searching the database
Your data matches 7 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
(click to perform a complete search on your data)
Matching statistic: St000551
Values
['A',1]
=> ([],1)
=> ([],1)
=> ([],1)
=> 1
['A',2]
=> ([(0,2),(1,2)],3)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 2
['B',2]
=> ([(0,3),(1,3),(3,2)],4)
=> ([(0,2),(2,1)],3)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 4
['G',2]
=> ([(0,5),(1,5),(3,2),(4,3),(5,4)],6)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,8),(1,9),(1,10),(2,6),(2,7),(2,10),(3,5),(3,7),(3,9),(4,5),(4,6),(4,8),(5,11),(5,14),(6,11),(6,12),(7,11),(7,13),(8,12),(8,14),(9,13),(9,14),(10,12),(10,13),(11,15),(12,15),(13,15),(14,15)],16)
=> 16
['A',3]
=> ([(0,4),(1,3),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> 8
['B',3]
=> ([(0,7),(1,8),(2,7),(2,8),(4,5),(5,3),(6,5),(7,6),(8,4),(8,6)],9)
=> ([(0,3),(0,6),(1,8),(3,7),(4,2),(5,4),(6,1),(6,7),(7,8),(8,5)],9)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,17),(1,18),(1,19),(1,20),(1,21),(2,13),(2,14),(2,15),(2,16),(2,21),(3,10),(3,11),(3,12),(3,16),(3,20),(4,8),(4,9),(4,12),(4,15),(4,19),(5,7),(5,9),(5,11),(5,14),(5,18),(6,7),(6,8),(6,10),(6,13),(6,17),(7,22),(7,25),(7,28),(7,34),(8,22),(8,23),(8,26),(8,32),(9,22),(9,24),(9,27),(9,33),(10,23),(10,25),(10,29),(10,35),(11,24),(11,25),(11,30),(11,36),(12,23),(12,24),(12,31),(12,37),(13,26),(13,28),(13,29),(13,38),(14,27),(14,28),(14,30),(14,39),(15,26),(15,27),(15,31),(15,40),(16,29),(16,30),(16,31),(16,41),(17,32),(17,34),(17,35),(17,38),(18,33),(18,34),(18,36),(18,39),(19,32),(19,33),(19,37),(19,40),(20,35),(20,36),(20,37),(20,41),(21,38),(21,39),(21,40),(21,41),(22,45),(22,46),(22,56),(23,42),(23,46),(23,53),(24,43),(24,46),(24,54),(25,44),(25,46),(25,55),(26,42),(26,45),(26,47),(27,43),(27,45),(27,48),(28,44),(28,45),(28,49),(29,42),(29,44),(29,50),(30,43),(30,44),(30,51),(31,42),(31,43),(31,52),(32,47),(32,53),(32,56),(33,48),(33,54),(33,56),(34,49),(34,55),(34,56),(35,50),(35,53),(35,55),(36,51),(36,54),(36,55),(37,52),(37,53),(37,54),(38,47),(38,49),(38,50),(39,48),(39,49),(39,51),(40,47),(40,48),(40,52),(41,50),(41,51),(41,52),(42,57),(42,62),(43,58),(43,62),(44,59),(44,62),(45,60),(45,62),(46,61),(46,62),(47,57),(47,60),(48,58),(48,60),(49,59),(49,60),(50,57),(50,59),(51,58),(51,59),(52,57),(52,58),(53,57),(53,61),(54,58),(54,61),(55,59),(55,61),(56,60),(56,61),(57,63),(58,63),(59,63),(60,63),(61,63),(62,63)],64)
=> 64
['C',3]
=> ([(0,7),(1,8),(2,7),(2,8),(4,5),(5,3),(6,5),(7,6),(8,4),(8,6)],9)
=> ([(0,3),(0,6),(1,8),(3,7),(4,2),(5,4),(6,1),(6,7),(7,8),(8,5)],9)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,17),(1,18),(1,19),(1,20),(1,21),(2,13),(2,14),(2,15),(2,16),(2,21),(3,10),(3,11),(3,12),(3,16),(3,20),(4,8),(4,9),(4,12),(4,15),(4,19),(5,7),(5,9),(5,11),(5,14),(5,18),(6,7),(6,8),(6,10),(6,13),(6,17),(7,22),(7,25),(7,28),(7,34),(8,22),(8,23),(8,26),(8,32),(9,22),(9,24),(9,27),(9,33),(10,23),(10,25),(10,29),(10,35),(11,24),(11,25),(11,30),(11,36),(12,23),(12,24),(12,31),(12,37),(13,26),(13,28),(13,29),(13,38),(14,27),(14,28),(14,30),(14,39),(15,26),(15,27),(15,31),(15,40),(16,29),(16,30),(16,31),(16,41),(17,32),(17,34),(17,35),(17,38),(18,33),(18,34),(18,36),(18,39),(19,32),(19,33),(19,37),(19,40),(20,35),(20,36),(20,37),(20,41),(21,38),(21,39),(21,40),(21,41),(22,45),(22,46),(22,56),(23,42),(23,46),(23,53),(24,43),(24,46),(24,54),(25,44),(25,46),(25,55),(26,42),(26,45),(26,47),(27,43),(27,45),(27,48),(28,44),(28,45),(28,49),(29,42),(29,44),(29,50),(30,43),(30,44),(30,51),(31,42),(31,43),(31,52),(32,47),(32,53),(32,56),(33,48),(33,54),(33,56),(34,49),(34,55),(34,56),(35,50),(35,53),(35,55),(36,51),(36,54),(36,55),(37,52),(37,53),(37,54),(38,47),(38,49),(38,50),(39,48),(39,49),(39,51),(40,47),(40,48),(40,52),(41,50),(41,51),(41,52),(42,57),(42,62),(43,58),(43,62),(44,59),(44,62),(45,60),(45,62),(46,61),(46,62),(47,57),(47,60),(48,58),(48,60),(49,59),(49,60),(50,57),(50,59),(51,58),(51,59),(52,57),(52,58),(53,57),(53,61),(54,58),(54,61),(55,59),(55,61),(56,60),(56,61),(57,63),(58,63),(59,63),(60,63),(61,63),(62,63)],64)
=> 64
Description
The number of left modular elements of a lattice.
A pair $(x, y)$ of elements of a lattice $L$ is a modular pair if for every $z\geq y$ we have that $(y\vee x) \wedge z = y \vee (x \wedge z)$. An element $x$ is left-modular if $(x, y)$ is a modular pair for every $y\in L$.
Matching statistic: St000206
Mp00148: Finite Cartan types —to root poset⟶ Posets
Mp00306: Posets —rowmotion cycle type⟶ Integer partitions
St000206: Integer partitions ⟶ ℤResult quality: 57% ●values known / values provided: 57%●distinct values known / distinct values provided: 67%
Mp00306: Posets —rowmotion cycle type⟶ Integer partitions
St000206: Integer partitions ⟶ ℤResult quality: 57% ●values known / values provided: 57%●distinct values known / distinct values provided: 67%
Values
['A',1]
=> ([],1)
=> [2]
=> 0 = 1 - 1
['A',2]
=> ([(0,2),(1,2)],3)
=> [3,2]
=> 1 = 2 - 1
['B',2]
=> ([(0,3),(1,3),(3,2)],4)
=> [4,2]
=> 3 = 4 - 1
['G',2]
=> ([(0,5),(1,5),(3,2),(4,3),(5,4)],6)
=> [6,2]
=> 15 = 16 - 1
['A',3]
=> ([(0,4),(1,3),(2,3),(2,4),(3,5),(4,5)],6)
=> [8,4,2]
=> ? ∊ {8,64,64} - 1
['B',3]
=> ([(0,7),(1,8),(2,7),(2,8),(4,5),(5,3),(6,5),(7,6),(8,4),(8,6)],9)
=> [6,6,6,2]
=> ? ∊ {8,64,64} - 1
['C',3]
=> ([(0,7),(1,8),(2,7),(2,8),(4,5),(5,3),(6,5),(7,6),(8,4),(8,6)],9)
=> [6,6,6,2]
=> ? ∊ {8,64,64} - 1
Description
Number of non-integral Gelfand-Tsetlin polytopes with prescribed top row and integer composition weight.
Given $\lambda$ count how many ''integer compositions'' $w$ (weight) there are, such that
$P_{\lambda,w}$ is non-integral, i.e., $w$ such that the Gelfand-Tsetlin polytope $P_{\lambda,w}$ has at least one non-integral vertex.
See also [[St000205]].
Each value in this statistic is greater than or equal to corresponding value in [[St000205]].
Matching statistic: St001616
Values
['A',1]
=> ([],1)
=> ([],1)
=> ([],1)
=> 1
['A',2]
=> ([(0,2),(1,2)],3)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 2
['B',2]
=> ([(0,3),(1,3),(3,2)],4)
=> ([(0,2),(2,1)],3)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 4
['G',2]
=> ([(0,5),(1,5),(3,2),(4,3),(5,4)],6)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,8),(1,9),(1,10),(2,6),(2,7),(2,10),(3,5),(3,7),(3,9),(4,5),(4,6),(4,8),(5,11),(5,14),(6,11),(6,12),(7,11),(7,13),(8,12),(8,14),(9,13),(9,14),(10,12),(10,13),(11,15),(12,15),(13,15),(14,15)],16)
=> ? = 16
['A',3]
=> ([(0,4),(1,3),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> 8
['B',3]
=> ([(0,7),(1,8),(2,7),(2,8),(4,5),(5,3),(6,5),(7,6),(8,4),(8,6)],9)
=> ([(0,3),(0,6),(1,8),(3,7),(4,2),(5,4),(6,1),(6,7),(7,8),(8,5)],9)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,17),(1,18),(1,19),(1,20),(1,21),(2,13),(2,14),(2,15),(2,16),(2,21),(3,10),(3,11),(3,12),(3,16),(3,20),(4,8),(4,9),(4,12),(4,15),(4,19),(5,7),(5,9),(5,11),(5,14),(5,18),(6,7),(6,8),(6,10),(6,13),(6,17),(7,22),(7,25),(7,28),(7,34),(8,22),(8,23),(8,26),(8,32),(9,22),(9,24),(9,27),(9,33),(10,23),(10,25),(10,29),(10,35),(11,24),(11,25),(11,30),(11,36),(12,23),(12,24),(12,31),(12,37),(13,26),(13,28),(13,29),(13,38),(14,27),(14,28),(14,30),(14,39),(15,26),(15,27),(15,31),(15,40),(16,29),(16,30),(16,31),(16,41),(17,32),(17,34),(17,35),(17,38),(18,33),(18,34),(18,36),(18,39),(19,32),(19,33),(19,37),(19,40),(20,35),(20,36),(20,37),(20,41),(21,38),(21,39),(21,40),(21,41),(22,45),(22,46),(22,56),(23,42),(23,46),(23,53),(24,43),(24,46),(24,54),(25,44),(25,46),(25,55),(26,42),(26,45),(26,47),(27,43),(27,45),(27,48),(28,44),(28,45),(28,49),(29,42),(29,44),(29,50),(30,43),(30,44),(30,51),(31,42),(31,43),(31,52),(32,47),(32,53),(32,56),(33,48),(33,54),(33,56),(34,49),(34,55),(34,56),(35,50),(35,53),(35,55),(36,51),(36,54),(36,55),(37,52),(37,53),(37,54),(38,47),(38,49),(38,50),(39,48),(39,49),(39,51),(40,47),(40,48),(40,52),(41,50),(41,51),(41,52),(42,57),(42,62),(43,58),(43,62),(44,59),(44,62),(45,60),(45,62),(46,61),(46,62),(47,57),(47,60),(48,58),(48,60),(49,59),(49,60),(50,57),(50,59),(51,58),(51,59),(52,57),(52,58),(53,57),(53,61),(54,58),(54,61),(55,59),(55,61),(56,60),(56,61),(57,63),(58,63),(59,63),(60,63),(61,63),(62,63)],64)
=> ? ∊ {64,64}
['C',3]
=> ([(0,7),(1,8),(2,7),(2,8),(4,5),(5,3),(6,5),(7,6),(8,4),(8,6)],9)
=> ([(0,3),(0,6),(1,8),(3,7),(4,2),(5,4),(6,1),(6,7),(7,8),(8,5)],9)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,17),(1,18),(1,19),(1,20),(1,21),(2,13),(2,14),(2,15),(2,16),(2,21),(3,10),(3,11),(3,12),(3,16),(3,20),(4,8),(4,9),(4,12),(4,15),(4,19),(5,7),(5,9),(5,11),(5,14),(5,18),(6,7),(6,8),(6,10),(6,13),(6,17),(7,22),(7,25),(7,28),(7,34),(8,22),(8,23),(8,26),(8,32),(9,22),(9,24),(9,27),(9,33),(10,23),(10,25),(10,29),(10,35),(11,24),(11,25),(11,30),(11,36),(12,23),(12,24),(12,31),(12,37),(13,26),(13,28),(13,29),(13,38),(14,27),(14,28),(14,30),(14,39),(15,26),(15,27),(15,31),(15,40),(16,29),(16,30),(16,31),(16,41),(17,32),(17,34),(17,35),(17,38),(18,33),(18,34),(18,36),(18,39),(19,32),(19,33),(19,37),(19,40),(20,35),(20,36),(20,37),(20,41),(21,38),(21,39),(21,40),(21,41),(22,45),(22,46),(22,56),(23,42),(23,46),(23,53),(24,43),(24,46),(24,54),(25,44),(25,46),(25,55),(26,42),(26,45),(26,47),(27,43),(27,45),(27,48),(28,44),(28,45),(28,49),(29,42),(29,44),(29,50),(30,43),(30,44),(30,51),(31,42),(31,43),(31,52),(32,47),(32,53),(32,56),(33,48),(33,54),(33,56),(34,49),(34,55),(34,56),(35,50),(35,53),(35,55),(36,51),(36,54),(36,55),(37,52),(37,53),(37,54),(38,47),(38,49),(38,50),(39,48),(39,49),(39,51),(40,47),(40,48),(40,52),(41,50),(41,51),(41,52),(42,57),(42,62),(43,58),(43,62),(44,59),(44,62),(45,60),(45,62),(46,61),(46,62),(47,57),(47,60),(48,58),(48,60),(49,59),(49,60),(50,57),(50,59),(51,58),(51,59),(52,57),(52,58),(53,57),(53,61),(54,58),(54,61),(55,59),(55,61),(56,60),(56,61),(57,63),(58,63),(59,63),(60,63),(61,63),(62,63)],64)
=> ? ∊ {64,64}
Description
The number of neutral elements in a lattice.
An element $e$ of the lattice $L$ is neutral if the sublattice generated by $e$, $x$ and $y$ is distributive for all $x, y \in L$.
Matching statistic: St000550
Values
['A',1]
=> ([],1)
=> ([],1)
=> ([],1)
=> 1
['A',2]
=> ([(0,2),(1,2)],3)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 2
['B',2]
=> ([(0,3),(1,3),(3,2)],4)
=> ([(0,2),(2,1)],3)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 4
['G',2]
=> ([(0,5),(1,5),(3,2),(4,3),(5,4)],6)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,8),(1,9),(1,10),(2,6),(2,7),(2,10),(3,5),(3,7),(3,9),(4,5),(4,6),(4,8),(5,11),(5,14),(6,11),(6,12),(7,11),(7,13),(8,12),(8,14),(9,13),(9,14),(10,12),(10,13),(11,15),(12,15),(13,15),(14,15)],16)
=> ? = 16
['A',3]
=> ([(0,4),(1,3),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ? ∊ {8,64,64}
['B',3]
=> ([(0,7),(1,8),(2,7),(2,8),(4,5),(5,3),(6,5),(7,6),(8,4),(8,6)],9)
=> ([(0,3),(0,6),(1,8),(3,7),(4,2),(5,4),(6,1),(6,7),(7,8),(8,5)],9)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,17),(1,18),(1,19),(1,20),(1,21),(2,13),(2,14),(2,15),(2,16),(2,21),(3,10),(3,11),(3,12),(3,16),(3,20),(4,8),(4,9),(4,12),(4,15),(4,19),(5,7),(5,9),(5,11),(5,14),(5,18),(6,7),(6,8),(6,10),(6,13),(6,17),(7,22),(7,25),(7,28),(7,34),(8,22),(8,23),(8,26),(8,32),(9,22),(9,24),(9,27),(9,33),(10,23),(10,25),(10,29),(10,35),(11,24),(11,25),(11,30),(11,36),(12,23),(12,24),(12,31),(12,37),(13,26),(13,28),(13,29),(13,38),(14,27),(14,28),(14,30),(14,39),(15,26),(15,27),(15,31),(15,40),(16,29),(16,30),(16,31),(16,41),(17,32),(17,34),(17,35),(17,38),(18,33),(18,34),(18,36),(18,39),(19,32),(19,33),(19,37),(19,40),(20,35),(20,36),(20,37),(20,41),(21,38),(21,39),(21,40),(21,41),(22,45),(22,46),(22,56),(23,42),(23,46),(23,53),(24,43),(24,46),(24,54),(25,44),(25,46),(25,55),(26,42),(26,45),(26,47),(27,43),(27,45),(27,48),(28,44),(28,45),(28,49),(29,42),(29,44),(29,50),(30,43),(30,44),(30,51),(31,42),(31,43),(31,52),(32,47),(32,53),(32,56),(33,48),(33,54),(33,56),(34,49),(34,55),(34,56),(35,50),(35,53),(35,55),(36,51),(36,54),(36,55),(37,52),(37,53),(37,54),(38,47),(38,49),(38,50),(39,48),(39,49),(39,51),(40,47),(40,48),(40,52),(41,50),(41,51),(41,52),(42,57),(42,62),(43,58),(43,62),(44,59),(44,62),(45,60),(45,62),(46,61),(46,62),(47,57),(47,60),(48,58),(48,60),(49,59),(49,60),(50,57),(50,59),(51,58),(51,59),(52,57),(52,58),(53,57),(53,61),(54,58),(54,61),(55,59),(55,61),(56,60),(56,61),(57,63),(58,63),(59,63),(60,63),(61,63),(62,63)],64)
=> ? ∊ {8,64,64}
['C',3]
=> ([(0,7),(1,8),(2,7),(2,8),(4,5),(5,3),(6,5),(7,6),(8,4),(8,6)],9)
=> ([(0,3),(0,6),(1,8),(3,7),(4,2),(5,4),(6,1),(6,7),(7,8),(8,5)],9)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,17),(1,18),(1,19),(1,20),(1,21),(2,13),(2,14),(2,15),(2,16),(2,21),(3,10),(3,11),(3,12),(3,16),(3,20),(4,8),(4,9),(4,12),(4,15),(4,19),(5,7),(5,9),(5,11),(5,14),(5,18),(6,7),(6,8),(6,10),(6,13),(6,17),(7,22),(7,25),(7,28),(7,34),(8,22),(8,23),(8,26),(8,32),(9,22),(9,24),(9,27),(9,33),(10,23),(10,25),(10,29),(10,35),(11,24),(11,25),(11,30),(11,36),(12,23),(12,24),(12,31),(12,37),(13,26),(13,28),(13,29),(13,38),(14,27),(14,28),(14,30),(14,39),(15,26),(15,27),(15,31),(15,40),(16,29),(16,30),(16,31),(16,41),(17,32),(17,34),(17,35),(17,38),(18,33),(18,34),(18,36),(18,39),(19,32),(19,33),(19,37),(19,40),(20,35),(20,36),(20,37),(20,41),(21,38),(21,39),(21,40),(21,41),(22,45),(22,46),(22,56),(23,42),(23,46),(23,53),(24,43),(24,46),(24,54),(25,44),(25,46),(25,55),(26,42),(26,45),(26,47),(27,43),(27,45),(27,48),(28,44),(28,45),(28,49),(29,42),(29,44),(29,50),(30,43),(30,44),(30,51),(31,42),(31,43),(31,52),(32,47),(32,53),(32,56),(33,48),(33,54),(33,56),(34,49),(34,55),(34,56),(35,50),(35,53),(35,55),(36,51),(36,54),(36,55),(37,52),(37,53),(37,54),(38,47),(38,49),(38,50),(39,48),(39,49),(39,51),(40,47),(40,48),(40,52),(41,50),(41,51),(41,52),(42,57),(42,62),(43,58),(43,62),(44,59),(44,62),(45,60),(45,62),(46,61),(46,62),(47,57),(47,60),(48,58),(48,60),(49,59),(49,60),(50,57),(50,59),(51,58),(51,59),(52,57),(52,58),(53,57),(53,61),(54,58),(54,61),(55,59),(55,61),(56,60),(56,61),(57,63),(58,63),(59,63),(60,63),(61,63),(62,63)],64)
=> ? ∊ {8,64,64}
Description
The number of modular elements of a lattice.
A pair $(x, y)$ of elements of a lattice $L$ is a modular pair if for every $z\geq y$ we have that $(y\vee x) \wedge z = y \vee (x \wedge z)$. An element $x$ is left-modular if $(x, y)$ is a modular pair for every $y\in L$, and is modular if both $(x, y)$ and $(y, x)$ are modular pairs for every $y\in L$.
Matching statistic: St001754
Values
['A',1]
=> ([],1)
=> ([],1)
=> ([],1)
=> 1
['A',2]
=> ([(0,2),(1,2)],3)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 2
['B',2]
=> ([(0,3),(1,3),(3,2)],4)
=> ([(0,2),(2,1)],3)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 4
['G',2]
=> ([(0,5),(1,5),(3,2),(4,3),(5,4)],6)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,8),(1,9),(1,10),(2,6),(2,7),(2,10),(3,5),(3,7),(3,9),(4,5),(4,6),(4,8),(5,11),(5,14),(6,11),(6,12),(7,11),(7,13),(8,12),(8,14),(9,13),(9,14),(10,12),(10,13),(11,15),(12,15),(13,15),(14,15)],16)
=> ? = 16
['A',3]
=> ([(0,4),(1,3),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ? ∊ {8,64,64}
['B',3]
=> ([(0,7),(1,8),(2,7),(2,8),(4,5),(5,3),(6,5),(7,6),(8,4),(8,6)],9)
=> ([(0,3),(0,6),(1,8),(3,7),(4,2),(5,4),(6,1),(6,7),(7,8),(8,5)],9)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,17),(1,18),(1,19),(1,20),(1,21),(2,13),(2,14),(2,15),(2,16),(2,21),(3,10),(3,11),(3,12),(3,16),(3,20),(4,8),(4,9),(4,12),(4,15),(4,19),(5,7),(5,9),(5,11),(5,14),(5,18),(6,7),(6,8),(6,10),(6,13),(6,17),(7,22),(7,25),(7,28),(7,34),(8,22),(8,23),(8,26),(8,32),(9,22),(9,24),(9,27),(9,33),(10,23),(10,25),(10,29),(10,35),(11,24),(11,25),(11,30),(11,36),(12,23),(12,24),(12,31),(12,37),(13,26),(13,28),(13,29),(13,38),(14,27),(14,28),(14,30),(14,39),(15,26),(15,27),(15,31),(15,40),(16,29),(16,30),(16,31),(16,41),(17,32),(17,34),(17,35),(17,38),(18,33),(18,34),(18,36),(18,39),(19,32),(19,33),(19,37),(19,40),(20,35),(20,36),(20,37),(20,41),(21,38),(21,39),(21,40),(21,41),(22,45),(22,46),(22,56),(23,42),(23,46),(23,53),(24,43),(24,46),(24,54),(25,44),(25,46),(25,55),(26,42),(26,45),(26,47),(27,43),(27,45),(27,48),(28,44),(28,45),(28,49),(29,42),(29,44),(29,50),(30,43),(30,44),(30,51),(31,42),(31,43),(31,52),(32,47),(32,53),(32,56),(33,48),(33,54),(33,56),(34,49),(34,55),(34,56),(35,50),(35,53),(35,55),(36,51),(36,54),(36,55),(37,52),(37,53),(37,54),(38,47),(38,49),(38,50),(39,48),(39,49),(39,51),(40,47),(40,48),(40,52),(41,50),(41,51),(41,52),(42,57),(42,62),(43,58),(43,62),(44,59),(44,62),(45,60),(45,62),(46,61),(46,62),(47,57),(47,60),(48,58),(48,60),(49,59),(49,60),(50,57),(50,59),(51,58),(51,59),(52,57),(52,58),(53,57),(53,61),(54,58),(54,61),(55,59),(55,61),(56,60),(56,61),(57,63),(58,63),(59,63),(60,63),(61,63),(62,63)],64)
=> ? ∊ {8,64,64}
['C',3]
=> ([(0,7),(1,8),(2,7),(2,8),(4,5),(5,3),(6,5),(7,6),(8,4),(8,6)],9)
=> ([(0,3),(0,6),(1,8),(3,7),(4,2),(5,4),(6,1),(6,7),(7,8),(8,5)],9)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,17),(1,18),(1,19),(1,20),(1,21),(2,13),(2,14),(2,15),(2,16),(2,21),(3,10),(3,11),(3,12),(3,16),(3,20),(4,8),(4,9),(4,12),(4,15),(4,19),(5,7),(5,9),(5,11),(5,14),(5,18),(6,7),(6,8),(6,10),(6,13),(6,17),(7,22),(7,25),(7,28),(7,34),(8,22),(8,23),(8,26),(8,32),(9,22),(9,24),(9,27),(9,33),(10,23),(10,25),(10,29),(10,35),(11,24),(11,25),(11,30),(11,36),(12,23),(12,24),(12,31),(12,37),(13,26),(13,28),(13,29),(13,38),(14,27),(14,28),(14,30),(14,39),(15,26),(15,27),(15,31),(15,40),(16,29),(16,30),(16,31),(16,41),(17,32),(17,34),(17,35),(17,38),(18,33),(18,34),(18,36),(18,39),(19,32),(19,33),(19,37),(19,40),(20,35),(20,36),(20,37),(20,41),(21,38),(21,39),(21,40),(21,41),(22,45),(22,46),(22,56),(23,42),(23,46),(23,53),(24,43),(24,46),(24,54),(25,44),(25,46),(25,55),(26,42),(26,45),(26,47),(27,43),(27,45),(27,48),(28,44),(28,45),(28,49),(29,42),(29,44),(29,50),(30,43),(30,44),(30,51),(31,42),(31,43),(31,52),(32,47),(32,53),(32,56),(33,48),(33,54),(33,56),(34,49),(34,55),(34,56),(35,50),(35,53),(35,55),(36,51),(36,54),(36,55),(37,52),(37,53),(37,54),(38,47),(38,49),(38,50),(39,48),(39,49),(39,51),(40,47),(40,48),(40,52),(41,50),(41,51),(41,52),(42,57),(42,62),(43,58),(43,62),(44,59),(44,62),(45,60),(45,62),(46,61),(46,62),(47,57),(47,60),(48,58),(48,60),(49,59),(49,60),(50,57),(50,59),(51,58),(51,59),(52,57),(52,58),(53,57),(53,61),(54,58),(54,61),(55,59),(55,61),(56,60),(56,61),(57,63),(58,63),(59,63),(60,63),(61,63),(62,63)],64)
=> ? ∊ {8,64,64}
Description
The number of tolerances of a finite lattice.
Let $L$ be a lattice. A tolerance $\tau$ is a reflexive and symmetric relation on $L$ which is compatible with meet and join. Equivalently, a tolerance of $L$ is the image of a congruence by a surjective lattice homomorphism onto $L$.
The number of tolerances of a chain of $n$ elements is the Catalan number $\frac{1}{n+1}\binom{2n}{n}$, see [2].
Matching statistic: St001574
Values
['A',1]
=> ([],1)
=> ([],1)
=> ([(0,1)],2)
=> 0 = 1 - 1
['A',2]
=> ([(0,2),(1,2)],3)
=> ([(0,2),(1,2)],3)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 1 = 2 - 1
['B',2]
=> ([(0,3),(1,3),(3,2)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3 = 4 - 1
['G',2]
=> ([(0,5),(1,5),(3,2),(4,3),(5,4)],6)
=> ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> ([(0,5),(0,6),(1,5),(1,6),(2,3),(2,6),(3,4),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 16 - 1
['A',3]
=> ([(0,4),(1,3),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,5),(0,6),(1,4),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7)
=> ? ∊ {8,64,64} - 1
['B',3]
=> ([(0,7),(1,8),(2,7),(2,8),(4,5),(5,3),(6,5),(7,6),(8,4),(8,6)],9)
=> ([(0,8),(1,7),(2,6),(3,6),(3,8),(4,7),(4,8),(5,6),(5,7),(5,8)],9)
=> ([(0,8),(0,9),(1,7),(1,9),(2,6),(2,9),(3,6),(3,8),(3,9),(4,7),(4,8),(4,9),(5,6),(5,7),(5,8),(5,9),(6,9),(7,9),(8,9)],10)
=> ? ∊ {8,64,64} - 1
['C',3]
=> ([(0,7),(1,8),(2,7),(2,8),(4,5),(5,3),(6,5),(7,6),(8,4),(8,6)],9)
=> ([(0,8),(1,7),(2,6),(3,6),(3,8),(4,7),(4,8),(5,6),(5,7),(5,8)],9)
=> ([(0,8),(0,9),(1,7),(1,9),(2,6),(2,9),(3,6),(3,8),(3,9),(4,7),(4,8),(4,9),(5,6),(5,7),(5,8),(5,9),(6,9),(7,9),(8,9)],10)
=> ? ∊ {8,64,64} - 1
Description
The minimal number of edges to add or remove to make a graph regular.
Matching statistic: St001576
Values
['A',1]
=> ([],1)
=> ([],1)
=> ([(0,1)],2)
=> 0 = 1 - 1
['A',2]
=> ([(0,2),(1,2)],3)
=> ([(0,2),(1,2)],3)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 1 = 2 - 1
['B',2]
=> ([(0,3),(1,3),(3,2)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3 = 4 - 1
['G',2]
=> ([(0,5),(1,5),(3,2),(4,3),(5,4)],6)
=> ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> ([(0,5),(0,6),(1,5),(1,6),(2,3),(2,6),(3,4),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 16 - 1
['A',3]
=> ([(0,4),(1,3),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,5),(0,6),(1,4),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7)
=> ? ∊ {8,64,64} - 1
['B',3]
=> ([(0,7),(1,8),(2,7),(2,8),(4,5),(5,3),(6,5),(7,6),(8,4),(8,6)],9)
=> ([(0,8),(1,7),(2,6),(3,6),(3,8),(4,7),(4,8),(5,6),(5,7),(5,8)],9)
=> ([(0,8),(0,9),(1,7),(1,9),(2,6),(2,9),(3,6),(3,8),(3,9),(4,7),(4,8),(4,9),(5,6),(5,7),(5,8),(5,9),(6,9),(7,9),(8,9)],10)
=> ? ∊ {8,64,64} - 1
['C',3]
=> ([(0,7),(1,8),(2,7),(2,8),(4,5),(5,3),(6,5),(7,6),(8,4),(8,6)],9)
=> ([(0,8),(1,7),(2,6),(3,6),(3,8),(4,7),(4,8),(5,6),(5,7),(5,8)],9)
=> ([(0,8),(0,9),(1,7),(1,9),(2,6),(2,9),(3,6),(3,8),(3,9),(4,7),(4,8),(4,9),(5,6),(5,7),(5,8),(5,9),(6,9),(7,9),(8,9)],10)
=> ? ∊ {8,64,64} - 1
Description
The minimal number of edges to add or remove to make a graph vertex transitive.
A graph is vertex transitive if for any two edges there is an automorphism that maps one vertex to the other.
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!