Identifier
Mp00008: Binary trees to complete treeOrdered trees
Mp00051: Ordered trees to Dyck pathDyck paths
Mp00101: Dyck paths decomposition reverseDyck paths
Mp00102: Dyck paths rise compositionInteger compositions
Images
=>
Cc0010;cc-rep-0Cc0021;cc-rep-1Cc0005;cc-rep-2Cc0005;cc-rep-3
[.,.]=>[[],[]]=>[1,0,1,0]=>[1,1,0,0]=>[2] [.,[.,.]]=>[[],[[],[]]]=>[1,0,1,1,0,1,0,0]=>[1,1,0,1,1,0,0,0]=>[2,2] [[.,.],.]=>[[[],[]],[]]=>[1,1,0,1,0,0,1,0]=>[1,1,0,0,1,1,0,0]=>[2,2] [.,[.,[.,.]]]=>[[],[[],[[],[]]]]=>[1,0,1,1,0,1,1,0,1,0,0,0]=>[1,1,0,1,1,0,1,1,0,0,0,0]=>[2,2,2] [.,[[.,.],.]]=>[[],[[[],[]],[]]]=>[1,0,1,1,1,0,1,0,0,1,0,0]=>[1,1,0,1,1,0,0,1,1,0,0,0]=>[2,2,2] [[.,.],[.,.]]=>[[[],[]],[[],[]]]=>[1,1,0,1,0,0,1,1,0,1,0,0]=>[1,1,0,1,1,0,0,0,1,1,0,0]=>[2,2,2] [[.,[.,.]],.]=>[[[],[[],[]]],[]]=>[1,1,0,1,1,0,1,0,0,0,1,0]=>[1,1,0,0,1,1,0,1,1,0,0,0]=>[2,2,2] [[[.,.],.],.]=>[[[[],[]],[]],[]]=>[1,1,1,0,1,0,0,1,0,0,1,0]=>[1,1,0,0,1,1,0,0,1,1,0,0]=>[2,2,2] [.,[.,[.,[.,.]]]]=>[[],[[],[[],[[],[]]]]]=>[1,0,1,1,0,1,1,0,1,1,0,1,0,0,0,0]=>[1,1,0,1,1,0,1,1,0,1,1,0,0,0,0,0]=>[2,2,2,2] [.,[.,[[.,.],.]]]=>[[],[[],[[[],[]],[]]]]=>[1,0,1,1,0,1,1,1,0,1,0,0,1,0,0,0]=>[1,1,0,1,1,0,1,1,0,0,1,1,0,0,0,0]=>[2,2,2,2] [.,[[.,.],[.,.]]]=>[[],[[[],[]],[[],[]]]]=>[1,0,1,1,1,0,1,0,0,1,1,0,1,0,0,0]=>[1,1,0,1,1,0,1,1,0,0,0,1,1,0,0,0]=>[2,2,2,2] [.,[[.,[.,.]],.]]=>[[],[[[],[[],[]]],[]]]=>[1,0,1,1,1,0,1,1,0,1,0,0,0,1,0,0]=>[1,1,0,1,1,0,0,1,1,0,1,1,0,0,0,0]=>[2,2,2,2] [.,[[[.,.],.],.]]=>[[],[[[[],[]],[]],[]]]=>[1,0,1,1,1,1,0,1,0,0,1,0,0,1,0,0]=>[1,1,0,1,1,0,0,1,1,0,0,1,1,0,0,0]=>[2,2,2,2] [[.,.],[.,[.,.]]]=>[[[],[]],[[],[[],[]]]]=>[1,1,0,1,0,0,1,1,0,1,1,0,1,0,0,0]=>[1,1,0,1,1,0,1,1,0,0,0,0,1,1,0,0]=>[2,2,2,2] [[.,.],[[.,.],.]]=>[[[],[]],[[[],[]],[]]]=>[1,1,0,1,0,0,1,1,1,0,1,0,0,1,0,0]=>[1,1,0,1,1,0,0,1,1,0,0,0,1,1,0,0]=>[2,2,2,2] [[.,[.,.]],[.,.]]=>[[[],[[],[]]],[[],[]]]=>[1,1,0,1,1,0,1,0,0,0,1,1,0,1,0,0]=>[1,1,0,1,1,0,0,0,1,1,0,1,1,0,0,0]=>[2,2,2,2] [[[.,.],.],[.,.]]=>[[[[],[]],[]],[[],[]]]=>[1,1,1,0,1,0,0,1,0,0,1,1,0,1,0,0]=>[1,1,0,1,1,0,0,0,1,1,0,0,1,1,0,0]=>[2,2,2,2] [[.,[.,[.,.]]],.]=>[[[],[[],[[],[]]]],[]]=>[1,1,0,1,1,0,1,1,0,1,0,0,0,0,1,0]=>[1,1,0,0,1,1,0,1,1,0,1,1,0,0,0,0]=>[2,2,2,2] [[.,[[.,.],.]],.]=>[[[],[[[],[]],[]]],[]]=>[1,1,0,1,1,1,0,1,0,0,1,0,0,0,1,0]=>[1,1,0,0,1,1,0,1,1,0,0,1,1,0,0,0]=>[2,2,2,2] [[[.,.],[.,.]],.]=>[[[[],[]],[[],[]]],[]]=>[1,1,1,0,1,0,0,1,1,0,1,0,0,0,1,0]=>[1,1,0,0,1,1,0,1,1,0,0,0,1,1,0,0]=>[2,2,2,2] [[[.,[.,.]],.],.]=>[[[[],[[],[]]],[]],[]]=>[1,1,1,0,1,1,0,1,0,0,0,1,0,0,1,0]=>[1,1,0,0,1,1,0,0,1,1,0,1,1,0,0,0]=>[2,2,2,2] [[[[.,.],.],.],.]=>[[[[[],[]],[]],[]],[]]=>[1,1,1,1,0,1,0,0,1,0,0,1,0,0,1,0]=>[1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0]=>[2,2,2,2]
Map
to complete tree
Description
Return the same tree seen as an ordered tree. By default, leaves are transformed into actual nodes.
Map
to Dyck path
Description
Return the Dyck path of the corresponding ordered tree induced by the recurrence of the Catalan numbers, see wikipedia:Catalan_number.
This sends the maximal height of the Dyck path is the depth of the tree.
Map
decomposition reverse
Description
This map is recursively defined as follows.
The unique empty path of semilength $0$ is sent to itself.
Let $D$ be a Dyck path of semilength $n > 0$ and decompose it into $1 D_1 0 D_2$ with Dyck paths $D_1, D_2$ of respective semilengths $n_1$ and $n_2$ such that $n_1$ is minimal. One then has $n_1+n_2 = n-1$.
Now let $\tilde D_1$ and $\tilde D_2$ be the recursively defined respective images of $D_1$ and $D_2$ under this map. The image of $D$ is then defined as $1 \tilde D_2 0 \tilde D_1$.
Map
rise composition
Description
Send a Dyck path to the composition of sizes of its rises.