searching the database
Your data matches 43 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
(click to perform a complete search on your data)
Matching statistic: St000148
(load all 2 compositions to match this statistic)
(load all 2 compositions to match this statistic)
St000148: Integer partitions ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[1]
=> 1 = 2 - 1
[2]
=> 0 = 1 - 1
[1,1]
=> 2 = 3 - 1
[3]
=> 1 = 2 - 1
[2,1]
=> 1 = 2 - 1
[1,1,1]
=> 3 = 4 - 1
[4]
=> 0 = 1 - 1
[3,1]
=> 2 = 3 - 1
[2,2]
=> 0 = 1 - 1
[2,1,1]
=> 2 = 3 - 1
[1,1,1,1]
=> 4 = 5 - 1
[5]
=> 1 = 2 - 1
[4,1]
=> 1 = 2 - 1
[3,2]
=> 1 = 2 - 1
[3,1,1]
=> 3 = 4 - 1
[2,2,1]
=> 1 = 2 - 1
[2,1,1,1]
=> 3 = 4 - 1
[1,1,1,1,1]
=> 5 = 6 - 1
[6]
=> 0 = 1 - 1
[5,1]
=> 2 = 3 - 1
[4,2]
=> 0 = 1 - 1
[4,1,1]
=> 2 = 3 - 1
[3,3]
=> 2 = 3 - 1
[3,2,1]
=> 2 = 3 - 1
[3,1,1,1]
=> 4 = 5 - 1
[2,2,2]
=> 0 = 1 - 1
[2,2,1,1]
=> 2 = 3 - 1
[2,1,1,1,1]
=> 4 = 5 - 1
[1,1,1,1,1,1]
=> 6 = 7 - 1
[7]
=> 1 = 2 - 1
[6,1]
=> 1 = 2 - 1
[5,2]
=> 1 = 2 - 1
[5,1,1]
=> 3 = 4 - 1
[4,3]
=> 1 = 2 - 1
[4,2,1]
=> 1 = 2 - 1
[4,1,1,1]
=> 3 = 4 - 1
[3,3,1]
=> 3 = 4 - 1
[3,2,2]
=> 1 = 2 - 1
[3,2,1,1]
=> 3 = 4 - 1
[3,1,1,1,1]
=> 5 = 6 - 1
[2,2,2,1]
=> 1 = 2 - 1
[2,2,1,1,1]
=> 3 = 4 - 1
[2,1,1,1,1,1]
=> 5 = 6 - 1
[1,1,1,1,1,1,1]
=> 7 = 8 - 1
[8]
=> 0 = 1 - 1
[7,1]
=> 2 = 3 - 1
[6,2]
=> 0 = 1 - 1
[6,1,1]
=> 2 = 3 - 1
[5,3]
=> 2 = 3 - 1
[5,2,1]
=> 2 = 3 - 1
Description
The number of odd parts of a partition.
Matching statistic: St000992
St000992: Integer partitions ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[1]
=> 1 = 2 - 1
[2]
=> 2 = 3 - 1
[1,1]
=> 0 = 1 - 1
[3]
=> 3 = 4 - 1
[2,1]
=> 1 = 2 - 1
[1,1,1]
=> 1 = 2 - 1
[4]
=> 4 = 5 - 1
[3,1]
=> 2 = 3 - 1
[2,2]
=> 0 = 1 - 1
[2,1,1]
=> 2 = 3 - 1
[1,1,1,1]
=> 0 = 1 - 1
[5]
=> 5 = 6 - 1
[4,1]
=> 3 = 4 - 1
[3,2]
=> 1 = 2 - 1
[3,1,1]
=> 3 = 4 - 1
[2,2,1]
=> 1 = 2 - 1
[2,1,1,1]
=> 1 = 2 - 1
[1,1,1,1,1]
=> 1 = 2 - 1
[6]
=> 6 = 7 - 1
[5,1]
=> 4 = 5 - 1
[4,2]
=> 2 = 3 - 1
[4,1,1]
=> 4 = 5 - 1
[3,3]
=> 0 = 1 - 1
[3,2,1]
=> 2 = 3 - 1
[3,1,1,1]
=> 2 = 3 - 1
[2,2,2]
=> 2 = 3 - 1
[2,2,1,1]
=> 0 = 1 - 1
[2,1,1,1,1]
=> 2 = 3 - 1
[1,1,1,1,1,1]
=> 0 = 1 - 1
[7]
=> 7 = 8 - 1
[6,1]
=> 5 = 6 - 1
[5,2]
=> 3 = 4 - 1
[5,1,1]
=> 5 = 6 - 1
[4,3]
=> 1 = 2 - 1
[4,2,1]
=> 3 = 4 - 1
[4,1,1,1]
=> 3 = 4 - 1
[3,3,1]
=> 1 = 2 - 1
[3,2,2]
=> 3 = 4 - 1
[3,2,1,1]
=> 1 = 2 - 1
[3,1,1,1,1]
=> 3 = 4 - 1
[2,2,2,1]
=> 1 = 2 - 1
[2,2,1,1,1]
=> 1 = 2 - 1
[2,1,1,1,1,1]
=> 1 = 2 - 1
[1,1,1,1,1,1,1]
=> 1 = 2 - 1
[8]
=> 8 = 9 - 1
[7,1]
=> 6 = 7 - 1
[6,2]
=> 4 = 5 - 1
[6,1,1]
=> 6 = 7 - 1
[5,3]
=> 2 = 3 - 1
[5,2,1]
=> 4 = 5 - 1
Description
The alternating sum of the parts of an integer partition.
For a partition $\lambda = (\lambda_1,\ldots,\lambda_k)$, this is $\lambda_1 - \lambda_2 + \cdots \pm \lambda_k$.
Matching statistic: St000288
(load all 25 compositions to match this statistic)
(load all 25 compositions to match this statistic)
Mp00317: Integer partitions —odd parts⟶ Binary words
St000288: Binary words ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
St000288: Binary words ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[1]
=> 1 => 1 = 2 - 1
[2]
=> 0 => 0 = 1 - 1
[1,1]
=> 11 => 2 = 3 - 1
[3]
=> 1 => 1 = 2 - 1
[2,1]
=> 01 => 1 = 2 - 1
[1,1,1]
=> 111 => 3 = 4 - 1
[4]
=> 0 => 0 = 1 - 1
[3,1]
=> 11 => 2 = 3 - 1
[2,2]
=> 00 => 0 = 1 - 1
[2,1,1]
=> 011 => 2 = 3 - 1
[1,1,1,1]
=> 1111 => 4 = 5 - 1
[5]
=> 1 => 1 = 2 - 1
[4,1]
=> 01 => 1 = 2 - 1
[3,2]
=> 10 => 1 = 2 - 1
[3,1,1]
=> 111 => 3 = 4 - 1
[2,2,1]
=> 001 => 1 = 2 - 1
[2,1,1,1]
=> 0111 => 3 = 4 - 1
[1,1,1,1,1]
=> 11111 => 5 = 6 - 1
[6]
=> 0 => 0 = 1 - 1
[5,1]
=> 11 => 2 = 3 - 1
[4,2]
=> 00 => 0 = 1 - 1
[4,1,1]
=> 011 => 2 = 3 - 1
[3,3]
=> 11 => 2 = 3 - 1
[3,2,1]
=> 101 => 2 = 3 - 1
[3,1,1,1]
=> 1111 => 4 = 5 - 1
[2,2,2]
=> 000 => 0 = 1 - 1
[2,2,1,1]
=> 0011 => 2 = 3 - 1
[2,1,1,1,1]
=> 01111 => 4 = 5 - 1
[1,1,1,1,1,1]
=> 111111 => 6 = 7 - 1
[7]
=> 1 => 1 = 2 - 1
[6,1]
=> 01 => 1 = 2 - 1
[5,2]
=> 10 => 1 = 2 - 1
[5,1,1]
=> 111 => 3 = 4 - 1
[4,3]
=> 01 => 1 = 2 - 1
[4,2,1]
=> 001 => 1 = 2 - 1
[4,1,1,1]
=> 0111 => 3 = 4 - 1
[3,3,1]
=> 111 => 3 = 4 - 1
[3,2,2]
=> 100 => 1 = 2 - 1
[3,2,1,1]
=> 1011 => 3 = 4 - 1
[3,1,1,1,1]
=> 11111 => 5 = 6 - 1
[2,2,2,1]
=> 0001 => 1 = 2 - 1
[2,2,1,1,1]
=> 00111 => 3 = 4 - 1
[2,1,1,1,1,1]
=> 011111 => 5 = 6 - 1
[1,1,1,1,1,1,1]
=> 1111111 => 7 = 8 - 1
[8]
=> 0 => 0 = 1 - 1
[7,1]
=> 11 => 2 = 3 - 1
[6,2]
=> 00 => 0 = 1 - 1
[6,1,1]
=> 011 => 2 = 3 - 1
[5,3]
=> 11 => 2 = 3 - 1
[5,2,1]
=> 101 => 2 = 3 - 1
Description
The number of ones in a binary word.
This is also known as the Hamming weight of the word.
Matching statistic: St001372
(load all 12 compositions to match this statistic)
(load all 12 compositions to match this statistic)
Mp00317: Integer partitions —odd parts⟶ Binary words
St001372: Binary words ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
St001372: Binary words ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[1]
=> 1 => 1 = 2 - 1
[2]
=> 0 => 0 = 1 - 1
[1,1]
=> 11 => 2 = 3 - 1
[3]
=> 1 => 1 = 2 - 1
[2,1]
=> 01 => 1 = 2 - 1
[1,1,1]
=> 111 => 3 = 4 - 1
[4]
=> 0 => 0 = 1 - 1
[3,1]
=> 11 => 2 = 3 - 1
[2,2]
=> 00 => 0 = 1 - 1
[2,1,1]
=> 011 => 2 = 3 - 1
[1,1,1,1]
=> 1111 => 4 = 5 - 1
[5]
=> 1 => 1 = 2 - 1
[4,1]
=> 01 => 1 = 2 - 1
[3,2]
=> 10 => 1 = 2 - 1
[3,1,1]
=> 111 => 3 = 4 - 1
[2,2,1]
=> 001 => 1 = 2 - 1
[2,1,1,1]
=> 0111 => 3 = 4 - 1
[1,1,1,1,1]
=> 11111 => 5 = 6 - 1
[6]
=> 0 => 0 = 1 - 1
[5,1]
=> 11 => 2 = 3 - 1
[4,2]
=> 00 => 0 = 1 - 1
[4,1,1]
=> 011 => 2 = 3 - 1
[3,3]
=> 11 => 2 = 3 - 1
[3,2,1]
=> 101 => 2 = 3 - 1
[3,1,1,1]
=> 1111 => 4 = 5 - 1
[2,2,2]
=> 000 => 0 = 1 - 1
[2,2,1,1]
=> 0011 => 2 = 3 - 1
[2,1,1,1,1]
=> 01111 => 4 = 5 - 1
[1,1,1,1,1,1]
=> 111111 => 6 = 7 - 1
[7]
=> 1 => 1 = 2 - 1
[6,1]
=> 01 => 1 = 2 - 1
[5,2]
=> 10 => 1 = 2 - 1
[5,1,1]
=> 111 => 3 = 4 - 1
[4,3]
=> 01 => 1 = 2 - 1
[4,2,1]
=> 001 => 1 = 2 - 1
[4,1,1,1]
=> 0111 => 3 = 4 - 1
[3,3,1]
=> 111 => 3 = 4 - 1
[3,2,2]
=> 100 => 1 = 2 - 1
[3,2,1,1]
=> 1011 => 3 = 4 - 1
[3,1,1,1,1]
=> 11111 => 5 = 6 - 1
[2,2,2,1]
=> 0001 => 1 = 2 - 1
[2,2,1,1,1]
=> 00111 => 3 = 4 - 1
[2,1,1,1,1,1]
=> 011111 => 5 = 6 - 1
[1,1,1,1,1,1,1]
=> 1111111 => 7 = 8 - 1
[8]
=> 0 => 0 = 1 - 1
[7,1]
=> 11 => 2 = 3 - 1
[6,2]
=> 00 => 0 = 1 - 1
[6,1,1]
=> 011 => 2 = 3 - 1
[5,3]
=> 11 => 2 = 3 - 1
[5,2,1]
=> 101 => 2 = 3 - 1
Description
The length of a longest cyclic run of ones of a binary word.
Consider the binary word as a cyclic arrangement of ones and zeros. Then this statistic is the length of the longest continuous sequence of ones in this arrangement.
Matching statistic: St000022
(load all 5 compositions to match this statistic)
(load all 5 compositions to match this statistic)
Mp00045: Integer partitions —reading tableau⟶ Standard tableaux
Mp00081: Standard tableaux —reading word permutation⟶ Permutations
St000022: Permutations ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00081: Standard tableaux —reading word permutation⟶ Permutations
St000022: Permutations ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[1]
=> [[1]]
=> [1] => 1 = 2 - 1
[2]
=> [[1,2]]
=> [1,2] => 2 = 3 - 1
[1,1]
=> [[1],[2]]
=> [2,1] => 0 = 1 - 1
[3]
=> [[1,2,3]]
=> [1,2,3] => 3 = 4 - 1
[2,1]
=> [[1,3],[2]]
=> [2,1,3] => 1 = 2 - 1
[1,1,1]
=> [[1],[2],[3]]
=> [3,2,1] => 1 = 2 - 1
[4]
=> [[1,2,3,4]]
=> [1,2,3,4] => 4 = 5 - 1
[3,1]
=> [[1,3,4],[2]]
=> [2,1,3,4] => 2 = 3 - 1
[2,2]
=> [[1,2],[3,4]]
=> [3,4,1,2] => 0 = 1 - 1
[2,1,1]
=> [[1,4],[2],[3]]
=> [3,2,1,4] => 2 = 3 - 1
[1,1,1,1]
=> [[1],[2],[3],[4]]
=> [4,3,2,1] => 0 = 1 - 1
[5]
=> [[1,2,3,4,5]]
=> [1,2,3,4,5] => 5 = 6 - 1
[4,1]
=> [[1,3,4,5],[2]]
=> [2,1,3,4,5] => 3 = 4 - 1
[3,2]
=> [[1,2,5],[3,4]]
=> [3,4,1,2,5] => 1 = 2 - 1
[3,1,1]
=> [[1,4,5],[2],[3]]
=> [3,2,1,4,5] => 3 = 4 - 1
[2,2,1]
=> [[1,3],[2,5],[4]]
=> [4,2,5,1,3] => 1 = 2 - 1
[2,1,1,1]
=> [[1,5],[2],[3],[4]]
=> [4,3,2,1,5] => 1 = 2 - 1
[1,1,1,1,1]
=> [[1],[2],[3],[4],[5]]
=> [5,4,3,2,1] => 1 = 2 - 1
[6]
=> [[1,2,3,4,5,6]]
=> [1,2,3,4,5,6] => 6 = 7 - 1
[5,1]
=> [[1,3,4,5,6],[2]]
=> [2,1,3,4,5,6] => 4 = 5 - 1
[4,2]
=> [[1,2,5,6],[3,4]]
=> [3,4,1,2,5,6] => 2 = 3 - 1
[4,1,1]
=> [[1,4,5,6],[2],[3]]
=> [3,2,1,4,5,6] => 4 = 5 - 1
[3,3]
=> [[1,2,3],[4,5,6]]
=> [4,5,6,1,2,3] => 0 = 1 - 1
[3,2,1]
=> [[1,3,6],[2,5],[4]]
=> [4,2,5,1,3,6] => 2 = 3 - 1
[3,1,1,1]
=> [[1,5,6],[2],[3],[4]]
=> [4,3,2,1,5,6] => 2 = 3 - 1
[2,2,2]
=> [[1,2],[3,4],[5,6]]
=> [5,6,3,4,1,2] => 2 = 3 - 1
[2,2,1,1]
=> [[1,4],[2,6],[3],[5]]
=> [5,3,2,6,1,4] => 0 = 1 - 1
[2,1,1,1,1]
=> [[1,6],[2],[3],[4],[5]]
=> [5,4,3,2,1,6] => 2 = 3 - 1
[1,1,1,1,1,1]
=> [[1],[2],[3],[4],[5],[6]]
=> [6,5,4,3,2,1] => 0 = 1 - 1
[7]
=> [[1,2,3,4,5,6,7]]
=> [1,2,3,4,5,6,7] => 7 = 8 - 1
[6,1]
=> [[1,3,4,5,6,7],[2]]
=> [2,1,3,4,5,6,7] => 5 = 6 - 1
[5,2]
=> [[1,2,5,6,7],[3,4]]
=> [3,4,1,2,5,6,7] => 3 = 4 - 1
[5,1,1]
=> [[1,4,5,6,7],[2],[3]]
=> [3,2,1,4,5,6,7] => 5 = 6 - 1
[4,3]
=> [[1,2,3,7],[4,5,6]]
=> [4,5,6,1,2,3,7] => 1 = 2 - 1
[4,2,1]
=> [[1,3,6,7],[2,5],[4]]
=> [4,2,5,1,3,6,7] => 3 = 4 - 1
[4,1,1,1]
=> [[1,5,6,7],[2],[3],[4]]
=> [4,3,2,1,5,6,7] => 3 = 4 - 1
[3,3,1]
=> [[1,3,4],[2,6,7],[5]]
=> [5,2,6,7,1,3,4] => 1 = 2 - 1
[3,2,2]
=> [[1,2,7],[3,4],[5,6]]
=> [5,6,3,4,1,2,7] => 3 = 4 - 1
[3,2,1,1]
=> [[1,4,7],[2,6],[3],[5]]
=> [5,3,2,6,1,4,7] => 1 = 2 - 1
[3,1,1,1,1]
=> [[1,6,7],[2],[3],[4],[5]]
=> [5,4,3,2,1,6,7] => 3 = 4 - 1
[2,2,2,1]
=> [[1,3],[2,5],[4,7],[6]]
=> [6,4,7,2,5,1,3] => 1 = 2 - 1
[2,2,1,1,1]
=> [[1,5],[2,7],[3],[4],[6]]
=> [6,4,3,2,7,1,5] => 1 = 2 - 1
[2,1,1,1,1,1]
=> [[1,7],[2],[3],[4],[5],[6]]
=> [6,5,4,3,2,1,7] => 1 = 2 - 1
[1,1,1,1,1,1,1]
=> [[1],[2],[3],[4],[5],[6],[7]]
=> [7,6,5,4,3,2,1] => 1 = 2 - 1
[8]
=> [[1,2,3,4,5,6,7,8]]
=> [1,2,3,4,5,6,7,8] => 8 = 9 - 1
[7,1]
=> [[1,3,4,5,6,7,8],[2]]
=> [2,1,3,4,5,6,7,8] => 6 = 7 - 1
[6,2]
=> [[1,2,5,6,7,8],[3,4]]
=> [3,4,1,2,5,6,7,8] => 4 = 5 - 1
[6,1,1]
=> [[1,4,5,6,7,8],[2],[3]]
=> [3,2,1,4,5,6,7,8] => 6 = 7 - 1
[5,3]
=> [[1,2,3,7,8],[4,5,6]]
=> [4,5,6,1,2,3,7,8] => 2 = 3 - 1
[5,2,1]
=> [[1,3,6,7,8],[2,5],[4]]
=> [4,2,5,1,3,6,7,8] => 4 = 5 - 1
Description
The number of fixed points of a permutation.
Matching statistic: St000392
(load all 2 compositions to match this statistic)
(load all 2 compositions to match this statistic)
Mp00317: Integer partitions —odd parts⟶ Binary words
Mp00224: Binary words —runsort⟶ Binary words
St000392: Binary words ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00224: Binary words —runsort⟶ Binary words
St000392: Binary words ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[1]
=> 1 => 1 => 1 = 2 - 1
[2]
=> 0 => 0 => 0 = 1 - 1
[1,1]
=> 11 => 11 => 2 = 3 - 1
[3]
=> 1 => 1 => 1 = 2 - 1
[2,1]
=> 01 => 01 => 1 = 2 - 1
[1,1,1]
=> 111 => 111 => 3 = 4 - 1
[4]
=> 0 => 0 => 0 = 1 - 1
[3,1]
=> 11 => 11 => 2 = 3 - 1
[2,2]
=> 00 => 00 => 0 = 1 - 1
[2,1,1]
=> 011 => 011 => 2 = 3 - 1
[1,1,1,1]
=> 1111 => 1111 => 4 = 5 - 1
[5]
=> 1 => 1 => 1 = 2 - 1
[4,1]
=> 01 => 01 => 1 = 2 - 1
[3,2]
=> 10 => 01 => 1 = 2 - 1
[3,1,1]
=> 111 => 111 => 3 = 4 - 1
[2,2,1]
=> 001 => 001 => 1 = 2 - 1
[2,1,1,1]
=> 0111 => 0111 => 3 = 4 - 1
[1,1,1,1,1]
=> 11111 => 11111 => 5 = 6 - 1
[6]
=> 0 => 0 => 0 = 1 - 1
[5,1]
=> 11 => 11 => 2 = 3 - 1
[4,2]
=> 00 => 00 => 0 = 1 - 1
[4,1,1]
=> 011 => 011 => 2 = 3 - 1
[3,3]
=> 11 => 11 => 2 = 3 - 1
[3,2,1]
=> 101 => 011 => 2 = 3 - 1
[3,1,1,1]
=> 1111 => 1111 => 4 = 5 - 1
[2,2,2]
=> 000 => 000 => 0 = 1 - 1
[2,2,1,1]
=> 0011 => 0011 => 2 = 3 - 1
[2,1,1,1,1]
=> 01111 => 01111 => 4 = 5 - 1
[1,1,1,1,1,1]
=> 111111 => 111111 => 6 = 7 - 1
[7]
=> 1 => 1 => 1 = 2 - 1
[6,1]
=> 01 => 01 => 1 = 2 - 1
[5,2]
=> 10 => 01 => 1 = 2 - 1
[5,1,1]
=> 111 => 111 => 3 = 4 - 1
[4,3]
=> 01 => 01 => 1 = 2 - 1
[4,2,1]
=> 001 => 001 => 1 = 2 - 1
[4,1,1,1]
=> 0111 => 0111 => 3 = 4 - 1
[3,3,1]
=> 111 => 111 => 3 = 4 - 1
[3,2,2]
=> 100 => 001 => 1 = 2 - 1
[3,2,1,1]
=> 1011 => 0111 => 3 = 4 - 1
[3,1,1,1,1]
=> 11111 => 11111 => 5 = 6 - 1
[2,2,2,1]
=> 0001 => 0001 => 1 = 2 - 1
[2,2,1,1,1]
=> 00111 => 00111 => 3 = 4 - 1
[2,1,1,1,1,1]
=> 011111 => 011111 => 5 = 6 - 1
[1,1,1,1,1,1,1]
=> 1111111 => 1111111 => 7 = 8 - 1
[8]
=> 0 => 0 => 0 = 1 - 1
[7,1]
=> 11 => 11 => 2 = 3 - 1
[6,2]
=> 00 => 00 => 0 = 1 - 1
[6,1,1]
=> 011 => 011 => 2 = 3 - 1
[5,3]
=> 11 => 11 => 2 = 3 - 1
[5,2,1]
=> 101 => 011 => 2 = 3 - 1
Description
The length of the longest run of ones in a binary word.
Matching statistic: St001419
(load all 2 compositions to match this statistic)
(load all 2 compositions to match this statistic)
Mp00317: Integer partitions —odd parts⟶ Binary words
Mp00224: Binary words —runsort⟶ Binary words
St001419: Binary words ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00224: Binary words —runsort⟶ Binary words
St001419: Binary words ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[1]
=> 1 => 1 => 1 = 2 - 1
[2]
=> 0 => 0 => 0 = 1 - 1
[1,1]
=> 11 => 11 => 2 = 3 - 1
[3]
=> 1 => 1 => 1 = 2 - 1
[2,1]
=> 01 => 01 => 1 = 2 - 1
[1,1,1]
=> 111 => 111 => 3 = 4 - 1
[4]
=> 0 => 0 => 0 = 1 - 1
[3,1]
=> 11 => 11 => 2 = 3 - 1
[2,2]
=> 00 => 00 => 0 = 1 - 1
[2,1,1]
=> 011 => 011 => 2 = 3 - 1
[1,1,1,1]
=> 1111 => 1111 => 4 = 5 - 1
[5]
=> 1 => 1 => 1 = 2 - 1
[4,1]
=> 01 => 01 => 1 = 2 - 1
[3,2]
=> 10 => 01 => 1 = 2 - 1
[3,1,1]
=> 111 => 111 => 3 = 4 - 1
[2,2,1]
=> 001 => 001 => 1 = 2 - 1
[2,1,1,1]
=> 0111 => 0111 => 3 = 4 - 1
[1,1,1,1,1]
=> 11111 => 11111 => 5 = 6 - 1
[6]
=> 0 => 0 => 0 = 1 - 1
[5,1]
=> 11 => 11 => 2 = 3 - 1
[4,2]
=> 00 => 00 => 0 = 1 - 1
[4,1,1]
=> 011 => 011 => 2 = 3 - 1
[3,3]
=> 11 => 11 => 2 = 3 - 1
[3,2,1]
=> 101 => 011 => 2 = 3 - 1
[3,1,1,1]
=> 1111 => 1111 => 4 = 5 - 1
[2,2,2]
=> 000 => 000 => 0 = 1 - 1
[2,2,1,1]
=> 0011 => 0011 => 2 = 3 - 1
[2,1,1,1,1]
=> 01111 => 01111 => 4 = 5 - 1
[1,1,1,1,1,1]
=> 111111 => 111111 => 6 = 7 - 1
[7]
=> 1 => 1 => 1 = 2 - 1
[6,1]
=> 01 => 01 => 1 = 2 - 1
[5,2]
=> 10 => 01 => 1 = 2 - 1
[5,1,1]
=> 111 => 111 => 3 = 4 - 1
[4,3]
=> 01 => 01 => 1 = 2 - 1
[4,2,1]
=> 001 => 001 => 1 = 2 - 1
[4,1,1,1]
=> 0111 => 0111 => 3 = 4 - 1
[3,3,1]
=> 111 => 111 => 3 = 4 - 1
[3,2,2]
=> 100 => 001 => 1 = 2 - 1
[3,2,1,1]
=> 1011 => 0111 => 3 = 4 - 1
[3,1,1,1,1]
=> 11111 => 11111 => 5 = 6 - 1
[2,2,2,1]
=> 0001 => 0001 => 1 = 2 - 1
[2,2,1,1,1]
=> 00111 => 00111 => 3 = 4 - 1
[2,1,1,1,1,1]
=> 011111 => 011111 => 5 = 6 - 1
[1,1,1,1,1,1,1]
=> 1111111 => 1111111 => 7 = 8 - 1
[8]
=> 0 => 0 => 0 = 1 - 1
[7,1]
=> 11 => 11 => 2 = 3 - 1
[6,2]
=> 00 => 00 => 0 = 1 - 1
[6,1,1]
=> 011 => 011 => 2 = 3 - 1
[5,3]
=> 11 => 11 => 2 = 3 - 1
[5,2,1]
=> 101 => 011 => 2 = 3 - 1
Description
The length of the longest palindromic factor beginning with a one of a binary word.
Matching statistic: St000010
Mp00317: Integer partitions —odd parts⟶ Binary words
Mp00178: Binary words —to composition⟶ Integer compositions
Mp00040: Integer compositions —to partition⟶ Integer partitions
St000010: Integer partitions ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00178: Binary words —to composition⟶ Integer compositions
Mp00040: Integer compositions —to partition⟶ Integer partitions
St000010: Integer partitions ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[1]
=> 1 => [1,1] => [1,1]
=> 2
[2]
=> 0 => [2] => [2]
=> 1
[1,1]
=> 11 => [1,1,1] => [1,1,1]
=> 3
[3]
=> 1 => [1,1] => [1,1]
=> 2
[2,1]
=> 01 => [2,1] => [2,1]
=> 2
[1,1,1]
=> 111 => [1,1,1,1] => [1,1,1,1]
=> 4
[4]
=> 0 => [2] => [2]
=> 1
[3,1]
=> 11 => [1,1,1] => [1,1,1]
=> 3
[2,2]
=> 00 => [3] => [3]
=> 1
[2,1,1]
=> 011 => [2,1,1] => [2,1,1]
=> 3
[1,1,1,1]
=> 1111 => [1,1,1,1,1] => [1,1,1,1,1]
=> 5
[5]
=> 1 => [1,1] => [1,1]
=> 2
[4,1]
=> 01 => [2,1] => [2,1]
=> 2
[3,2]
=> 10 => [1,2] => [2,1]
=> 2
[3,1,1]
=> 111 => [1,1,1,1] => [1,1,1,1]
=> 4
[2,2,1]
=> 001 => [3,1] => [3,1]
=> 2
[2,1,1,1]
=> 0111 => [2,1,1,1] => [2,1,1,1]
=> 4
[1,1,1,1,1]
=> 11111 => [1,1,1,1,1,1] => [1,1,1,1,1,1]
=> 6
[6]
=> 0 => [2] => [2]
=> 1
[5,1]
=> 11 => [1,1,1] => [1,1,1]
=> 3
[4,2]
=> 00 => [3] => [3]
=> 1
[4,1,1]
=> 011 => [2,1,1] => [2,1,1]
=> 3
[3,3]
=> 11 => [1,1,1] => [1,1,1]
=> 3
[3,2,1]
=> 101 => [1,2,1] => [2,1,1]
=> 3
[3,1,1,1]
=> 1111 => [1,1,1,1,1] => [1,1,1,1,1]
=> 5
[2,2,2]
=> 000 => [4] => [4]
=> 1
[2,2,1,1]
=> 0011 => [3,1,1] => [3,1,1]
=> 3
[2,1,1,1,1]
=> 01111 => [2,1,1,1,1] => [2,1,1,1,1]
=> 5
[1,1,1,1,1,1]
=> 111111 => [1,1,1,1,1,1,1] => [1,1,1,1,1,1,1]
=> 7
[7]
=> 1 => [1,1] => [1,1]
=> 2
[6,1]
=> 01 => [2,1] => [2,1]
=> 2
[5,2]
=> 10 => [1,2] => [2,1]
=> 2
[5,1,1]
=> 111 => [1,1,1,1] => [1,1,1,1]
=> 4
[4,3]
=> 01 => [2,1] => [2,1]
=> 2
[4,2,1]
=> 001 => [3,1] => [3,1]
=> 2
[4,1,1,1]
=> 0111 => [2,1,1,1] => [2,1,1,1]
=> 4
[3,3,1]
=> 111 => [1,1,1,1] => [1,1,1,1]
=> 4
[3,2,2]
=> 100 => [1,3] => [3,1]
=> 2
[3,2,1,1]
=> 1011 => [1,2,1,1] => [2,1,1,1]
=> 4
[3,1,1,1,1]
=> 11111 => [1,1,1,1,1,1] => [1,1,1,1,1,1]
=> 6
[2,2,2,1]
=> 0001 => [4,1] => [4,1]
=> 2
[2,2,1,1,1]
=> 00111 => [3,1,1,1] => [3,1,1,1]
=> 4
[2,1,1,1,1,1]
=> 011111 => [2,1,1,1,1,1] => [2,1,1,1,1,1]
=> 6
[1,1,1,1,1,1,1]
=> 1111111 => [1,1,1,1,1,1,1,1] => [1,1,1,1,1,1,1,1]
=> 8
[8]
=> 0 => [2] => [2]
=> 1
[7,1]
=> 11 => [1,1,1] => [1,1,1]
=> 3
[6,2]
=> 00 => [3] => [3]
=> 1
[6,1,1]
=> 011 => [2,1,1] => [2,1,1]
=> 3
[5,3]
=> 11 => [1,1,1] => [1,1,1]
=> 3
[5,2,1]
=> 101 => [1,2,1] => [2,1,1]
=> 3
Description
The length of the partition.
Matching statistic: St000097
Mp00317: Integer partitions —odd parts⟶ Binary words
Mp00178: Binary words —to composition⟶ Integer compositions
Mp00184: Integer compositions —to threshold graph⟶ Graphs
St000097: Graphs ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00178: Binary words —to composition⟶ Integer compositions
Mp00184: Integer compositions —to threshold graph⟶ Graphs
St000097: Graphs ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[1]
=> 1 => [1,1] => ([(0,1)],2)
=> 2
[2]
=> 0 => [2] => ([],2)
=> 1
[1,1]
=> 11 => [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> 3
[3]
=> 1 => [1,1] => ([(0,1)],2)
=> 2
[2,1]
=> 01 => [2,1] => ([(0,2),(1,2)],3)
=> 2
[1,1,1]
=> 111 => [1,1,1,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 4
[4]
=> 0 => [2] => ([],2)
=> 1
[3,1]
=> 11 => [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> 3
[2,2]
=> 00 => [3] => ([],3)
=> 1
[2,1,1]
=> 011 => [2,1,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 3
[1,1,1,1]
=> 1111 => [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 5
[5]
=> 1 => [1,1] => ([(0,1)],2)
=> 2
[4,1]
=> 01 => [2,1] => ([(0,2),(1,2)],3)
=> 2
[3,2]
=> 10 => [1,2] => ([(1,2)],3)
=> 2
[3,1,1]
=> 111 => [1,1,1,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 4
[2,2,1]
=> 001 => [3,1] => ([(0,3),(1,3),(2,3)],4)
=> 2
[2,1,1,1]
=> 0111 => [2,1,1,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4
[1,1,1,1,1]
=> 11111 => [1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6
[6]
=> 0 => [2] => ([],2)
=> 1
[5,1]
=> 11 => [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> 3
[4,2]
=> 00 => [3] => ([],3)
=> 1
[4,1,1]
=> 011 => [2,1,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 3
[3,3]
=> 11 => [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> 3
[3,2,1]
=> 101 => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> 3
[3,1,1,1]
=> 1111 => [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 5
[2,2,2]
=> 000 => [4] => ([],4)
=> 1
[2,2,1,1]
=> 0011 => [3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
[2,1,1,1,1]
=> 01111 => [2,1,1,1,1] => ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 5
[1,1,1,1,1,1]
=> 111111 => [1,1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 7
[7]
=> 1 => [1,1] => ([(0,1)],2)
=> 2
[6,1]
=> 01 => [2,1] => ([(0,2),(1,2)],3)
=> 2
[5,2]
=> 10 => [1,2] => ([(1,2)],3)
=> 2
[5,1,1]
=> 111 => [1,1,1,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 4
[4,3]
=> 01 => [2,1] => ([(0,2),(1,2)],3)
=> 2
[4,2,1]
=> 001 => [3,1] => ([(0,3),(1,3),(2,3)],4)
=> 2
[4,1,1,1]
=> 0111 => [2,1,1,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4
[3,3,1]
=> 111 => [1,1,1,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 4
[3,2,2]
=> 100 => [1,3] => ([(2,3)],4)
=> 2
[3,2,1,1]
=> 1011 => [1,2,1,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4
[3,1,1,1,1]
=> 11111 => [1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6
[2,2,2,1]
=> 0001 => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 2
[2,2,1,1,1]
=> 00111 => [3,1,1,1] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 4
[2,1,1,1,1,1]
=> 011111 => [2,1,1,1,1,1] => ([(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 6
[1,1,1,1,1,1,1]
=> 1111111 => [1,1,1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,2),(1,3),(1,4),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> 8
[8]
=> 0 => [2] => ([],2)
=> 1
[7,1]
=> 11 => [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> 3
[6,2]
=> 00 => [3] => ([],3)
=> 1
[6,1,1]
=> 011 => [2,1,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 3
[5,3]
=> 11 => [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> 3
[5,2,1]
=> 101 => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> 3
Description
The order of the largest clique of the graph.
A clique in a graph $G$ is a subset $U \subseteq V(G)$ such that any pair of vertices in $U$ are adjacent. I.e. the subgraph induced by $U$ is a complete graph.
Matching statistic: St000098
Mp00317: Integer partitions —odd parts⟶ Binary words
Mp00178: Binary words —to composition⟶ Integer compositions
Mp00184: Integer compositions —to threshold graph⟶ Graphs
St000098: Graphs ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00178: Binary words —to composition⟶ Integer compositions
Mp00184: Integer compositions —to threshold graph⟶ Graphs
St000098: Graphs ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[1]
=> 1 => [1,1] => ([(0,1)],2)
=> 2
[2]
=> 0 => [2] => ([],2)
=> 1
[1,1]
=> 11 => [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> 3
[3]
=> 1 => [1,1] => ([(0,1)],2)
=> 2
[2,1]
=> 01 => [2,1] => ([(0,2),(1,2)],3)
=> 2
[1,1,1]
=> 111 => [1,1,1,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 4
[4]
=> 0 => [2] => ([],2)
=> 1
[3,1]
=> 11 => [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> 3
[2,2]
=> 00 => [3] => ([],3)
=> 1
[2,1,1]
=> 011 => [2,1,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 3
[1,1,1,1]
=> 1111 => [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 5
[5]
=> 1 => [1,1] => ([(0,1)],2)
=> 2
[4,1]
=> 01 => [2,1] => ([(0,2),(1,2)],3)
=> 2
[3,2]
=> 10 => [1,2] => ([(1,2)],3)
=> 2
[3,1,1]
=> 111 => [1,1,1,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 4
[2,2,1]
=> 001 => [3,1] => ([(0,3),(1,3),(2,3)],4)
=> 2
[2,1,1,1]
=> 0111 => [2,1,1,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4
[1,1,1,1,1]
=> 11111 => [1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6
[6]
=> 0 => [2] => ([],2)
=> 1
[5,1]
=> 11 => [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> 3
[4,2]
=> 00 => [3] => ([],3)
=> 1
[4,1,1]
=> 011 => [2,1,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 3
[3,3]
=> 11 => [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> 3
[3,2,1]
=> 101 => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> 3
[3,1,1,1]
=> 1111 => [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 5
[2,2,2]
=> 000 => [4] => ([],4)
=> 1
[2,2,1,1]
=> 0011 => [3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
[2,1,1,1,1]
=> 01111 => [2,1,1,1,1] => ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 5
[1,1,1,1,1,1]
=> 111111 => [1,1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 7
[7]
=> 1 => [1,1] => ([(0,1)],2)
=> 2
[6,1]
=> 01 => [2,1] => ([(0,2),(1,2)],3)
=> 2
[5,2]
=> 10 => [1,2] => ([(1,2)],3)
=> 2
[5,1,1]
=> 111 => [1,1,1,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 4
[4,3]
=> 01 => [2,1] => ([(0,2),(1,2)],3)
=> 2
[4,2,1]
=> 001 => [3,1] => ([(0,3),(1,3),(2,3)],4)
=> 2
[4,1,1,1]
=> 0111 => [2,1,1,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4
[3,3,1]
=> 111 => [1,1,1,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 4
[3,2,2]
=> 100 => [1,3] => ([(2,3)],4)
=> 2
[3,2,1,1]
=> 1011 => [1,2,1,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4
[3,1,1,1,1]
=> 11111 => [1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6
[2,2,2,1]
=> 0001 => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 2
[2,2,1,1,1]
=> 00111 => [3,1,1,1] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 4
[2,1,1,1,1,1]
=> 011111 => [2,1,1,1,1,1] => ([(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 6
[1,1,1,1,1,1,1]
=> 1111111 => [1,1,1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,2),(1,3),(1,4),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> 8
[8]
=> 0 => [2] => ([],2)
=> 1
[7,1]
=> 11 => [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> 3
[6,2]
=> 00 => [3] => ([],3)
=> 1
[6,1,1]
=> 011 => [2,1,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 3
[5,3]
=> 11 => [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> 3
[5,2,1]
=> 101 => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> 3
Description
The chromatic number of a graph.
The minimal number of colors needed to color the vertices of the graph such that no two vertices which share an edge have the same color.
The following 33 statistics, ordered by result quality, also match your data. Click on any of them to see the details.
St000326The position of the first one in a binary word after appending a 1 at the end. St000297The number of leading ones in a binary word. St000475The number of parts equal to 1 in a partition. St000877The depth of the binary word interpreted as a path. St001247The number of parts of a partition that are not congruent 2 modulo 3. St001249Sum of the odd parts of a partition. St000172The Grundy number of a graph. St001029The size of the core of a graph. St001494The Alon-Tarsi number of a graph. St001580The acyclic chromatic number of a graph. St001581The achromatic number of a graph. St001670The connected partition number of a graph. St000272The treewidth of a graph. St000362The size of a minimal vertex cover of a graph. St000536The pathwidth of a graph. St001302The number of minimally dominating sets of vertices of a graph. St001304The number of maximally independent sets of vertices of a graph. St001963The tree-depth of a graph. St000806The semiperimeter of the associated bargraph. St001277The degeneracy of a graph. St001358The largest degree of a regular subgraph of a graph. St000822The Hadwiger number of the graph. St000696The number of cycles in the breakpoint graph of a permutation. St001126Number of simple module that are 1-regular in the corresponding Nakayama algebra. St001812The biclique partition number of a graph. St001330The hat guessing number of a graph. St000895The number of ones on the main diagonal of an alternating sign matrix. St000247The number of singleton blocks of a set partition. St000241The number of cyclical small excedances. St000894The trace of an alternating sign matrix. St000771The largest multiplicity of a distance Laplacian eigenvalue in a connected graph. St001903The number of fixed points of a parking function. St000884The number of isolated descents of a permutation.
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!