Your data matches 46 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
Matching statistic: St000070
St000070: Posets ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
([],1)
=> 2
([],2)
=> 4
([(0,1)],2)
=> 3
([],3)
=> 8
([(1,2)],3)
=> 6
([(0,1),(0,2)],3)
=> 5
([(0,2),(2,1)],3)
=> 4
([(0,2),(1,2)],3)
=> 5
Description
The number of antichains in a poset. An antichain in a poset $P$ is a subset of elements of $P$ which are pairwise incomparable. An order ideal is a subset $I$ of $P$ such that $a\in I$ and $b \leq_P a$ implies $b \in I$. Since there is a one-to-one correspondence between antichains and order ideals, this statistic is also the number of order ideals in a poset.
Mp00306: Posets rowmotion cycle typeInteger partitions
St000228: Integer partitions ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
([],1)
=> [2]
=> 2
([],2)
=> [2,2]
=> 4
([(0,1)],2)
=> [3]
=> 3
([],3)
=> [2,2,2,2]
=> 8
([(1,2)],3)
=> [6]
=> 6
([(0,1),(0,2)],3)
=> [3,2]
=> 5
([(0,2),(2,1)],3)
=> [4]
=> 4
([(0,2),(1,2)],3)
=> [3,2]
=> 5
Description
The size of a partition. This statistic is the constant statistic of the level sets.
Matching statistic: St001279
Mp00306: Posets rowmotion cycle typeInteger partitions
St001279: Integer partitions ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
([],1)
=> [2]
=> 2
([],2)
=> [2,2]
=> 4
([(0,1)],2)
=> [3]
=> 3
([],3)
=> [2,2,2,2]
=> 8
([(1,2)],3)
=> [6]
=> 6
([(0,1),(0,2)],3)
=> [3,2]
=> 5
([(0,2),(2,1)],3)
=> [4]
=> 4
([(0,2),(1,2)],3)
=> [3,2]
=> 5
Description
The sum of the parts of an integer partition that are at least two.
Matching statistic: St001527
Mp00306: Posets rowmotion cycle typeInteger partitions
St001527: Integer partitions ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
([],1)
=> [2]
=> 2
([],2)
=> [2,2]
=> 4
([(0,1)],2)
=> [3]
=> 3
([],3)
=> [2,2,2,2]
=> 8
([(1,2)],3)
=> [6]
=> 6
([(0,1),(0,2)],3)
=> [3,2]
=> 5
([(0,2),(2,1)],3)
=> [4]
=> 4
([(0,2),(1,2)],3)
=> [3,2]
=> 5
Description
The cyclic permutation representation number of an integer partition. This is the size of the largest cyclic group $C$ such that the fake degree is the character of a permutation representation of $C$.
Matching statistic: St001616
Mp00195: Posets order idealsLattices
St001616: Lattices ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
([],1)
=> ([(0,1)],2)
=> 2
([],2)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 4
([(0,1)],2)
=> ([(0,2),(2,1)],3)
=> 3
([],3)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> 8
([(1,2)],3)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 6
([(0,1),(0,2)],3)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> 5
([(0,2),(2,1)],3)
=> ([(0,3),(2,1),(3,2)],4)
=> 4
([(0,2),(1,2)],3)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> 5
Description
The number of neutral elements in a lattice. An element $e$ of the lattice $L$ is neutral if the sublattice generated by $e$, $x$ and $y$ is distributive for all $x, y \in L$.
Mp00306: Posets rowmotion cycle typeInteger partitions
Mp00095: Integer partitions to binary wordBinary words
St000293: Binary words ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
([],1)
=> [2]
=> 100 => 2
([],2)
=> [2,2]
=> 1100 => 4
([(0,1)],2)
=> [3]
=> 1000 => 3
([],3)
=> [2,2,2,2]
=> 111100 => 8
([(1,2)],3)
=> [6]
=> 1000000 => 6
([(0,1),(0,2)],3)
=> [3,2]
=> 10100 => 5
([(0,2),(2,1)],3)
=> [4]
=> 10000 => 4
([(0,2),(1,2)],3)
=> [3,2]
=> 10100 => 5
Description
The number of inversions of a binary word.
Mp00198: Posets incomparability graphGraphs
Mp00111: Graphs complementGraphs
St000300: Graphs ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
([],1)
=> ([],1)
=> ([],1)
=> 2
([],2)
=> ([(0,1)],2)
=> ([],2)
=> 4
([(0,1)],2)
=> ([],2)
=> ([(0,1)],2)
=> 3
([],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> 8
([(1,2)],3)
=> ([(0,2),(1,2)],3)
=> ([(1,2)],3)
=> 6
([(0,1),(0,2)],3)
=> ([(1,2)],3)
=> ([(0,2),(1,2)],3)
=> 5
([(0,2),(2,1)],3)
=> ([],3)
=> ([(0,1),(0,2),(1,2)],3)
=> 4
([(0,2),(1,2)],3)
=> ([(1,2)],3)
=> ([(0,2),(1,2)],3)
=> 5
Description
The number of independent sets of vertices of a graph. An independent set of vertices of a graph $G$ is a subset $U \subset V(G)$ such that no two vertices in $U$ are adjacent. This is also the number of vertex covers of $G$ as the map $U \mapsto V(G)\setminus U$ is a bijection between independent sets of vertices and vertex covers. The size of the largest independent set, also called independence number of $G$, is [[St000093]]
Matching statistic: St000459
Mp00306: Posets rowmotion cycle typeInteger partitions
Mp00322: Integer partitions Loehr-WarringtonInteger partitions
St000459: Integer partitions ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
([],1)
=> [2]
=> [1,1]
=> 2
([],2)
=> [2,2]
=> [4]
=> 4
([(0,1)],2)
=> [3]
=> [1,1,1]
=> 3
([],3)
=> [2,2,2,2]
=> [5,1,1,1]
=> 8
([(1,2)],3)
=> [6]
=> [1,1,1,1,1,1]
=> 6
([(0,1),(0,2)],3)
=> [3,2]
=> [5]
=> 5
([(0,2),(2,1)],3)
=> [4]
=> [1,1,1,1]
=> 4
([(0,2),(1,2)],3)
=> [3,2]
=> [5]
=> 5
Description
The hook length of the base cell of a partition. This is also known as the perimeter of a partition. In particular, the perimeter of the empty partition is zero.
Matching statistic: St000460
Mp00306: Posets rowmotion cycle typeInteger partitions
Mp00322: Integer partitions Loehr-WarringtonInteger partitions
St000460: Integer partitions ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
([],1)
=> [2]
=> [1,1]
=> 2
([],2)
=> [2,2]
=> [4]
=> 4
([(0,1)],2)
=> [3]
=> [1,1,1]
=> 3
([],3)
=> [2,2,2,2]
=> [5,1,1,1]
=> 8
([(1,2)],3)
=> [6]
=> [1,1,1,1,1,1]
=> 6
([(0,1),(0,2)],3)
=> [3,2]
=> [5]
=> 5
([(0,2),(2,1)],3)
=> [4]
=> [1,1,1,1]
=> 4
([(0,2),(1,2)],3)
=> [3,2]
=> [5]
=> 5
Description
The hook length of the last cell along the main diagonal of an integer partition.
Matching statistic: St000870
Mp00306: Posets rowmotion cycle typeInteger partitions
Mp00322: Integer partitions Loehr-WarringtonInteger partitions
St000870: Integer partitions ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
([],1)
=> [2]
=> [1,1]
=> 2
([],2)
=> [2,2]
=> [4]
=> 4
([(0,1)],2)
=> [3]
=> [1,1,1]
=> 3
([],3)
=> [2,2,2,2]
=> [5,1,1,1]
=> 8
([(1,2)],3)
=> [6]
=> [1,1,1,1,1,1]
=> 6
([(0,1),(0,2)],3)
=> [3,2]
=> [5]
=> 5
([(0,2),(2,1)],3)
=> [4]
=> [1,1,1,1]
=> 4
([(0,2),(1,2)],3)
=> [3,2]
=> [5]
=> 5
Description
The product of the hook lengths of the diagonal cells in an integer partition. For a cell in the Ferrers diagram of a partition, the hook length is given by the number of boxes to its right plus the number of boxes below + 1. This statistic is the product of the hook lengths of the diagonal cells $(i,i)$ of a partition.
The following 36 statistics, ordered by result quality, also match your data. Click on any of them to see the details.
St001034The area of the parallelogram polyomino associated with the Dyck path. St000681The Grundy value of Chomp on Ferrers diagrams. St001382The number of boxes in the diagram of a partition that do not lie in its Durfee square. St000290The major index of a binary word. St000395The sum of the heights of the peaks of a Dyck path. St001019Sum of the projective dimensions of the simple modules in the Nakayama algebra corresponding to the Dyck path. St000012The area of a Dyck path. St001065Number of indecomposable reflexive modules in the corresponding Nakayama algebra. St001295Gives the vector space dimension of the homomorphism space between J^2 and J^2. St000438The position of the last up step in a Dyck path. St000550The number of modular elements of a lattice. St000551The number of left modular elements of a lattice. St000189The number of elements in the poset. St000656The number of cuts of a poset. St001614The cyclic permutation representation number of a skew partition. St001717The largest size of an interval in a poset. St001300The rank of the boundary operator in degree 1 of the chain complex of the order complex of the poset. St000479The Ramsey number of a graph. St000915The Ore degree of a graph. St001318The number of vertices of the largest induced subforest with the same number of connected components of a graph. St001321The number of vertices of the largest induced subforest of a graph. St001342The number of vertices in the center of a graph. St001622The number of join-irreducible elements of a lattice. St001707The length of a longest path in a graph such that the remaining vertices can be partitioned into two sets of the same size without edges between them. St001746The coalition number of a graph. St000987The number of positive eigenvalues of the Laplacian matrix of the graph. St001120The length of a longest path in a graph. St001228The vector space dimension of the space of module homomorphisms between J and itself when J denotes the Jacobson radical of the corresponding Nakayama algebra. St001880The number of 2-Gorenstein indecomposable injective modules in the incidence algebra of the lattice. St001615The number of join prime elements of a lattice. St001617The dimension of the space of valuations of a lattice. St001875The number of simple modules with projective dimension at most 1. St001645The pebbling number of a connected graph. St000718The largest Laplacian eigenvalue of a graph if it is integral. St000422The energy of a graph, if it is integral. St000454The largest eigenvalue of a graph if it is integral.