Identifier
Mp00146: Dyck paths to tunnel matchingPerfect matchings
Mp00092: Perfect matchings to set partitionSet partitions
Mp00091: Set partitions rotate increasing Set partitions
Images
=>
Cc0005;cc-rep-0Cc0012;cc-rep-1Cc0009;cc-rep-2Cc0009;cc-rep-3
[1,0]=>[(1,2)]=>{{1,2}}=>{{1,2}} [1,0,1,0]=>[(1,2),(3,4)]=>{{1,2},{3,4}}=>{{1,4},{2,3}} [1,1,0,0]=>[(1,4),(2,3)]=>{{1,4},{2,3}}=>{{1,2},{3,4}} [1,0,1,0,1,0]=>[(1,2),(3,4),(5,6)]=>{{1,2},{3,4},{5,6}}=>{{1,6},{2,3},{4,5}} [1,0,1,1,0,0]=>[(1,2),(3,6),(4,5)]=>{{1,2},{3,6},{4,5}}=>{{1,4},{2,3},{5,6}} [1,1,0,0,1,0]=>[(1,4),(2,3),(5,6)]=>{{1,4},{2,3},{5,6}}=>{{1,6},{2,5},{3,4}} [1,1,0,1,0,0]=>[(1,6),(2,3),(4,5)]=>{{1,6},{2,3},{4,5}}=>{{1,2},{3,4},{5,6}} [1,1,1,0,0,0]=>[(1,6),(2,5),(3,4)]=>{{1,6},{2,5},{3,4}}=>{{1,2},{3,6},{4,5}} [1,0,1,0,1,0,1,0]=>[(1,2),(3,4),(5,6),(7,8)]=>{{1,2},{3,4},{5,6},{7,8}}=>{{1,8},{2,3},{4,5},{6,7}} [1,0,1,0,1,1,0,0]=>[(1,2),(3,4),(5,8),(6,7)]=>{{1,2},{3,4},{5,8},{6,7}}=>{{1,6},{2,3},{4,5},{7,8}} [1,0,1,1,0,0,1,0]=>[(1,2),(3,6),(4,5),(7,8)]=>{{1,2},{3,6},{4,5},{7,8}}=>{{1,8},{2,3},{4,7},{5,6}} [1,0,1,1,0,1,0,0]=>[(1,2),(3,8),(4,5),(6,7)]=>{{1,2},{3,8},{4,5},{6,7}}=>{{1,4},{2,3},{5,6},{7,8}} [1,0,1,1,1,0,0,0]=>[(1,2),(3,8),(4,7),(5,6)]=>{{1,2},{3,8},{4,7},{5,6}}=>{{1,4},{2,3},{5,8},{6,7}} [1,1,0,0,1,0,1,0]=>[(1,4),(2,3),(5,6),(7,8)]=>{{1,4},{2,3},{5,6},{7,8}}=>{{1,8},{2,5},{3,4},{6,7}} [1,1,0,0,1,1,0,0]=>[(1,4),(2,3),(5,8),(6,7)]=>{{1,4},{2,3},{5,8},{6,7}}=>{{1,6},{2,5},{3,4},{7,8}} [1,1,0,1,0,0,1,0]=>[(1,6),(2,3),(4,5),(7,8)]=>{{1,6},{2,3},{4,5},{7,8}}=>{{1,8},{2,7},{3,4},{5,6}} [1,1,0,1,0,1,0,0]=>[(1,8),(2,3),(4,5),(6,7)]=>{{1,8},{2,3},{4,5},{6,7}}=>{{1,2},{3,4},{5,6},{7,8}} [1,1,0,1,1,0,0,0]=>[(1,8),(2,3),(4,7),(5,6)]=>{{1,8},{2,3},{4,7},{5,6}}=>{{1,2},{3,4},{5,8},{6,7}} [1,1,1,0,0,0,1,0]=>[(1,6),(2,5),(3,4),(7,8)]=>{{1,6},{2,5},{3,4},{7,8}}=>{{1,8},{2,7},{3,6},{4,5}} [1,1,1,0,0,1,0,0]=>[(1,8),(2,5),(3,4),(6,7)]=>{{1,8},{2,5},{3,4},{6,7}}=>{{1,2},{3,6},{4,5},{7,8}} [1,1,1,0,1,0,0,0]=>[(1,8),(2,7),(3,4),(5,6)]=>{{1,8},{2,7},{3,4},{5,6}}=>{{1,2},{3,8},{4,5},{6,7}} [1,1,1,1,0,0,0,0]=>[(1,8),(2,7),(3,6),(4,5)]=>{{1,8},{2,7},{3,6},{4,5}}=>{{1,2},{3,8},{4,7},{5,6}} [1,0,1,0,1,0,1,0,1,0]=>[(1,2),(3,4),(5,6),(7,8),(9,10)]=>{{1,2},{3,4},{5,6},{7,8},{9,10}}=>{{1,10},{2,3},{4,5},{6,7},{8,9}}
Map
to tunnel matching
Description
Sends a Dyck path of semilength n to the noncrossing perfect matching given by matching an up-step with the corresponding down-step.
This is, for a Dyck path $D$ of semilength $n$, the perfect matching of $\{1,\dots,2n\}$ with $i < j$ being matched if $D_i$ is an up-step and $D_j$ is the down-step connected to $D_i$ by a tunnel.
Map
to set partition
Description
Return the set partition corresponding to the perfect matching.
Map
rotate increasing
Description
The rotation of the set partition obtained by adding 1 to each entry different from the largest, and replacing the largest entry with 1.