Your data matches 94 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
St000766: Integer compositions ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[1] => 0
[1,1] => 0
[2] => 0
[1,1,1] => 0
[1,2] => 0
[2,1] => 1
[3] => 0
[1,1,1,1] => 0
[1,1,2] => 0
[1,2,1] => 1
[1,3] => 0
[2,1,1] => 2
[2,2] => 0
[3,1] => 1
[4] => 0
[1,1,1,1,1] => 0
[1,1,1,2] => 0
[1,1,2,1] => 1
[1,1,3] => 0
[1,2,1,1] => 2
[1,2,2] => 0
[1,3,1] => 1
[1,4] => 0
[2,1,1,1] => 3
[2,1,2] => 1
[2,2,1] => 2
[2,3] => 0
[3,1,1] => 2
[3,2] => 1
[4,1] => 1
[5] => 0
[1,1,1,1,1,1] => 0
[1,1,1,1,2] => 0
[1,1,1,2,1] => 1
[1,1,1,3] => 0
[1,1,2,1,1] => 2
[1,1,2,2] => 0
[1,1,3,1] => 1
[1,1,4] => 0
[1,2,1,1,1] => 3
[1,2,1,2] => 1
[1,2,2,1] => 2
[1,2,3] => 0
[1,3,1,1] => 2
[1,3,2] => 1
[1,4,1] => 1
[1,5] => 0
[2,1,1,1,1] => 4
[2,1,1,2] => 2
[2,1,2,1] => 3
Description
The number of inversions of an integer composition. This is the number of pairs $(i,j)$ such that $i < j$ and $c_i > c_j$.
St000769: Integer compositions ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[1] => 0
[1,1] => 0
[2] => 0
[1,1,1] => 0
[1,2] => 0
[2,1] => 1
[3] => 0
[1,1,1,1] => 0
[1,1,2] => 0
[1,2,1] => 2
[1,3] => 0
[2,1,1] => 1
[2,2] => 0
[3,1] => 1
[4] => 0
[1,1,1,1,1] => 0
[1,1,1,2] => 0
[1,1,2,1] => 3
[1,1,3] => 0
[1,2,1,1] => 2
[1,2,2] => 0
[1,3,1] => 2
[1,4] => 0
[2,1,1,1] => 1
[2,1,2] => 1
[2,2,1] => 2
[2,3] => 0
[3,1,1] => 1
[3,2] => 1
[4,1] => 1
[5] => 0
[1,1,1,1,1,1] => 0
[1,1,1,1,2] => 0
[1,1,1,2,1] => 4
[1,1,1,3] => 0
[1,1,2,1,1] => 3
[1,1,2,2] => 0
[1,1,3,1] => 3
[1,1,4] => 0
[1,2,1,1,1] => 2
[1,2,1,2] => 2
[1,2,2,1] => 3
[1,2,3] => 0
[1,3,1,1] => 2
[1,3,2] => 2
[1,4,1] => 2
[1,5] => 0
[2,1,1,1,1] => 1
[2,1,1,2] => 1
[2,1,2,1] => 4
Description
The major index of a composition regarded as a word. This is the sum of the positions of the descents of the composition. For the statistic which interprets the composition as a descent set, see [[St000008]].
Matching statistic: St000496
Mp00231: Integer compositions bounce pathDyck paths
Mp00138: Dyck paths to noncrossing partitionSet partitions
Mp00174: Set partitions dual major index to intertwining numberSet partitions
St000496: Set partitions ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[1] => [1,0]
=> {{1}}
=> {{1}}
=> 0
[1,1] => [1,0,1,0]
=> {{1},{2}}
=> {{1},{2}}
=> 0
[2] => [1,1,0,0]
=> {{1,2}}
=> {{1,2}}
=> 0
[1,1,1] => [1,0,1,0,1,0]
=> {{1},{2},{3}}
=> {{1},{2},{3}}
=> 0
[1,2] => [1,0,1,1,0,0]
=> {{1},{2,3}}
=> {{1,3},{2}}
=> 1
[2,1] => [1,1,0,0,1,0]
=> {{1,2},{3}}
=> {{1,2},{3}}
=> 0
[3] => [1,1,1,0,0,0]
=> {{1,2,3}}
=> {{1,2,3}}
=> 0
[1,1,1,1] => [1,0,1,0,1,0,1,0]
=> {{1},{2},{3},{4}}
=> {{1},{2},{3},{4}}
=> 0
[1,1,2] => [1,0,1,0,1,1,0,0]
=> {{1},{2},{3,4}}
=> {{1,4},{2},{3}}
=> 2
[1,2,1] => [1,0,1,1,0,0,1,0]
=> {{1},{2,3},{4}}
=> {{1,3},{2},{4}}
=> 1
[1,3] => [1,0,1,1,1,0,0,0]
=> {{1},{2,3,4}}
=> {{1,3},{2,4}}
=> 0
[2,1,1] => [1,1,0,0,1,0,1,0]
=> {{1,2},{3},{4}}
=> {{1,2},{3},{4}}
=> 0
[2,2] => [1,1,0,0,1,1,0,0]
=> {{1,2},{3,4}}
=> {{1,2,4},{3}}
=> 1
[3,1] => [1,1,1,0,0,0,1,0]
=> {{1,2,3},{4}}
=> {{1,2,3},{4}}
=> 0
[4] => [1,1,1,1,0,0,0,0]
=> {{1,2,3,4}}
=> {{1,2,3,4}}
=> 0
[1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0]
=> {{1},{2},{3},{4},{5}}
=> {{1},{2},{3},{4},{5}}
=> 0
[1,1,1,2] => [1,0,1,0,1,0,1,1,0,0]
=> {{1},{2},{3},{4,5}}
=> {{1,5},{2},{3},{4}}
=> 3
[1,1,2,1] => [1,0,1,0,1,1,0,0,1,0]
=> {{1},{2},{3,4},{5}}
=> {{1,4},{2},{3},{5}}
=> 2
[1,1,3] => [1,0,1,0,1,1,1,0,0,0]
=> {{1},{2},{3,4,5}}
=> {{1,4},{2,5},{3}}
=> 2
[1,2,1,1] => [1,0,1,1,0,0,1,0,1,0]
=> {{1},{2,3},{4},{5}}
=> {{1,3},{2},{4},{5}}
=> 1
[1,2,2] => [1,0,1,1,0,0,1,1,0,0]
=> {{1},{2,3},{4,5}}
=> {{1,3},{2,5},{4}}
=> 1
[1,3,1] => [1,0,1,1,1,0,0,0,1,0]
=> {{1},{2,3,4},{5}}
=> {{1,3},{2,4},{5}}
=> 0
[1,4] => [1,0,1,1,1,1,0,0,0,0]
=> {{1},{2,3,4,5}}
=> {{1,3,5},{2,4}}
=> 1
[2,1,1,1] => [1,1,0,0,1,0,1,0,1,0]
=> {{1,2},{3},{4},{5}}
=> {{1,2},{3},{4},{5}}
=> 0
[2,1,2] => [1,1,0,0,1,0,1,1,0,0]
=> {{1,2},{3},{4,5}}
=> {{1,2,5},{3},{4}}
=> 2
[2,2,1] => [1,1,0,0,1,1,0,0,1,0]
=> {{1,2},{3,4},{5}}
=> {{1,2,4},{3},{5}}
=> 1
[2,3] => [1,1,0,0,1,1,1,0,0,0]
=> {{1,2},{3,4,5}}
=> {{1,2,4},{3,5}}
=> 0
[3,1,1] => [1,1,1,0,0,0,1,0,1,0]
=> {{1,2,3},{4},{5}}
=> {{1,2,3},{4},{5}}
=> 0
[3,2] => [1,1,1,0,0,0,1,1,0,0]
=> {{1,2,3},{4,5}}
=> {{1,2,3,5},{4}}
=> 1
[4,1] => [1,1,1,1,0,0,0,0,1,0]
=> {{1,2,3,4},{5}}
=> {{1,2,3,4},{5}}
=> 0
[5] => [1,1,1,1,1,0,0,0,0,0]
=> {{1,2,3,4,5}}
=> {{1,2,3,4,5}}
=> 0
[1,1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0,1,0]
=> {{1},{2},{3},{4},{5},{6}}
=> {{1},{2},{3},{4},{5},{6}}
=> 0
[1,1,1,1,2] => [1,0,1,0,1,0,1,0,1,1,0,0]
=> {{1},{2},{3},{4},{5,6}}
=> {{1,6},{2},{3},{4},{5}}
=> 4
[1,1,1,2,1] => [1,0,1,0,1,0,1,1,0,0,1,0]
=> {{1},{2},{3},{4,5},{6}}
=> {{1,5},{2},{3},{4},{6}}
=> 3
[1,1,1,3] => [1,0,1,0,1,0,1,1,1,0,0,0]
=> {{1},{2},{3},{4,5,6}}
=> {{1,5},{2,6},{3},{4}}
=> 4
[1,1,2,1,1] => [1,0,1,0,1,1,0,0,1,0,1,0]
=> {{1},{2},{3,4},{5},{6}}
=> {{1,4},{2},{3},{5},{6}}
=> 2
[1,1,2,2] => [1,0,1,0,1,1,0,0,1,1,0,0]
=> {{1},{2},{3,4},{5,6}}
=> {{1,4},{2,6},{3},{5}}
=> 3
[1,1,3,1] => [1,0,1,0,1,1,1,0,0,0,1,0]
=> {{1},{2},{3,4,5},{6}}
=> {{1,4},{2,5},{3},{6}}
=> 2
[1,1,4] => [1,0,1,0,1,1,1,1,0,0,0,0]
=> {{1},{2},{3,4,5,6}}
=> {{1,4},{2,5},{3,6}}
=> 0
[1,2,1,1,1] => [1,0,1,1,0,0,1,0,1,0,1,0]
=> {{1},{2,3},{4},{5},{6}}
=> {{1,3},{2},{4},{5},{6}}
=> 1
[1,2,1,2] => [1,0,1,1,0,0,1,0,1,1,0,0]
=> {{1},{2,3},{4},{5,6}}
=> {{1,3},{2,6},{4},{5}}
=> 2
[1,2,2,1] => [1,0,1,1,0,0,1,1,0,0,1,0]
=> {{1},{2,3},{4,5},{6}}
=> {{1,3},{2,5},{4},{6}}
=> 1
[1,2,3] => [1,0,1,1,0,0,1,1,1,0,0,0]
=> {{1},{2,3},{4,5,6}}
=> {{1,3,6},{2,5},{4}}
=> 3
[1,3,1,1] => [1,0,1,1,1,0,0,0,1,0,1,0]
=> {{1},{2,3,4},{5},{6}}
=> {{1,3},{2,4},{5},{6}}
=> 0
[1,3,2] => [1,0,1,1,1,0,0,0,1,1,0,0]
=> {{1},{2,3,4},{5,6}}
=> {{1,3,6},{2,4},{5}}
=> 2
[1,4,1] => [1,0,1,1,1,1,0,0,0,0,1,0]
=> {{1},{2,3,4,5},{6}}
=> {{1,3,5},{2,4},{6}}
=> 1
[1,5] => [1,0,1,1,1,1,1,0,0,0,0,0]
=> {{1},{2,3,4,5,6}}
=> {{1,3,5},{2,4,6}}
=> 0
[2,1,1,1,1] => [1,1,0,0,1,0,1,0,1,0,1,0]
=> {{1,2},{3},{4},{5},{6}}
=> {{1,2},{3},{4},{5},{6}}
=> 0
[2,1,1,2] => [1,1,0,0,1,0,1,0,1,1,0,0]
=> {{1,2},{3},{4},{5,6}}
=> {{1,2,6},{3},{4},{5}}
=> 3
[2,1,2,1] => [1,1,0,0,1,0,1,1,0,0,1,0]
=> {{1,2},{3},{4,5},{6}}
=> {{1,2,5},{3},{4},{6}}
=> 2
Description
The rcs statistic of a set partition. Let $S = B_1,\ldots,B_k$ be a set partition with ordered blocks $B_i$ and with $\operatorname{min} B_a < \operatorname{min} B_b$ for $a < b$. According to [1, Definition 3], a '''rcs''' (right-closer-smaller) of $S$ is given by a pair $i > j$ such that $j = \operatorname{max} B_b$ and $i \in B_a$ for $a < b$.
Matching statistic: St000377
Mp00180: Integer compositions to ribbonSkew partitions
Mp00183: Skew partitions inner shapeInteger partitions
Mp00313: Integer partitions Glaisher-Franklin inverseInteger partitions
St000377: Integer partitions ⟶ ℤResult quality: 78% values known / values provided: 78%distinct values known / distinct values provided: 100%
Values
[1] => [[1],[]]
=> []
=> ?
=> ? = 0
[1,1] => [[1,1],[]]
=> []
=> ?
=> ? ∊ {0,0}
[2] => [[2],[]]
=> []
=> ?
=> ? ∊ {0,0}
[1,1,1] => [[1,1,1],[]]
=> []
=> ?
=> ? ∊ {0,0,1}
[1,2] => [[2,1],[]]
=> []
=> ?
=> ? ∊ {0,0,1}
[2,1] => [[2,2],[1]]
=> [1]
=> [1]
=> 0
[3] => [[3],[]]
=> []
=> ?
=> ? ∊ {0,0,1}
[1,1,1,1] => [[1,1,1,1],[]]
=> []
=> ?
=> ? ∊ {0,0,1,2}
[1,1,2] => [[2,1,1],[]]
=> []
=> ?
=> ? ∊ {0,0,1,2}
[1,2,1] => [[2,2,1],[1]]
=> [1]
=> [1]
=> 0
[1,3] => [[3,1],[]]
=> []
=> ?
=> ? ∊ {0,0,1,2}
[2,1,1] => [[2,2,2],[1,1]]
=> [1,1]
=> [2]
=> 0
[2,2] => [[3,2],[1]]
=> [1]
=> [1]
=> 0
[3,1] => [[3,3],[2]]
=> [2]
=> [1,1]
=> 1
[4] => [[4],[]]
=> []
=> ?
=> ? ∊ {0,0,1,2}
[1,1,1,1,1] => [[1,1,1,1,1],[]]
=> []
=> ?
=> ? ∊ {0,1,1,2,3}
[1,1,1,2] => [[2,1,1,1],[]]
=> []
=> ?
=> ? ∊ {0,1,1,2,3}
[1,1,2,1] => [[2,2,1,1],[1]]
=> [1]
=> [1]
=> 0
[1,1,3] => [[3,1,1],[]]
=> []
=> ?
=> ? ∊ {0,1,1,2,3}
[1,2,1,1] => [[2,2,2,1],[1,1]]
=> [1,1]
=> [2]
=> 0
[1,2,2] => [[3,2,1],[1]]
=> [1]
=> [1]
=> 0
[1,3,1] => [[3,3,1],[2]]
=> [2]
=> [1,1]
=> 1
[1,4] => [[4,1],[]]
=> []
=> ?
=> ? ∊ {0,1,1,2,3}
[2,1,1,1] => [[2,2,2,2],[1,1,1]]
=> [1,1,1]
=> [2,1]
=> 0
[2,1,2] => [[3,2,2],[1,1]]
=> [1,1]
=> [2]
=> 0
[2,2,1] => [[3,3,2],[2,1]]
=> [2,1]
=> [1,1,1]
=> 2
[2,3] => [[4,2],[1]]
=> [1]
=> [1]
=> 0
[3,1,1] => [[3,3,3],[2,2]]
=> [2,2]
=> [4]
=> 2
[3,2] => [[4,3],[2]]
=> [2]
=> [1,1]
=> 1
[4,1] => [[4,4],[3]]
=> [3]
=> [3]
=> 1
[5] => [[5],[]]
=> []
=> ?
=> ? ∊ {0,1,1,2,3}
[1,1,1,1,1,1] => [[1,1,1,1,1,1],[]]
=> []
=> ?
=> ? ∊ {0,1,3,3,3,4}
[1,1,1,1,2] => [[2,1,1,1,1],[]]
=> []
=> ?
=> ? ∊ {0,1,3,3,3,4}
[1,1,1,2,1] => [[2,2,1,1,1],[1]]
=> [1]
=> [1]
=> 0
[1,1,1,3] => [[3,1,1,1],[]]
=> []
=> ?
=> ? ∊ {0,1,3,3,3,4}
[1,1,2,1,1] => [[2,2,2,1,1],[1,1]]
=> [1,1]
=> [2]
=> 0
[1,1,2,2] => [[3,2,1,1],[1]]
=> [1]
=> [1]
=> 0
[1,1,3,1] => [[3,3,1,1],[2]]
=> [2]
=> [1,1]
=> 1
[1,1,4] => [[4,1,1],[]]
=> []
=> ?
=> ? ∊ {0,1,3,3,3,4}
[1,2,1,1,1] => [[2,2,2,2,1],[1,1,1]]
=> [1,1,1]
=> [2,1]
=> 0
[1,2,1,2] => [[3,2,2,1],[1,1]]
=> [1,1]
=> [2]
=> 0
[1,2,2,1] => [[3,3,2,1],[2,1]]
=> [2,1]
=> [1,1,1]
=> 2
[1,2,3] => [[4,2,1],[1]]
=> [1]
=> [1]
=> 0
[1,3,1,1] => [[3,3,3,1],[2,2]]
=> [2,2]
=> [4]
=> 2
[1,3,2] => [[4,3,1],[2]]
=> [2]
=> [1,1]
=> 1
[1,4,1] => [[4,4,1],[3]]
=> [3]
=> [3]
=> 1
[1,5] => [[5,1],[]]
=> []
=> ?
=> ? ∊ {0,1,3,3,3,4}
[2,1,1,1,1] => [[2,2,2,2,2],[1,1,1,1]]
=> [1,1,1,1]
=> [2,2]
=> 1
[2,1,1,2] => [[3,2,2,2],[1,1,1]]
=> [1,1,1]
=> [2,1]
=> 0
[2,1,2,1] => [[3,3,2,2],[2,1,1]]
=> [2,1,1]
=> [2,1,1]
=> 2
[2,1,3] => [[4,2,2],[1,1]]
=> [1,1]
=> [2]
=> 0
[2,2,1,1] => [[3,3,3,2],[2,2,1]]
=> [2,2,1]
=> [4,1]
=> 2
[2,2,2] => [[4,3,2],[2,1]]
=> [2,1]
=> [1,1,1]
=> 2
[2,3,1] => [[4,4,2],[3,1]]
=> [3,1]
=> [3,1]
=> 0
[2,4] => [[5,2],[1]]
=> [1]
=> [1]
=> 0
[3,1,1,1] => [[3,3,3,3],[2,2,2]]
=> [2,2,2]
=> [4,1,1]
=> 2
[3,1,2] => [[4,3,3],[2,2]]
=> [2,2]
=> [4]
=> 2
[3,2,1] => [[4,4,3],[3,2]]
=> [3,2]
=> [3,1,1]
=> 1
[3,3] => [[5,3],[2]]
=> [2]
=> [1,1]
=> 1
[4,1,1] => [[4,4,4],[3,3]]
=> [3,3]
=> [6]
=> 4
[4,2] => [[5,4],[3]]
=> [3]
=> [3]
=> 1
[5,1] => [[5,5],[4]]
=> [4]
=> [1,1,1,1]
=> 3
[6] => [[6],[]]
=> []
=> ?
=> ? ∊ {0,1,3,3,3,4}
[1,1,1,1,1,1,1] => [[1,1,1,1,1,1,1],[]]
=> []
=> ?
=> ? ∊ {1,1,1,3,3,3,3}
[1,1,1,1,1,2] => [[2,1,1,1,1,1],[]]
=> []
=> ?
=> ? ∊ {1,1,1,3,3,3,3}
[1,1,1,1,2,1] => [[2,2,1,1,1,1],[1]]
=> [1]
=> [1]
=> 0
[1,1,1,1,3] => [[3,1,1,1,1],[]]
=> []
=> ?
=> ? ∊ {1,1,1,3,3,3,3}
[1,1,1,2,1,1] => [[2,2,2,1,1,1],[1,1]]
=> [1,1]
=> [2]
=> 0
[1,1,1,2,2] => [[3,2,1,1,1],[1]]
=> [1]
=> [1]
=> 0
[1,1,1,3,1] => [[3,3,1,1,1],[2]]
=> [2]
=> [1,1]
=> 1
[1,1,1,4] => [[4,1,1,1],[]]
=> []
=> ?
=> ? ∊ {1,1,1,3,3,3,3}
[1,1,2,1,1,1] => [[2,2,2,2,1,1],[1,1,1]]
=> [1,1,1]
=> [2,1]
=> 0
[1,1,2,1,2] => [[3,2,2,1,1],[1,1]]
=> [1,1]
=> [2]
=> 0
[1,1,2,2,1] => [[3,3,2,1,1],[2,1]]
=> [2,1]
=> [1,1,1]
=> 2
[1,1,2,3] => [[4,2,1,1],[1]]
=> [1]
=> [1]
=> 0
[1,1,5] => [[5,1,1],[]]
=> []
=> ?
=> ? ∊ {1,1,1,3,3,3,3}
[1,6] => [[6,1],[]]
=> []
=> ?
=> ? ∊ {1,1,1,3,3,3,3}
[7] => [[7],[]]
=> []
=> ?
=> ? ∊ {1,1,1,3,3,3,3}
Description
The dinv defect of an integer partition. This is the number of cells $c$ in the diagram of an integer partition $\lambda$ for which $\operatorname{arm}(c)-\operatorname{leg}(c) \not\in \{0,1\}$.
Matching statistic: St001232
Mp00180: Integer compositions to ribbonSkew partitions
Mp00183: Skew partitions inner shapeInteger partitions
Mp00230: Integer partitions parallelogram polyominoDyck paths
St001232: Dyck paths ⟶ ℤResult quality: 56% values known / values provided: 56%distinct values known / distinct values provided: 100%
Values
[1] => [[1],[]]
=> []
=> []
=> ? = 0
[1,1] => [[1,1],[]]
=> []
=> []
=> ? ∊ {0,0}
[2] => [[2],[]]
=> []
=> []
=> ? ∊ {0,0}
[1,1,1] => [[1,1,1],[]]
=> []
=> []
=> ? ∊ {0,0,1}
[1,2] => [[2,1],[]]
=> []
=> []
=> ? ∊ {0,0,1}
[2,1] => [[2,2],[1]]
=> [1]
=> [1,0]
=> 0
[3] => [[3],[]]
=> []
=> []
=> ? ∊ {0,0,1}
[1,1,1,1] => [[1,1,1,1],[]]
=> []
=> []
=> ? ∊ {0,0,1,2}
[1,1,2] => [[2,1,1],[]]
=> []
=> []
=> ? ∊ {0,0,1,2}
[1,2,1] => [[2,2,1],[1]]
=> [1]
=> [1,0]
=> 0
[1,3] => [[3,1],[]]
=> []
=> []
=> ? ∊ {0,0,1,2}
[2,1,1] => [[2,2,2],[1,1]]
=> [1,1]
=> [1,1,0,0]
=> 0
[2,2] => [[3,2],[1]]
=> [1]
=> [1,0]
=> 0
[3,1] => [[3,3],[2]]
=> [2]
=> [1,0,1,0]
=> 1
[4] => [[4],[]]
=> []
=> []
=> ? ∊ {0,0,1,2}
[1,1,1,1,1] => [[1,1,1,1,1],[]]
=> []
=> []
=> ? ∊ {0,1,1,1,2,3}
[1,1,1,2] => [[2,1,1,1],[]]
=> []
=> []
=> ? ∊ {0,1,1,1,2,3}
[1,1,2,1] => [[2,2,1,1],[1]]
=> [1]
=> [1,0]
=> 0
[1,1,3] => [[3,1,1],[]]
=> []
=> []
=> ? ∊ {0,1,1,1,2,3}
[1,2,1,1] => [[2,2,2,1],[1,1]]
=> [1,1]
=> [1,1,0,0]
=> 0
[1,2,2] => [[3,2,1],[1]]
=> [1]
=> [1,0]
=> 0
[1,3,1] => [[3,3,1],[2]]
=> [2]
=> [1,0,1,0]
=> 1
[1,4] => [[4,1],[]]
=> []
=> []
=> ? ∊ {0,1,1,1,2,3}
[2,1,1,1] => [[2,2,2,2],[1,1,1]]
=> [1,1,1]
=> [1,1,0,1,0,0]
=> 2
[2,1,2] => [[3,2,2],[1,1]]
=> [1,1]
=> [1,1,0,0]
=> 0
[2,2,1] => [[3,3,2],[2,1]]
=> [2,1]
=> [1,0,1,1,0,0]
=> 2
[2,3] => [[4,2],[1]]
=> [1]
=> [1,0]
=> 0
[3,1,1] => [[3,3,3],[2,2]]
=> [2,2]
=> [1,1,1,0,0,0]
=> 0
[3,2] => [[4,3],[2]]
=> [2]
=> [1,0,1,0]
=> 1
[4,1] => [[4,4],[3]]
=> [3]
=> [1,0,1,0,1,0]
=> ? ∊ {0,1,1,1,2,3}
[5] => [[5],[]]
=> []
=> []
=> ? ∊ {0,1,1,1,2,3}
[1,1,1,1,1,1] => [[1,1,1,1,1,1],[]]
=> []
=> []
=> ? ∊ {0,1,1,1,1,1,2,2,3,3,4,4}
[1,1,1,1,2] => [[2,1,1,1,1],[]]
=> []
=> []
=> ? ∊ {0,1,1,1,1,1,2,2,3,3,4,4}
[1,1,1,2,1] => [[2,2,1,1,1],[1]]
=> [1]
=> [1,0]
=> 0
[1,1,1,3] => [[3,1,1,1],[]]
=> []
=> []
=> ? ∊ {0,1,1,1,1,1,2,2,3,3,4,4}
[1,1,2,1,1] => [[2,2,2,1,1],[1,1]]
=> [1,1]
=> [1,1,0,0]
=> 0
[1,1,2,2] => [[3,2,1,1],[1]]
=> [1]
=> [1,0]
=> 0
[1,1,3,1] => [[3,3,1,1],[2]]
=> [2]
=> [1,0,1,0]
=> 1
[1,1,4] => [[4,1,1],[]]
=> []
=> []
=> ? ∊ {0,1,1,1,1,1,2,2,3,3,4,4}
[1,2,1,1,1] => [[2,2,2,2,1],[1,1,1]]
=> [1,1,1]
=> [1,1,0,1,0,0]
=> 2
[1,2,1,2] => [[3,2,2,1],[1,1]]
=> [1,1]
=> [1,1,0,0]
=> 0
[1,2,2,1] => [[3,3,2,1],[2,1]]
=> [2,1]
=> [1,0,1,1,0,0]
=> 2
[1,2,3] => [[4,2,1],[1]]
=> [1]
=> [1,0]
=> 0
[1,3,1,1] => [[3,3,3,1],[2,2]]
=> [2,2]
=> [1,1,1,0,0,0]
=> 0
[1,3,2] => [[4,3,1],[2]]
=> [2]
=> [1,0,1,0]
=> 1
[1,4,1] => [[4,4,1],[3]]
=> [3]
=> [1,0,1,0,1,0]
=> ? ∊ {0,1,1,1,1,1,2,2,3,3,4,4}
[1,5] => [[5,1],[]]
=> []
=> []
=> ? ∊ {0,1,1,1,1,1,2,2,3,3,4,4}
[2,1,1,1,1] => [[2,2,2,2,2],[1,1,1,1]]
=> [1,1,1,1]
=> [1,1,0,1,0,1,0,0]
=> ? ∊ {0,1,1,1,1,1,2,2,3,3,4,4}
[2,1,1,2] => [[3,2,2,2],[1,1,1]]
=> [1,1,1]
=> [1,1,0,1,0,0]
=> 2
[2,1,2,1] => [[3,3,2,2],[2,1,1]]
=> [2,1,1]
=> [1,0,1,1,0,1,0,0]
=> ? ∊ {0,1,1,1,1,1,2,2,3,3,4,4}
[2,1,3] => [[4,2,2],[1,1]]
=> [1,1]
=> [1,1,0,0]
=> 0
[2,2,1,1] => [[3,3,3,2],[2,2,1]]
=> [2,2,1]
=> [1,1,1,0,0,1,0,0]
=> 2
[2,2,2] => [[4,3,2],[2,1]]
=> [2,1]
=> [1,0,1,1,0,0]
=> 2
[2,3,1] => [[4,4,2],[3,1]]
=> [3,1]
=> [1,0,1,0,1,1,0,0]
=> ? ∊ {0,1,1,1,1,1,2,2,3,3,4,4}
[2,4] => [[5,2],[1]]
=> [1]
=> [1,0]
=> 0
[3,1,1,1] => [[3,3,3,3],[2,2,2]]
=> [2,2,2]
=> [1,1,1,1,0,0,0,0]
=> 0
[3,1,2] => [[4,3,3],[2,2]]
=> [2,2]
=> [1,1,1,0,0,0]
=> 0
[3,2,1] => [[4,4,3],[3,2]]
=> [3,2]
=> [1,0,1,1,1,0,0,0]
=> 3
[3,3] => [[5,3],[2]]
=> [2]
=> [1,0,1,0]
=> 1
[4,1,1] => [[4,4,4],[3,3]]
=> [3,3]
=> [1,1,1,0,1,0,0,0]
=> 3
[4,2] => [[5,4],[3]]
=> [3]
=> [1,0,1,0,1,0]
=> ? ∊ {0,1,1,1,1,1,2,2,3,3,4,4}
[5,1] => [[5,5],[4]]
=> [4]
=> [1,0,1,0,1,0,1,0]
=> ? ∊ {0,1,1,1,1,1,2,2,3,3,4,4}
[6] => [[6],[]]
=> []
=> []
=> ? ∊ {0,1,1,1,1,1,2,2,3,3,4,4}
[1,1,1,1,1,1,1] => [[1,1,1,1,1,1,1],[]]
=> []
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,5,5}
[1,1,1,1,1,2] => [[2,1,1,1,1,1],[]]
=> []
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,5,5}
[1,1,1,1,2,1] => [[2,2,1,1,1,1],[1]]
=> [1]
=> [1,0]
=> 0
[1,1,1,1,3] => [[3,1,1,1,1],[]]
=> []
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,5,5}
[1,1,1,2,1,1] => [[2,2,2,1,1,1],[1,1]]
=> [1,1]
=> [1,1,0,0]
=> 0
[1,1,1,2,2] => [[3,2,1,1,1],[1]]
=> [1]
=> [1,0]
=> 0
[1,1,1,3,1] => [[3,3,1,1,1],[2]]
=> [2]
=> [1,0,1,0]
=> 1
[1,1,1,4] => [[4,1,1,1],[]]
=> []
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,5,5}
[1,1,2,1,1,1] => [[2,2,2,2,1,1],[1,1,1]]
=> [1,1,1]
=> [1,1,0,1,0,0]
=> 2
[1,1,2,1,2] => [[3,2,2,1,1],[1,1]]
=> [1,1]
=> [1,1,0,0]
=> 0
[1,1,2,2,1] => [[3,3,2,1,1],[2,1]]
=> [2,1]
=> [1,0,1,1,0,0]
=> 2
[1,1,2,3] => [[4,2,1,1],[1]]
=> [1]
=> [1,0]
=> 0
[1,1,3,1,1] => [[3,3,3,1,1],[2,2]]
=> [2,2]
=> [1,1,1,0,0,0]
=> 0
[1,1,3,2] => [[4,3,1,1],[2]]
=> [2]
=> [1,0,1,0]
=> 1
[1,1,4,1] => [[4,4,1,1],[3]]
=> [3]
=> [1,0,1,0,1,0]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,5,5}
[1,1,5] => [[5,1,1],[]]
=> []
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,5,5}
[1,2,1,1,1,1] => [[2,2,2,2,2,1],[1,1,1,1]]
=> [1,1,1,1]
=> [1,1,0,1,0,1,0,0]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,5,5}
[1,2,1,1,2] => [[3,2,2,2,1],[1,1,1]]
=> [1,1,1]
=> [1,1,0,1,0,0]
=> 2
[1,2,1,2,1] => [[3,3,2,2,1],[2,1,1]]
=> [2,1,1]
=> [1,0,1,1,0,1,0,0]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,5,5}
[1,2,1,3] => [[4,2,2,1],[1,1]]
=> [1,1]
=> [1,1,0,0]
=> 0
[1,2,2,1,1] => [[3,3,3,2,1],[2,2,1]]
=> [2,2,1]
=> [1,1,1,0,0,1,0,0]
=> 2
[1,2,2,2] => [[4,3,2,1],[2,1]]
=> [2,1]
=> [1,0,1,1,0,0]
=> 2
[1,2,3,1] => [[4,4,2,1],[3,1]]
=> [3,1]
=> [1,0,1,0,1,1,0,0]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,5,5}
[1,2,4] => [[5,2,1],[1]]
=> [1]
=> [1,0]
=> 0
[1,4,2] => [[5,4,1],[3]]
=> [3]
=> [1,0,1,0,1,0]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,5,5}
[1,5,1] => [[5,5,1],[4]]
=> [4]
=> [1,0,1,0,1,0,1,0]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,5,5}
[1,6] => [[6,1],[]]
=> []
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,5,5}
[2,1,1,1,1,1] => [[2,2,2,2,2,2],[1,1,1,1,1]]
=> [1,1,1,1,1]
=> [1,1,0,1,0,1,0,1,0,0]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,5,5}
[2,1,1,1,2] => [[3,2,2,2,2],[1,1,1,1]]
=> [1,1,1,1]
=> [1,1,0,1,0,1,0,0]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,5,5}
[2,1,1,2,1] => [[3,3,2,2,2],[2,1,1,1]]
=> [2,1,1,1]
=> [1,0,1,1,0,1,0,1,0,0]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,5,5}
[2,1,2,1,1] => [[3,3,3,2,2],[2,2,1,1]]
=> [2,2,1,1]
=> [1,1,1,0,0,1,0,1,0,0]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,5,5}
[2,1,2,2] => [[4,3,2,2],[2,1,1]]
=> [2,1,1]
=> [1,0,1,1,0,1,0,0]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,5,5}
[2,1,3,1] => [[4,4,2,2],[3,1,1]]
=> [3,1,1]
=> [1,0,1,0,1,1,0,1,0,0]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,5,5}
[2,3,1,1] => [[4,4,4,2],[3,3,1]]
=> [3,3,1]
=> [1,1,1,0,1,0,0,1,0,0]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,5,5}
[2,3,2] => [[5,4,2],[3,1]]
=> [3,1]
=> [1,0,1,0,1,1,0,0]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,5,5}
[2,4,1] => [[5,5,2],[4,1]]
=> [4,1]
=> [1,0,1,0,1,0,1,1,0,0]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,5,5}
[3,3,1] => [[5,5,3],[4,2]]
=> [4,2]
=> [1,0,1,0,1,1,1,0,0,0]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,5,5}
Description
The number of indecomposable modules with projective dimension 2 for Nakayama algebras with global dimension at most 2.
Mp00184: Integer compositions to threshold graphGraphs
Mp00247: Graphs de-duplicateGraphs
St000771: Graphs ⟶ ℤResult quality: 55% values known / values provided: 55%distinct values known / distinct values provided: 86%
Values
[1] => ([],1)
=> ([],1)
=> 1 = 0 + 1
[1,1] => ([(0,1)],2)
=> ([(0,1)],2)
=> 1 = 0 + 1
[2] => ([],2)
=> ([],1)
=> 1 = 0 + 1
[1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> 2 = 1 + 1
[1,2] => ([(1,2)],3)
=> ([(1,2)],3)
=> ? = 0 + 1
[2,1] => ([(0,2),(1,2)],3)
=> ([(0,1)],2)
=> 1 = 0 + 1
[3] => ([],3)
=> ([],1)
=> 1 = 0 + 1
[1,1,1,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 3 = 2 + 1
[1,1,2] => ([(1,2),(1,3),(2,3)],4)
=> ([(1,2),(1,3),(2,3)],4)
=> ? ∊ {0,0,1} + 1
[1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> 1 = 0 + 1
[1,3] => ([(2,3)],4)
=> ([(1,2)],3)
=> ? ∊ {0,0,1} + 1
[2,1,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> 2 = 1 + 1
[2,2] => ([(1,3),(2,3)],4)
=> ([(1,2)],3)
=> ? ∊ {0,0,1} + 1
[3,1] => ([(0,3),(1,3),(2,3)],4)
=> ([(0,1)],2)
=> 1 = 0 + 1
[4] => ([],4)
=> ([],1)
=> 1 = 0 + 1
[1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4 = 3 + 1
[1,1,1,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {0,0,0,1,1,2,2} + 1
[1,1,2,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2 = 1 + 1
[1,1,3] => ([(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(2,3)],4)
=> ? ∊ {0,0,0,1,1,2,2} + 1
[1,2,1,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2 = 1 + 1
[1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {0,0,0,1,1,2,2} + 1
[1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> 1 = 0 + 1
[1,4] => ([(3,4)],5)
=> ([(1,2)],3)
=> ? ∊ {0,0,0,1,1,2,2} + 1
[2,1,1,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 3 = 2 + 1
[2,1,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(2,3)],4)
=> ? ∊ {0,0,0,1,1,2,2} + 1
[2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> 1 = 0 + 1
[2,3] => ([(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? ∊ {0,0,0,1,1,2,2} + 1
[3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> 2 = 1 + 1
[3,2] => ([(1,4),(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? ∊ {0,0,0,1,1,2,2} + 1
[4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> 1 = 0 + 1
[5] => ([],5)
=> ([],1)
=> 1 = 0 + 1
[1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 5 = 4 + 1
[1,1,1,1,2] => ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {0,0,0,0,0,1,1,2,2,2,2,3,3,3,4} + 1
[1,1,1,2,1] => ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3 = 2 + 1
[1,1,1,3] => ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,1,1,2,2,2,2,3,3,3,4} + 1
[1,1,2,1,1] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2 = 1 + 1
[1,1,2,2] => ([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {0,0,0,0,0,1,1,2,2,2,2,3,3,3,4} + 1
[1,1,3,1] => ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2 = 1 + 1
[1,1,4] => ([(3,4),(3,5),(4,5)],6)
=> ([(1,2),(1,3),(2,3)],4)
=> ? ∊ {0,0,0,0,0,1,1,2,2,2,2,3,3,3,4} + 1
[1,2,1,1,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3 = 2 + 1
[1,2,1,2] => ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {0,0,0,0,0,1,1,2,2,2,2,3,3,3,4} + 1
[1,2,2,1] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1 = 0 + 1
[1,2,3] => ([(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,1,1,2,2,2,2,3,3,3,4} + 1
[1,3,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2 = 1 + 1
[1,3,2] => ([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,1,1,2,2,2,2,3,3,3,4} + 1
[1,4,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> 1 = 0 + 1
[1,5] => ([(4,5)],6)
=> ([(1,2)],3)
=> ? ∊ {0,0,0,0,0,1,1,2,2,2,2,3,3,3,4} + 1
[2,1,1,1,1] => ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4 = 3 + 1
[2,1,1,2] => ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,1,1,2,2,2,2,3,3,3,4} + 1
[2,1,2,1] => ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2 = 1 + 1
[2,1,3] => ([(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,2),(1,3),(2,3)],4)
=> ? ∊ {0,0,0,0,0,1,1,2,2,2,2,3,3,3,4} + 1
[2,2,1,1] => ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2 = 1 + 1
[2,2,2] => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,1,1,2,2,2,2,3,3,3,4} + 1
[2,3,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> 1 = 0 + 1
[2,4] => ([(3,5),(4,5)],6)
=> ([(1,2)],3)
=> ? ∊ {0,0,0,0,0,1,1,2,2,2,2,3,3,3,4} + 1
[3,1,1,1] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 3 = 2 + 1
[3,1,2] => ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,2),(1,3),(2,3)],4)
=> ? ∊ {0,0,0,0,0,1,1,2,2,2,2,3,3,3,4} + 1
[3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> 1 = 0 + 1
[3,3] => ([(2,5),(3,5),(4,5)],6)
=> ([(1,2)],3)
=> ? ∊ {0,0,0,0,0,1,1,2,2,2,2,3,3,3,4} + 1
[4,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> 2 = 1 + 1
[4,2] => ([(1,5),(2,5),(3,5),(4,5)],6)
=> ([(1,2)],3)
=> ? ∊ {0,0,0,0,0,1,1,2,2,2,2,3,3,3,4} + 1
[5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> ([(0,1)],2)
=> 1 = 0 + 1
[6] => ([],6)
=> ([],1)
=> 1 = 0 + 1
[1,1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 6 = 5 + 1
[1,1,1,1,1,2] => ([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? ∊ {0,0,0,0,0,0,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,4,4,4,4,4,5,5,6} + 1
[1,1,1,1,2,1] => ([(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 4 = 3 + 1
[1,1,1,1,3] => ([(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {0,0,0,0,0,0,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,4,4,4,4,4,5,5,6} + 1
[1,1,1,2,1,1] => ([(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 3 = 2 + 1
[1,1,1,2,2] => ([(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? ∊ {0,0,0,0,0,0,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,4,4,4,4,4,5,5,6} + 1
[1,1,1,3,1] => ([(0,6),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3 = 2 + 1
[1,1,1,4] => ([(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,4,4,4,4,4,5,5,6} + 1
[1,1,2,1,1,1] => ([(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 3 = 2 + 1
[1,1,2,1,2] => ([(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? ∊ {0,0,0,0,0,0,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,4,4,4,4,4,5,5,6} + 1
[1,1,2,2,1] => ([(0,6),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,6),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 2 = 1 + 1
[1,1,2,3] => ([(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {0,0,0,0,0,0,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,4,4,4,4,4,5,5,6} + 1
[1,1,3,1,1] => ([(0,5),(0,6),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2 = 1 + 1
[1,1,3,2] => ([(1,6),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {0,0,0,0,0,0,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,4,4,4,4,4,5,5,6} + 1
[1,1,4,1] => ([(0,6),(1,6),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2 = 1 + 1
[1,1,5] => ([(4,5),(4,6),(5,6)],7)
=> ([(1,2),(1,3),(2,3)],4)
=> ? ∊ {0,0,0,0,0,0,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,4,4,4,4,4,5,5,6} + 1
[1,2,1,1,1,1] => ([(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 4 = 3 + 1
[1,2,1,1,2] => ([(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? ∊ {0,0,0,0,0,0,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,4,4,4,4,4,5,5,6} + 1
[1,2,1,2,1] => ([(0,6),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,6),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 2 = 1 + 1
[1,2,1,3] => ([(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {0,0,0,0,0,0,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,4,4,4,4,4,5,5,6} + 1
[1,2,2,1,1] => ([(0,5),(0,6),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,5),(0,6),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 2 = 1 + 1
[1,2,2,2] => ([(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? ∊ {0,0,0,0,0,0,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,4,4,4,4,4,5,5,6} + 1
[1,2,3,1] => ([(0,6),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1 = 0 + 1
[1,2,4] => ([(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,4,4,4,4,4,5,5,6} + 1
[1,3,1,1,1] => ([(0,4),(0,5),(0,6),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3 = 2 + 1
[1,3,1,2] => ([(1,5),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {0,0,0,0,0,0,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,4,4,4,4,4,5,5,6} + 1
[1,3,3] => ([(2,6),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,4,4,4,4,4,5,5,6} + 1
[1,4,2] => ([(1,6),(2,6),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,4,4,4,4,4,5,5,6} + 1
[1,6] => ([(5,6)],7)
=> ([(1,2)],3)
=> ? ∊ {0,0,0,0,0,0,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,4,4,4,4,4,5,5,6} + 1
[2,1,1,1,2] => ([(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {0,0,0,0,0,0,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,4,4,4,4,4,5,5,6} + 1
[2,1,1,3] => ([(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,4,4,4,4,4,5,5,6} + 1
[2,1,2,2] => ([(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {0,0,0,0,0,0,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,4,4,4,4,4,5,5,6} + 1
[2,1,4] => ([(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,2),(1,3),(2,3)],4)
=> ? ∊ {0,0,0,0,0,0,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,4,4,4,4,4,5,5,6} + 1
[2,2,1,2] => ([(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {0,0,0,0,0,0,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,4,4,4,4,4,5,5,6} + 1
[2,2,3] => ([(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,4,4,4,4,4,5,5,6} + 1
[2,3,2] => ([(1,6),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,4,4,4,4,4,5,5,6} + 1
[2,5] => ([(4,6),(5,6)],7)
=> ([(1,2)],3)
=> ? ∊ {0,0,0,0,0,0,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,4,4,4,4,4,5,5,6} + 1
Description
The largest multiplicity of a distance Laplacian eigenvalue in a connected graph. The distance Laplacian of a graph is the (symmetric) matrix with row and column sums $0$, which has the negative distances between two vertices as its off-diagonal entries. This statistic is the largest multiplicity of an eigenvalue. For example, the cycle on four vertices has distance Laplacian $$ \left(\begin{array}{rrrr} 4 & -1 & -2 & -1 \\ -1 & 4 & -1 & -2 \\ -2 & -1 & 4 & -1 \\ -1 & -2 & -1 & 4 \end{array}\right). $$ Its eigenvalues are $0,4,4,6$, so the statistic is $2$. The path on four vertices has eigenvalues $0, 4.7\dots, 6, 9.2\dots$ and therefore statistic $1$.
Mp00184: Integer compositions to threshold graphGraphs
Mp00250: Graphs clique graphGraphs
Mp00111: Graphs complementGraphs
St000772: Graphs ⟶ ℤResult quality: 55% values known / values provided: 55%distinct values known / distinct values provided: 86%
Values
[1] => ([],1)
=> ([],1)
=> ([],1)
=> 1 = 0 + 1
[1,1] => ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 1 = 0 + 1
[2] => ([],2)
=> ([],2)
=> ([(0,1)],2)
=> 1 = 0 + 1
[1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> ([],1)
=> ([],1)
=> 1 = 0 + 1
[1,2] => ([(1,2)],3)
=> ([],2)
=> ([(0,1)],2)
=> 1 = 0 + 1
[2,1] => ([(0,2),(1,2)],3)
=> ([(0,1)],2)
=> ([],2)
=> ? = 0 + 1
[3] => ([],3)
=> ([],3)
=> ([(0,1),(0,2),(1,2)],3)
=> 2 = 1 + 1
[1,1,1,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([],1)
=> ([],1)
=> 1 = 0 + 1
[1,1,2] => ([(1,2),(1,3),(2,3)],4)
=> ([],2)
=> ([(0,1)],2)
=> 1 = 0 + 1
[1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {0,0,1} + 1
[1,3] => ([(2,3)],4)
=> ([],3)
=> ([(0,1),(0,2),(1,2)],3)
=> 2 = 1 + 1
[2,1,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {0,0,1} + 1
[2,2] => ([(1,3),(2,3)],4)
=> ([(1,2)],3)
=> ([(0,2),(1,2)],3)
=> 1 = 0 + 1
[3,1] => ([(0,3),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? ∊ {0,0,1} + 1
[4] => ([],4)
=> ([],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 3 = 2 + 1
[1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],1)
=> ([],1)
=> 1 = 0 + 1
[1,1,1,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],2)
=> ([(0,1)],2)
=> 1 = 0 + 1
[1,1,2,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {0,0,1,1,1,2,2} + 1
[1,1,3] => ([(2,3),(2,4),(3,4)],5)
=> ([],3)
=> ([(0,1),(0,2),(1,2)],3)
=> 2 = 1 + 1
[1,2,1,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {0,0,1,1,1,2,2} + 1
[1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ([(0,2),(1,2)],3)
=> 1 = 0 + 1
[1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? ∊ {0,0,1,1,1,2,2} + 1
[1,4] => ([(3,4)],5)
=> ([],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 3 = 2 + 1
[2,1,1,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {0,0,1,1,1,2,2} + 1
[2,1,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ([(0,2),(1,2)],3)
=> 1 = 0 + 1
[2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? ∊ {0,0,1,1,1,2,2} + 1
[2,3] => ([(2,4),(3,4)],5)
=> ([(2,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 1 = 0 + 1
[3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? ∊ {0,0,1,1,1,2,2} + 1
[3,2] => ([(1,4),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(2,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> 2 = 1 + 1
[4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([],4)
=> ? ∊ {0,0,1,1,1,2,2} + 1
[5] => ([],5)
=> ([],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4 = 3 + 1
[1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([],1)
=> ([],1)
=> 1 = 0 + 1
[1,1,1,1,2] => ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([],2)
=> ([(0,1)],2)
=> 1 = 0 + 1
[1,1,1,2,1] => ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {0,0,0,1,1,1,2,2,2,2,2,3,3,3,4} + 1
[1,1,1,3] => ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([],3)
=> ([(0,1),(0,2),(1,2)],3)
=> 2 = 1 + 1
[1,1,2,1,1] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {0,0,0,1,1,1,2,2,2,2,2,3,3,3,4} + 1
[1,1,2,2] => ([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,2)],3)
=> ([(0,2),(1,2)],3)
=> 1 = 0 + 1
[1,1,3,1] => ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? ∊ {0,0,0,1,1,1,2,2,2,2,2,3,3,3,4} + 1
[1,1,4] => ([(3,4),(3,5),(4,5)],6)
=> ([],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 3 = 2 + 1
[1,2,1,1,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {0,0,0,1,1,1,2,2,2,2,2,3,3,3,4} + 1
[1,2,1,2] => ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,2)],3)
=> ([(0,2),(1,2)],3)
=> 1 = 0 + 1
[1,2,2,1] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? ∊ {0,0,0,1,1,1,2,2,2,2,2,3,3,3,4} + 1
[1,2,3] => ([(2,5),(3,4),(3,5),(4,5)],6)
=> ([(2,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 1 = 0 + 1
[1,3,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? ∊ {0,0,0,1,1,1,2,2,2,2,2,3,3,3,4} + 1
[1,3,2] => ([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,2),(1,3),(2,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> 2 = 1 + 1
[1,4,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([],4)
=> ? ∊ {0,0,0,1,1,1,2,2,2,2,2,3,3,3,4} + 1
[1,5] => ([(4,5)],6)
=> ([],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4 = 3 + 1
[2,1,1,1,1] => ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {0,0,0,1,1,1,2,2,2,2,2,3,3,3,4} + 1
[2,1,1,2] => ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,2)],3)
=> ([(0,2),(1,2)],3)
=> 1 = 0 + 1
[2,1,2,1] => ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? ∊ {0,0,0,1,1,1,2,2,2,2,2,3,3,3,4} + 1
[2,1,3] => ([(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(2,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 1 = 0 + 1
[2,2,1,1] => ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? ∊ {0,0,0,1,1,1,2,2,2,2,2,3,3,3,4} + 1
[2,2,2] => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,2),(1,3),(2,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> 2 = 1 + 1
[2,3,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([],4)
=> ? ∊ {0,0,0,1,1,1,2,2,2,2,2,3,3,3,4} + 1
[2,4] => ([(3,5),(4,5)],6)
=> ([(3,4)],5)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1 = 0 + 1
[3,1,1,1] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? ∊ {0,0,0,1,1,1,2,2,2,2,2,3,3,3,4} + 1
[3,1,2] => ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,2),(1,3),(2,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> 2 = 1 + 1
[3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([],4)
=> ? ∊ {0,0,0,1,1,1,2,2,2,2,2,3,3,3,4} + 1
[3,3] => ([(2,5),(3,5),(4,5)],6)
=> ([(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2 = 1 + 1
[4,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([],4)
=> ? ∊ {0,0,0,1,1,1,2,2,2,2,2,3,3,3,4} + 1
[4,2] => ([(1,5),(2,5),(3,5),(4,5)],6)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 3 = 2 + 1
[5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],5)
=> ? ∊ {0,0,0,1,1,1,2,2,2,2,2,3,3,3,4} + 1
[6] => ([],6)
=> ([],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 5 = 4 + 1
[1,1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([],1)
=> ([],1)
=> 1 = 0 + 1
[1,1,1,1,1,2] => ([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([],2)
=> ([(0,1)],2)
=> 1 = 0 + 1
[1,1,1,1,2,1] => ([(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {0,0,0,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,5,5,6} + 1
[1,1,1,1,3] => ([(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([],3)
=> ([(0,1),(0,2),(1,2)],3)
=> 2 = 1 + 1
[1,1,1,2,1,1] => ([(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {0,0,0,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,5,5,6} + 1
[1,1,1,2,2] => ([(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,2)],3)
=> ([(0,2),(1,2)],3)
=> 1 = 0 + 1
[1,1,1,3,1] => ([(0,6),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? ∊ {0,0,0,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,5,5,6} + 1
[1,1,1,4] => ([(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 3 = 2 + 1
[1,1,2,1,1,1] => ([(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {0,0,0,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,5,5,6} + 1
[1,1,2,1,2] => ([(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,2)],3)
=> ([(0,2),(1,2)],3)
=> 1 = 0 + 1
[1,1,2,2,1] => ([(0,6),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? ∊ {0,0,0,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,5,5,6} + 1
[1,1,2,3] => ([(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(2,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 1 = 0 + 1
[1,1,3,1,1] => ([(0,5),(0,6),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? ∊ {0,0,0,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,5,5,6} + 1
[1,1,3,2] => ([(1,6),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,2),(1,3),(2,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> 2 = 1 + 1
[1,1,4,1] => ([(0,6),(1,6),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([],4)
=> ? ∊ {0,0,0,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,5,5,6} + 1
[1,1,5] => ([(4,5),(4,6),(5,6)],7)
=> ([],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4 = 3 + 1
[1,2,1,1,1,1] => ([(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {0,0,0,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,5,5,6} + 1
[1,2,1,1,2] => ([(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,2)],3)
=> ([(0,2),(1,2)],3)
=> 1 = 0 + 1
[1,2,1,2,1] => ([(0,6),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? ∊ {0,0,0,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,5,5,6} + 1
[1,2,1,3] => ([(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(2,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 1 = 0 + 1
[1,2,2,1,1] => ([(0,5),(0,6),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? ∊ {0,0,0,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,5,5,6} + 1
[1,2,2,2] => ([(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,2),(1,3),(2,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> 2 = 1 + 1
[1,2,3,1] => ([(0,6),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([],4)
=> ? ∊ {0,0,0,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,5,5,6} + 1
[1,2,4] => ([(3,6),(4,5),(4,6),(5,6)],7)
=> ([(3,4)],5)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1 = 0 + 1
[1,3,1,1,1] => ([(0,4),(0,5),(0,6),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? ∊ {0,0,0,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,5,5,6} + 1
[1,3,2,1] => ([(0,6),(1,5),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([],4)
=> ? ∊ {0,0,0,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,5,5,6} + 1
[1,4,1,1] => ([(0,5),(0,6),(1,5),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([],4)
=> ? ∊ {0,0,0,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,5,5,6} + 1
[1,5,1] => ([(0,6),(1,6),(2,6),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],5)
=> ? ∊ {0,0,0,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,5,5,6} + 1
[2,1,1,1,1,1] => ([(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {0,0,0,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,5,5,6} + 1
[2,1,1,2,1] => ([(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? ∊ {0,0,0,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,5,5,6} + 1
[2,1,2,1,1] => ([(0,5),(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? ∊ {0,0,0,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,5,5,6} + 1
[2,1,3,1] => ([(0,6),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([],4)
=> ? ∊ {0,0,0,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,5,5,6} + 1
[2,2,1,1,1] => ([(0,4),(0,5),(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? ∊ {0,0,0,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,5,5,6} + 1
[2,2,2,1] => ([(0,6),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([],4)
=> ? ∊ {0,0,0,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,5,5,6} + 1
[2,3,1,1] => ([(0,5),(0,6),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([],4)
=> ? ∊ {0,0,0,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,5,5,6} + 1
[2,4,1] => ([(0,6),(1,6),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],5)
=> ? ∊ {0,0,0,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,5,5,6} + 1
[3,1,1,1,1] => ([(0,3),(0,4),(0,5),(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? ∊ {0,0,0,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,5,5,6} + 1
Description
The multiplicity of the largest distance Laplacian eigenvalue in a connected graph. The distance Laplacian of a graph is the (symmetric) matrix with row and column sums $0$, which has the negative distances between two vertices as its off-diagonal entries. This statistic is the largest multiplicity of an eigenvalue. For example, the cycle on four vertices has distance Laplacian $$ \left(\begin{array}{rrrr} 4 & -1 & -2 & -1 \\ -1 & 4 & -1 & -2 \\ -2 & -1 & 4 & -1 \\ -1 & -2 & -1 & 4 \end{array}\right). $$ Its eigenvalues are $0,4,4,6$, so the statistic is $1$. The path on four vertices has eigenvalues $0, 4.7\dots, 6, 9.2\dots$ and therefore also statistic $1$. The graphs with statistic $n-1$, $n-2$ and $n-3$ have been characterised, see [1].
Matching statistic: St001414
Mp00231: Integer compositions bounce pathDyck paths
Mp00027: Dyck paths to partitionInteger partitions
Mp00095: Integer partitions to binary wordBinary words
St001414: Binary words ⟶ ℤResult quality: 54% values known / values provided: 54%distinct values known / distinct values provided: 57%
Values
[1] => [1,0]
=> []
=> => ? = 0
[1,1] => [1,0,1,0]
=> [1]
=> 10 => 0
[2] => [1,1,0,0]
=> []
=> => ? = 0
[1,1,1] => [1,0,1,0,1,0]
=> [2,1]
=> 1010 => 1
[1,2] => [1,0,1,1,0,0]
=> [1,1]
=> 110 => 0
[2,1] => [1,1,0,0,1,0]
=> [2]
=> 100 => 0
[3] => [1,1,1,0,0,0]
=> []
=> => ? = 0
[1,1,1,1] => [1,0,1,0,1,0,1,0]
=> [3,2,1]
=> 101010 => 2
[1,1,2] => [1,0,1,0,1,1,0,0]
=> [2,2,1]
=> 11010 => 0
[1,2,1] => [1,0,1,1,0,0,1,0]
=> [3,1,1]
=> 100110 => 0
[1,3] => [1,0,1,1,1,0,0,0]
=> [1,1,1]
=> 1110 => 1
[2,1,1] => [1,1,0,0,1,0,1,0]
=> [3,2]
=> 10100 => 1
[2,2] => [1,1,0,0,1,1,0,0]
=> [2,2]
=> 1100 => 0
[3,1] => [1,1,1,0,0,0,1,0]
=> [3]
=> 1000 => 0
[4] => [1,1,1,1,0,0,0,0]
=> []
=> => ? = 0
[1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0]
=> [4,3,2,1]
=> 10101010 => 3
[1,1,1,2] => [1,0,1,0,1,0,1,1,0,0]
=> [3,3,2,1]
=> 1101010 => 0
[1,1,2,1] => [1,0,1,0,1,1,0,0,1,0]
=> [4,2,2,1]
=> 10011010 => 0
[1,1,3] => [1,0,1,0,1,1,1,0,0,0]
=> [2,2,2,1]
=> 111010 => 1
[1,2,1,1] => [1,0,1,1,0,0,1,0,1,0]
=> [4,3,1,1]
=> 10100110 => 1
[1,2,2] => [1,0,1,1,0,0,1,1,0,0]
=> [3,3,1,1]
=> 1100110 => 0
[1,3,1] => [1,0,1,1,1,0,0,0,1,0]
=> [4,1,1,1]
=> 10001110 => 2
[1,4] => [1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1]
=> 11110 => 1
[2,1,1,1] => [1,1,0,0,1,0,1,0,1,0]
=> [4,3,2]
=> 1010100 => 2
[2,1,2] => [1,1,0,0,1,0,1,1,0,0]
=> [3,3,2]
=> 110100 => 0
[2,2,1] => [1,1,0,0,1,1,0,0,1,0]
=> [4,2,2]
=> 1001100 => 0
[2,3] => [1,1,0,0,1,1,1,0,0,0]
=> [2,2,2]
=> 11100 => 1
[3,1,1] => [1,1,1,0,0,0,1,0,1,0]
=> [4,3]
=> 101000 => 1
[3,2] => [1,1,1,0,0,0,1,1,0,0]
=> [3,3]
=> 11000 => 0
[4,1] => [1,1,1,1,0,0,0,0,1,0]
=> [4]
=> 10000 => 0
[5] => [1,1,1,1,1,0,0,0,0,0]
=> []
=> => ? = 2
[1,1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0,1,0]
=> [5,4,3,2,1]
=> 1010101010 => ? ∊ {0,2,2,2,2,3,3,4,4}
[1,1,1,1,2] => [1,0,1,0,1,0,1,0,1,1,0,0]
=> [4,4,3,2,1]
=> 110101010 => 0
[1,1,1,2,1] => [1,0,1,0,1,0,1,1,0,0,1,0]
=> [5,3,3,2,1]
=> 1001101010 => ? ∊ {0,2,2,2,2,3,3,4,4}
[1,1,1,3] => [1,0,1,0,1,0,1,1,1,0,0,0]
=> [3,3,3,2,1]
=> 11101010 => 1
[1,1,2,1,1] => [1,0,1,0,1,1,0,0,1,0,1,0]
=> [5,4,2,2,1]
=> 1010011010 => ? ∊ {0,2,2,2,2,3,3,4,4}
[1,1,2,2] => [1,0,1,0,1,1,0,0,1,1,0,0]
=> [4,4,2,2,1]
=> 110011010 => 0
[1,1,3,1] => [1,0,1,0,1,1,1,0,0,0,1,0]
=> [5,2,2,2,1]
=> 1000111010 => ? ∊ {0,2,2,2,2,3,3,4,4}
[1,1,4] => [1,0,1,0,1,1,1,1,0,0,0,0]
=> [2,2,2,2,1]
=> 1111010 => 1
[1,2,1,1,1] => [1,0,1,1,0,0,1,0,1,0,1,0]
=> [5,4,3,1,1]
=> 1010100110 => ? ∊ {0,2,2,2,2,3,3,4,4}
[1,2,1,2] => [1,0,1,1,0,0,1,0,1,1,0,0]
=> [4,4,3,1,1]
=> 110100110 => 0
[1,2,2,1] => [1,0,1,1,0,0,1,1,0,0,1,0]
=> [5,3,3,1,1]
=> 1001100110 => ? ∊ {0,2,2,2,2,3,3,4,4}
[1,2,3] => [1,0,1,1,0,0,1,1,1,0,0,0]
=> [3,3,3,1,1]
=> 11100110 => 1
[1,3,1,1] => [1,0,1,1,1,0,0,0,1,0,1,0]
=> [5,4,1,1,1]
=> 1010001110 => ? ∊ {0,2,2,2,2,3,3,4,4}
[1,3,2] => [1,0,1,1,1,0,0,0,1,1,0,0]
=> [4,4,1,1,1]
=> 110001110 => 3
[1,4,1] => [1,0,1,1,1,1,0,0,0,0,1,0]
=> [5,1,1,1,1]
=> 1000011110 => ? ∊ {0,2,2,2,2,3,3,4,4}
[1,5] => [1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1]
=> 111110 => 2
[2,1,1,1,1] => [1,1,0,0,1,0,1,0,1,0,1,0]
=> [5,4,3,2]
=> 101010100 => 3
[2,1,1,2] => [1,1,0,0,1,0,1,0,1,1,0,0]
=> [4,4,3,2]
=> 11010100 => 0
[2,1,2,1] => [1,1,0,0,1,0,1,1,0,0,1,0]
=> [5,3,3,2]
=> 100110100 => 0
[2,1,3] => [1,1,0,0,1,0,1,1,1,0,0,0]
=> [3,3,3,2]
=> 1110100 => 1
[2,2,1,1] => [1,1,0,0,1,1,0,0,1,0,1,0]
=> [5,4,2,2]
=> 101001100 => 1
[2,2,2] => [1,1,0,0,1,1,0,0,1,1,0,0]
=> [4,4,2,2]
=> 11001100 => 0
[2,3,1] => [1,1,0,0,1,1,1,0,0,0,1,0]
=> [5,2,2,2]
=> 100011100 => 2
[2,4] => [1,1,0,0,1,1,1,1,0,0,0,0]
=> [2,2,2,2]
=> 111100 => 1
[3,1,1,1] => [1,1,1,0,0,0,1,0,1,0,1,0]
=> [5,4,3]
=> 10101000 => 2
[3,1,2] => [1,1,1,0,0,0,1,0,1,1,0,0]
=> [4,4,3]
=> 1101000 => 0
[3,2,1] => [1,1,1,0,0,0,1,1,0,0,1,0]
=> [5,3,3]
=> 10011000 => 0
[3,3] => [1,1,1,0,0,0,1,1,1,0,0,0]
=> [3,3,3]
=> 111000 => 1
[4,1,1] => [1,1,1,1,0,0,0,0,1,0,1,0]
=> [5,4]
=> 1010000 => 1
[4,2] => [1,1,1,1,0,0,0,0,1,1,0,0]
=> [4,4]
=> 110000 => 0
[5,1] => [1,1,1,1,1,0,0,0,0,0,1,0]
=> [5]
=> 100000 => 0
[6] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> []
=> => ? ∊ {0,2,2,2,2,3,3,4,4}
[1,1,1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [6,5,4,3,2,1]
=> 101010101010 => ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,5,5,5,6}
[1,1,1,1,1,2] => [1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [5,5,4,3,2,1]
=> 11010101010 => ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,5,5,5,6}
[1,1,1,1,2,1] => [1,0,1,0,1,0,1,0,1,1,0,0,1,0]
=> [6,4,4,3,2,1]
=> 100110101010 => ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,5,5,5,6}
[1,1,1,1,3] => [1,0,1,0,1,0,1,0,1,1,1,0,0,0]
=> [4,4,4,3,2,1]
=> 1110101010 => ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,5,5,5,6}
[1,1,1,2,1,1] => [1,0,1,0,1,0,1,1,0,0,1,0,1,0]
=> [6,5,3,3,2,1]
=> 101001101010 => ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,5,5,5,6}
[1,1,1,2,2] => [1,0,1,0,1,0,1,1,0,0,1,1,0,0]
=> [5,5,3,3,2,1]
=> 11001101010 => ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,5,5,5,6}
[1,1,1,3,1] => [1,0,1,0,1,0,1,1,1,0,0,0,1,0]
=> [6,3,3,3,2,1]
=> 100011101010 => ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,5,5,5,6}
[1,1,1,4] => [1,0,1,0,1,0,1,1,1,1,0,0,0,0]
=> [3,3,3,3,2,1]
=> 111101010 => 1
[1,1,2,1,1,1] => [1,0,1,0,1,1,0,0,1,0,1,0,1,0]
=> [6,5,4,2,2,1]
=> 101010011010 => ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,5,5,5,6}
[1,1,2,1,2] => [1,0,1,0,1,1,0,0,1,0,1,1,0,0]
=> [5,5,4,2,2,1]
=> 11010011010 => ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,5,5,5,6}
[1,1,2,2,1] => [1,0,1,0,1,1,0,0,1,1,0,0,1,0]
=> [6,4,4,2,2,1]
=> 100110011010 => ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,5,5,5,6}
[1,1,2,3] => [1,0,1,0,1,1,0,0,1,1,1,0,0,0]
=> [4,4,4,2,2,1]
=> 1110011010 => ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,5,5,5,6}
[1,1,3,1,1] => [1,0,1,0,1,1,1,0,0,0,1,0,1,0]
=> [6,5,2,2,2,1]
=> 101000111010 => ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,5,5,5,6}
[1,1,3,2] => [1,0,1,0,1,1,1,0,0,0,1,1,0,0]
=> [5,5,2,2,2,1]
=> 11000111010 => ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,5,5,5,6}
[1,1,4,1] => [1,0,1,0,1,1,1,1,0,0,0,0,1,0]
=> [6,2,2,2,2,1]
=> 100001111010 => ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,5,5,5,6}
[1,2,1,1,1,1] => [1,0,1,1,0,0,1,0,1,0,1,0,1,0]
=> [6,5,4,3,1,1]
=> 101010100110 => ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,5,5,5,6}
[1,2,1,1,2] => [1,0,1,1,0,0,1,0,1,0,1,1,0,0]
=> [5,5,4,3,1,1]
=> 11010100110 => ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,5,5,5,6}
[1,2,1,2,1] => [1,0,1,1,0,0,1,0,1,1,0,0,1,0]
=> [6,4,4,3,1,1]
=> 100110100110 => ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,5,5,5,6}
[1,2,1,3] => [1,0,1,1,0,0,1,0,1,1,1,0,0,0]
=> [4,4,4,3,1,1]
=> 1110100110 => ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,5,5,5,6}
[1,2,2,1,1] => [1,0,1,1,0,0,1,1,0,0,1,0,1,0]
=> [6,5,3,3,1,1]
=> 101001100110 => ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,5,5,5,6}
[1,2,2,2] => [1,0,1,1,0,0,1,1,0,0,1,1,0,0]
=> [5,5,3,3,1,1]
=> 11001100110 => ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,5,5,5,6}
[1,2,3,1] => [1,0,1,1,0,0,1,1,1,0,0,0,1,0]
=> [6,3,3,3,1,1]
=> 100011100110 => ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,5,5,5,6}
[1,3,1,1,1] => [1,0,1,1,1,0,0,0,1,0,1,0,1,0]
=> [6,5,4,1,1,1]
=> 101010001110 => ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,5,5,5,6}
[1,3,1,2] => [1,0,1,1,1,0,0,0,1,0,1,1,0,0]
=> [5,5,4,1,1,1]
=> 11010001110 => ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,5,5,5,6}
[1,3,2,1] => [1,0,1,1,1,0,0,0,1,1,0,0,1,0]
=> [6,4,4,1,1,1]
=> 100110001110 => ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,5,5,5,6}
[1,3,3] => [1,0,1,1,1,0,0,0,1,1,1,0,0,0]
=> [4,4,4,1,1,1]
=> 1110001110 => ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,5,5,5,6}
[1,4,1,1] => [1,0,1,1,1,1,0,0,0,0,1,0,1,0]
=> [6,5,1,1,1,1]
=> 101000011110 => ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,5,5,5,6}
[1,4,2] => [1,0,1,1,1,1,0,0,0,0,1,1,0,0]
=> [5,5,1,1,1,1]
=> 11000011110 => ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,5,5,5,6}
[1,5,1] => [1,0,1,1,1,1,1,0,0,0,0,0,1,0]
=> [6,1,1,1,1,1]
=> 100000111110 => ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,5,5,5,6}
[2,1,1,1,1,1] => [1,1,0,0,1,0,1,0,1,0,1,0,1,0]
=> [6,5,4,3,2]
=> 10101010100 => ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,5,5,5,6}
[2,1,1,1,2] => [1,1,0,0,1,0,1,0,1,0,1,1,0,0]
=> [5,5,4,3,2]
=> 1101010100 => ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,5,5,5,6}
[2,1,1,2,1] => [1,1,0,0,1,0,1,0,1,1,0,0,1,0]
=> [6,4,4,3,2]
=> 10011010100 => ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,5,5,5,6}
[2,1,2,1,1] => [1,1,0,0,1,0,1,1,0,0,1,0,1,0]
=> [6,5,3,3,2]
=> 10100110100 => ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,5,5,5,6}
[2,1,2,2] => [1,1,0,0,1,0,1,1,0,0,1,1,0,0]
=> [5,5,3,3,2]
=> 1100110100 => ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,5,5,5,6}
[2,1,3,1] => [1,1,0,0,1,0,1,1,1,0,0,0,1,0]
=> [6,3,3,3,2]
=> 10001110100 => ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,5,5,5,6}
[2,2,1,1,1] => [1,1,0,0,1,1,0,0,1,0,1,0,1,0]
=> [6,5,4,2,2]
=> 10101001100 => ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,5,5,5,6}
[2,2,1,2] => [1,1,0,0,1,1,0,0,1,0,1,1,0,0]
=> [5,5,4,2,2]
=> 1101001100 => ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,5,5,5,6}
Description
Half the length of the longest odd length palindromic prefix of a binary word. More precisely, this statistic is the largest number $k$ such that the word has a palindromic prefix of length $2k+1$.
Matching statistic: St000777
Mp00184: Integer compositions to threshold graphGraphs
Mp00264: Graphs delete endpointsGraphs
St000777: Graphs ⟶ ℤResult quality: 50% values known / values provided: 50%distinct values known / distinct values provided: 86%
Values
[1] => ([],1)
=> ([],1)
=> 1 = 0 + 1
[1,1] => ([(0,1)],2)
=> ([],1)
=> 1 = 0 + 1
[2] => ([],2)
=> ([],2)
=> ? = 0 + 1
[1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> 2 = 1 + 1
[1,2] => ([(1,2)],3)
=> ([],2)
=> ? ∊ {0,0} + 1
[2,1] => ([(0,2),(1,2)],3)
=> ([],1)
=> 1 = 0 + 1
[3] => ([],3)
=> ([],3)
=> ? ∊ {0,0} + 1
[1,1,1,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 2 = 1 + 1
[1,1,2] => ([(1,2),(1,3),(2,3)],4)
=> ([(1,2),(1,3),(2,3)],4)
=> ? ∊ {0,0,0,0} + 1
[1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> 2 = 1 + 1
[1,3] => ([(2,3)],4)
=> ([],3)
=> ? ∊ {0,0,0,0} + 1
[2,1,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 3 = 2 + 1
[2,2] => ([(1,3),(2,3)],4)
=> ([],2)
=> ? ∊ {0,0,0,0} + 1
[3,1] => ([(0,3),(1,3),(2,3)],4)
=> ([],1)
=> 1 = 0 + 1
[4] => ([],4)
=> ([],4)
=> ? ∊ {0,0,0,0} + 1
[1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2 = 1 + 1
[1,1,1,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,1,1} + 1
[1,1,2,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 2 = 1 + 1
[1,1,3] => ([(2,3),(2,4),(3,4)],5)
=> ([(2,3),(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,1,1} + 1
[1,2,1,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4 = 3 + 1
[1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(2,3)],4)
=> ? ∊ {0,0,0,0,0,0,1,1} + 1
[1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> 2 = 1 + 1
[1,4] => ([(3,4)],5)
=> ([],4)
=> ? ∊ {0,0,0,0,0,0,1,1} + 1
[2,1,1,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3 = 2 + 1
[2,1,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,1,1} + 1
[2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 3 = 2 + 1
[2,3] => ([(2,4),(3,4)],5)
=> ([],3)
=> ? ∊ {0,0,0,0,0,0,1,1} + 1
[3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3 = 2 + 1
[3,2] => ([(1,4),(2,4),(3,4)],5)
=> ([],2)
=> ? ∊ {0,0,0,0,0,0,1,1} + 1
[4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([],1)
=> 1 = 0 + 1
[5] => ([],5)
=> ([],5)
=> ? ∊ {0,0,0,0,0,0,1,1} + 1
[1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2 = 1 + 1
[1,1,1,1,2] => ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,2,4} + 1
[1,1,1,2,1] => ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2 = 1 + 1
[1,1,1,3] => ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,2,4} + 1
[1,1,2,1,1] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 4 = 3 + 1
[1,1,2,2] => ([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,2,4} + 1
[1,1,3,1] => ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 2 = 1 + 1
[1,1,4] => ([(3,4),(3,5),(4,5)],6)
=> ([(3,4),(3,5),(4,5)],6)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,2,4} + 1
[1,2,1,1,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 4 = 3 + 1
[1,2,1,2] => ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,2,4} + 1
[1,2,2,1] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4 = 3 + 1
[1,2,3] => ([(2,5),(3,4),(3,5),(4,5)],6)
=> ([(2,3),(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,2,4} + 1
[1,3,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 4 = 3 + 1
[1,3,2] => ([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,2),(1,3),(2,3)],4)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,2,4} + 1
[1,4,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> 2 = 1 + 1
[1,5] => ([(4,5)],6)
=> ([],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,2,4} + 1
[2,1,1,1,1] => ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3 = 2 + 1
[2,1,1,2] => ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,2,4} + 1
[2,1,2,1] => ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3 = 2 + 1
[2,1,3] => ([(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,2,4} + 1
[2,2,1,1] => ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 5 = 4 + 1
[2,2,2] => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,2,4} + 1
[2,3,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 3 = 2 + 1
[2,4] => ([(3,5),(4,5)],6)
=> ([],4)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,2,4} + 1
[3,1,1,1] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3 = 2 + 1
[3,1,2] => ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,2,4} + 1
[3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3 = 2 + 1
[3,3] => ([(2,5),(3,5),(4,5)],6)
=> ([],3)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,2,4} + 1
[4,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3 = 2 + 1
[4,2] => ([(1,5),(2,5),(3,5),(4,5)],6)
=> ([],2)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,2,4} + 1
[5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> ([],1)
=> 1 = 0 + 1
[6] => ([],6)
=> ([],6)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,2,4} + 1
[1,1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 2 = 1 + 1
[1,1,1,1,1,2] => ([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,2,2,2,2,4,5,5,6} + 1
[1,1,1,1,2,1] => ([(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2 = 1 + 1
[1,1,1,1,3] => ([(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,2,2,2,2,4,5,5,6} + 1
[1,1,1,2,1,1] => ([(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 4 = 3 + 1
[1,1,1,2,2] => ([(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,2,2,2,2,4,5,5,6} + 1
[1,1,1,3,1] => ([(0,6),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2 = 1 + 1
[1,1,1,4] => ([(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,2,2,2,2,4,5,5,6} + 1
[1,1,2,1,1,1] => ([(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 4 = 3 + 1
[1,1,2,1,2] => ([(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,2,2,2,2,4,5,5,6} + 1
[1,1,2,2,1] => ([(0,6),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 4 = 3 + 1
[1,1,2,3] => ([(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,2,2,2,2,4,5,5,6} + 1
[1,1,3,1,1] => ([(0,5),(0,6),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,5),(0,6),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 4 = 3 + 1
[1,1,3,2] => ([(1,6),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,2,2,2,2,4,5,5,6} + 1
[1,1,4,1] => ([(0,6),(1,6),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 2 = 1 + 1
[1,1,5] => ([(4,5),(4,6),(5,6)],7)
=> ([(4,5),(4,6),(5,6)],7)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,2,2,2,2,4,5,5,6} + 1
[1,2,1,1,1,1] => ([(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 4 = 3 + 1
[1,2,1,1,2] => ([(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,2,2,2,2,4,5,5,6} + 1
[1,2,1,2,1] => ([(0,6),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 4 = 3 + 1
[1,2,1,3] => ([(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,2,2,2,2,4,5,5,6} + 1
[1,2,2,1,1] => ([(0,5),(0,6),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,5),(0,6),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 6 = 5 + 1
[1,2,2,2] => ([(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,2,2,2,2,4,5,5,6} + 1
[1,2,3,1] => ([(0,6),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4 = 3 + 1
[1,2,4] => ([(3,6),(4,5),(4,6),(5,6)],7)
=> ([(3,4),(3,5),(4,5)],6)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,2,2,2,2,4,5,5,6} + 1
[1,3,1,1,1] => ([(0,4),(0,5),(0,6),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,4),(0,5),(0,6),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 4 = 3 + 1
[1,3,1,2] => ([(1,5),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,5),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,2,2,2,2,4,5,5,6} + 1
[1,3,2,1] => ([(0,6),(1,5),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 4 = 3 + 1
[1,3,3] => ([(2,6),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(2,3),(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,2,2,2,2,4,5,5,6} + 1
[1,4,1,1] => ([(0,5),(0,6),(1,5),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,5),(0,6),(1,5),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 4 = 3 + 1
[1,4,2] => ([(1,6),(2,6),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,2),(1,3),(2,3)],4)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,2,2,2,2,4,5,5,6} + 1
[1,5,1] => ([(0,6),(1,6),(2,6),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(1,2)],3)
=> 2 = 1 + 1
[1,6] => ([(5,6)],7)
=> ([],6)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,2,2,2,2,4,5,5,6} + 1
[2,1,1,1,1,1] => ([(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 3 = 2 + 1
[2,1,1,1,2] => ([(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,2,2,2,2,4,5,5,6} + 1
[2,1,1,2,1] => ([(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3 = 2 + 1
[2,1,1,3] => ([(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,2,2,2,2,4,5,5,6} + 1
[2,1,2,2] => ([(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,2,2,2,2,4,5,5,6} + 1
Description
The number of distinct eigenvalues of the distance Laplacian of a connected graph.
Matching statistic: St001645
Mp00184: Integer compositions to threshold graphGraphs
Mp00250: Graphs clique graphGraphs
St001645: Graphs ⟶ ℤResult quality: 50% values known / values provided: 50%distinct values known / distinct values provided: 86%
Values
[1] => ([],1)
=> ([],1)
=> 1 = 0 + 1
[1,1] => ([(0,1)],2)
=> ([],1)
=> 1 = 0 + 1
[2] => ([],2)
=> ([],2)
=> ? = 0 + 1
[1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> ([],1)
=> 1 = 0 + 1
[1,2] => ([(1,2)],3)
=> ([],2)
=> ? ∊ {0,0} + 1
[2,1] => ([(0,2),(1,2)],3)
=> ([(0,1)],2)
=> 2 = 1 + 1
[3] => ([],3)
=> ([],3)
=> ? ∊ {0,0} + 1
[1,1,1,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([],1)
=> 1 = 0 + 1
[1,1,2] => ([(1,2),(1,3),(2,3)],4)
=> ([],2)
=> ? ∊ {0,0,0,0} + 1
[1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1)],2)
=> 2 = 1 + 1
[1,3] => ([(2,3)],4)
=> ([],3)
=> ? ∊ {0,0,0,0} + 1
[2,1,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1)],2)
=> 2 = 1 + 1
[2,2] => ([(1,3),(2,3)],4)
=> ([(1,2)],3)
=> ? ∊ {0,0,0,0} + 1
[3,1] => ([(0,3),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> 3 = 2 + 1
[4] => ([],4)
=> ([],4)
=> ? ∊ {0,0,0,0} + 1
[1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],1)
=> 1 = 0 + 1
[1,1,1,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],2)
=> ? ∊ {0,0,0,0,0,0,1,1} + 1
[1,1,2,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> 2 = 1 + 1
[1,1,3] => ([(2,3),(2,4),(3,4)],5)
=> ([],3)
=> ? ∊ {0,0,0,0,0,0,1,1} + 1
[1,2,1,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> 2 = 1 + 1
[1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? ∊ {0,0,0,0,0,0,1,1} + 1
[1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> 3 = 2 + 1
[1,4] => ([(3,4)],5)
=> ([],4)
=> ? ∊ {0,0,0,0,0,0,1,1} + 1
[2,1,1,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> 2 = 1 + 1
[2,1,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? ∊ {0,0,0,0,0,0,1,1} + 1
[2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> 3 = 2 + 1
[2,3] => ([(2,4),(3,4)],5)
=> ([(2,3)],4)
=> ? ∊ {0,0,0,0,0,0,1,1} + 1
[3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> 3 = 2 + 1
[3,2] => ([(1,4),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(2,3)],4)
=> ? ∊ {0,0,0,0,0,0,1,1} + 1
[4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 4 = 3 + 1
[5] => ([],5)
=> ([],5)
=> ? ∊ {0,0,0,0,0,0,1,1} + 1
[1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([],1)
=> 1 = 0 + 1
[1,1,1,1,2] => ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([],2)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,2,4} + 1
[1,1,1,2,1] => ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1)],2)
=> 2 = 1 + 1
[1,1,1,3] => ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([],3)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,2,4} + 1
[1,1,2,1,1] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1)],2)
=> 2 = 1 + 1
[1,1,2,2] => ([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,2)],3)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,2,4} + 1
[1,1,3,1] => ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> 3 = 2 + 1
[1,1,4] => ([(3,4),(3,5),(4,5)],6)
=> ([],4)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,2,4} + 1
[1,2,1,1,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1)],2)
=> 2 = 1 + 1
[1,2,1,2] => ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,2)],3)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,2,4} + 1
[1,2,2,1] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> 3 = 2 + 1
[1,2,3] => ([(2,5),(3,4),(3,5),(4,5)],6)
=> ([(2,3)],4)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,2,4} + 1
[1,3,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> 3 = 2 + 1
[1,3,2] => ([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,2),(1,3),(2,3)],4)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,2,4} + 1
[1,4,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 4 = 3 + 1
[1,5] => ([(4,5)],6)
=> ([],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,2,4} + 1
[2,1,1,1,1] => ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1)],2)
=> 2 = 1 + 1
[2,1,1,2] => ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,2)],3)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,2,4} + 1
[2,1,2,1] => ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> 3 = 2 + 1
[2,1,3] => ([(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(2,3)],4)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,2,4} + 1
[2,2,1,1] => ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> 3 = 2 + 1
[2,2,2] => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,2),(1,3),(2,3)],4)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,2,4} + 1
[2,3,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 4 = 3 + 1
[2,4] => ([(3,5),(4,5)],6)
=> ([(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,2,4} + 1
[3,1,1,1] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> 3 = 2 + 1
[3,1,2] => ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,2),(1,3),(2,3)],4)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,2,4} + 1
[3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 4 = 3 + 1
[3,3] => ([(2,5),(3,5),(4,5)],6)
=> ([(2,3),(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,2,4} + 1
[4,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 4 = 3 + 1
[4,2] => ([(1,5),(2,5),(3,5),(4,5)],6)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,2,4} + 1
[5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 5 = 4 + 1
[6] => ([],6)
=> ([],6)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,2,4} + 1
[1,1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([],1)
=> 1 = 0 + 1
[1,1,1,1,1,2] => ([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([],2)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,2,2,2,2,4,5,5,6} + 1
[1,1,1,1,2,1] => ([(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,1)],2)
=> 2 = 1 + 1
[1,1,1,1,3] => ([(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([],3)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,2,2,2,2,4,5,5,6} + 1
[1,1,1,2,1,1] => ([(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,1)],2)
=> 2 = 1 + 1
[1,1,1,2,2] => ([(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,2)],3)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,2,2,2,2,4,5,5,6} + 1
[1,1,1,3,1] => ([(0,6),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(1,2)],3)
=> 3 = 2 + 1
[1,1,1,4] => ([(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([],4)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,2,2,2,2,4,5,5,6} + 1
[1,1,2,1,1,1] => ([(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,1)],2)
=> 2 = 1 + 1
[1,1,2,1,2] => ([(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,2)],3)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,2,2,2,2,4,5,5,6} + 1
[1,1,2,2,1] => ([(0,6),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(1,2)],3)
=> 3 = 2 + 1
[1,1,2,3] => ([(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(2,3)],4)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,2,2,2,2,4,5,5,6} + 1
[1,1,3,1,1] => ([(0,5),(0,6),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(1,2)],3)
=> 3 = 2 + 1
[1,1,3,2] => ([(1,6),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,2),(1,3),(2,3)],4)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,2,2,2,2,4,5,5,6} + 1
[1,1,4,1] => ([(0,6),(1,6),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 4 = 3 + 1
[1,1,5] => ([(4,5),(4,6),(5,6)],7)
=> ([],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,2,2,2,2,4,5,5,6} + 1
[1,2,1,1,1,1] => ([(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,1)],2)
=> 2 = 1 + 1
[1,2,1,1,2] => ([(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,2)],3)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,2,2,2,2,4,5,5,6} + 1
[1,2,1,2,1] => ([(0,6),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(1,2)],3)
=> 3 = 2 + 1
[1,2,1,3] => ([(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(2,3)],4)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,2,2,2,2,4,5,5,6} + 1
[1,2,2,1,1] => ([(0,5),(0,6),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(1,2)],3)
=> 3 = 2 + 1
[1,2,2,2] => ([(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,2),(1,3),(2,3)],4)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,2,2,2,2,4,5,5,6} + 1
[1,2,3,1] => ([(0,6),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 4 = 3 + 1
[1,2,4] => ([(3,6),(4,5),(4,6),(5,6)],7)
=> ([(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,2,2,2,2,4,5,5,6} + 1
[1,3,1,1,1] => ([(0,4),(0,5),(0,6),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(1,2)],3)
=> 3 = 2 + 1
[1,3,1,2] => ([(1,5),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,2),(1,3),(2,3)],4)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,2,2,2,2,4,5,5,6} + 1
[1,3,2,1] => ([(0,6),(1,5),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 4 = 3 + 1
[1,3,3] => ([(2,6),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(2,3),(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,2,2,2,2,4,5,5,6} + 1
[1,4,1,1] => ([(0,5),(0,6),(1,5),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 4 = 3 + 1
[1,4,2] => ([(1,6),(2,6),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,2,2,2,2,4,5,5,6} + 1
[1,5,1] => ([(0,6),(1,6),(2,6),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 5 = 4 + 1
[1,6] => ([(5,6)],7)
=> ([],6)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,2,2,2,2,4,5,5,6} + 1
[2,1,1,1,1,1] => ([(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,1)],2)
=> 2 = 1 + 1
[2,1,1,1,2] => ([(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,2)],3)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,2,2,2,2,4,5,5,6} + 1
[2,1,1,2,1] => ([(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(1,2)],3)
=> 3 = 2 + 1
[2,1,1,3] => ([(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(2,3)],4)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,2,2,2,2,4,5,5,6} + 1
[2,1,2,2] => ([(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,2),(1,3),(2,3)],4)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,2,2,2,2,4,5,5,6} + 1
Description
The pebbling number of a connected graph.
The following 84 statistics, ordered by result quality, also match your data. Click on any of them to see the details.
St000460The hook length of the last cell along the main diagonal of an integer partition. St001249Sum of the odd parts of a partition. St001606The multiplicity of the irreducible representation corresponding to a partition in the relabelling action on set partitions. St001056The Grundy value for the game of deleting vertices of a graph until it has no edges. St001689The number of celebrities in a graph. St000671The maximin edge-connectivity for choosing a subgraph. St001323The independence gap of a graph. St001574The minimal number of edges to add or remove to make a graph regular. St001576The minimal number of edges to add or remove to make a graph vertex transitive. St001575The minimal number of edges to add or remove to make a graph edge transitive. St001742The difference of the maximal and the minimal degree in a graph. St001871The number of triconnected components of a graph. St000621The number of standard tableaux of shape equal to the given partition such that the minimal cyclic descent is even. St000681The Grundy value of Chomp on Ferrers diagrams. St000714The number of semistandard Young tableau of given shape, with entries at most 2. St000770The major index of an integer partition when read from bottom to top. St000937The number of positive values of the symmetric group character corresponding to the partition. St000939The number of characters of the symmetric group whose value on the partition is positive. St000941The number of characters of the symmetric group whose value on the partition is even. St000137The Grundy value of an integer partition. St000506The number of standard desarrangement tableaux of shape equal to the given partition. St001122The multiplicity of the sign representation in the Kronecker square corresponding to a partition. St001176The size of a partition minus its first part. St001247The number of parts of a partition that are not congruent 2 modulo 3. St001250The number of parts of a partition that are not congruent 0 modulo 3. St001384The number of boxes in the diagram of a partition that do not lie in the largest triangle it contains. St001525The number of symmetric hooks on the diagonal of a partition. St001593This is the number of standard Young tableaux of the given shifted shape. St001785The number of ways to obtain a partition as the multiset of antidiagonal lengths of the Ferrers diagram of a partition. St001914The size of the orbit of an integer partition in Bulgarian solitaire. St001933The largest multiplicity of a part in an integer partition. St001939The number of parts that are equal to their multiplicity in the integer partition. St001940The number of distinct parts that are equal to their multiplicity in the integer partition. St001961The sum of the greatest common divisors of all pairs of parts. St000454The largest eigenvalue of a graph if it is integral. St001163The number of simple modules with dominant dimension at least three in the corresponding Nakayama algebra. St001181Number of indecomposable injective modules with grade at least 3 in the corresponding Nakayama algebra. St001219Number of simple modules S in the corresponding Nakayama algebra such that the Auslander-Reiten sequence ending at S has the property that all modules in the exact sequence are reflexive. St001231The number of simple modules that are non-projective and non-injective with the property that they have projective dimension equal to one and that also the Auslander-Reiten translates of the module and the inverse Auslander-Reiten translate of the module have the same projective dimension. St001234The number of indecomposable three dimensional modules with projective dimension one. St001629The coefficient of the integer composition in the quasisymmetric expansion of the relabelling action of the symmetric group on cycles. St000698The number of 2-rim hooks removed from an integer partition to obtain its associated 2-core. St001123The multiplicity of the dual of the standard representation in the Kronecker square corresponding to a partition. St000455The second largest eigenvalue of a graph if it is integral. St001845The number of join irreducibles minus the rank of a lattice. St001881The number of factors of a lattice as a Cartesian product of lattices. St001803The maximal overlap of the cylindrical tableau associated with a tableau. St001651The Frankl number of a lattice. St000510The number of invariant oriented cycles when acting with a permutation of given cycle type. St000512The number of invariant subsets of size 3 when acting with a permutation of given cycle type. St000620The number of standard tableaux of shape equal to the given partition such that the minimal cyclic descent is odd. St000668The least common multiple of the parts of the partition. St000706The product of the factorials of the multiplicities of an integer partition. St000929The constant term of the character polynomial of an integer partition. St000936The number of even values of the symmetric group character corresponding to the partition. St000938The number of zeros of the symmetric group character corresponding to the partition. St000940The number of characters of the symmetric group whose value on the partition is zero. St000993The multiplicity of the largest part of an integer partition. St001097The coefficient of the monomial symmetric function indexed by the partition in the formal group law for linear orders. St001568The smallest positive integer that does not appear twice in the partition. St001604The multiplicity of the irreducible representation corresponding to a partition in the relabelling action on polygons. St000689The maximal n such that the minimal generator-cogenerator module in the LNakayama algebra of a Dyck path is n-rigid. St001862The number of crossings of a signed permutation. St001866The nesting alignments of a signed permutation. St001882The number of occurrences of a type-B 231 pattern in a signed permutation. St000031The number of cycles in the cycle decomposition of a permutation. St001060The distinguishing index of a graph. St001603The number of colourings of a polygon such that the multiplicities of a colour are given by a partition. St001605The number of colourings of a cycle such that the multiplicities of colours are given by a partition. St001621The number of atoms of a lattice. St000982The length of the longest constant subword. St001868The number of alignments of type NE of a signed permutation. St001878The projective dimension of the simple modules corresponding to the minimum of L in the incidence algebra of the lattice L. St000406The number of occurrences of the pattern 3241 in a permutation. St000732The number of double deficiencies of a permutation. St001186Number of simple modules with grade at least 3 in the corresponding Nakayama algebra. St001264The smallest index i such that the i-th simple module has projective dimension equal to the global dimension of the corresponding Nakayama algebra. St001906Half of the difference between the total displacement and the number of inversions and the reflection length of a permutation. St001238The number of simple modules S such that the Auslander-Reiten translate of S is isomorphic to the Nakayama functor applied to the second syzygy of S. St001431Half of the Loewy length minus one of a modified stable Auslander algebra of the Nakayama algebra corresponding to the Dyck path. St000757The length of the longest weakly inreasing subsequence of parts of an integer composition. St000765The number of weak records in an integer composition. St001526The Loewy length of the Auslander-Reiten translate of the regular module as a bimodule of the Nakayama algebra corresponding to the Dyck path. St001207The Lowey length of the algebra $A/T$ when $T$ is the 1-tilting module corresponding to the permutation in the Auslander algebra of $K[x]/(x^n)$.