
[1,0,1,0,1,0,1,0]
=> [5,1,2,3,4] => [5,4,3,2,1] => [1,2,3,4,5] => 3 = 5 - 2
[1,0,1,0,1,1,0,0]
=> [4,1,2,5,3] => [5,3,2,1,4] => [1,5,4,3,2] => 0 = 2 - 2
[1,0,1,1,0,0,1,0]
=> [3,1,5,2,4] => [5,4,2,1,3] => [1,2,5,4,3] => 1 = 3 - 2
[1,0,1,1,0,1,0,0]
=> [5,1,4,2,3] => [5,3,4,2,1] => [1,5,2,3,4] => 1 = 3 - 2
[1,0,1,1,1,0,0,0]
=> [3,1,4,5,2] => [5,2,1,3,4] => [1,4,3,5,2] => 0 = 2 - 2
[1,1,0,0,1,0,1,0]
=> [2,5,1,3,4] => [5,4,3,1,2] => [1,2,3,5,4] => 2 = 4 - 2
[1,1,0,0,1,1,0,0]
=> [2,4,1,5,3] => [5,3,1,2,4] => [1,5,3,4,2] => 0 = 2 - 2
[1,1,0,1,0,0,1,0]
=> [5,3,1,2,4] => [5,4,2,3,1] => [1,2,5,3,4] => 1 = 3 - 2
[1,1,0,1,0,1,0,0]
=> [5,4,1,2,3] => [4,2,5,3,1] => [5,3,1,2,4] => 1 = 3 - 2
[1,1,0,1,1,0,0,0]
=> [4,3,1,5,2] => [5,2,3,1,4] => [1,4,5,3,2] => 1 = 3 - 2
[1,1,1,0,0,0,1,0]
=> [2,3,5,1,4] => [5,4,1,2,3] => [1,2,4,5,3] => 2 = 4 - 2
[1,1,1,0,0,1,0,0]
=> [2,5,4,1,3] => [5,3,4,1,2] => [1,5,2,4,3] => 0 = 2 - 2
[1,1,1,0,1,0,0,0]
=> [5,3,4,1,2] => [5,2,3,4,1] => [1,4,5,2,3] => 1 = 3 - 2
[1,1,1,1,0,0,0,0]
=> [2,3,4,5,1] => [5,1,2,3,4] => [1,3,4,5,2] => 2 = 4 - 2
[1,0,1,0,1,0,1,0,1,0]
=> [6,1,2,3,4,5] => [6,5,4,3,2,1] => [1,2,3,4,5,6] => 4 = 6 - 2
[1,0,1,0,1,0,1,1,0,0]
=> [5,1,2,3,6,4] => [6,4,3,2,1,5] => [1,6,5,4,3,2] => 0 = 2 - 2
[1,0,1,0,1,1,0,0,1,0]
=> [4,1,2,6,3,5] => [6,5,3,2,1,4] => [1,2,6,5,4,3] => 1 = 3 - 2
[1,0,1,0,1,1,0,1,0,0]
=> [6,1,2,5,3,4] => [6,4,5,3,2,1] => [1,6,2,3,4,5] => 2 = 4 - 2
[1,0,1,0,1,1,1,0,0,0]
=> [4,1,2,5,6,3] => [6,3,2,1,4,5] => [1,5,4,3,6,2] => 0 = 2 - 2
[1,0,1,1,0,0,1,0,1,0]
=> [3,1,6,2,4,5] => [6,5,4,2,1,3] => [1,2,3,6,5,4] => 2 = 4 - 2
[1,0,1,1,0,0,1,1,0,0]
=> [3,1,5,2,6,4] => [6,4,2,1,3,5] => [1,6,4,3,5,2] => 0 = 2 - 2
[1,0,1,1,0,1,0,0,1,0]
=> [6,1,4,2,3,5] => [6,5,3,4,2,1] => [1,2,6,3,4,5] => 2 = 4 - 2
[1,0,1,1,0,1,0,1,0,0]
=> [6,1,5,2,3,4] => [5,3,6,4,2,1] => [6,4,1,2,3,5] => 2 = 4 - 2
[1,0,1,1,0,1,1,0,0,0]
=> [5,1,4,2,6,3] => [6,3,4,2,1,5] => [1,5,6,4,3,2] => 1 = 3 - 2
[1,0,1,1,1,0,0,0,1,0]
=> [3,1,4,6,2,5] => [6,5,2,1,3,4] => [1,2,5,4,6,3] => 1 = 3 - 2
[1,0,1,1,1,0,0,1,0,0]
=> [3,1,6,5,2,4] => [6,4,5,2,1,3] => [1,6,2,5,4,3] => 0 = 2 - 2
[1,0,1,1,1,0,1,0,0,0]
=> [6,1,4,5,2,3] => [6,3,4,5,2,1] => [1,5,6,2,3,4] => 2 = 4 - 2
[1,0,1,1,1,1,0,0,0,0]
=> [3,1,4,5,6,2] => [6,2,1,3,4,5] => [1,4,3,5,6,2] => 1 = 3 - 2
[1,1,0,0,1,0,1,0,1,0]
=> [2,6,1,3,4,5] => [6,5,4,3,1,2] => [1,2,3,4,6,5] => 3 = 5 - 2
[1,1,0,0,1,0,1,1,0,0]
=> [2,5,1,3,6,4] => [6,4,3,1,2,5] => [1,6,5,3,4,2] => 0 = 2 - 2
[1,1,0,0,1,1,0,0,1,0]
=> [2,4,1,6,3,5] => [6,5,3,1,2,4] => [1,2,6,4,5,3] => 1 = 3 - 2
[1,1,0,0,1,1,0,1,0,0]
=> [2,6,1,5,3,4] => [6,4,5,3,1,2] => [1,6,2,3,5,4] => 1 = 3 - 2
[1,1,0,0,1,1,1,0,0,0]
=> [2,4,1,5,6,3] => [6,3,1,2,4,5] => [1,5,3,4,6,2] => 1 = 3 - 2
[1,1,0,1,0,0,1,0,1,0]
=> [6,3,1,2,4,5] => [6,5,4,2,3,1] => [1,2,3,6,4,5] => 2 = 4 - 2
[1,1,0,1,0,0,1,1,0,0]
=> [5,3,1,2,6,4] => [6,4,2,3,1,5] => [1,6,4,5,3,2] => 0 = 2 - 2
[1,1,0,1,0,1,0,0,1,0]
=> [6,4,1,2,3,5] => [4,2,6,5,3,1] => [5,3,1,2,4,6] => 2 = 4 - 2
[1,1,0,1,0,1,0,1,0,0]
=> [5,6,1,2,3,4] => [5,3,1,6,4,2] => [6,4,2,1,3,5] => 1 = 3 - 2
[1,1,0,1,0,1,1,0,0,0]
=> [5,4,1,2,6,3] => [4,2,6,3,1,5] => [5,3,1,6,4,2] => 0 = 2 - 2
[1,1,0,1,1,0,0,0,1,0]
=> [4,3,1,6,2,5] => [6,5,2,3,1,4] => [1,2,5,6,4,3] => 2 = 4 - 2
[1,1,0,1,1,0,0,1,0,0]
=> [6,3,1,5,2,4] => [6,4,5,2,3,1] => [1,6,2,5,3,4] => 0 = 2 - 2
[1,1,0,1,1,0,1,0,0,0]
=> [6,4,1,5,2,3] => [5,2,4,6,3,1] => [6,3,5,1,2,4] => 1 = 3 - 2
[1,1,0,1,1,1,0,0,0,0]
=> [4,3,1,5,6,2] => [6,2,3,1,4,5] => [1,4,5,3,6,2] => 1 = 3 - 2
[1,0,1,0,1,0,1,0,1,1,0,0]
=> [6,1,2,3,4,7,5] => [7,5,4,3,2,1,6] => [1,7,6,5,4,3,2] => ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5} - 2
[1,0,1,0,1,0,1,1,0,1,0,0]
=> [7,1,2,3,6,4,5] => [7,5,6,4,3,2,1] => [1,7,2,3,4,5,6] => ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5} - 2
[1,0,1,0,1,0,1,1,1,0,0,0]
=> [5,1,2,3,6,7,4] => [7,4,3,2,1,5,6] => [1,6,5,4,3,7,2] => ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5} - 2
[1,0,1,0,1,1,0,0,1,1,0,0]
=> [4,1,2,6,3,7,5] => [7,5,3,2,1,4,6] => [1,7,5,4,3,6,2] => ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5} - 2
[1,0,1,0,1,1,0,1,0,1,0,0]
=> [7,1,2,6,3,4,5] => [6,4,7,5,3,2,1] => [7,5,1,2,3,4,6] => ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5} - 2
[1,0,1,0,1,1,0,1,1,0,0,0]
=> [6,1,2,5,3,7,4] => [7,4,5,3,2,1,6] => [1,6,7,5,4,3,2] => ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5} - 2
[1,0,1,0,1,1,1,0,0,1,0,0]
=> [4,1,2,7,6,3,5] => [7,5,6,3,2,1,4] => [1,7,2,6,5,4,3] => ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5} - 2
[1,0,1,0,1,1,1,0,1,0,0,0]
=> [7,1,2,5,6,3,4] => [7,4,5,6,3,2,1] => [1,6,7,2,3,4,5] => ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5} - 2
[1,0,1,0,1,1,1,1,0,0,0,0]
=> [4,1,2,5,6,7,3] => [7,3,2,1,4,5,6] => [1,5,4,3,6,7,2] => ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5} - 2
[1,0,1,1,0,0,1,0,1,1,0,0]
=> [3,1,6,2,4,7,5] => [7,5,4,2,1,3,6] => [1,7,6,4,3,5,2] => ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5} - 2
[1,0,1,1,0,0,1,1,0,1,0,0]
=> [3,1,7,2,6,4,5] => [7,5,6,4,2,1,3] => [1,7,2,3,6,5,4] => ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5} - 2
[1,0,1,1,0,0,1,1,1,0,0,0]
=> [3,1,5,2,6,7,4] => [7,4,2,1,3,5,6] => [1,6,4,3,5,7,2] => ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5} - 2
[1,0,1,1,0,1,0,0,1,1,0,0]
=> [6,1,4,2,3,7,5] => [7,5,3,4,2,1,6] => [1,7,5,6,4,3,2] => ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5} - 2
[1,0,1,1,0,1,0,1,0,0,1,0]
=> [7,1,5,2,3,4,6] => [5,3,7,6,4,2,1] => [6,4,1,2,3,5,7] => ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5} - 2
[1,0,1,1,0,1,0,1,0,1,0,0]
=> [6,1,7,2,3,4,5] => [6,4,2,1,7,5,3] => [7,5,3,2,1,4,6] => ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5} - 2
[1,0,1,1,0,1,0,1,1,0,0,0]
=> [6,1,5,2,3,7,4] => [5,3,7,4,2,1,6] => [6,4,1,7,5,3,2] => ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5} - 2
[1,0,1,1,0,1,1,0,0,1,0,0]
=> [7,1,4,2,6,3,5] => [7,5,6,3,4,2,1] => [1,7,2,6,3,4,5] => ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5} - 2
[1,0,1,1,0,1,1,0,1,0,0,0]
=> [7,1,5,2,6,3,4] => [6,3,5,7,4,2,1] => [7,4,6,1,2,3,5] => ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5} - 2
[1,0,1,1,0,1,1,1,0,0,0,0]
=> [5,1,4,2,6,7,3] => [7,3,4,2,1,5,6] => [1,5,6,4,3,7,2] => ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5} - 2
[1,0,1,1,1,0,0,0,1,1,0,0]
=> [3,1,4,6,2,7,5] => [7,5,2,1,3,4,6] => [1,7,4,3,5,6,2] => ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5} - 2
[1,0,1,1,1,0,0,1,0,1,0,0]
=> [3,1,7,6,2,4,5] => [6,4,7,5,2,1,3] => [7,5,1,2,6,4,3] => ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5} - 2
[1,0,1,1,1,0,0,1,1,0,0,0]
=> [3,1,6,5,2,7,4] => [7,4,5,2,1,3,6] => [1,6,7,4,3,5,2] => ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5} - 2
[1,0,1,1,1,0,1,0,0,1,0,0]
=> [7,1,4,6,2,3,5] => [6,3,4,7,5,2,1] => [7,4,5,1,2,3,6] => ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5} - 2
[1,0,1,1,1,0,1,0,1,0,0,0]
=> [7,1,6,5,2,3,4] => [6,3,7,4,5,2,1] => [7,4,1,6,2,3,5] => ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5} - 2
[1,0,1,1,1,0,1,1,0,0,0,0]
=> [6,1,4,5,2,7,3] => [7,3,4,5,2,1,6] => [1,5,6,7,4,3,2] => ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5} - 2
[1,0,1,1,1,1,0,0,0,1,0,0]
=> [3,1,4,7,6,2,5] => [7,5,6,2,1,3,4] => [1,7,2,5,4,6,3] => ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5} - 2
[1,0,1,1,1,1,0,0,1,0,0,0]
=> [3,1,7,5,6,2,4] => [7,4,5,6,2,1,3] => [1,6,7,2,5,4,3] => ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5} - 2
[1,0,1,1,1,1,0,1,0,0,0,0]
=> [7,1,4,5,6,2,3] => [7,3,4,5,6,2,1] => [1,5,6,7,2,3,4] => ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5} - 2
[1,1,0,0,1,0,1,0,1,1,0,0]
=> [2,6,1,3,4,7,5] => [7,5,4,3,1,2,6] => [1,7,6,5,3,4,2] => ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5} - 2
[1,1,0,0,1,0,1,1,0,1,0,0]
=> [2,7,1,3,6,4,5] => [7,5,6,4,3,1,2] => [1,7,2,3,4,6,5] => ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5} - 2
[1,1,0,0,1,0,1,1,1,0,0,0]
=> [2,5,1,3,6,7,4] => [7,4,3,1,2,5,6] => [1,6,5,3,4,7,2] => ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5} - 2
[1,1,0,0,1,1,0,0,1,1,0,0]
=> [2,4,1,6,3,7,5] => [7,5,3,1,2,4,6] => [1,7,5,3,4,6,2] => ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5} - 2
[1,1,0,0,1,1,0,1,0,1,0,0]
=> [2,7,1,6,3,4,5] => [6,4,7,5,3,1,2] => [7,5,1,2,3,6,4] => ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5} - 2
[1,1,0,0,1,1,0,1,1,0,0,0]
=> [2,6,1,5,3,7,4] => [7,4,5,3,1,2,6] => [1,6,7,5,3,4,2] => ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5} - 2
[1,1,0,0,1,1,1,0,0,1,0,0]
=> [2,4,1,7,6,3,5] => [7,5,6,3,1,2,4] => [1,7,2,6,4,5,3] => ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5} - 2
[1,1,0,0,1,1,1,0,1,0,0,0]
=> [2,7,1,5,6,3,4] => [7,4,5,6,3,1,2] => [1,6,7,2,3,5,4] => ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5} - 2
[1,1,0,0,1,1,1,1,0,0,0,0]
=> [2,4,1,5,6,7,3] => [7,3,1,2,4,5,6] => [1,5,3,4,6,7,2] => ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5} - 2
[1,1,0,1,0,0,1,0,1,1,0,0]
=> [6,3,1,2,4,7,5] => [7,5,4,2,3,1,6] => [1,7,6,4,5,3,2] => ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5} - 2
[1,1,0,1,0,0,1,1,0,1,0,0]
=> [7,3,1,2,6,4,5] => [7,5,6,4,2,3,1] => [1,7,2,3,6,4,5] => ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5} - 2
[1,1,0,1,0,0,1,1,1,0,0,0]
=> [5,3,1,2,6,7,4] => [7,4,2,3,1,5,6] => [1,6,4,5,3,7,2] => ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5} - 2
[1,1,0,1,0,1,0,0,1,0,1,0]
=> [7,4,1,2,3,5,6] => [4,2,7,6,5,3,1] => [5,3,1,2,4,6,7] => ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5} - 2
[1,1,0,1,0,1,0,0,1,1,0,0]
=> [6,4,1,2,3,7,5] => [4,2,7,5,3,1,6] => [5,3,1,7,6,4,2] => ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5} - 2
[1,1,0,1,0,1,0,1,0,0,1,0]
=> [5,7,1,2,3,4,6] => [5,3,1,7,6,4,2] => [6,4,2,1,3,5,7] => ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5} - 2
[1,1,0,1,0,1,0,1,0,1,0,0]
=> [7,6,1,2,3,4,5] => [6,4,2,7,5,3,1] => [7,5,3,1,2,4,6] => ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5} - 2
[1,1,0,1,0,1,0,1,1,0,0,0]
=> [5,6,1,2,3,7,4] => [5,3,1,7,4,2,6] => [6,4,2,1,7,5,3] => ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5} - 2
[1,1,0,1,0,1,1,0,0,0,1,0]
=> [5,4,1,2,7,3,6] => [4,2,7,6,3,1,5] => [5,3,1,2,7,6,4] => ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5} - 2
[1,1,0,1,0,1,1,0,0,1,0,0]
=> [7,4,1,2,6,3,5] => [4,2,7,5,6,3,1] => [5,3,1,7,2,4,6] => ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5} - 2
[1,1,0,1,0,1,1,0,1,0,0,0]
=> [5,7,1,2,6,3,4] => [6,3,1,5,7,4,2] => [7,4,2,6,1,3,5] => ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5} - 2
[1,1,0,1,0,1,1,1,0,0,0,0]
=> [5,4,1,2,6,7,3] => [4,2,7,3,1,5,6] => [5,3,1,6,4,7,2] => ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5} - 2
[1,1,0,1,1,0,0,0,1,1,0,0]
=> [4,3,1,6,2,7,5] => [7,5,2,3,1,4,6] => [1,7,4,5,3,6,2] => ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5} - 2
Description
The number of double ascents of a permutation.
A double ascent of a permutation $\pi$ is a position $i$ such that $\pi(i) < \pi(i+1) < \pi(i+2)$.
Matching statistic: St000260
(load all 45 compositions to match this statistic)
(load all 45 compositions to match this statistic)
Mp00201: Dyck paths —Ringel⟶ Permutations
Mp00175: Permutations —inverse Foata bijection⟶ Permutations
Mp00160: Permutations —graph of inversions⟶ Graphs
St000260: Graphs ⟶ ℤResult quality: 50% ●values known / values provided: 51%●distinct values known / distinct values provided: 50%
Mp00175: Permutations —inverse Foata bijection⟶ Permutations
Mp00160: Permutations —graph of inversions⟶ Graphs
St000260: Graphs ⟶ ℤResult quality: 50% ●values known / values provided: 51%●distinct values known / distinct values provided: 50%
Values
[1,0]
=> [2,1] => [2,1] => ([(0,1)],2)
=> 1 = 2 - 1
[1,0,1,0]
=> [3,1,2] => [1,3,2] => ([(1,2)],3)
=> ? = 3 - 1
[1,1,0,0]
=> [2,3,1] => [2,3,1] => ([(0,2),(1,2)],3)
=> 1 = 2 - 1
[1,0,1,0,1,0]
=> [4,1,2,3] => [1,2,4,3] => ([(2,3)],4)
=> ? ∊ {3,3,4} - 1
[1,0,1,1,0,0]
=> [3,1,4,2] => [1,3,4,2] => ([(1,3),(2,3)],4)
=> ? ∊ {3,3,4} - 1
[1,1,0,0,1,0]
=> [2,4,1,3] => [4,2,1,3] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> 1 = 2 - 1
[1,1,0,1,0,0]
=> [4,3,1,2] => [1,4,3,2] => ([(1,2),(1,3),(2,3)],4)
=> ? ∊ {3,3,4} - 1
[1,1,1,0,0,0]
=> [2,3,4,1] => [2,3,4,1] => ([(0,3),(1,3),(2,3)],4)
=> 1 = 2 - 1
[1,0,1,0,1,0,1,0]
=> [5,1,2,3,4] => [1,2,3,5,4] => ([(3,4)],5)
=> ? ∊ {2,3,3,3,4,4,4,5} - 1
[1,0,1,0,1,1,0,0]
=> [4,1,2,5,3] => [1,2,4,5,3] => ([(2,4),(3,4)],5)
=> ? ∊ {2,3,3,3,4,4,4,5} - 1
[1,0,1,1,0,0,1,0]
=> [3,1,5,2,4] => [3,1,5,2,4] => ([(0,4),(1,3),(2,3),(2,4)],5)
=> 2 = 3 - 1
[1,0,1,1,0,1,0,0]
=> [5,1,4,2,3] => [1,5,2,4,3] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {2,3,3,3,4,4,4,5} - 1
[1,0,1,1,1,0,0,0]
=> [3,1,4,5,2] => [1,3,4,5,2] => ([(1,4),(2,4),(3,4)],5)
=> ? ∊ {2,3,3,3,4,4,4,5} - 1
[1,1,0,0,1,0,1,0]
=> [2,5,1,3,4] => [2,1,5,3,4] => ([(0,1),(2,4),(3,4)],5)
=> ? ∊ {2,3,3,3,4,4,4,5} - 1
[1,1,0,0,1,1,0,0]
=> [2,4,1,5,3] => [4,2,5,1,3] => ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> 2 = 3 - 1
[1,1,0,1,0,0,1,0]
=> [5,3,1,2,4] => [1,3,2,5,4] => ([(1,4),(2,3)],5)
=> ? ∊ {2,3,3,3,4,4,4,5} - 1
[1,1,0,1,0,1,0,0]
=> [5,4,1,2,3] => [1,2,5,4,3] => ([(2,3),(2,4),(3,4)],5)
=> ? ∊ {2,3,3,3,4,4,4,5} - 1
[1,1,0,1,1,0,0,0]
=> [4,3,1,5,2] => [1,4,3,5,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {2,3,3,3,4,4,4,5} - 1
[1,1,1,0,0,0,1,0]
=> [2,3,5,1,4] => [5,2,3,1,4] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1 = 2 - 1
[1,1,1,0,0,1,0,0]
=> [2,5,4,1,3] => [5,4,2,1,3] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1 = 2 - 1
[1,1,1,0,1,0,0,0]
=> [5,3,4,1,2] => [3,1,5,4,2] => ([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> 2 = 3 - 1
[1,1,1,1,0,0,0,0]
=> [2,3,4,5,1] => [2,3,4,5,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 1 = 2 - 1
[1,0,1,0,1,0,1,0,1,0]
=> [6,1,2,3,4,5] => [1,2,3,4,6,5] => ([(4,5)],6)
=> ? ∊ {2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6} - 1
[1,0,1,0,1,0,1,1,0,0]
=> [5,1,2,3,6,4] => [1,2,3,5,6,4] => ([(3,5),(4,5)],6)
=> ? ∊ {2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6} - 1
[1,0,1,0,1,1,0,0,1,0]
=> [4,1,2,6,3,5] => [4,1,2,6,3,5] => ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> 2 = 3 - 1
[1,0,1,0,1,1,0,1,0,0]
=> [6,1,2,5,3,4] => [1,6,2,3,5,4] => ([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6} - 1
[1,0,1,0,1,1,1,0,0,0]
=> [4,1,2,5,6,3] => [1,2,4,5,6,3] => ([(2,5),(3,5),(4,5)],6)
=> ? ∊ {2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6} - 1
[1,0,1,1,0,0,1,0,1,0]
=> [3,1,6,2,4,5] => [1,6,3,2,4,5] => ([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6} - 1
[1,0,1,1,0,0,1,1,0,0]
=> [3,1,5,2,6,4] => [3,1,5,6,2,4] => ([(0,4),(1,2),(1,3),(2,5),(3,5),(4,5)],6)
=> 2 = 3 - 1
[1,0,1,1,0,1,0,0,1,0]
=> [6,1,4,2,3,5] => [1,4,2,3,6,5] => ([(1,2),(3,5),(4,5)],6)
=> ? ∊ {2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6} - 1
[1,0,1,1,0,1,0,1,0,0]
=> [6,1,5,2,3,4] => [1,2,6,3,5,4] => ([(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6} - 1
[1,0,1,1,0,1,1,0,0,0]
=> [5,1,4,2,6,3] => [1,5,2,4,6,3] => ([(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ? ∊ {2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6} - 1
[1,0,1,1,1,0,0,0,1,0]
=> [3,1,4,6,2,5] => [6,1,3,4,2,5] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1 = 2 - 1
[1,0,1,1,1,0,0,1,0,0]
=> [3,1,6,5,2,4] => [6,3,1,5,2,4] => ([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> 1 = 2 - 1
[1,0,1,1,1,0,1,0,0,0]
=> [6,1,4,5,2,3] => [6,1,4,2,5,3] => ([(0,5),(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)
=> 1 = 2 - 1
[1,0,1,1,1,1,0,0,0,0]
=> [3,1,4,5,6,2] => [1,3,4,5,6,2] => ([(1,5),(2,5),(3,5),(4,5)],6)
=> ? ∊ {2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6} - 1
[1,1,0,0,1,0,1,0,1,0]
=> [2,6,1,3,4,5] => [2,1,3,6,4,5] => ([(1,2),(3,5),(4,5)],6)
=> ? ∊ {2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6} - 1
[1,1,0,0,1,0,1,1,0,0]
=> [2,5,1,3,6,4] => [2,1,5,6,3,4] => ([(0,1),(2,4),(2,5),(3,4),(3,5)],6)
=> ? ∊ {2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6} - 1
[1,1,0,0,1,1,0,0,1,0]
=> [2,4,1,6,3,5] => [4,6,2,1,3,5] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)
=> 2 = 3 - 1
[1,1,0,0,1,1,0,1,0,0]
=> [2,6,1,5,3,4] => [6,2,1,5,3,4] => ([(0,1),(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1 = 2 - 1
[1,1,0,0,1,1,1,0,0,0]
=> [2,4,1,5,6,3] => [4,2,5,6,1,3] => ([(0,3),(0,5),(1,3),(1,5),(2,4),(2,5),(3,4),(4,5)],6)
=> 2 = 3 - 1
[1,1,0,1,0,0,1,0,1,0]
=> [6,3,1,2,4,5] => [1,3,2,4,6,5] => ([(2,5),(3,4)],6)
=> ? ∊ {2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6} - 1
[1,1,0,1,0,0,1,1,0,0]
=> [5,3,1,2,6,4] => [1,3,2,5,6,4] => ([(1,2),(3,5),(4,5)],6)
=> ? ∊ {2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6} - 1
[1,1,0,1,0,1,0,0,1,0]
=> [6,4,1,2,3,5] => [1,2,4,3,6,5] => ([(2,5),(3,4)],6)
=> ? ∊ {2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6} - 1
[1,1,0,1,0,1,0,1,0,0]
=> [5,6,1,2,3,4] => [1,2,5,3,6,4] => ([(2,5),(3,4),(4,5)],6)
=> ? ∊ {2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6} - 1
[1,1,0,1,0,1,1,0,0,0]
=> [5,4,1,2,6,3] => [1,2,5,4,6,3] => ([(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6} - 1
[1,1,0,1,1,0,0,0,1,0]
=> [4,3,1,6,2,5] => [4,3,1,6,2,5] => ([(0,2),(1,4),(1,5),(2,3),(3,4),(3,5),(4,5)],6)
=> 2 = 3 - 1
[1,1,0,1,1,0,0,1,0,0]
=> [6,3,1,5,2,4] => [3,1,6,2,5,4] => ([(0,4),(1,2),(1,5),(2,5),(3,4),(3,5)],6)
=> 2 = 3 - 1
[1,1,0,1,1,0,1,0,0,0]
=> [6,4,1,5,2,3] => [4,1,2,6,5,3] => ([(0,4),(1,4),(2,3),(2,5),(3,5),(4,5)],6)
=> 2 = 3 - 1
[1,1,0,1,1,1,0,0,0,0]
=> [4,3,1,5,6,2] => [1,4,3,5,6,2] => ([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6} - 1
[1,1,1,0,0,0,1,0,1,0]
=> [2,3,6,1,4,5] => [2,6,3,1,4,5] => ([(0,5),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> 2 = 3 - 1
[1,1,1,0,0,0,1,1,0,0]
=> [2,3,5,1,6,4] => [5,2,3,6,1,4] => ([(0,1),(0,5),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2 = 3 - 1
[1,1,1,0,0,1,0,0,1,0]
=> [2,6,4,1,3,5] => [6,2,1,4,3,5] => ([(0,5),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> 1 = 2 - 1
[1,1,1,0,0,1,0,1,0,0]
=> [2,6,5,1,3,4] => [2,1,6,5,3,4] => ([(0,1),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6} - 1
[1,1,1,0,0,1,1,0,0,0]
=> [2,5,4,1,6,3] => [5,4,2,6,1,3] => ([(0,2),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> 2 = 3 - 1
[1,1,1,0,1,0,0,0,1,0]
=> [6,3,4,1,2,5] => [3,1,4,2,6,5] => ([(0,1),(2,5),(3,4),(4,5)],6)
=> ? ∊ {2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6} - 1
[1,1,1,0,1,0,0,1,0,0]
=> [6,3,5,1,2,4] => [1,6,3,2,5,4] => ([(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> ? ∊ {2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6} - 1
[1,1,1,0,1,0,1,0,0,0]
=> [6,5,4,1,2,3] => [1,2,6,5,4,3] => ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6} - 1
[1,1,1,0,1,1,0,0,0,0]
=> [5,3,4,1,6,2] => [3,1,5,4,6,2] => ([(0,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> 2 = 3 - 1
[1,1,1,1,0,0,0,0,1,0]
=> [2,3,4,6,1,5] => [6,2,3,4,1,5] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1 = 2 - 1
[1,1,1,1,0,0,0,1,0,0]
=> [2,3,6,5,1,4] => [6,5,2,3,1,4] => ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1 = 2 - 1
[1,1,1,1,0,0,1,0,0,0]
=> [2,6,4,5,1,3] => [4,6,5,2,1,3] => ([(0,1),(0,4),(0,5),(1,2),(1,3),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2 = 3 - 1
[1,1,1,1,0,1,0,0,0,0]
=> [6,3,4,5,1,2] => [3,4,1,6,5,2] => ([(0,3),(0,4),(1,2),(1,5),(2,5),(3,5),(4,5)],6)
=> 2 = 3 - 1
[1,1,1,1,1,0,0,0,0,0]
=> [2,3,4,5,6,1] => [2,3,4,5,6,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> 1 = 2 - 1
[1,0,1,0,1,0,1,0,1,0,1,0]
=> [7,1,2,3,4,5,6] => [1,2,3,4,5,7,6] => ([(5,6)],7)
=> ? ∊ {2,2,2,2,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,7} - 1
[1,0,1,0,1,0,1,0,1,1,0,0]
=> [6,1,2,3,4,7,5] => [1,2,3,4,6,7,5] => ([(4,6),(5,6)],7)
=> ? ∊ {2,2,2,2,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,7} - 1
[1,0,1,0,1,0,1,1,0,0,1,0]
=> [5,1,2,3,7,4,6] => [5,1,2,3,7,4,6] => ([(0,6),(1,6),(2,6),(3,4),(4,5),(5,6)],7)
=> 2 = 3 - 1
[1,0,1,0,1,0,1,1,0,1,0,0]
=> [7,1,2,3,6,4,5] => [1,7,2,3,4,6,5] => ([(1,6),(2,6),(3,6),(4,5),(4,6),(5,6)],7)
=> ? ∊ {2,2,2,2,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,7} - 1
[1,0,1,0,1,0,1,1,1,0,0,0]
=> [5,1,2,3,6,7,4] => [1,2,3,5,6,7,4] => ([(3,6),(4,6),(5,6)],7)
=> ? ∊ {2,2,2,2,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,7} - 1
[1,0,1,0,1,1,0,0,1,0,1,0]
=> [4,1,2,7,3,5,6] => [1,4,2,7,3,5,6] => ([(1,6),(2,6),(3,4),(4,5),(5,6)],7)
=> ? ∊ {2,2,2,2,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,7} - 1
[1,0,1,0,1,1,0,0,1,1,0,0]
=> [4,1,2,6,3,7,5] => [4,1,2,6,7,3,5] => ([(0,6),(1,6),(2,3),(2,4),(3,5),(4,5),(5,6)],7)
=> 2 = 3 - 1
[1,0,1,0,1,1,0,1,0,0,1,0]
=> [7,1,2,5,3,4,6] => [1,5,2,3,4,7,6] => ([(1,2),(3,6),(4,6),(5,6)],7)
=> ? ∊ {2,2,2,2,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,7} - 1
[1,0,1,0,1,1,0,1,0,1,0,0]
=> [7,1,2,6,3,4,5] => [1,2,7,3,4,6,5] => ([(2,6),(3,6),(4,5),(4,6),(5,6)],7)
=> ? ∊ {2,2,2,2,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,7} - 1
[1,0,1,0,1,1,0,1,1,0,0,0]
=> [6,1,2,5,3,7,4] => [1,6,2,3,5,7,4] => ([(1,6),(2,6),(3,5),(4,5),(4,6),(5,6)],7)
=> ? ∊ {2,2,2,2,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,7} - 1
[1,0,1,0,1,1,1,0,0,0,1,0]
=> [4,1,2,5,7,3,6] => [7,1,2,4,5,3,6] => ([(0,6),(1,6),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 1 = 2 - 1
[1,0,1,0,1,1,1,0,0,1,0,0]
=> [4,1,2,7,6,3,5] => [7,4,1,2,6,3,5] => ([(0,5),(0,6),(1,5),(1,6),(2,3),(2,6),(3,4),(3,6),(4,5),(4,6),(5,6)],7)
=> 1 = 2 - 1
[1,0,1,0,1,1,1,0,1,0,0,0]
=> [7,1,2,5,6,3,4] => [7,1,5,2,3,6,4] => ([(0,6),(1,5),(1,6),(2,5),(2,6),(3,4),(3,6),(4,5),(4,6),(5,6)],7)
=> 1 = 2 - 1
[1,0,1,0,1,1,1,1,0,0,0,0]
=> [4,1,2,5,6,7,3] => [1,2,4,5,6,7,3] => ([(2,6),(3,6),(4,6),(5,6)],7)
=> ? ∊ {2,2,2,2,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,7} - 1
[1,0,1,1,0,0,1,0,1,0,1,0]
=> [3,1,7,2,4,5,6] => [1,3,2,7,4,5,6] => ([(1,2),(3,6),(4,6),(5,6)],7)
=> ? ∊ {2,2,2,2,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,7} - 1
[1,0,1,1,0,0,1,0,1,1,0,0]
=> [3,1,6,2,4,7,5] => [1,6,3,7,2,4,5] => ([(1,4),(1,6),(2,4),(2,6),(3,5),(3,6),(4,5),(5,6)],7)
=> ? ∊ {2,2,2,2,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,7} - 1
[1,0,1,1,0,0,1,1,0,0,1,0]
=> [3,1,5,2,7,4,6] => [3,5,1,7,2,4,6] => ([(0,6),(1,2),(1,4),(2,5),(3,4),(3,6),(4,5),(5,6)],7)
=> 2 = 3 - 1
[1,0,1,1,0,0,1,1,0,1,0,0]
=> [3,1,7,2,6,4,5] => [3,1,7,6,2,4,5] => ([(0,3),(1,5),(1,6),(2,5),(2,6),(3,4),(4,5),(4,6),(5,6)],7)
=> 2 = 3 - 1
[1,0,1,1,0,0,1,1,1,0,0,0]
=> [3,1,5,2,6,7,4] => [3,1,5,6,7,2,4] => ([(0,4),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,6)],7)
=> 2 = 3 - 1
[1,0,1,1,0,1,0,0,1,0,1,0]
=> [7,1,4,2,3,5,6] => [1,4,2,3,5,7,6] => ([(2,3),(4,6),(5,6)],7)
=> ? ∊ {2,2,2,2,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,7} - 1
[1,0,1,1,0,1,0,0,1,1,0,0]
=> [6,1,4,2,3,7,5] => [1,4,2,3,6,7,5] => ([(1,6),(2,6),(3,5),(4,5)],7)
=> ? ∊ {2,2,2,2,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,7} - 1
[1,0,1,1,0,1,0,1,0,0,1,0]
=> [7,1,5,2,3,4,6] => [1,2,5,3,4,7,6] => ([(2,3),(4,6),(5,6)],7)
=> ? ∊ {2,2,2,2,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,7} - 1
[1,0,1,1,0,1,0,1,0,1,0,0]
=> [6,1,7,2,3,4,5] => [1,2,6,3,4,7,5] => ([(2,6),(3,6),(4,5),(5,6)],7)
=> ? ∊ {2,2,2,2,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,7} - 1
[1,0,1,1,0,1,0,1,1,0,0,0]
=> [6,1,5,2,3,7,4] => [1,2,6,3,5,7,4] => ([(2,6),(3,5),(4,5),(4,6),(5,6)],7)
=> ? ∊ {2,2,2,2,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,7} - 1
[1,0,1,1,0,1,1,0,0,0,1,0]
=> [5,1,4,2,7,3,6] => [5,4,1,2,7,3,6] => ([(0,3),(1,5),(1,6),(2,5),(2,6),(3,4),(4,5),(4,6),(5,6)],7)
=> 2 = 3 - 1
[1,0,1,1,0,1,1,0,0,1,0,0]
=> [7,1,4,2,6,3,5] => [4,1,7,2,3,6,5] => ([(0,5),(1,2),(1,6),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> 2 = 3 - 1
[1,0,1,1,0,1,1,0,1,0,0,0]
=> [7,1,5,2,6,3,4] => [7,1,2,5,3,6,4] => ([(0,6),(1,6),(2,5),(2,6),(3,4),(3,6),(4,5),(4,6),(5,6)],7)
=> 1 = 2 - 1
[1,0,1,1,0,1,1,1,0,0,0,0]
=> [5,1,4,2,6,7,3] => [1,5,2,4,6,7,3] => ([(1,6),(2,6),(3,5),(4,5),(4,6),(5,6)],7)
=> ? ∊ {2,2,2,2,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,7} - 1
[1,0,1,1,1,0,0,0,1,0,1,0]
=> [3,1,4,7,2,5,6] => [3,7,1,4,2,5,6] => ([(0,6),(1,6),(2,3),(2,6),(3,5),(4,5),(4,6),(5,6)],7)
=> 2 = 3 - 1
[1,0,1,1,1,0,0,0,1,1,0,0]
=> [3,1,4,6,2,7,5] => [6,1,3,4,7,2,5] => ([(0,6),(1,2),(1,6),(2,5),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 2 = 3 - 1
[1,0,1,1,1,0,0,1,0,0,1,0]
=> [3,1,7,5,2,4,6] => [3,1,7,5,2,4,6] => ([(0,6),(1,2),(2,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 2 = 3 - 1
[1,0,1,1,1,0,0,1,1,0,0,0]
=> [3,1,6,5,2,7,4] => [6,3,1,5,7,2,4] => ([(0,4),(0,6),(1,3),(1,5),(2,3),(2,5),(2,6),(3,6),(4,5),(4,6),(5,6)],7)
=> 2 = 3 - 1
[1,0,1,1,1,0,1,1,0,0,0,0]
=> [6,1,4,5,2,7,3] => [6,1,4,2,5,7,3] => ([(0,6),(1,5),(2,5),(2,6),(3,4),(3,6),(4,5),(4,6),(5,6)],7)
=> 2 = 3 - 1
[1,0,1,1,1,1,0,0,0,0,1,0]
=> [3,1,4,5,7,2,6] => [7,1,3,4,5,2,6] => ([(0,6),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 1 = 2 - 1
[1,0,1,1,1,1,0,0,0,1,0,0]
=> [3,1,4,7,6,2,5] => [7,6,1,3,4,2,5] => ([(0,5),(0,6),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 1 = 2 - 1
[1,0,1,1,1,1,0,0,1,0,0,0]
=> [3,1,7,5,6,2,4] => [3,7,5,1,6,2,4] => ([(0,3),(0,5),(1,2),(1,5),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(4,6),(5,6)],7)
=> 2 = 3 - 1
Description
The radius of a connected graph.
This is the minimum eccentricity of any vertex.
The following 152 statistics, ordered by result quality, also match your data. Click on any of them to see the details.
St000374The number of exclusive right-to-left minima of a permutation. St000742The number of big ascents of a permutation after prepending zero. St000996The number of exclusive left-to-right maxima of a permutation. St000871The number of very big ascents of a permutation. St001086The number of occurrences of the consecutive pattern 132 in a permutation. St000642The size of the smallest orbit of antichains under Panyushev complementation. St000643The size of the largest orbit of antichains under Panyushev complementation. St001875The number of simple modules with projective dimension at most 1. St001000Number of indecomposable modules with projective dimension equal to the global dimension in the Nakayama algebra corresponding to the Dyck path. St000214The number of adjacencies of a permutation. St000215The number of adjacencies of a permutation, zero appended. St000454The largest eigenvalue of a graph if it is integral. St000141The maximum drop size of a permutation. St000031The number of cycles in the cycle decomposition of a permutation. St000717The number of ordinal summands of a poset. St000906The length of the shortest maximal chain in a poset. St000765The number of weak records in an integer composition. St000022The number of fixed points of a permutation. St001060The distinguishing index of a graph. St000772The multiplicity of the largest distance Laplacian eigenvalue in a connected graph. St000777The number of distinct eigenvalues of the distance Laplacian of a connected graph. St001294The maximal torsionfree index of a simple non-projective module in the corresponding Nakayama algebra. St000352The Elizalde-Pak rank of a permutation. St001290The first natural number n such that the tensor product of n copies of D(A) is zero for the corresponding Nakayama algebra A. St001296The maximal torsionfree index of an indecomposable non-projective module in the corresponding Nakayama algebra. St001640The number of ascent tops in the permutation such that all smaller elements appear before. St001810The number of fixed points of a permutation smaller than its largest moved point. St001232The number of indecomposable modules with projective dimension 2 for Nakayama algebras with global dimension at most 2. St001948The number of augmented double ascents of a permutation. St001782The order of rowmotion on the set of order ideals of a poset. St000528The height of a poset. St000907The number of maximal antichains of minimal length in a poset. St000911The number of maximal antichains of maximal size in a poset. St001636The number of indecomposable injective modules with projective dimension at most one in the incidence algebra of the poset. St000080The rank of the poset. St001631The number of simple modules $S$ with $dim Ext^1(S,A)=1$ in the incidence algebra $A$ of the poset. St001596The number of two-by-two squares inside a skew partition. St001633The number of simple modules with projective dimension two in the incidence algebra of the poset. St001200The number of simple modules in $eAe$ with projective dimension at most 2 in the corresponding Nakayama algebra $A$ with minimal faithful projective-injective module $eA$. St000680The Grundy value for Hackendot on posets. St001198The number of simple modules in the algebra $eAe$ with projective dimension at most 1 in the corresponding Nakayama algebra $A$ with minimal faithful projective-injective module $eA$. St001206The maximal dimension of an indecomposable projective $eAe$-module (that is the height of the corresponding Dyck path) of the corresponding Nakayama algebra with minimal faithful projective-injective module $eA$. St000474Dyson's crank of a partition. St000993The multiplicity of the largest part of an integer partition. St001280The number of parts of an integer partition that are at least two. St001498The normalised height of a Nakayama algebra with magnitude 1. St001571The Cartan determinant of the integer partition. St001914The size of the orbit of an integer partition in Bulgarian solitaire. St001933The largest multiplicity of a part in an integer partition. St000698The number of 2-rim hooks removed from an integer partition to obtain its associated 2-core. St000207Number of integral Gelfand-Tsetlin polytopes with prescribed top row and integer composition weight. St000208Number of integral Gelfand-Tsetlin polytopes with prescribed top row and integer partition weight. St000460The hook length of the last cell along the main diagonal of an integer partition. St000477The weight of a partition according to Alladi. St000667The greatest common divisor of the parts of the partition. St000668The least common multiple of the parts of the partition. St000708The product of the parts of an integer partition. St000714The number of semistandard Young tableau of given shape, with entries at most 2. St000770The major index of an integer partition when read from bottom to top. St000815The number of semistandard Young tableaux of partition weight of given shape. St000870The product of the hook lengths of the diagonal cells in an integer partition. St000933The number of multipartitions of sizes given by an integer partition. St000937The number of positive values of the symmetric group character corresponding to the partition. St001279The sum of the parts of an integer partition that are at least two. St001360The number of covering relations in Young's lattice below a partition. St001380The number of monomer-dimer tilings of a Ferrers diagram. St001389The number of partitions of the same length below the given integer partition. St001527The cyclic permutation representation number of an integer partition. St001600The multiplicity of the irreducible representation corresponding to a partition in the relabelling action on simple graphs. St001606The multiplicity of the irreducible representation corresponding to a partition in the relabelling action on set partitions. St001607The number of coloured graphs such that the multiplicities of colours are given by a partition. St001611The number of multiset partitions such that the multiplicities of elements are given by a partition. St001876The number of 2-regular simple modules in the incidence algebra of the lattice. St000383The last part of an integer composition. St000982The length of the longest constant subword. St000237The number of small exceedances. St000741The Colin de Verdière graph invariant. St000455The second largest eigenvalue of a graph if it is integral. St000028The number of stack-sorts needed to sort a permutation. St000731The number of double exceedences of a permutation. St000392The length of the longest run of ones in a binary word. St001862The number of crossings of a signed permutation. St001879The number of indecomposable summands of the top of the first syzygy of the dual of the regular module in the incidence algebra of the lattice. St001880The number of 2-Gorenstein indecomposable injective modules in the incidence algebra of the lattice. St000873The aix statistic of a permutation. St001618The cardinality of the Frattini sublattice of a lattice. St000153The number of adjacent cycles of a permutation. St000366The number of double descents of a permutation. St000877The depth of the binary word interpreted as a path. St001115The number of even descents of a permutation. St000983The length of the longest alternating subword. St000910The number of maximal chains of minimal length in a poset. St001105The number of greedy linear extensions of a poset. St001106The number of supergreedy linear extensions of a poset. St000848The balance constant multiplied with the number of linear extensions of a poset. St000849The number of 1/3-balanced pairs in a poset. St001330The hat guessing number of a graph. St000441The number of successions of a permutation. St000308The height of the tree associated to a permutation. St000381The largest part of an integer composition. St000515The number of invariant set partitions when acting with a permutation of given cycle type. St001566The length of the longest arithmetic progression in a permutation. St001233The number of indecomposable 2-dimensional modules with projective dimension one. St001223Number of indecomposable projective non-injective modules P such that the modules X and Y in a an Auslander-Reiten sequence ending at P are torsionless. St001730The number of times the path corresponding to a binary word crosses the base line. St000864The number of circled entries of the shifted recording tableau of a permutation. St000931The number of occurrences of the pattern UUU in a Dyck path. St001210Gives the maximal vector space dimension of the first Ext-group between an indecomposable module X and the regular module A, when A is the Nakayama algebra corresponding to the Dyck path. St001226The number of integers i such that the radical of the i-th indecomposable projective module has vanishing first extension group with the Jacobson radical J in the corresponding Nakayama algebra. St001238The number of simple modules S such that the Auslander-Reiten translate of S is isomorphic to the Nakayama functor applied to the second syzygy of S. St001239The largest vector space dimension of the double dual of a simple module in the corresponding Nakayama algebra. St001267The length of the Lyndon factorization of the binary word. St001372The length of a longest cyclic run of ones of a binary word. St001526The Loewy length of the Auslander-Reiten translate of the regular module as a bimodule of the Nakayama algebra corresponding to the Dyck path. St001589The nesting number of a perfect matching. St000241The number of cyclical small excedances. St000314The number of left-to-right-maxima of a permutation. St000317The cycle descent number of a permutation. St000654The first descent of a permutation. St000732The number of double deficiencies of a permutation. St000899The maximal number of repetitions of an integer composition. St000942The number of critical left to right maxima of the parking functions. St001192The maximal dimension of $Ext_A^2(S,A)$ for a simple module $S$ over the corresponding Nakayama algebra $A$. St001240The number of indecomposable modules e_i J^2 that have injective dimension at most one in the corresponding Nakayama algebra St001530The depth of a Dyck path. St001553The number of indecomposable summands of the square of the Jacobson radical as a bimodule in the Nakayama algebra corresponding to the Dyck path. St001733The number of weak left to right maxima of a Dyck path. St001744The number of occurrences of the arrow pattern 1-2 with an arrow from 1 to 2 in a permutation. St001904The length of the initial strictly increasing segment of a parking function. St001937The size of the center of a parking function. St000236The number of cyclical small weak excedances. St000239The number of small weak excedances. St000648The number of 2-excedences of a permutation. St000649The number of 3-excedences of a permutation. St000894The trace of an alternating sign matrix. St000932The number of occurrences of the pattern UDU in a Dyck path. St001067The number of simple modules of dominant dimension at least two in the corresponding Nakayama algebra. St001085The number of occurrences of the vincular pattern |21-3 in a permutation. St001216The number of indecomposable injective modules in the corresponding Nakayama algebra that have non-vanishing second Ext-group with the regular module. St001231The number of simple modules that are non-projective and non-injective with the property that they have projective dimension equal to one and that also the Auslander-Reiten translates of the module and the inverse Auslander-Reiten translate of the module have the same projective dimension. St001234The number of indecomposable three dimensional modules with projective dimension one. St001292The injective dimension of the tensor product of two copies of the dual of the Nakayama algebra associated to a Dyck path. St001557The number of inversions of the second entry of a permutation. St001960The number of descents of a permutation minus one if its first entry is not one. St001621The number of atoms of a lattice. St001878The projective dimension of the simple modules corresponding to the minimum of L in the incidence algebra of the lattice L. St001877Number of indecomposable injective modules with projective dimension 2. St000035The number of left outer peaks of a permutation. St000647The number of big descents of a permutation. St000834The number of right outer peaks of a permutation. St001096The size of the overlap set of a permutation. St000534The number of 2-rises of a permutation.
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!