Identifier
Mp00180:
Integer compositions
—to ribbon⟶
Skew partitions
Mp00189: Skew partitions —rotate⟶ Skew partitions
Mp00189: Skew partitions —rotate⟶ Skew partitions
Images
=>
Cc0028;cc-rep-1Cc0028;cc-rep-2
[1]=>[[1],[]]=>[[1],[]]
[1,1]=>[[1,1],[]]=>[[1,1],[]]
[2]=>[[2],[]]=>[[2],[]]
[1,1,1]=>[[1,1,1],[]]=>[[1,1,1],[]]
[1,2]=>[[2,1],[]]=>[[2,2],[1]]
[2,1]=>[[2,2],[1]]=>[[2,1],[]]
[3]=>[[3],[]]=>[[3],[]]
[1,1,1,1]=>[[1,1,1,1],[]]=>[[1,1,1,1],[]]
[1,1,2]=>[[2,1,1],[]]=>[[2,2,2],[1,1]]
[1,2,1]=>[[2,2,1],[1]]=>[[2,2,1],[1]]
[1,3]=>[[3,1],[]]=>[[3,3],[2]]
[2,1,1]=>[[2,2,2],[1,1]]=>[[2,1,1],[]]
[2,2]=>[[3,2],[1]]=>[[3,2],[1]]
[3,1]=>[[3,3],[2]]=>[[3,1],[]]
[4]=>[[4],[]]=>[[4],[]]
[1,1,1,1,1]=>[[1,1,1,1,1],[]]=>[[1,1,1,1,1],[]]
[1,1,1,2]=>[[2,1,1,1],[]]=>[[2,2,2,2],[1,1,1]]
[1,1,2,1]=>[[2,2,1,1],[1]]=>[[2,2,2,1],[1,1]]
[1,1,3]=>[[3,1,1],[]]=>[[3,3,3],[2,2]]
[1,2,1,1]=>[[2,2,2,1],[1,1]]=>[[2,2,1,1],[1]]
[1,2,2]=>[[3,2,1],[1]]=>[[3,3,2],[2,1]]
[1,3,1]=>[[3,3,1],[2]]=>[[3,3,1],[2]]
[1,4]=>[[4,1],[]]=>[[4,4],[3]]
[2,1,1,1]=>[[2,2,2,2],[1,1,1]]=>[[2,1,1,1],[]]
[2,1,2]=>[[3,2,2],[1,1]]=>[[3,2,2],[1,1]]
[2,2,1]=>[[3,3,2],[2,1]]=>[[3,2,1],[1]]
[2,3]=>[[4,2],[1]]=>[[4,3],[2]]
[3,1,1]=>[[3,3,3],[2,2]]=>[[3,1,1],[]]
[3,2]=>[[4,3],[2]]=>[[4,2],[1]]
[4,1]=>[[4,4],[3]]=>[[4,1],[]]
[5]=>[[5],[]]=>[[5],[]]
[1,1,1,1,1,1]=>[[1,1,1,1,1,1],[]]=>[[1,1,1,1,1,1],[]]
[1,1,1,1,2]=>[[2,1,1,1,1],[]]=>[[2,2,2,2,2],[1,1,1,1]]
[1,1,1,2,1]=>[[2,2,1,1,1],[1]]=>[[2,2,2,2,1],[1,1,1]]
[1,1,1,3]=>[[3,1,1,1],[]]=>[[3,3,3,3],[2,2,2]]
[1,1,2,1,1]=>[[2,2,2,1,1],[1,1]]=>[[2,2,2,1,1],[1,1]]
[1,1,2,2]=>[[3,2,1,1],[1]]=>[[3,3,3,2],[2,2,1]]
[1,1,3,1]=>[[3,3,1,1],[2]]=>[[3,3,3,1],[2,2]]
[1,1,4]=>[[4,1,1],[]]=>[[4,4,4],[3,3]]
[1,2,1,1,1]=>[[2,2,2,2,1],[1,1,1]]=>[[2,2,1,1,1],[1]]
[1,2,1,2]=>[[3,2,2,1],[1,1]]=>[[3,3,2,2],[2,1,1]]
[1,2,2,1]=>[[3,3,2,1],[2,1]]=>[[3,3,2,1],[2,1]]
[1,2,3]=>[[4,2,1],[1]]=>[[4,4,3],[3,2]]
[1,3,1,1]=>[[3,3,3,1],[2,2]]=>[[3,3,1,1],[2]]
[1,3,2]=>[[4,3,1],[2]]=>[[4,4,2],[3,1]]
[1,4,1]=>[[4,4,1],[3]]=>[[4,4,1],[3]]
[1,5]=>[[5,1],[]]=>[[5,5],[4]]
[2,1,1,1,1]=>[[2,2,2,2,2],[1,1,1,1]]=>[[2,1,1,1,1],[]]
[2,1,1,2]=>[[3,2,2,2],[1,1,1]]=>[[3,2,2,2],[1,1,1]]
[2,1,2,1]=>[[3,3,2,2],[2,1,1]]=>[[3,2,2,1],[1,1]]
[2,1,3]=>[[4,2,2],[1,1]]=>[[4,3,3],[2,2]]
[2,2,1,1]=>[[3,3,3,2],[2,2,1]]=>[[3,2,1,1],[1]]
[2,2,2]=>[[4,3,2],[2,1]]=>[[4,3,2],[2,1]]
[2,3,1]=>[[4,4,2],[3,1]]=>[[4,3,1],[2]]
[2,4]=>[[5,2],[1]]=>[[5,4],[3]]
[3,1,1,1]=>[[3,3,3,3],[2,2,2]]=>[[3,1,1,1],[]]
[3,1,2]=>[[4,3,3],[2,2]]=>[[4,2,2],[1,1]]
[3,2,1]=>[[4,4,3],[3,2]]=>[[4,2,1],[1]]
[3,3]=>[[5,3],[2]]=>[[5,3],[2]]
[4,1,1]=>[[4,4,4],[3,3]]=>[[4,1,1],[]]
[4,2]=>[[5,4],[3]]=>[[5,2],[1]]
[5,1]=>[[5,5],[4]]=>[[5,1],[]]
[6]=>[[6],[]]=>[[6],[]]
[1,1,1,1,1,1,1]=>[[1,1,1,1,1,1,1],[]]=>[[1,1,1,1,1,1,1],[]]
[1,1,1,1,1,2]=>[[2,1,1,1,1,1],[]]=>[[2,2,2,2,2,2],[1,1,1,1,1]]
[1,1,1,1,2,1]=>[[2,2,1,1,1,1],[1]]=>[[2,2,2,2,2,1],[1,1,1,1]]
[1,1,1,1,3]=>[[3,1,1,1,1],[]]=>[[3,3,3,3,3],[2,2,2,2]]
[1,1,1,2,1,1]=>[[2,2,2,1,1,1],[1,1]]=>[[2,2,2,2,1,1],[1,1,1]]
[1,1,1,2,2]=>[[3,2,1,1,1],[1]]=>[[3,3,3,3,2],[2,2,2,1]]
[1,1,1,3,1]=>[[3,3,1,1,1],[2]]=>[[3,3,3,3,1],[2,2,2]]
[1,1,1,4]=>[[4,1,1,1],[]]=>[[4,4,4,4],[3,3,3]]
[1,1,2,1,1,1]=>[[2,2,2,2,1,1],[1,1,1]]=>[[2,2,2,1,1,1],[1,1]]
[1,1,2,1,2]=>[[3,2,2,1,1],[1,1]]=>[[3,3,3,2,2],[2,2,1,1]]
[1,1,2,2,1]=>[[3,3,2,1,1],[2,1]]=>[[3,3,3,2,1],[2,2,1]]
[1,1,2,3]=>[[4,2,1,1],[1]]=>[[4,4,4,3],[3,3,2]]
[1,1,3,1,1]=>[[3,3,3,1,1],[2,2]]=>[[3,3,3,1,1],[2,2]]
[1,1,3,2]=>[[4,3,1,1],[2]]=>[[4,4,4,2],[3,3,1]]
[1,1,4,1]=>[[4,4,1,1],[3]]=>[[4,4,4,1],[3,3]]
[1,1,5]=>[[5,1,1],[]]=>[[5,5,5],[4,4]]
[1,2,1,1,1,1]=>[[2,2,2,2,2,1],[1,1,1,1]]=>[[2,2,1,1,1,1],[1]]
[1,2,1,1,2]=>[[3,2,2,2,1],[1,1,1]]=>[[3,3,2,2,2],[2,1,1,1]]
[1,2,1,2,1]=>[[3,3,2,2,1],[2,1,1]]=>[[3,3,2,2,1],[2,1,1]]
[1,2,1,3]=>[[4,2,2,1],[1,1]]=>[[4,4,3,3],[3,2,2]]
[1,2,2,1,1]=>[[3,3,3,2,1],[2,2,1]]=>[[3,3,2,1,1],[2,1]]
[1,2,2,2]=>[[4,3,2,1],[2,1]]=>[[4,4,3,2],[3,2,1]]
[1,2,3,1]=>[[4,4,2,1],[3,1]]=>[[4,4,3,1],[3,2]]
[1,2,4]=>[[5,2,1],[1]]=>[[5,5,4],[4,3]]
[1,3,1,1,1]=>[[3,3,3,3,1],[2,2,2]]=>[[3,3,1,1,1],[2]]
[1,3,1,2]=>[[4,3,3,1],[2,2]]=>[[4,4,2,2],[3,1,1]]
[1,3,2,1]=>[[4,4,3,1],[3,2]]=>[[4,4,2,1],[3,1]]
[1,3,3]=>[[5,3,1],[2]]=>[[5,5,3],[4,2]]
[1,4,1,1]=>[[4,4,4,1],[3,3]]=>[[4,4,1,1],[3]]
[1,4,2]=>[[5,4,1],[3]]=>[[5,5,2],[4,1]]
[1,5,1]=>[[5,5,1],[4]]=>[[5,5,1],[4]]
[1,6]=>[[6,1],[]]=>[[6,6],[5]]
[2,1,1,1,1,1]=>[[2,2,2,2,2,2],[1,1,1,1,1]]=>[[2,1,1,1,1,1],[]]
[2,1,1,1,2]=>[[3,2,2,2,2],[1,1,1,1]]=>[[3,2,2,2,2],[1,1,1,1]]
[2,1,1,2,1]=>[[3,3,2,2,2],[2,1,1,1]]=>[[3,2,2,2,1],[1,1,1]]
[2,1,1,3]=>[[4,2,2,2],[1,1,1]]=>[[4,3,3,3],[2,2,2]]
[2,1,2,1,1]=>[[3,3,3,2,2],[2,2,1,1]]=>[[3,2,2,1,1],[1,1]]
[2,1,2,2]=>[[4,3,2,2],[2,1,1]]=>[[4,3,3,2],[2,2,1]]
[2,1,3,1]=>[[4,4,2,2],[3,1,1]]=>[[4,3,3,1],[2,2]]
[2,1,4]=>[[5,2,2],[1,1]]=>[[5,4,4],[3,3]]
[2,2,1,1,1]=>[[3,3,3,3,2],[2,2,2,1]]=>[[3,2,1,1,1],[1]]
[2,2,1,2]=>[[4,3,3,2],[2,2,1]]=>[[4,3,2,2],[2,1,1]]
[2,2,2,1]=>[[4,4,3,2],[3,2,1]]=>[[4,3,2,1],[2,1]]
[2,2,3]=>[[5,3,2],[2,1]]=>[[5,4,3],[3,2]]
[2,3,1,1]=>[[4,4,4,2],[3,3,1]]=>[[4,3,1,1],[2]]
[2,3,2]=>[[5,4,2],[3,1]]=>[[5,4,2],[3,1]]
[2,4,1]=>[[5,5,2],[4,1]]=>[[5,4,1],[3]]
[2,5]=>[[6,2],[1]]=>[[6,5],[4]]
[3,1,1,1,1]=>[[3,3,3,3,3],[2,2,2,2]]=>[[3,1,1,1,1],[]]
[3,1,1,2]=>[[4,3,3,3],[2,2,2]]=>[[4,2,2,2],[1,1,1]]
[3,1,2,1]=>[[4,4,3,3],[3,2,2]]=>[[4,2,2,1],[1,1]]
[3,1,3]=>[[5,3,3],[2,2]]=>[[5,3,3],[2,2]]
[3,2,1,1]=>[[4,4,4,3],[3,3,2]]=>[[4,2,1,1],[1]]
[3,2,2]=>[[5,4,3],[3,2]]=>[[5,3,2],[2,1]]
[3,3,1]=>[[5,5,3],[4,2]]=>[[5,3,1],[2]]
[3,4]=>[[6,3],[2]]=>[[6,4],[3]]
[4,1,1,1]=>[[4,4,4,4],[3,3,3]]=>[[4,1,1,1],[]]
[4,1,2]=>[[5,4,4],[3,3]]=>[[5,2,2],[1,1]]
[4,2,1]=>[[5,5,4],[4,3]]=>[[5,2,1],[1]]
[4,3]=>[[6,4],[3]]=>[[6,3],[2]]
[5,1,1]=>[[5,5,5],[4,4]]=>[[5,1,1],[]]
[5,2]=>[[6,5],[4]]=>[[6,2],[1]]
[6,1]=>[[6,6],[5]]=>[[6,1],[]]
[7]=>[[7],[]]=>[[7],[]]
[1,1,1,1,1,1,1,1]=>[[1,1,1,1,1,1,1,1],[]]=>[[1,1,1,1,1,1,1,1],[]]
[1,1,1,1,1,1,2]=>[[2,1,1,1,1,1,1],[]]=>[[2,2,2,2,2,2,2],[1,1,1,1,1,1]]
[1,1,1,1,1,3]=>[[3,1,1,1,1,1],[]]=>[[3,3,3,3,3,3],[2,2,2,2,2]]
[1,1,1,1,4]=>[[4,1,1,1,1],[]]=>[[4,4,4,4,4],[3,3,3,3]]
[1,1,1,5]=>[[5,1,1,1],[]]=>[[5,5,5,5],[4,4,4]]
[1,1,6]=>[[6,1,1],[]]=>[[6,6,6],[5,5]]
[1,7]=>[[7,1],[]]=>[[7,7],[6]]
[8]=>[[8],[]]=>[[8],[]]
[1,1,1,1,1,1,1,1,1]=>[[1,1,1,1,1,1,1,1,1],[]]=>[[1,1,1,1,1,1,1,1,1],[]]
[1,1,1,1,1,1,1,2]=>[[2,1,1,1,1,1,1,1],[]]=>[[2,2,2,2,2,2,2,2],[1,1,1,1,1,1,1]]
[1,1,1,1,1,1,3]=>[[3,1,1,1,1,1,1],[]]=>[[3,3,3,3,3,3,3],[2,2,2,2,2,2]]
[1,1,1,1,1,4]=>[[4,1,1,1,1,1],[]]=>[[4,4,4,4,4,4],[3,3,3,3,3]]
[1,1,1,1,5]=>[[5,1,1,1,1],[]]=>[[5,5,5,5,5],[4,4,4,4]]
[1,1,1,6]=>[[6,1,1,1],[]]=>[[6,6,6,6],[5,5,5]]
[1,1,7]=>[[7,1,1],[]]=>[[7,7,7],[6,6]]
[1,8]=>[[8,1],[]]=>[[8,8],[7]]
[9]=>[[9],[]]=>[[9],[]]
[1,1,1,1,1,1,1,1,1,1]=>[[1,1,1,1,1,1,1,1,1,1],[]]=>[[1,1,1,1,1,1,1,1,1,1],[]]
[1,1,1,1,1,1,1,1,2]=>[[2,1,1,1,1,1,1,1,1],[]]=>[[2,2,2,2,2,2,2,2,2],[1,1,1,1,1,1,1,1]]
[1,1,1,1,1,1,1,3]=>[[3,1,1,1,1,1,1,1],[]]=>[[3,3,3,3,3,3,3,3],[2,2,2,2,2,2,2]]
[1,1,1,1,1,1,4]=>[[4,1,1,1,1,1,1],[]]=>[[4,4,4,4,4,4,4],[3,3,3,3,3,3]]
[1,1,1,1,1,5]=>[[5,1,1,1,1,1],[]]=>[[5,5,5,5,5,5],[4,4,4,4,4]]
[1,1,1,1,6]=>[[6,1,1,1,1],[]]=>[[6,6,6,6,6],[5,5,5,5]]
[1,1,1,7]=>[[7,1,1,1],[]]=>[[7,7,7,7],[6,6,6]]
[1,1,8]=>[[8,1,1],[]]=>[[8,8,8],[7,7]]
[1,9]=>[[9,1],[]]=>[[9,9],[8]]
[10]=>[[10],[]]=>[[10],[]]
[1,10]=>[[10,1],[]]=>[[10,10],[9]]
[1,1,1,1,1,1,1,1,1,1,1,1]=>[[1,1,1,1,1,1,1,1,1,1,1,1],[]]=>[[1,1,1,1,1,1,1,1,1,1,1,1],[]]
[1,1,1,1,1,1,1,1,1,2]=>[[2,1,1,1,1,1,1,1,1,1],[]]=>[[2,2,2,2,2,2,2,2,2,2],[1,1,1,1,1,1,1,1,1]]
[12]=>[[12],[]]=>[[12],[]]
[11]=>[[11],[]]=>[[11],[]]
[1,1,1,1,1,1,1,1,1,1,1]=>[[1,1,1,1,1,1,1,1,1,1,1],[]]=>[[1,1,1,1,1,1,1,1,1,1,1],[]]
[1,1,1,1,1,1,1,1,1,1,1,1,1]=>[[1,1,1,1,1,1,1,1,1,1,1,1,1],[]]=>[[1,1,1,1,1,1,1,1,1,1,1,1,1],[]]
Map
to ribbon
Description
The ribbon shape corresponding to an integer composition.
For an integer composition $(a_1, \dots, a_n)$, this is the ribbon shape whose $i$th row from the bottom has $a_i$ cells.
For an integer composition $(a_1, \dots, a_n)$, this is the ribbon shape whose $i$th row from the bottom has $a_i$ cells.
Map
rotate
Description
The rotation of a skew partition.
This is the skew partition obtained by rotating the diagram by 180 degrees. Equivalently, given a skew partition $\lambda/\mu$, its rotation $(\lambda/\mu)^\natural$ is the skew partition with cells $\{(a-i, b-j)| (i, j) \in \lambda/\mu\}$, where $b$ and $a$ are the first part and the number of parts of $\lambda$ respectively.
This is the skew partition obtained by rotating the diagram by 180 degrees. Equivalently, given a skew partition $\lambda/\mu$, its rotation $(\lambda/\mu)^\natural$ is the skew partition with cells $\{(a-i, b-j)| (i, j) \in \lambda/\mu\}$, where $b$ and $a$ are the first part and the number of parts of $\lambda$ respectively.
searching the database
Sorry, this map was not found in the database.