Identifier
Mp00116:
Perfect matchings
—Kasraoui-Zeng⟶
Perfect matchings
Mp00283: Perfect matchings —non-nesting-exceedence permutation⟶ Permutations
Mp00240: Permutations —weak exceedance partition⟶ Set partitions
Mp00283: Perfect matchings —non-nesting-exceedence permutation⟶ Permutations
Mp00240: Permutations —weak exceedance partition⟶ Set partitions
Images
=>
Cc0012;cc-rep-0Cc0012;cc-rep-1Cc0009;cc-rep-3
[(1,2)]=>[(1,2)]=>[2,1]=>{{1,2}}
[(1,2),(3,4)]=>[(1,2),(3,4)]=>[2,1,4,3]=>{{1,2},{3,4}}
[(1,3),(2,4)]=>[(1,4),(2,3)]=>[3,4,2,1]=>{{1,3},{2,4}}
[(1,4),(2,3)]=>[(1,3),(2,4)]=>[3,4,1,2]=>{{1,3},{2,4}}
[(1,2),(3,4),(5,6)]=>[(1,2),(3,4),(5,6)]=>[2,1,4,3,6,5]=>{{1,2},{3,4},{5,6}}
[(1,3),(2,4),(5,6)]=>[(1,4),(2,3),(5,6)]=>[3,4,2,1,6,5]=>{{1,3},{2,4},{5,6}}
[(1,4),(2,3),(5,6)]=>[(1,3),(2,4),(5,6)]=>[3,4,1,2,6,5]=>{{1,3},{2,4},{5,6}}
[(1,5),(2,3),(4,6)]=>[(1,3),(2,6),(4,5)]=>[3,5,1,6,4,2]=>{{1,3},{2,5},{4,6}}
[(1,6),(2,3),(4,5)]=>[(1,3),(2,5),(4,6)]=>[3,5,1,6,2,4]=>{{1,3},{2,5},{4,6}}
[(1,6),(2,4),(3,5)]=>[(1,5),(2,4),(3,6)]=>[4,5,6,2,1,3]=>{{1,4},{2,5},{3,6}}
[(1,5),(2,4),(3,6)]=>[(1,6),(2,4),(3,5)]=>[4,5,6,2,3,1]=>{{1,4},{2,5},{3,6}}
[(1,4),(2,5),(3,6)]=>[(1,6),(2,5),(3,4)]=>[4,5,6,3,2,1]=>{{1,4},{2,5},{3,6}}
[(1,3),(2,5),(4,6)]=>[(1,6),(2,3),(4,5)]=>[3,5,2,6,4,1]=>{{1,3},{2,5},{4,6}}
[(1,2),(3,5),(4,6)]=>[(1,2),(3,6),(4,5)]=>[2,1,5,6,4,3]=>{{1,2},{3,5},{4,6}}
[(1,2),(3,6),(4,5)]=>[(1,2),(3,5),(4,6)]=>[2,1,5,6,3,4]=>{{1,2},{3,5},{4,6}}
[(1,3),(2,6),(4,5)]=>[(1,5),(2,3),(4,6)]=>[3,5,2,6,1,4]=>{{1,3},{2,5},{4,6}}
[(1,4),(2,6),(3,5)]=>[(1,5),(2,6),(3,4)]=>[4,5,6,3,1,2]=>{{1,4},{2,5},{3,6}}
[(1,5),(2,6),(3,4)]=>[(1,4),(2,6),(3,5)]=>[4,5,6,1,3,2]=>{{1,4},{2,5},{3,6}}
[(1,6),(2,5),(3,4)]=>[(1,4),(2,5),(3,6)]=>[4,5,6,1,2,3]=>{{1,4},{2,5},{3,6}}
[(1,2),(3,4),(5,6),(7,8)]=>[(1,2),(3,4),(5,6),(7,8)]=>[2,1,4,3,6,5,8,7]=>{{1,2},{3,4},{5,6},{7,8}}
[(1,3),(2,4),(5,6),(7,8)]=>[(1,4),(2,3),(5,6),(7,8)]=>[3,4,2,1,6,5,8,7]=>{{1,3},{2,4},{5,6},{7,8}}
[(1,4),(2,3),(5,6),(7,8)]=>[(1,3),(2,4),(5,6),(7,8)]=>[3,4,1,2,6,5,8,7]=>{{1,3},{2,4},{5,6},{7,8}}
[(1,5),(2,3),(4,6),(7,8)]=>[(1,3),(2,6),(4,5),(7,8)]=>[3,5,1,6,4,2,8,7]=>{{1,3},{2,5},{4,6},{7,8}}
[(1,6),(2,3),(4,5),(7,8)]=>[(1,3),(2,5),(4,6),(7,8)]=>[3,5,1,6,2,4,8,7]=>{{1,3},{2,5},{4,6},{7,8}}
[(1,7),(2,3),(4,5),(6,8)]=>[(1,3),(2,5),(4,8),(6,7)]=>[3,5,1,7,2,8,6,4]=>{{1,3},{2,5},{4,7},{6,8}}
[(1,8),(2,3),(4,5),(6,7)]=>[(1,3),(2,5),(4,7),(6,8)]=>[3,5,1,7,2,8,4,6]=>{{1,3},{2,5},{4,7},{6,8}}
[(1,8),(2,4),(3,5),(6,7)]=>[(1,5),(2,4),(3,7),(6,8)]=>[4,5,7,2,1,8,3,6]=>{{1,4},{2,5},{3,7},{6,8}}
[(1,7),(2,4),(3,5),(6,8)]=>[(1,5),(2,4),(3,8),(6,7)]=>[4,5,7,2,1,8,6,3]=>{{1,4},{2,5},{3,7},{6,8}}
[(1,6),(2,4),(3,5),(7,8)]=>[(1,5),(2,4),(3,6),(7,8)]=>[4,5,6,2,1,3,8,7]=>{{1,4},{2,5},{3,6},{7,8}}
[(1,5),(2,4),(3,6),(7,8)]=>[(1,6),(2,4),(3,5),(7,8)]=>[4,5,6,2,3,1,8,7]=>{{1,4},{2,5},{3,6},{7,8}}
[(1,4),(2,5),(3,6),(7,8)]=>[(1,6),(2,5),(3,4),(7,8)]=>[4,5,6,3,2,1,8,7]=>{{1,4},{2,5},{3,6},{7,8}}
[(1,3),(2,5),(4,6),(7,8)]=>[(1,6),(2,3),(4,5),(7,8)]=>[3,5,2,6,4,1,8,7]=>{{1,3},{2,5},{4,6},{7,8}}
[(1,2),(3,5),(4,6),(7,8)]=>[(1,2),(3,6),(4,5),(7,8)]=>[2,1,5,6,4,3,8,7]=>{{1,2},{3,5},{4,6},{7,8}}
[(1,2),(3,6),(4,5),(7,8)]=>[(1,2),(3,5),(4,6),(7,8)]=>[2,1,5,6,3,4,8,7]=>{{1,2},{3,5},{4,6},{7,8}}
[(1,3),(2,6),(4,5),(7,8)]=>[(1,5),(2,3),(4,6),(7,8)]=>[3,5,2,6,1,4,8,7]=>{{1,3},{2,5},{4,6},{7,8}}
[(1,4),(2,6),(3,5),(7,8)]=>[(1,5),(2,6),(3,4),(7,8)]=>[4,5,6,3,1,2,8,7]=>{{1,4},{2,5},{3,6},{7,8}}
[(1,5),(2,6),(3,4),(7,8)]=>[(1,4),(2,6),(3,5),(7,8)]=>[4,5,6,1,3,2,8,7]=>{{1,4},{2,5},{3,6},{7,8}}
[(1,6),(2,5),(3,4),(7,8)]=>[(1,4),(2,5),(3,6),(7,8)]=>[4,5,6,1,2,3,8,7]=>{{1,4},{2,5},{3,6},{7,8}}
[(1,7),(2,5),(3,4),(6,8)]=>[(1,4),(2,5),(3,8),(6,7)]=>[4,5,7,1,2,8,6,3]=>{{1,4},{2,5},{3,7},{6,8}}
[(1,8),(2,5),(3,4),(6,7)]=>[(1,4),(2,5),(3,7),(6,8)]=>[4,5,7,1,2,8,3,6]=>{{1,4},{2,5},{3,7},{6,8}}
[(1,8),(2,6),(3,4),(5,7)]=>[(1,4),(2,7),(3,6),(5,8)]=>[4,6,7,1,8,3,2,5]=>{{1,4},{2,6},{3,7},{5,8}}
[(1,7),(2,6),(3,4),(5,8)]=>[(1,4),(2,8),(3,6),(5,7)]=>[4,6,7,1,8,3,5,2]=>{{1,4},{2,6},{3,7},{5,8}}
[(1,6),(2,7),(3,4),(5,8)]=>[(1,4),(2,8),(3,7),(5,6)]=>[4,6,7,1,8,5,3,2]=>{{1,4},{2,6},{3,7},{5,8}}
[(1,5),(2,7),(3,4),(6,8)]=>[(1,4),(2,8),(3,5),(6,7)]=>[4,5,7,1,3,8,6,2]=>{{1,4},{2,5},{3,7},{6,8}}
[(1,4),(2,7),(3,5),(6,8)]=>[(1,5),(2,8),(3,4),(6,7)]=>[4,5,7,3,1,8,6,2]=>{{1,4},{2,5},{3,7},{6,8}}
[(1,3),(2,7),(4,5),(6,8)]=>[(1,5),(2,3),(4,8),(6,7)]=>[3,5,2,7,1,8,6,4]=>{{1,3},{2,5},{4,7},{6,8}}
[(1,2),(3,7),(4,5),(6,8)]=>[(1,2),(3,5),(4,8),(6,7)]=>[2,1,5,7,3,8,6,4]=>{{1,2},{3,5},{4,7},{6,8}}
[(1,2),(3,8),(4,5),(6,7)]=>[(1,2),(3,5),(4,7),(6,8)]=>[2,1,5,7,3,8,4,6]=>{{1,2},{3,5},{4,7},{6,8}}
[(1,3),(2,8),(4,5),(6,7)]=>[(1,5),(2,3),(4,7),(6,8)]=>[3,5,2,7,1,8,4,6]=>{{1,3},{2,5},{4,7},{6,8}}
[(1,4),(2,8),(3,5),(6,7)]=>[(1,5),(2,7),(3,4),(6,8)]=>[4,5,7,3,1,8,2,6]=>{{1,4},{2,5},{3,7},{6,8}}
[(1,5),(2,8),(3,4),(6,7)]=>[(1,4),(2,7),(3,5),(6,8)]=>[4,5,7,1,3,8,2,6]=>{{1,4},{2,5},{3,7},{6,8}}
[(1,6),(2,8),(3,4),(5,7)]=>[(1,4),(2,7),(3,8),(5,6)]=>[4,6,7,1,8,5,2,3]=>{{1,4},{2,6},{3,7},{5,8}}
[(1,7),(2,8),(3,4),(5,6)]=>[(1,4),(2,6),(3,8),(5,7)]=>[4,6,7,1,8,2,5,3]=>{{1,4},{2,6},{3,7},{5,8}}
[(1,8),(2,7),(3,4),(5,6)]=>[(1,4),(2,6),(3,7),(5,8)]=>[4,6,7,1,8,2,3,5]=>{{1,4},{2,6},{3,7},{5,8}}
[(1,8),(2,7),(3,5),(4,6)]=>[(1,6),(2,5),(3,7),(4,8)]=>[5,6,7,8,2,1,3,4]=>{{1,5},{2,6},{3,7},{4,8}}
[(1,7),(2,8),(3,5),(4,6)]=>[(1,6),(2,5),(3,8),(4,7)]=>[5,6,7,8,2,1,4,3]=>{{1,5},{2,6},{3,7},{4,8}}
[(1,6),(2,8),(3,5),(4,7)]=>[(1,7),(2,5),(3,8),(4,6)]=>[5,6,7,8,2,4,1,3]=>{{1,5},{2,6},{3,7},{4,8}}
[(1,5),(2,8),(3,6),(4,7)]=>[(1,7),(2,6),(3,8),(4,5)]=>[5,6,7,8,4,2,1,3]=>{{1,5},{2,6},{3,7},{4,8}}
[(1,4),(2,8),(3,6),(5,7)]=>[(1,7),(2,6),(3,4),(5,8)]=>[4,6,7,3,8,2,1,5]=>{{1,4},{2,6},{3,7},{5,8}}
[(1,3),(2,8),(4,6),(5,7)]=>[(1,7),(2,3),(4,6),(5,8)]=>[3,6,2,7,8,4,1,5]=>{{1,3},{2,6},{4,7},{5,8}}
[(1,2),(3,8),(4,6),(5,7)]=>[(1,2),(3,7),(4,6),(5,8)]=>[2,1,6,7,8,4,3,5]=>{{1,2},{3,6},{4,7},{5,8}}
[(1,2),(3,7),(4,6),(5,8)]=>[(1,2),(3,8),(4,6),(5,7)]=>[2,1,6,7,8,4,5,3]=>{{1,2},{3,6},{4,7},{5,8}}
[(1,3),(2,7),(4,6),(5,8)]=>[(1,8),(2,3),(4,6),(5,7)]=>[3,6,2,7,8,4,5,1]=>{{1,3},{2,6},{4,7},{5,8}}
[(1,4),(2,7),(3,6),(5,8)]=>[(1,8),(2,6),(3,4),(5,7)]=>[4,6,7,3,8,2,5,1]=>{{1,4},{2,6},{3,7},{5,8}}
[(1,5),(2,7),(3,6),(4,8)]=>[(1,8),(2,6),(3,7),(4,5)]=>[5,6,7,8,4,2,3,1]=>{{1,5},{2,6},{3,7},{4,8}}
[(1,6),(2,7),(3,5),(4,8)]=>[(1,8),(2,5),(3,7),(4,6)]=>[5,6,7,8,2,4,3,1]=>{{1,5},{2,6},{3,7},{4,8}}
[(1,7),(2,6),(3,5),(4,8)]=>[(1,8),(2,5),(3,6),(4,7)]=>[5,6,7,8,2,3,4,1]=>{{1,5},{2,6},{3,7},{4,8}}
[(1,8),(2,6),(3,5),(4,7)]=>[(1,7),(2,5),(3,6),(4,8)]=>[5,6,7,8,2,3,1,4]=>{{1,5},{2,6},{3,7},{4,8}}
[(1,8),(2,5),(3,6),(4,7)]=>[(1,7),(2,6),(3,5),(4,8)]=>[5,6,7,8,3,2,1,4]=>{{1,5},{2,6},{3,7},{4,8}}
[(1,7),(2,5),(3,6),(4,8)]=>[(1,8),(2,6),(3,5),(4,7)]=>[5,6,7,8,3,2,4,1]=>{{1,5},{2,6},{3,7},{4,8}}
[(1,6),(2,5),(3,7),(4,8)]=>[(1,8),(2,7),(3,5),(4,6)]=>[5,6,7,8,3,4,2,1]=>{{1,5},{2,6},{3,7},{4,8}}
[(1,5),(2,6),(3,7),(4,8)]=>[(1,8),(2,7),(3,6),(4,5)]=>[5,6,7,8,4,3,2,1]=>{{1,5},{2,6},{3,7},{4,8}}
[(1,4),(2,6),(3,7),(5,8)]=>[(1,8),(2,7),(3,4),(5,6)]=>[4,6,7,3,8,5,2,1]=>{{1,4},{2,6},{3,7},{5,8}}
[(1,3),(2,6),(4,7),(5,8)]=>[(1,8),(2,3),(4,7),(5,6)]=>[3,6,2,7,8,5,4,1]=>{{1,3},{2,6},{4,7},{5,8}}
[(1,2),(3,6),(4,7),(5,8)]=>[(1,2),(3,8),(4,7),(5,6)]=>[2,1,6,7,8,5,4,3]=>{{1,2},{3,6},{4,7},{5,8}}
[(1,2),(3,5),(4,7),(6,8)]=>[(1,2),(3,8),(4,5),(6,7)]=>[2,1,5,7,4,8,6,3]=>{{1,2},{3,5},{4,7},{6,8}}
[(1,3),(2,5),(4,7),(6,8)]=>[(1,8),(2,3),(4,5),(6,7)]=>[3,5,2,7,4,8,6,1]=>{{1,3},{2,5},{4,7},{6,8}}
[(1,4),(2,5),(3,7),(6,8)]=>[(1,8),(2,5),(3,4),(6,7)]=>[4,5,7,3,2,8,6,1]=>{{1,4},{2,5},{3,7},{6,8}}
[(1,5),(2,4),(3,7),(6,8)]=>[(1,8),(2,4),(3,5),(6,7)]=>[4,5,7,2,3,8,6,1]=>{{1,4},{2,5},{3,7},{6,8}}
[(1,6),(2,4),(3,7),(5,8)]=>[(1,8),(2,4),(3,7),(5,6)]=>[4,6,7,2,8,5,3,1]=>{{1,4},{2,6},{3,7},{5,8}}
[(1,7),(2,4),(3,6),(5,8)]=>[(1,8),(2,4),(3,6),(5,7)]=>[4,6,7,2,8,3,5,1]=>{{1,4},{2,6},{3,7},{5,8}}
[(1,8),(2,4),(3,6),(5,7)]=>[(1,7),(2,4),(3,6),(5,8)]=>[4,6,7,2,8,3,1,5]=>{{1,4},{2,6},{3,7},{5,8}}
[(1,8),(2,3),(4,6),(5,7)]=>[(1,3),(2,7),(4,6),(5,8)]=>[3,6,1,7,8,4,2,5]=>{{1,3},{2,6},{4,7},{5,8}}
[(1,7),(2,3),(4,6),(5,8)]=>[(1,3),(2,8),(4,6),(5,7)]=>[3,6,1,7,8,4,5,2]=>{{1,3},{2,6},{4,7},{5,8}}
[(1,6),(2,3),(4,7),(5,8)]=>[(1,3),(2,8),(4,7),(5,6)]=>[3,6,1,7,8,5,4,2]=>{{1,3},{2,6},{4,7},{5,8}}
[(1,5),(2,3),(4,7),(6,8)]=>[(1,3),(2,8),(4,5),(6,7)]=>[3,5,1,7,4,8,6,2]=>{{1,3},{2,5},{4,7},{6,8}}
[(1,4),(2,3),(5,7),(6,8)]=>[(1,3),(2,4),(5,8),(6,7)]=>[3,4,1,2,7,8,6,5]=>{{1,3},{2,4},{5,7},{6,8}}
[(1,3),(2,4),(5,7),(6,8)]=>[(1,4),(2,3),(5,8),(6,7)]=>[3,4,2,1,7,8,6,5]=>{{1,3},{2,4},{5,7},{6,8}}
[(1,2),(3,4),(5,7),(6,8)]=>[(1,2),(3,4),(5,8),(6,7)]=>[2,1,4,3,7,8,6,5]=>{{1,2},{3,4},{5,7},{6,8}}
[(1,2),(3,4),(5,8),(6,7)]=>[(1,2),(3,4),(5,7),(6,8)]=>[2,1,4,3,7,8,5,6]=>{{1,2},{3,4},{5,7},{6,8}}
[(1,3),(2,4),(5,8),(6,7)]=>[(1,4),(2,3),(5,7),(6,8)]=>[3,4,2,1,7,8,5,6]=>{{1,3},{2,4},{5,7},{6,8}}
[(1,4),(2,3),(5,8),(6,7)]=>[(1,3),(2,4),(5,7),(6,8)]=>[3,4,1,2,7,8,5,6]=>{{1,3},{2,4},{5,7},{6,8}}
[(1,5),(2,3),(4,8),(6,7)]=>[(1,3),(2,7),(4,5),(6,8)]=>[3,5,1,7,4,8,2,6]=>{{1,3},{2,5},{4,7},{6,8}}
[(1,6),(2,3),(4,8),(5,7)]=>[(1,3),(2,7),(4,8),(5,6)]=>[3,6,1,7,8,5,2,4]=>{{1,3},{2,6},{4,7},{5,8}}
[(1,7),(2,3),(4,8),(5,6)]=>[(1,3),(2,6),(4,8),(5,7)]=>[3,6,1,7,8,2,5,4]=>{{1,3},{2,6},{4,7},{5,8}}
[(1,8),(2,3),(4,7),(5,6)]=>[(1,3),(2,6),(4,7),(5,8)]=>[3,6,1,7,8,2,4,5]=>{{1,3},{2,6},{4,7},{5,8}}
[(1,8),(2,4),(3,7),(5,6)]=>[(1,6),(2,4),(3,7),(5,8)]=>[4,6,7,2,8,1,3,5]=>{{1,4},{2,6},{3,7},{5,8}}
[(1,7),(2,4),(3,8),(5,6)]=>[(1,6),(2,4),(3,8),(5,7)]=>[4,6,7,2,8,1,5,3]=>{{1,4},{2,6},{3,7},{5,8}}
[(1,6),(2,4),(3,8),(5,7)]=>[(1,7),(2,4),(3,8),(5,6)]=>[4,6,7,2,8,5,1,3]=>{{1,4},{2,6},{3,7},{5,8}}
[(1,5),(2,4),(3,8),(6,7)]=>[(1,7),(2,4),(3,5),(6,8)]=>[4,5,7,2,3,8,1,6]=>{{1,4},{2,5},{3,7},{6,8}}
[(1,4),(2,5),(3,8),(6,7)]=>[(1,7),(2,5),(3,4),(6,8)]=>[4,5,7,3,2,8,1,6]=>{{1,4},{2,5},{3,7},{6,8}}
[(1,3),(2,5),(4,8),(6,7)]=>[(1,7),(2,3),(4,5),(6,8)]=>[3,5,2,7,4,8,1,6]=>{{1,3},{2,5},{4,7},{6,8}}
[(1,2),(3,5),(4,8),(6,7)]=>[(1,2),(3,7),(4,5),(6,8)]=>[2,1,5,7,4,8,3,6]=>{{1,2},{3,5},{4,7},{6,8}}
[(1,2),(3,6),(4,8),(5,7)]=>[(1,2),(3,7),(4,8),(5,6)]=>[2,1,6,7,8,5,3,4]=>{{1,2},{3,6},{4,7},{5,8}}
[(1,3),(2,6),(4,8),(5,7)]=>[(1,7),(2,3),(4,8),(5,6)]=>[3,6,2,7,8,5,1,4]=>{{1,3},{2,6},{4,7},{5,8}}
[(1,4),(2,6),(3,8),(5,7)]=>[(1,7),(2,8),(3,4),(5,6)]=>[4,6,7,3,8,5,1,2]=>{{1,4},{2,6},{3,7},{5,8}}
[(1,5),(2,6),(3,8),(4,7)]=>[(1,7),(2,8),(3,6),(4,5)]=>[5,6,7,8,4,3,1,2]=>{{1,5},{2,6},{3,7},{4,8}}
[(1,6),(2,5),(3,8),(4,7)]=>[(1,7),(2,8),(3,5),(4,6)]=>[5,6,7,8,3,4,1,2]=>{{1,5},{2,6},{3,7},{4,8}}
[(1,7),(2,5),(3,8),(4,6)]=>[(1,6),(2,8),(3,5),(4,7)]=>[5,6,7,8,3,1,4,2]=>{{1,5},{2,6},{3,7},{4,8}}
[(1,8),(2,5),(3,7),(4,6)]=>[(1,6),(2,7),(3,5),(4,8)]=>[5,6,7,8,3,1,2,4]=>{{1,5},{2,6},{3,7},{4,8}}
[(1,8),(2,6),(3,7),(4,5)]=>[(1,5),(2,7),(3,6),(4,8)]=>[5,6,7,8,1,3,2,4]=>{{1,5},{2,6},{3,7},{4,8}}
[(1,7),(2,6),(3,8),(4,5)]=>[(1,5),(2,8),(3,6),(4,7)]=>[5,6,7,8,1,3,4,2]=>{{1,5},{2,6},{3,7},{4,8}}
[(1,6),(2,7),(3,8),(4,5)]=>[(1,5),(2,8),(3,7),(4,6)]=>[5,6,7,8,1,4,3,2]=>{{1,5},{2,6},{3,7},{4,8}}
[(1,5),(2,7),(3,8),(4,6)]=>[(1,6),(2,8),(3,7),(4,5)]=>[5,6,7,8,4,1,3,2]=>{{1,5},{2,6},{3,7},{4,8}}
[(1,4),(2,7),(3,8),(5,6)]=>[(1,6),(2,8),(3,4),(5,7)]=>[4,6,7,3,8,1,5,2]=>{{1,4},{2,6},{3,7},{5,8}}
[(1,3),(2,7),(4,8),(5,6)]=>[(1,6),(2,3),(4,8),(5,7)]=>[3,6,2,7,8,1,5,4]=>{{1,3},{2,6},{4,7},{5,8}}
[(1,2),(3,7),(4,8),(5,6)]=>[(1,2),(3,6),(4,8),(5,7)]=>[2,1,6,7,8,3,5,4]=>{{1,2},{3,6},{4,7},{5,8}}
[(1,2),(3,8),(4,7),(5,6)]=>[(1,2),(3,6),(4,7),(5,8)]=>[2,1,6,7,8,3,4,5]=>{{1,2},{3,6},{4,7},{5,8}}
[(1,3),(2,8),(4,7),(5,6)]=>[(1,6),(2,3),(4,7),(5,8)]=>[3,6,2,7,8,1,4,5]=>{{1,3},{2,6},{4,7},{5,8}}
[(1,4),(2,8),(3,7),(5,6)]=>[(1,6),(2,7),(3,4),(5,8)]=>[4,6,7,3,8,1,2,5]=>{{1,4},{2,6},{3,7},{5,8}}
[(1,5),(2,8),(3,7),(4,6)]=>[(1,6),(2,7),(3,8),(4,5)]=>[5,6,7,8,4,1,2,3]=>{{1,5},{2,6},{3,7},{4,8}}
[(1,6),(2,8),(3,7),(4,5)]=>[(1,5),(2,7),(3,8),(4,6)]=>[5,6,7,8,1,4,2,3]=>{{1,5},{2,6},{3,7},{4,8}}
[(1,7),(2,8),(3,6),(4,5)]=>[(1,5),(2,6),(3,8),(4,7)]=>[5,6,7,8,1,2,4,3]=>{{1,5},{2,6},{3,7},{4,8}}
[(1,8),(2,7),(3,6),(4,5)]=>[(1,5),(2,6),(3,7),(4,8)]=>[5,6,7,8,1,2,3,4]=>{{1,5},{2,6},{3,7},{4,8}}
[(1,2),(3,4),(5,6),(7,8),(9,10)]=>[(1,2),(3,4),(5,6),(7,8),(9,10)]=>[2,1,4,3,6,5,8,7,10,9]=>{{1,2},{3,4},{5,6},{7,8},{9,10}}
[(1,3),(2,4),(5,6),(7,8),(9,10)]=>[(1,4),(2,3),(5,6),(7,8),(9,10)]=>[3,4,2,1,6,5,8,7,10,9]=>{{1,3},{2,4},{5,6},{7,8},{9,10}}
[(1,4),(2,5),(3,6),(7,8),(9,10)]=>[(1,6),(2,5),(3,4),(7,8),(9,10)]=>[4,5,6,3,2,1,8,7,10,9]=>{{1,4},{2,5},{3,6},{7,8},{9,10}}
[(1,3),(2,5),(4,6),(7,8),(9,10)]=>[(1,6),(2,3),(4,5),(7,8),(9,10)]=>[3,5,2,6,4,1,8,7,10,9]=>{{1,3},{2,5},{4,6},{7,8},{9,10}}
[(1,2),(3,5),(4,6),(7,8),(9,10)]=>[(1,2),(3,6),(4,5),(7,8),(9,10)]=>[2,1,5,6,4,3,8,7,10,9]=>{{1,2},{3,5},{4,6},{7,8},{9,10}}
[(1,5),(2,6),(3,7),(4,8),(9,10)]=>[(1,8),(2,7),(3,6),(4,5),(9,10)]=>[5,6,7,8,4,3,2,1,10,9]=>{{1,5},{2,6},{3,7},{4,8},{9,10}}
[(1,4),(2,6),(3,7),(5,8),(9,10)]=>[(1,8),(2,7),(3,4),(5,6),(9,10)]=>[4,6,7,3,8,5,2,1,10,9]=>{{1,4},{2,6},{3,7},{5,8},{9,10}}
[(1,3),(2,6),(4,7),(5,8),(9,10)]=>[(1,8),(2,3),(4,7),(5,6),(9,10)]=>[3,6,2,7,8,5,4,1,10,9]=>{{1,3},{2,6},{4,7},{5,8},{9,10}}
[(1,2),(3,6),(4,7),(5,8),(9,10)]=>[(1,2),(3,8),(4,7),(5,6),(9,10)]=>[2,1,6,7,8,5,4,3,10,9]=>{{1,2},{3,6},{4,7},{5,8},{9,10}}
[(1,2),(3,5),(4,7),(6,8),(9,10)]=>[(1,2),(3,8),(4,5),(6,7),(9,10)]=>[2,1,5,7,4,8,6,3,10,9]=>{{1,2},{3,5},{4,7},{6,8},{9,10}}
[(1,3),(2,5),(4,7),(6,8),(9,10)]=>[(1,8),(2,3),(4,5),(6,7),(9,10)]=>[3,5,2,7,4,8,6,1,10,9]=>{{1,3},{2,5},{4,7},{6,8},{9,10}}
[(1,4),(2,5),(3,7),(6,8),(9,10)]=>[(1,8),(2,5),(3,4),(6,7),(9,10)]=>[4,5,7,3,2,8,6,1,10,9]=>{{1,4},{2,5},{3,7},{6,8},{9,10}}
[(1,3),(2,4),(5,7),(6,8),(9,10)]=>[(1,4),(2,3),(5,8),(6,7),(9,10)]=>[3,4,2,1,7,8,6,5,10,9]=>{{1,3},{2,4},{5,7},{6,8},{9,10}}
[(1,2),(3,4),(5,7),(6,8),(9,10)]=>[(1,2),(3,4),(5,8),(6,7),(9,10)]=>[2,1,4,3,7,8,6,5,10,9]=>{{1,2},{3,4},{5,7},{6,8},{9,10}}
[(1,2),(3,7),(4,8),(5,9),(6,10)]=>[(1,2),(3,10),(4,9),(5,8),(6,7)]=>[2,1,7,8,9,10,6,5,4,3]=>{{1,2},{3,7},{4,8},{5,9},{6,10}}
[(1,3),(2,7),(4,8),(5,9),(6,10)]=>[(1,10),(2,3),(4,9),(5,8),(6,7)]=>[3,7,2,8,9,10,6,5,4,1]=>{{1,3},{2,7},{4,8},{5,9},{6,10}}
[(1,4),(2,7),(3,8),(5,9),(6,10)]=>[(1,10),(2,9),(3,4),(5,8),(6,7)]=>[4,7,8,3,9,10,6,5,2,1]=>{{1,4},{2,7},{3,8},{5,9},{6,10}}
[(1,5),(2,7),(3,8),(4,9),(6,10)]=>[(1,10),(2,9),(3,8),(4,5),(6,7)]=>[5,7,8,9,4,10,6,3,2,1]=>{{1,5},{2,7},{3,8},{4,9},{6,10}}
[(1,6),(2,7),(3,8),(4,9),(5,10)]=>[(1,10),(2,9),(3,8),(4,7),(5,6)]=>[6,7,8,9,10,5,4,3,2,1]=>{{1,6},{2,7},{3,8},{4,9},{5,10}}
[(1,5),(2,6),(3,8),(4,9),(7,10)]=>[(1,10),(2,9),(3,6),(4,5),(7,8)]=>[5,6,8,9,4,3,10,7,2,1]=>{{1,5},{2,6},{3,8},{4,9},{7,10}}
[(1,4),(2,6),(3,8),(5,9),(7,10)]=>[(1,10),(2,9),(3,4),(5,6),(7,8)]=>[4,6,8,3,9,5,10,7,2,1]=>{{1,4},{2,6},{3,8},{5,9},{7,10}}
[(1,3),(2,6),(4,8),(5,9),(7,10)]=>[(1,10),(2,3),(4,9),(5,6),(7,8)]=>[3,6,2,8,9,5,10,7,4,1]=>{{1,3},{2,6},{4,8},{5,9},{7,10}}
[(1,2),(3,6),(4,8),(5,9),(7,10)]=>[(1,2),(3,10),(4,9),(5,6),(7,8)]=>[2,1,6,8,9,5,10,7,4,3]=>{{1,2},{3,6},{4,8},{5,9},{7,10}}
[(1,2),(3,5),(4,8),(6,9),(7,10)]=>[(1,2),(3,10),(4,5),(6,9),(7,8)]=>[2,1,5,8,4,9,10,7,6,3]=>{{1,2},{3,5},{4,8},{6,9},{7,10}}
[(1,3),(2,5),(4,8),(6,9),(7,10)]=>[(1,10),(2,3),(4,5),(6,9),(7,8)]=>[3,5,2,8,4,9,10,7,6,1]=>{{1,3},{2,5},{4,8},{6,9},{7,10}}
[(1,4),(2,5),(3,8),(6,9),(7,10)]=>[(1,10),(2,5),(3,4),(6,9),(7,8)]=>[4,5,8,3,2,9,10,7,6,1]=>{{1,4},{2,5},{3,8},{6,9},{7,10}}
[(1,3),(2,4),(5,8),(6,9),(7,10)]=>[(1,4),(2,3),(5,10),(6,9),(7,8)]=>[3,4,2,1,8,9,10,7,6,5]=>{{1,3},{2,4},{5,8},{6,9},{7,10}}
[(1,2),(3,4),(5,8),(6,9),(7,10)]=>[(1,2),(3,4),(5,10),(6,9),(7,8)]=>[2,1,4,3,8,9,10,7,6,5]=>{{1,2},{3,4},{5,8},{6,9},{7,10}}
[(1,2),(3,4),(5,7),(6,9),(8,10)]=>[(1,2),(3,4),(5,10),(6,7),(8,9)]=>[2,1,4,3,7,9,6,10,8,5]=>{{1,2},{3,4},{5,7},{6,9},{8,10}}
[(1,3),(2,4),(5,7),(6,9),(8,10)]=>[(1,4),(2,3),(5,10),(6,7),(8,9)]=>[3,4,2,1,7,9,6,10,8,5]=>{{1,3},{2,4},{5,7},{6,9},{8,10}}
[(1,4),(2,5),(3,7),(6,9),(8,10)]=>[(1,10),(2,5),(3,4),(6,7),(8,9)]=>[4,5,7,3,2,9,6,10,8,1]=>{{1,4},{2,5},{3,7},{6,9},{8,10}}
[(1,3),(2,5),(4,7),(6,9),(8,10)]=>[(1,10),(2,3),(4,5),(6,7),(8,9)]=>[3,5,2,7,4,9,6,10,8,1]=>{{1,3},{2,5},{4,7},{6,9},{8,10}}
[(1,2),(3,5),(4,7),(6,9),(8,10)]=>[(1,2),(3,10),(4,5),(6,7),(8,9)]=>[2,1,5,7,4,9,6,10,8,3]=>{{1,2},{3,5},{4,7},{6,9},{8,10}}
[(1,2),(3,6),(4,7),(5,9),(8,10)]=>[(1,2),(3,10),(4,7),(5,6),(8,9)]=>[2,1,6,7,9,5,4,10,8,3]=>{{1,2},{3,6},{4,7},{5,9},{8,10}}
[(1,3),(2,6),(4,7),(5,9),(8,10)]=>[(1,10),(2,3),(4,7),(5,6),(8,9)]=>[3,6,2,7,9,5,4,10,8,1]=>{{1,3},{2,6},{4,7},{5,9},{8,10}}
[(1,4),(2,6),(3,7),(5,9),(8,10)]=>[(1,10),(2,7),(3,4),(5,6),(8,9)]=>[4,6,7,3,9,5,2,10,8,1]=>{{1,4},{2,6},{3,7},{5,9},{8,10}}
[(1,5),(2,6),(3,7),(4,9),(8,10)]=>[(1,10),(2,7),(3,6),(4,5),(8,9)]=>[5,6,7,9,4,3,2,10,8,1]=>{{1,5},{2,6},{3,7},{4,9},{8,10}}
[(1,2),(3,5),(4,6),(7,9),(8,10)]=>[(1,2),(3,6),(4,5),(7,10),(8,9)]=>[2,1,5,6,4,3,9,10,8,7]=>{{1,2},{3,5},{4,6},{7,9},{8,10}}
[(1,3),(2,5),(4,6),(7,9),(8,10)]=>[(1,6),(2,3),(4,5),(7,10),(8,9)]=>[3,5,2,6,4,1,9,10,8,7]=>{{1,3},{2,5},{4,6},{7,9},{8,10}}
[(1,4),(2,5),(3,6),(7,9),(8,10)]=>[(1,6),(2,5),(3,4),(7,10),(8,9)]=>[4,5,6,3,2,1,9,10,8,7]=>{{1,4},{2,5},{3,6},{7,9},{8,10}}
[(1,3),(2,4),(5,6),(7,9),(8,10)]=>[(1,4),(2,3),(5,6),(7,10),(8,9)]=>[3,4,2,1,6,5,9,10,8,7]=>{{1,3},{2,4},{5,6},{7,9},{8,10}}
[(1,2),(3,4),(5,6),(7,9),(8,10)]=>[(1,2),(3,4),(5,6),(7,10),(8,9)]=>[2,1,4,3,6,5,9,10,8,7]=>{{1,2},{3,4},{5,6},{7,9},{8,10}}
[(1,10),(2,9),(3,8),(4,7),(5,6)]=>[(1,6),(2,7),(3,8),(4,9),(5,10)]=>[6,7,8,9,10,1,2,3,4,5]=>{{1,6},{2,7},{3,8},{4,9},{5,10}}
[(1,12),(2,11),(3,10),(4,9),(5,8),(6,7)]=>[(1,7),(2,8),(3,9),(4,10),(5,11),(6,12)]=>[7,8,9,10,11,12,1,2,3,4,5,6]=>{{1,7},{2,8},{3,9},{4,10},{5,11},{6,12}}
[(1,2),(3,4),(5,6),(7,8),(9,10),(11,12)]=>[(1,2),(3,4),(5,6),(7,8),(9,10),(11,12)]=>[2,1,4,3,6,5,8,7,10,9,12,11]=>{{1,2},{3,4},{5,6},{7,8},{9,10},{11,12}}
[(1,7),(2,8),(3,9),(4,10),(5,11),(6,12)]=>[(1,12),(2,11),(3,10),(4,9),(5,8),(6,7)]=>[7,8,9,10,11,12,6,5,4,3,2,1]=>{{1,7},{2,8},{3,9},{4,10},{5,11},{6,12}}
Map
Kasraoui-Zeng
Description
The Kasraoui-Zeng involution for perfect matchings.
This yields the perfect matching with the number of nestings and crossings exchanged.
This yields the perfect matching with the number of nestings and crossings exchanged.
Map
non-nesting-exceedence permutation
Description
The fixed-point-free permutation with deficiencies given by the perfect matching, no alignments and no inversions between exceedences.
Put differently, the exceedences form the unique non-nesting perfect matching whose openers coincide with those of the given perfect matching.
Put differently, the exceedences form the unique non-nesting perfect matching whose openers coincide with those of the given perfect matching.
Map
weak exceedance partition
Description
The set partition induced by the weak exceedances of a permutation.
This is the coarsest set partition that contains all arcs $(i, \pi(i))$ with $i\leq\pi(i)$.
This is the coarsest set partition that contains all arcs $(i, \pi(i))$ with $i\leq\pi(i)$.
searching the database
Sorry, this map was not found in the database.