Identifier
Mp00058:
Perfect matchings
—to permutation⟶
Permutations
Mp00089: Permutations —Inverse Kreweras complement⟶ Permutations
Mp00240: Permutations —weak exceedance partition⟶ Set partitions
Mp00089: Permutations —Inverse Kreweras complement⟶ Permutations
Mp00240: Permutations —weak exceedance partition⟶ Set partitions
Images
=>
Cc0012;cc-rep-0Cc0009;cc-rep-3
[(1,2)]=>[2,1]=>[1,2]=>{{1},{2}}
[(1,2),(3,4)]=>[2,1,4,3]=>[1,4,3,2]=>{{1},{2,4},{3}}
[(1,3),(2,4)]=>[3,4,1,2]=>[4,1,2,3]=>{{1,4},{2},{3}}
[(1,4),(2,3)]=>[4,3,2,1]=>[3,2,1,4]=>{{1,3},{2},{4}}
[(1,2),(3,4),(5,6)]=>[2,1,4,3,6,5]=>[1,4,3,6,5,2]=>{{1},{2,4,6},{3},{5}}
[(1,3),(2,4),(5,6)]=>[3,4,1,2,6,5]=>[4,1,2,6,5,3]=>{{1,4,6},{2},{3},{5}}
[(1,4),(2,3),(5,6)]=>[4,3,2,1,6,5]=>[3,2,1,6,5,4]=>{{1,3},{2},{4,6},{5}}
[(1,5),(2,3),(4,6)]=>[5,3,2,6,1,4]=>[3,2,6,1,4,5]=>{{1,3,6},{2},{4},{5}}
[(1,6),(2,3),(4,5)]=>[6,3,2,5,4,1]=>[3,2,5,4,1,6]=>{{1,3,5},{2},{4},{6}}
[(1,6),(2,4),(3,5)]=>[6,4,5,2,3,1]=>[4,5,2,3,1,6]=>{{1,4},{2,5},{3},{6}}
[(1,5),(2,4),(3,6)]=>[5,4,6,2,1,3]=>[4,6,2,1,3,5]=>{{1,4},{2,6},{3},{5}}
[(1,4),(2,5),(3,6)]=>[4,5,6,1,2,3]=>[5,6,1,2,3,4]=>{{1,5},{2,6},{3},{4}}
[(1,3),(2,5),(4,6)]=>[3,5,1,6,2,4]=>[5,1,6,2,4,3]=>{{1,5},{2},{3,6},{4}}
[(1,2),(3,5),(4,6)]=>[2,1,5,6,3,4]=>[1,5,6,3,4,2]=>{{1},{2,5},{3,6},{4}}
[(1,2),(3,6),(4,5)]=>[2,1,6,5,4,3]=>[1,6,5,4,3,2]=>{{1},{2,6},{3,5},{4}}
[(1,3),(2,6),(4,5)]=>[3,6,1,5,4,2]=>[6,1,5,4,2,3]=>{{1,6},{2},{3,5},{4}}
[(1,4),(2,6),(3,5)]=>[4,6,5,1,3,2]=>[6,5,1,3,2,4]=>{{1,6},{2,5},{3},{4}}
[(1,5),(2,6),(3,4)]=>[5,6,4,3,1,2]=>[6,4,3,1,2,5]=>{{1,6},{2,4},{3},{5}}
[(1,6),(2,5),(3,4)]=>[6,5,4,3,2,1]=>[5,4,3,2,1,6]=>{{1,5},{2,4},{3},{6}}
[(1,2),(3,4),(5,6),(7,8)]=>[2,1,4,3,6,5,8,7]=>[1,4,3,6,5,8,7,2]=>{{1},{2,4,6,8},{3},{5},{7}}
[(1,3),(2,4),(5,6),(7,8)]=>[3,4,1,2,6,5,8,7]=>[4,1,2,6,5,8,7,3]=>{{1,4,6,8},{2},{3},{5},{7}}
[(1,4),(2,3),(5,6),(7,8)]=>[4,3,2,1,6,5,8,7]=>[3,2,1,6,5,8,7,4]=>{{1,3},{2},{4,6,8},{5},{7}}
[(1,5),(2,3),(4,6),(7,8)]=>[5,3,2,6,1,4,8,7]=>[3,2,6,1,4,8,7,5]=>{{1,3,6,8},{2},{4},{5},{7}}
[(1,6),(2,3),(4,5),(7,8)]=>[6,3,2,5,4,1,8,7]=>[3,2,5,4,1,8,7,6]=>{{1,3,5},{2},{4},{6,8},{7}}
[(1,7),(2,3),(4,5),(6,8)]=>[7,3,2,5,4,8,1,6]=>[3,2,5,4,8,1,6,7]=>{{1,3,5,8},{2},{4},{6},{7}}
[(1,8),(2,3),(4,5),(6,7)]=>[8,3,2,5,4,7,6,1]=>[3,2,5,4,7,6,1,8]=>{{1,3,5,7},{2},{4},{6},{8}}
[(1,8),(2,4),(3,5),(6,7)]=>[8,4,5,2,3,7,6,1]=>[4,5,2,3,7,6,1,8]=>{{1,4},{2,5,7},{3},{6},{8}}
[(1,7),(2,4),(3,5),(6,8)]=>[7,4,5,2,3,8,1,6]=>[4,5,2,3,8,1,6,7]=>{{1,4},{2,5,8},{3},{6},{7}}
[(1,6),(2,4),(3,5),(7,8)]=>[6,4,5,2,3,1,8,7]=>[4,5,2,3,1,8,7,6]=>{{1,4},{2,5},{3},{6,8},{7}}
[(1,5),(2,4),(3,6),(7,8)]=>[5,4,6,2,1,3,8,7]=>[4,6,2,1,3,8,7,5]=>{{1,4},{2,6,8},{3},{5},{7}}
[(1,4),(2,5),(3,6),(7,8)]=>[4,5,6,1,2,3,8,7]=>[5,6,1,2,3,8,7,4]=>{{1,5},{2,6,8},{3},{4},{7}}
[(1,3),(2,5),(4,6),(7,8)]=>[3,5,1,6,2,4,8,7]=>[5,1,6,2,4,8,7,3]=>{{1,5},{2},{3,6,8},{4},{7}}
[(1,2),(3,5),(4,6),(7,8)]=>[2,1,5,6,3,4,8,7]=>[1,5,6,3,4,8,7,2]=>{{1},{2,5},{3,6,8},{4},{7}}
[(1,5),(2,6),(3,4),(7,8)]=>[5,6,4,3,1,2,8,7]=>[6,4,3,1,2,8,7,5]=>{{1,6,8},{2,4},{3},{5},{7}}
[(1,6),(2,5),(3,4),(7,8)]=>[6,5,4,3,2,1,8,7]=>[5,4,3,2,1,8,7,6]=>{{1,5},{2,4},{3},{6,8},{7}}
[(1,7),(2,5),(3,4),(6,8)]=>[7,5,4,3,2,8,1,6]=>[5,4,3,2,8,1,6,7]=>{{1,5,8},{2,4},{3},{6},{7}}
[(1,8),(2,5),(3,4),(6,7)]=>[8,5,4,3,2,7,6,1]=>[5,4,3,2,7,6,1,8]=>{{1,5,7},{2,4},{3},{6},{8}}
[(1,8),(2,6),(3,4),(5,7)]=>[8,6,4,3,7,2,5,1]=>[6,4,3,7,2,5,1,8]=>{{1,6},{2,4,7},{3},{5},{8}}
[(1,7),(2,6),(3,4),(5,8)]=>[7,6,4,3,8,2,1,5]=>[6,4,3,8,2,1,5,7]=>{{1,6},{2,4,8},{3},{5},{7}}
[(1,5),(2,7),(3,4),(6,8)]=>[5,7,4,3,1,8,2,6]=>[7,4,3,1,8,2,6,5]=>{{1,7},{2,4},{3},{5,8},{6}}
[(1,4),(2,7),(3,5),(6,8)]=>[4,7,5,1,3,8,2,6]=>[7,5,1,3,8,2,6,4]=>{{1,7},{2,5,8},{3},{4},{6}}
[(1,3),(2,8),(4,5),(6,7)]=>[3,8,1,5,4,7,6,2]=>[8,1,5,4,7,6,2,3]=>{{1,8},{2},{3,5,7},{4},{6}}
[(1,7),(2,8),(3,4),(5,6)]=>[7,8,4,3,6,5,1,2]=>[8,4,3,6,5,1,2,7]=>{{1,8},{2,4,6},{3},{5},{7}}
[(1,7),(2,8),(3,5),(4,6)]=>[7,8,5,6,3,4,1,2]=>[8,5,6,3,4,1,2,7]=>{{1,8},{2,5},{3,6},{4},{7}}
[(1,3),(2,8),(4,6),(5,7)]=>[3,8,1,6,7,4,5,2]=>[8,1,6,7,4,5,2,3]=>{{1,8},{2},{3,6},{4,7},{5}}
[(1,4),(2,7),(3,6),(5,8)]=>[4,7,6,1,8,3,2,5]=>[7,6,1,8,3,2,5,4]=>{{1,7},{2,6},{3},{4,8},{5}}
[(1,5),(2,7),(3,6),(4,8)]=>[5,7,6,8,1,3,2,4]=>[7,6,8,1,3,2,4,5]=>{{1,7},{2,6},{3,8},{4},{5}}
[(1,6),(2,7),(3,5),(4,8)]=>[6,7,5,8,3,1,2,4]=>[7,5,8,3,1,2,4,6]=>{{1,7},{2,5},{3,8},{4},{6}}
[(1,8),(2,5),(3,6),(4,7)]=>[8,5,6,7,2,3,4,1]=>[5,6,7,2,3,4,1,8]=>{{1,5},{2,6},{3,7},{4},{8}}
[(1,7),(2,5),(3,6),(4,8)]=>[7,5,6,8,2,3,1,4]=>[5,6,8,2,3,1,4,7]=>{{1,5},{2,6},{3,8},{4},{7}}
[(1,6),(2,5),(3,7),(4,8)]=>[6,5,7,8,2,1,3,4]=>[5,7,8,2,1,3,4,6]=>{{1,5},{2,7},{3,8},{4},{6}}
[(1,5),(2,6),(3,7),(4,8)]=>[5,6,7,8,1,2,3,4]=>[6,7,8,1,2,3,4,5]=>{{1,6},{2,7},{3,8},{4},{5}}
[(1,4),(2,6),(3,7),(5,8)]=>[4,6,7,1,8,2,3,5]=>[6,7,1,8,2,3,5,4]=>{{1,6},{2,7},{3},{4,8},{5}}
[(1,3),(2,6),(4,7),(5,8)]=>[3,6,1,7,8,2,4,5]=>[6,1,7,8,2,4,5,3]=>{{1,6},{2},{3,7},{4,8},{5}}
[(1,2),(3,6),(4,7),(5,8)]=>[2,1,6,7,8,3,4,5]=>[1,6,7,8,3,4,5,2]=>{{1},{2,6},{3,7},{4,8},{5}}
[(1,2),(3,5),(4,7),(6,8)]=>[2,1,5,7,3,8,4,6]=>[1,5,7,3,8,4,6,2]=>{{1},{2,5,8},{3,7},{4},{6}}
[(1,3),(2,5),(4,7),(6,8)]=>[3,5,1,7,2,8,4,6]=>[5,1,7,2,8,4,6,3]=>{{1,5,8},{2},{3,7},{4},{6}}
[(1,4),(2,5),(3,7),(6,8)]=>[4,5,7,1,2,8,3,6]=>[5,7,1,2,8,3,6,4]=>{{1,5,8},{2,7},{3},{4},{6}}
[(1,6),(2,4),(3,7),(5,8)]=>[6,4,7,2,8,1,3,5]=>[4,7,2,8,1,3,5,6]=>{{1,4,8},{2,7},{3},{5},{6}}
[(1,7),(2,4),(3,6),(5,8)]=>[7,4,6,2,8,3,1,5]=>[4,6,2,8,3,1,5,7]=>{{1,4,8},{2,6},{3},{5},{7}}
[(1,8),(2,4),(3,6),(5,7)]=>[8,4,6,2,7,3,5,1]=>[4,6,2,7,3,5,1,8]=>{{1,4,7},{2,6},{3},{5},{8}}
[(1,8),(2,3),(4,6),(5,7)]=>[8,3,2,6,7,4,5,1]=>[3,2,6,7,4,5,1,8]=>{{1,3,6},{2},{4,7},{5},{8}}
[(1,7),(2,3),(4,6),(5,8)]=>[7,3,2,6,8,4,1,5]=>[3,2,6,8,4,1,5,7]=>{{1,3,6},{2},{4,8},{5},{7}}
[(1,6),(2,3),(4,7),(5,8)]=>[6,3,2,7,8,1,4,5]=>[3,2,7,8,1,4,5,6]=>{{1,3,7},{2},{4,8},{5},{6}}
[(1,5),(2,3),(4,7),(6,8)]=>[5,3,2,7,1,8,4,6]=>[3,2,7,1,8,4,6,5]=>{{1,3,7},{2},{4},{5,8},{6}}
[(1,4),(2,3),(5,7),(6,8)]=>[4,3,2,1,7,8,5,6]=>[3,2,1,7,8,5,6,4]=>{{1,3},{2},{4,7},{5,8},{6}}
[(1,3),(2,4),(5,7),(6,8)]=>[3,4,1,2,7,8,5,6]=>[4,1,2,7,8,5,6,3]=>{{1,4,7},{2},{3},{5,8},{6}}
[(1,2),(3,4),(5,7),(6,8)]=>[2,1,4,3,7,8,5,6]=>[1,4,3,7,8,5,6,2]=>{{1},{2,4,7},{3},{5,8},{6}}
[(1,2),(3,4),(5,8),(6,7)]=>[2,1,4,3,8,7,6,5]=>[1,4,3,8,7,6,5,2]=>{{1},{2,4,8},{3},{5,7},{6}}
[(1,3),(2,4),(5,8),(6,7)]=>[3,4,1,2,8,7,6,5]=>[4,1,2,8,7,6,5,3]=>{{1,4,8},{2},{3},{5,7},{6}}
[(1,4),(2,3),(5,8),(6,7)]=>[4,3,2,1,8,7,6,5]=>[3,2,1,8,7,6,5,4]=>{{1,3},{2},{4,8},{5,7},{6}}
[(1,5),(2,3),(4,8),(6,7)]=>[5,3,2,8,1,7,6,4]=>[3,2,8,1,7,6,4,5]=>{{1,3,8},{2},{4},{5,7},{6}}
[(1,6),(2,4),(3,8),(5,7)]=>[6,4,8,2,7,1,5,3]=>[4,8,2,7,1,5,3,6]=>{{1,4,7},{2,8},{3},{5},{6}}
[(1,3),(2,5),(4,8),(6,7)]=>[3,5,1,8,2,7,6,4]=>[5,1,8,2,7,6,4,3]=>{{1,5,7},{2},{3,8},{4},{6}}
[(1,2),(3,5),(4,8),(6,7)]=>[2,1,5,8,3,7,6,4]=>[1,5,8,3,7,6,4,2]=>{{1},{2,5,7},{3,8},{4},{6}}
[(1,4),(2,6),(3,8),(5,7)]=>[4,6,8,1,7,2,5,3]=>[6,8,1,7,2,5,3,4]=>{{1,6},{2,8},{3},{4,7},{5}}
[(1,5),(2,6),(3,8),(4,7)]=>[5,6,8,7,1,2,4,3]=>[6,8,7,1,2,4,3,5]=>{{1,6},{2,8},{3,7},{4},{5}}
[(1,6),(2,5),(3,8),(4,7)]=>[6,5,8,7,2,1,4,3]=>[5,8,7,2,1,4,3,6]=>{{1,5},{2,8},{3,7},{4},{6}}
[(1,5),(2,8),(3,7),(4,6)]=>[5,8,7,6,1,4,3,2]=>[8,7,6,1,4,3,2,5]=>{{1,8},{2,7},{3,6},{4},{5}}
Map
to permutation
Description
Returns the fixed point free involution whose transpositions are the pairs in the perfect matching.
Map
Inverse Kreweras complement
Description
Sends the permutation $\pi \in \mathfrak{S}_n$ to the permutation $c\pi^{-1}$ where $c = (1,\ldots,n)$ is the long cycle.
Map
weak exceedance partition
Description
The set partition induced by the weak exceedances of a permutation.
This is the coarsest set partition that contains all arcs $(i, \pi(i))$ with $i\leq\pi(i)$.
This is the coarsest set partition that contains all arcs $(i, \pi(i))$ with $i\leq\pi(i)$.
searching the database
Sorry, this map was not found in the database.