Identifier
Mp00180:
Integer compositions
—to ribbon⟶
Skew partitions
Mp00187: Skew partitions —conjugate⟶ Skew partitions
Mp00187: Skew partitions —conjugate⟶ Skew partitions
Images
[1] => [[1],[]] => [[1],[]]
[1,1] => [[1,1],[]] => [[2],[]]
[2] => [[2],[]] => [[1,1],[]]
[1,1,1] => [[1,1,1],[]] => [[3],[]]
[1,2] => [[2,1],[]] => [[2,1],[]]
[2,1] => [[2,2],[1]] => [[2,2],[1]]
[3] => [[3],[]] => [[1,1,1],[]]
[1,1,1,1] => [[1,1,1,1],[]] => [[4],[]]
[1,1,2] => [[2,1,1],[]] => [[3,1],[]]
[1,2,1] => [[2,2,1],[1]] => [[3,2],[1]]
[1,3] => [[3,1],[]] => [[2,1,1],[]]
[2,1,1] => [[2,2,2],[1,1]] => [[3,3],[2]]
[2,2] => [[3,2],[1]] => [[2,2,1],[1]]
[3,1] => [[3,3],[2]] => [[2,2,2],[1,1]]
[4] => [[4],[]] => [[1,1,1,1],[]]
[1,1,1,1,1] => [[1,1,1,1,1],[]] => [[5],[]]
[1,1,1,2] => [[2,1,1,1],[]] => [[4,1],[]]
[1,1,2,1] => [[2,2,1,1],[1]] => [[4,2],[1]]
[1,1,3] => [[3,1,1],[]] => [[3,1,1],[]]
[1,2,1,1] => [[2,2,2,1],[1,1]] => [[4,3],[2]]
[1,2,2] => [[3,2,1],[1]] => [[3,2,1],[1]]
[1,3,1] => [[3,3,1],[2]] => [[3,2,2],[1,1]]
[1,4] => [[4,1],[]] => [[2,1,1,1],[]]
[2,1,1,1] => [[2,2,2,2],[1,1,1]] => [[4,4],[3]]
[2,1,2] => [[3,2,2],[1,1]] => [[3,3,1],[2]]
[2,2,1] => [[3,3,2],[2,1]] => [[3,3,2],[2,1]]
[2,3] => [[4,2],[1]] => [[2,2,1,1],[1]]
[3,1,1] => [[3,3,3],[2,2]] => [[3,3,3],[2,2]]
[3,2] => [[4,3],[2]] => [[2,2,2,1],[1,1]]
[4,1] => [[4,4],[3]] => [[2,2,2,2],[1,1,1]]
[5] => [[5],[]] => [[1,1,1,1,1],[]]
[1,1,1,1,1,1] => [[1,1,1,1,1,1],[]] => [[6],[]]
[1,1,1,1,2] => [[2,1,1,1,1],[]] => [[5,1],[]]
[1,1,1,2,1] => [[2,2,1,1,1],[1]] => [[5,2],[1]]
[1,1,1,3] => [[3,1,1,1],[]] => [[4,1,1],[]]
[1,1,2,1,1] => [[2,2,2,1,1],[1,1]] => [[5,3],[2]]
[1,1,2,2] => [[3,2,1,1],[1]] => [[4,2,1],[1]]
[1,1,3,1] => [[3,3,1,1],[2]] => [[4,2,2],[1,1]]
[1,1,4] => [[4,1,1],[]] => [[3,1,1,1],[]]
[1,2,1,1,1] => [[2,2,2,2,1],[1,1,1]] => [[5,4],[3]]
[1,2,1,2] => [[3,2,2,1],[1,1]] => [[4,3,1],[2]]
[1,2,2,1] => [[3,3,2,1],[2,1]] => [[4,3,2],[2,1]]
[1,2,3] => [[4,2,1],[1]] => [[3,2,1,1],[1]]
[1,3,1,1] => [[3,3,3,1],[2,2]] => [[4,3,3],[2,2]]
[1,3,2] => [[4,3,1],[2]] => [[3,2,2,1],[1,1]]
[1,4,1] => [[4,4,1],[3]] => [[3,2,2,2],[1,1,1]]
[1,5] => [[5,1],[]] => [[2,1,1,1,1],[]]
[2,1,1,1,1] => [[2,2,2,2,2],[1,1,1,1]] => [[5,5],[4]]
[2,1,1,2] => [[3,2,2,2],[1,1,1]] => [[4,4,1],[3]]
[2,1,2,1] => [[3,3,2,2],[2,1,1]] => [[4,4,2],[3,1]]
[2,1,3] => [[4,2,2],[1,1]] => [[3,3,1,1],[2]]
[2,2,1,1] => [[3,3,3,2],[2,2,1]] => [[4,4,3],[3,2]]
[2,2,2] => [[4,3,2],[2,1]] => [[3,3,2,1],[2,1]]
[2,3,1] => [[4,4,2],[3,1]] => [[3,3,2,2],[2,1,1]]
[2,4] => [[5,2],[1]] => [[2,2,1,1,1],[1]]
[3,1,1,1] => [[3,3,3,3],[2,2,2]] => [[4,4,4],[3,3]]
[3,1,2] => [[4,3,3],[2,2]] => [[3,3,3,1],[2,2]]
[3,2,1] => [[4,4,3],[3,2]] => [[3,3,3,2],[2,2,1]]
[3,3] => [[5,3],[2]] => [[2,2,2,1,1],[1,1]]
[4,1,1] => [[4,4,4],[3,3]] => [[3,3,3,3],[2,2,2]]
[4,2] => [[5,4],[3]] => [[2,2,2,2,1],[1,1,1]]
[5,1] => [[5,5],[4]] => [[2,2,2,2,2],[1,1,1,1]]
[6] => [[6],[]] => [[1,1,1,1,1,1],[]]
[1,1,1,1,1,1,1] => [[1,1,1,1,1,1,1],[]] => [[7],[]]
[1,1,1,1,1,2] => [[2,1,1,1,1,1],[]] => [[6,1],[]]
[1,1,1,1,2,1] => [[2,2,1,1,1,1],[1]] => [[6,2],[1]]
[1,1,1,1,3] => [[3,1,1,1,1],[]] => [[5,1,1],[]]
[1,1,1,2,1,1] => [[2,2,2,1,1,1],[1,1]] => [[6,3],[2]]
[1,1,1,2,2] => [[3,2,1,1,1],[1]] => [[5,2,1],[1]]
[1,1,1,3,1] => [[3,3,1,1,1],[2]] => [[5,2,2],[1,1]]
[1,1,1,4] => [[4,1,1,1],[]] => [[4,1,1,1],[]]
[1,1,2,1,1,1] => [[2,2,2,2,1,1],[1,1,1]] => [[6,4],[3]]
[1,1,2,1,2] => [[3,2,2,1,1],[1,1]] => [[5,3,1],[2]]
[1,1,2,2,1] => [[3,3,2,1,1],[2,1]] => [[5,3,2],[2,1]]
[1,1,2,3] => [[4,2,1,1],[1]] => [[4,2,1,1],[1]]
[1,1,3,1,1] => [[3,3,3,1,1],[2,2]] => [[5,3,3],[2,2]]
[1,1,3,2] => [[4,3,1,1],[2]] => [[4,2,2,1],[1,1]]
[1,1,4,1] => [[4,4,1,1],[3]] => [[4,2,2,2],[1,1,1]]
[1,1,5] => [[5,1,1],[]] => [[3,1,1,1,1],[]]
[1,2,1,1,1,1] => [[2,2,2,2,2,1],[1,1,1,1]] => [[6,5],[4]]
[1,2,1,1,2] => [[3,2,2,2,1],[1,1,1]] => [[5,4,1],[3]]
[1,2,1,2,1] => [[3,3,2,2,1],[2,1,1]] => [[5,4,2],[3,1]]
[1,2,1,3] => [[4,2,2,1],[1,1]] => [[4,3,1,1],[2]]
[1,2,2,1,1] => [[3,3,3,2,1],[2,2,1]] => [[5,4,3],[3,2]]
[1,2,2,2] => [[4,3,2,1],[2,1]] => [[4,3,2,1],[2,1]]
[1,2,3,1] => [[4,4,2,1],[3,1]] => [[4,3,2,2],[2,1,1]]
[1,2,4] => [[5,2,1],[1]] => [[3,2,1,1,1],[1]]
[1,3,1,1,1] => [[3,3,3,3,1],[2,2,2]] => [[5,4,4],[3,3]]
[1,3,1,2] => [[4,3,3,1],[2,2]] => [[4,3,3,1],[2,2]]
[1,3,2,1] => [[4,4,3,1],[3,2]] => [[4,3,3,2],[2,2,1]]
[1,3,3] => [[5,3,1],[2]] => [[3,2,2,1,1],[1,1]]
[1,4,1,1] => [[4,4,4,1],[3,3]] => [[4,3,3,3],[2,2,2]]
[1,4,2] => [[5,4,1],[3]] => [[3,2,2,2,1],[1,1,1]]
[1,5,1] => [[5,5,1],[4]] => [[3,2,2,2,2],[1,1,1,1]]
[1,6] => [[6,1],[]] => [[2,1,1,1,1,1],[]]
[2,1,1,1,1,1] => [[2,2,2,2,2,2],[1,1,1,1,1]] => [[6,6],[5]]
[2,1,1,1,2] => [[3,2,2,2,2],[1,1,1,1]] => [[5,5,1],[4]]
[2,1,1,2,1] => [[3,3,2,2,2],[2,1,1,1]] => [[5,5,2],[4,1]]
[2,1,1,3] => [[4,2,2,2],[1,1,1]] => [[4,4,1,1],[3]]
[2,1,2,1,1] => [[3,3,3,2,2],[2,2,1,1]] => [[5,5,3],[4,2]]
[2,1,2,2] => [[4,3,2,2],[2,1,1]] => [[4,4,2,1],[3,1]]
>>> Load all 216 entries. <<<Map
to ribbon
Description
The ribbon shape corresponding to an integer composition.
For an integer composition (a1,…,an), this is the ribbon shape whose ith row from the bottom has ai cells.
For an integer composition (a1,…,an), this is the ribbon shape whose ith row from the bottom has ai cells.
Map
conjugate
Description
The conjugate of the skew partition.
The conjugate of a skew partition λ is the skew partition λ∗ whose Ferrers diagram is obtained from the Ferrers diagram of λ by interchanging rows with columns.
This is also called the associated partition or the transpose in the literature.
The conjugate of a skew partition λ is the skew partition λ∗ whose Ferrers diagram is obtained from the Ferrers diagram of λ by interchanging rows with columns.
This is also called the associated partition or the transpose in the literature.
searching the database
Sorry, this map was not found in the database.