Identifier
Mp00092: Perfect matchings to set partitionSet partitions
Mp00091: Set partitions rotate increasingSet partitions
Mp00080: Set partitions to permutationPermutations
Images
=>
Cc0012;cc-rep-0Cc0009;cc-rep-1Cc0009;cc-rep-2
[(1,2)]=>{{1,2}}=>{{1,2}}=>[2,1] [(1,2),(3,4)]=>{{1,2},{3,4}}=>{{1,4},{2,3}}=>[4,3,2,1] [(1,3),(2,4)]=>{{1,3},{2,4}}=>{{1,3},{2,4}}=>[3,4,1,2] [(1,4),(2,3)]=>{{1,4},{2,3}}=>{{1,2},{3,4}}=>[2,1,4,3] [(1,2),(3,4),(5,6)]=>{{1,2},{3,4},{5,6}}=>{{1,6},{2,3},{4,5}}=>[6,3,2,5,4,1] [(1,3),(2,4),(5,6)]=>{{1,3},{2,4},{5,6}}=>{{1,6},{2,4},{3,5}}=>[6,4,5,2,3,1] [(1,4),(2,3),(5,6)]=>{{1,4},{2,3},{5,6}}=>{{1,6},{2,5},{3,4}}=>[6,5,4,3,2,1] [(1,5),(2,3),(4,6)]=>{{1,5},{2,3},{4,6}}=>{{1,5},{2,6},{3,4}}=>[5,6,4,3,1,2] [(1,6),(2,3),(4,5)]=>{{1,6},{2,3},{4,5}}=>{{1,2},{3,4},{5,6}}=>[2,1,4,3,6,5] [(1,6),(2,4),(3,5)]=>{{1,6},{2,4},{3,5}}=>{{1,2},{3,5},{4,6}}=>[2,1,5,6,3,4] [(1,5),(2,4),(3,6)]=>{{1,5},{2,4},{3,6}}=>{{1,4},{2,6},{3,5}}=>[4,6,5,1,3,2] [(1,4),(2,5),(3,6)]=>{{1,4},{2,5},{3,6}}=>{{1,4},{2,5},{3,6}}=>[4,5,6,1,2,3] [(1,3),(2,5),(4,6)]=>{{1,3},{2,5},{4,6}}=>{{1,5},{2,4},{3,6}}=>[5,4,6,2,1,3] [(1,2),(3,5),(4,6)]=>{{1,2},{3,5},{4,6}}=>{{1,5},{2,3},{4,6}}=>[5,3,2,6,1,4] [(1,2),(3,6),(4,5)]=>{{1,2},{3,6},{4,5}}=>{{1,4},{2,3},{5,6}}=>[4,3,2,1,6,5] [(1,3),(2,6),(4,5)]=>{{1,3},{2,6},{4,5}}=>{{1,3},{2,4},{5,6}}=>[3,4,1,2,6,5] [(1,4),(2,6),(3,5)]=>{{1,4},{2,6},{3,5}}=>{{1,3},{2,5},{4,6}}=>[3,5,1,6,2,4] [(1,5),(2,6),(3,4)]=>{{1,5},{2,6},{3,4}}=>{{1,3},{2,6},{4,5}}=>[3,6,1,5,4,2] [(1,6),(2,5),(3,4)]=>{{1,6},{2,5},{3,4}}=>{{1,2},{3,6},{4,5}}=>[2,1,6,5,4,3] [(1,2),(3,4),(5,6),(7,8)]=>{{1,2},{3,4},{5,6},{7,8}}=>{{1,8},{2,3},{4,5},{6,7}}=>[8,3,2,5,4,7,6,1] [(1,3),(2,4),(5,6),(7,8)]=>{{1,3},{2,4},{5,6},{7,8}}=>{{1,8},{2,4},{3,5},{6,7}}=>[8,4,5,2,3,7,6,1] [(1,4),(2,3),(5,6),(7,8)]=>{{1,4},{2,3},{5,6},{7,8}}=>{{1,8},{2,5},{3,4},{6,7}}=>[8,5,4,3,2,7,6,1] [(1,5),(2,3),(4,6),(7,8)]=>{{1,5},{2,3},{4,6},{7,8}}=>{{1,8},{2,6},{3,4},{5,7}}=>[8,6,4,3,7,2,5,1] [(1,6),(2,3),(4,5),(7,8)]=>{{1,6},{2,3},{4,5},{7,8}}=>{{1,8},{2,7},{3,4},{5,6}}=>[8,7,4,3,6,5,2,1] [(1,7),(2,3),(4,5),(6,8)]=>{{1,7},{2,3},{4,5},{6,8}}=>{{1,7},{2,8},{3,4},{5,6}}=>[7,8,4,3,6,5,1,2] [(1,8),(2,3),(4,5),(6,7)]=>{{1,8},{2,3},{4,5},{6,7}}=>{{1,2},{3,4},{5,6},{7,8}}=>[2,1,4,3,6,5,8,7] [(1,8),(2,4),(3,5),(6,7)]=>{{1,8},{2,4},{3,5},{6,7}}=>{{1,2},{3,5},{4,6},{7,8}}=>[2,1,5,6,3,4,8,7] [(1,7),(2,4),(3,5),(6,8)]=>{{1,7},{2,4},{3,5},{6,8}}=>{{1,7},{2,8},{3,5},{4,6}}=>[7,8,5,6,3,4,1,2] [(1,6),(2,4),(3,5),(7,8)]=>{{1,6},{2,4},{3,5},{7,8}}=>{{1,8},{2,7},{3,5},{4,6}}=>[8,7,5,6,3,4,2,1] [(1,5),(2,4),(3,6),(7,8)]=>{{1,5},{2,4},{3,6},{7,8}}=>{{1,8},{2,6},{3,5},{4,7}}=>[8,6,5,7,3,2,4,1] [(1,4),(2,5),(3,6),(7,8)]=>{{1,4},{2,5},{3,6},{7,8}}=>{{1,8},{2,5},{3,6},{4,7}}=>[8,5,6,7,2,3,4,1] [(1,3),(2,5),(4,6),(7,8)]=>{{1,3},{2,5},{4,6},{7,8}}=>{{1,8},{2,4},{3,6},{5,7}}=>[8,4,6,2,7,3,5,1] [(1,2),(3,5),(4,6),(7,8)]=>{{1,2},{3,5},{4,6},{7,8}}=>{{1,8},{2,3},{4,6},{5,7}}=>[8,3,2,6,7,4,5,1] [(1,2),(3,6),(4,5),(7,8)]=>{{1,2},{3,6},{4,5},{7,8}}=>{{1,8},{2,3},{4,7},{5,6}}=>[8,3,2,7,6,5,4,1] [(1,3),(2,6),(4,5),(7,8)]=>{{1,3},{2,6},{4,5},{7,8}}=>{{1,8},{2,4},{3,7},{5,6}}=>[8,4,7,2,6,5,3,1] [(1,4),(2,6),(3,5),(7,8)]=>{{1,4},{2,6},{3,5},{7,8}}=>{{1,8},{2,5},{3,7},{4,6}}=>[8,5,7,6,2,4,3,1] [(1,5),(2,6),(3,4),(7,8)]=>{{1,5},{2,6},{3,4},{7,8}}=>{{1,8},{2,6},{3,7},{4,5}}=>[8,6,7,5,4,2,3,1] [(1,6),(2,5),(3,4),(7,8)]=>{{1,6},{2,5},{3,4},{7,8}}=>{{1,8},{2,7},{3,6},{4,5}}=>[8,7,6,5,4,3,2,1] [(1,7),(2,5),(3,4),(6,8)]=>{{1,7},{2,5},{3,4},{6,8}}=>{{1,7},{2,8},{3,6},{4,5}}=>[7,8,6,5,4,3,1,2] [(1,8),(2,5),(3,4),(6,7)]=>{{1,8},{2,5},{3,4},{6,7}}=>{{1,2},{3,6},{4,5},{7,8}}=>[2,1,6,5,4,3,8,7] [(1,8),(2,6),(3,4),(5,7)]=>{{1,8},{2,6},{3,4},{5,7}}=>{{1,2},{3,7},{4,5},{6,8}}=>[2,1,7,5,4,8,3,6] [(1,7),(2,6),(3,4),(5,8)]=>{{1,7},{2,6},{3,4},{5,8}}=>{{1,6},{2,8},{3,7},{4,5}}=>[6,8,7,5,4,1,3,2] [(1,6),(2,7),(3,4),(5,8)]=>{{1,6},{2,7},{3,4},{5,8}}=>{{1,6},{2,7},{3,8},{4,5}}=>[6,7,8,5,4,1,2,3] [(1,5),(2,7),(3,4),(6,8)]=>{{1,5},{2,7},{3,4},{6,8}}=>{{1,7},{2,6},{3,8},{4,5}}=>[7,6,8,5,4,2,1,3] [(1,4),(2,7),(3,5),(6,8)]=>{{1,4},{2,7},{3,5},{6,8}}=>{{1,7},{2,5},{3,8},{4,6}}=>[7,5,8,6,2,4,1,3] [(1,3),(2,7),(4,5),(6,8)]=>{{1,3},{2,7},{4,5},{6,8}}=>{{1,7},{2,4},{3,8},{5,6}}=>[7,4,8,2,6,5,1,3] [(1,2),(3,7),(4,5),(6,8)]=>{{1,2},{3,7},{4,5},{6,8}}=>{{1,7},{2,3},{4,8},{5,6}}=>[7,3,2,8,6,5,1,4] [(1,2),(3,8),(4,5),(6,7)]=>{{1,2},{3,8},{4,5},{6,7}}=>{{1,4},{2,3},{5,6},{7,8}}=>[4,3,2,1,6,5,8,7] [(1,3),(2,8),(4,5),(6,7)]=>{{1,3},{2,8},{4,5},{6,7}}=>{{1,3},{2,4},{5,6},{7,8}}=>[3,4,1,2,6,5,8,7] [(1,4),(2,8),(3,5),(6,7)]=>{{1,4},{2,8},{3,5},{6,7}}=>{{1,3},{2,5},{4,6},{7,8}}=>[3,5,1,6,2,4,8,7] [(1,5),(2,8),(3,4),(6,7)]=>{{1,5},{2,8},{3,4},{6,7}}=>{{1,3},{2,6},{4,5},{7,8}}=>[3,6,1,5,4,2,8,7] [(1,6),(2,8),(3,4),(5,7)]=>{{1,6},{2,8},{3,4},{5,7}}=>{{1,3},{2,7},{4,5},{6,8}}=>[3,7,1,5,4,8,2,6] [(1,7),(2,8),(3,4),(5,6)]=>{{1,7},{2,8},{3,4},{5,6}}=>{{1,3},{2,8},{4,5},{6,7}}=>[3,8,1,5,4,7,6,2] [(1,8),(2,7),(3,4),(5,6)]=>{{1,8},{2,7},{3,4},{5,6}}=>{{1,2},{3,8},{4,5},{6,7}}=>[2,1,8,5,4,7,6,3] [(1,8),(2,7),(3,5),(4,6)]=>{{1,8},{2,7},{3,5},{4,6}}=>{{1,2},{3,8},{4,6},{5,7}}=>[2,1,8,6,7,4,5,3] [(1,7),(2,8),(3,5),(4,6)]=>{{1,7},{2,8},{3,5},{4,6}}=>{{1,3},{2,8},{4,6},{5,7}}=>[3,8,1,6,7,4,5,2] [(1,6),(2,8),(3,5),(4,7)]=>{{1,6},{2,8},{3,5},{4,7}}=>{{1,3},{2,7},{4,6},{5,8}}=>[3,7,1,6,8,4,2,5] [(1,5),(2,8),(3,6),(4,7)]=>{{1,5},{2,8},{3,6},{4,7}}=>{{1,3},{2,6},{4,7},{5,8}}=>[3,6,1,7,8,2,4,5] [(1,4),(2,8),(3,6),(5,7)]=>{{1,4},{2,8},{3,6},{5,7}}=>{{1,3},{2,5},{4,7},{6,8}}=>[3,5,1,7,2,8,4,6] [(1,3),(2,8),(4,6),(5,7)]=>{{1,3},{2,8},{4,6},{5,7}}=>{{1,3},{2,4},{5,7},{6,8}}=>[3,4,1,2,7,8,5,6] [(1,2),(3,8),(4,6),(5,7)]=>{{1,2},{3,8},{4,6},{5,7}}=>{{1,4},{2,3},{5,7},{6,8}}=>[4,3,2,1,7,8,5,6] [(1,2),(3,7),(4,6),(5,8)]=>{{1,2},{3,7},{4,6},{5,8}}=>{{1,6},{2,3},{4,8},{5,7}}=>[6,3,2,8,7,1,5,4] [(1,3),(2,7),(4,6),(5,8)]=>{{1,3},{2,7},{4,6},{5,8}}=>{{1,6},{2,4},{3,8},{5,7}}=>[6,4,8,2,7,1,5,3] [(1,4),(2,7),(3,6),(5,8)]=>{{1,4},{2,7},{3,6},{5,8}}=>{{1,6},{2,5},{3,8},{4,7}}=>[6,5,8,7,2,1,4,3] [(1,5),(2,7),(3,6),(4,8)]=>{{1,5},{2,7},{3,6},{4,8}}=>{{1,5},{2,6},{3,8},{4,7}}=>[5,6,8,7,1,2,4,3] [(1,6),(2,7),(3,5),(4,8)]=>{{1,6},{2,7},{3,5},{4,8}}=>{{1,5},{2,7},{3,8},{4,6}}=>[5,7,8,6,1,4,2,3] [(1,7),(2,6),(3,5),(4,8)]=>{{1,7},{2,6},{3,5},{4,8}}=>{{1,5},{2,8},{3,7},{4,6}}=>[5,8,7,6,1,4,3,2] [(1,8),(2,6),(3,5),(4,7)]=>{{1,8},{2,6},{3,5},{4,7}}=>{{1,2},{3,7},{4,6},{5,8}}=>[2,1,7,6,8,4,3,5] [(1,8),(2,5),(3,6),(4,7)]=>{{1,8},{2,5},{3,6},{4,7}}=>{{1,2},{3,6},{4,7},{5,8}}=>[2,1,6,7,8,3,4,5] [(1,7),(2,5),(3,6),(4,8)]=>{{1,7},{2,5},{3,6},{4,8}}=>{{1,5},{2,8},{3,6},{4,7}}=>[5,8,6,7,1,3,4,2] [(1,6),(2,5),(3,7),(4,8)]=>{{1,6},{2,5},{3,7},{4,8}}=>{{1,5},{2,7},{3,6},{4,8}}=>[5,7,6,8,1,3,2,4] [(1,5),(2,6),(3,7),(4,8)]=>{{1,5},{2,6},{3,7},{4,8}}=>{{1,5},{2,6},{3,7},{4,8}}=>[5,6,7,8,1,2,3,4] [(1,4),(2,6),(3,7),(5,8)]=>{{1,4},{2,6},{3,7},{5,8}}=>{{1,6},{2,5},{3,7},{4,8}}=>[6,5,7,8,2,1,3,4] [(1,3),(2,6),(4,7),(5,8)]=>{{1,3},{2,6},{4,7},{5,8}}=>{{1,6},{2,4},{3,7},{5,8}}=>[6,4,7,2,8,1,3,5] [(1,2),(3,6),(4,7),(5,8)]=>{{1,2},{3,6},{4,7},{5,8}}=>{{1,6},{2,3},{4,7},{5,8}}=>[6,3,2,7,8,1,4,5] [(1,2),(3,5),(4,7),(6,8)]=>{{1,2},{3,5},{4,7},{6,8}}=>{{1,7},{2,3},{4,6},{5,8}}=>[7,3,2,6,8,4,1,5] [(1,3),(2,5),(4,7),(6,8)]=>{{1,3},{2,5},{4,7},{6,8}}=>{{1,7},{2,4},{3,6},{5,8}}=>[7,4,6,2,8,3,1,5] [(1,4),(2,5),(3,7),(6,8)]=>{{1,4},{2,5},{3,7},{6,8}}=>{{1,7},{2,5},{3,6},{4,8}}=>[7,5,6,8,2,3,1,4] [(1,5),(2,4),(3,7),(6,8)]=>{{1,5},{2,4},{3,7},{6,8}}=>{{1,7},{2,6},{3,5},{4,8}}=>[7,6,5,8,3,2,1,4] [(1,6),(2,4),(3,7),(5,8)]=>{{1,6},{2,4},{3,7},{5,8}}=>{{1,6},{2,7},{3,5},{4,8}}=>[6,7,5,8,3,1,2,4] [(1,7),(2,4),(3,6),(5,8)]=>{{1,7},{2,4},{3,6},{5,8}}=>{{1,6},{2,8},{3,5},{4,7}}=>[6,8,5,7,3,1,4,2] [(1,8),(2,4),(3,6),(5,7)]=>{{1,8},{2,4},{3,6},{5,7}}=>{{1,2},{3,5},{4,7},{6,8}}=>[2,1,5,7,3,8,4,6] [(1,8),(2,3),(4,6),(5,7)]=>{{1,8},{2,3},{4,6},{5,7}}=>{{1,2},{3,4},{5,7},{6,8}}=>[2,1,4,3,7,8,5,6] [(1,7),(2,3),(4,6),(5,8)]=>{{1,7},{2,3},{4,6},{5,8}}=>{{1,6},{2,8},{3,4},{5,7}}=>[6,8,4,3,7,1,5,2] [(1,6),(2,3),(4,7),(5,8)]=>{{1,6},{2,3},{4,7},{5,8}}=>{{1,6},{2,7},{3,4},{5,8}}=>[6,7,4,3,8,1,2,5] [(1,5),(2,3),(4,7),(6,8)]=>{{1,5},{2,3},{4,7},{6,8}}=>{{1,7},{2,6},{3,4},{5,8}}=>[7,6,4,3,8,2,1,5] [(1,4),(2,3),(5,7),(6,8)]=>{{1,4},{2,3},{5,7},{6,8}}=>{{1,7},{2,5},{3,4},{6,8}}=>[7,5,4,3,2,8,1,6] [(1,3),(2,4),(5,7),(6,8)]=>{{1,3},{2,4},{5,7},{6,8}}=>{{1,7},{2,4},{3,5},{6,8}}=>[7,4,5,2,3,8,1,6] [(1,2),(3,4),(5,7),(6,8)]=>{{1,2},{3,4},{5,7},{6,8}}=>{{1,7},{2,3},{4,5},{6,8}}=>[7,3,2,5,4,8,1,6] [(1,2),(3,4),(5,8),(6,7)]=>{{1,2},{3,4},{5,8},{6,7}}=>{{1,6},{2,3},{4,5},{7,8}}=>[6,3,2,5,4,1,8,7] [(1,3),(2,4),(5,8),(6,7)]=>{{1,3},{2,4},{5,8},{6,7}}=>{{1,6},{2,4},{3,5},{7,8}}=>[6,4,5,2,3,1,8,7] [(1,4),(2,3),(5,8),(6,7)]=>{{1,4},{2,3},{5,8},{6,7}}=>{{1,6},{2,5},{3,4},{7,8}}=>[6,5,4,3,2,1,8,7] [(1,5),(2,3),(4,8),(6,7)]=>{{1,5},{2,3},{4,8},{6,7}}=>{{1,5},{2,6},{3,4},{7,8}}=>[5,6,4,3,1,2,8,7] [(1,6),(2,3),(4,8),(5,7)]=>{{1,6},{2,3},{4,8},{5,7}}=>{{1,5},{2,7},{3,4},{6,8}}=>[5,7,4,3,1,8,2,6] [(1,7),(2,3),(4,8),(5,6)]=>{{1,7},{2,3},{4,8},{5,6}}=>{{1,5},{2,8},{3,4},{6,7}}=>[5,8,4,3,1,7,6,2] [(1,8),(2,3),(4,7),(5,6)]=>{{1,8},{2,3},{4,7},{5,6}}=>{{1,2},{3,4},{5,8},{6,7}}=>[2,1,4,3,8,7,6,5] [(1,8),(2,4),(3,7),(5,6)]=>{{1,8},{2,4},{3,7},{5,6}}=>{{1,2},{3,5},{4,8},{6,7}}=>[2,1,5,8,3,7,6,4] [(1,7),(2,4),(3,8),(5,6)]=>{{1,7},{2,4},{3,8},{5,6}}=>{{1,4},{2,8},{3,5},{6,7}}=>[4,8,5,1,3,7,6,2] [(1,6),(2,4),(3,8),(5,7)]=>{{1,6},{2,4},{3,8},{5,7}}=>{{1,4},{2,7},{3,5},{6,8}}=>[4,7,5,1,3,8,2,6] [(1,5),(2,4),(3,8),(6,7)]=>{{1,5},{2,4},{3,8},{6,7}}=>{{1,4},{2,6},{3,5},{7,8}}=>[4,6,5,1,3,2,8,7] [(1,4),(2,5),(3,8),(6,7)]=>{{1,4},{2,5},{3,8},{6,7}}=>{{1,4},{2,5},{3,6},{7,8}}=>[4,5,6,1,2,3,8,7] [(1,3),(2,5),(4,8),(6,7)]=>{{1,3},{2,5},{4,8},{6,7}}=>{{1,5},{2,4},{3,6},{7,8}}=>[5,4,6,2,1,3,8,7] [(1,2),(3,5),(4,8),(6,7)]=>{{1,2},{3,5},{4,8},{6,7}}=>{{1,5},{2,3},{4,6},{7,8}}=>[5,3,2,6,1,4,8,7] [(1,2),(3,6),(4,8),(5,7)]=>{{1,2},{3,6},{4,8},{5,7}}=>{{1,5},{2,3},{4,7},{6,8}}=>[5,3,2,7,1,8,4,6] [(1,3),(2,6),(4,8),(5,7)]=>{{1,3},{2,6},{4,8},{5,7}}=>{{1,5},{2,4},{3,7},{6,8}}=>[5,4,7,2,1,8,3,6] [(1,4),(2,6),(3,8),(5,7)]=>{{1,4},{2,6},{3,8},{5,7}}=>{{1,4},{2,5},{3,7},{6,8}}=>[4,5,7,1,2,8,3,6] [(1,5),(2,6),(3,8),(4,7)]=>{{1,5},{2,6},{3,8},{4,7}}=>{{1,4},{2,6},{3,7},{5,8}}=>[4,6,7,1,8,2,3,5] [(1,6),(2,5),(3,8),(4,7)]=>{{1,6},{2,5},{3,8},{4,7}}=>{{1,4},{2,7},{3,6},{5,8}}=>[4,7,6,1,8,3,2,5] [(1,7),(2,5),(3,8),(4,6)]=>{{1,7},{2,5},{3,8},{4,6}}=>{{1,4},{2,8},{3,6},{5,7}}=>[4,8,6,1,7,3,5,2] [(1,8),(2,5),(3,7),(4,6)]=>{{1,8},{2,5},{3,7},{4,6}}=>{{1,2},{3,6},{4,8},{5,7}}=>[2,1,6,8,7,3,5,4] [(1,8),(2,6),(3,7),(4,5)]=>{{1,8},{2,6},{3,7},{4,5}}=>{{1,2},{3,7},{4,8},{5,6}}=>[2,1,7,8,6,5,3,4] [(1,7),(2,6),(3,8),(4,5)]=>{{1,7},{2,6},{3,8},{4,5}}=>{{1,4},{2,8},{3,7},{5,6}}=>[4,8,7,1,6,5,3,2] [(1,6),(2,7),(3,8),(4,5)]=>{{1,6},{2,7},{3,8},{4,5}}=>{{1,4},{2,7},{3,8},{5,6}}=>[4,7,8,1,6,5,2,3] [(1,5),(2,7),(3,8),(4,6)]=>{{1,5},{2,7},{3,8},{4,6}}=>{{1,4},{2,6},{3,8},{5,7}}=>[4,6,8,1,7,2,5,3] [(1,4),(2,7),(3,8),(5,6)]=>{{1,4},{2,7},{3,8},{5,6}}=>{{1,4},{2,5},{3,8},{6,7}}=>[4,5,8,1,2,7,6,3] [(1,3),(2,7),(4,8),(5,6)]=>{{1,3},{2,7},{4,8},{5,6}}=>{{1,5},{2,4},{3,8},{6,7}}=>[5,4,8,2,1,7,6,3] [(1,2),(3,7),(4,8),(5,6)]=>{{1,2},{3,7},{4,8},{5,6}}=>{{1,5},{2,3},{4,8},{6,7}}=>[5,3,2,8,1,7,6,4] [(1,2),(3,8),(4,7),(5,6)]=>{{1,2},{3,8},{4,7},{5,6}}=>{{1,4},{2,3},{5,8},{6,7}}=>[4,3,2,1,8,7,6,5] [(1,3),(2,8),(4,7),(5,6)]=>{{1,3},{2,8},{4,7},{5,6}}=>{{1,3},{2,4},{5,8},{6,7}}=>[3,4,1,2,8,7,6,5] [(1,4),(2,8),(3,7),(5,6)]=>{{1,4},{2,8},{3,7},{5,6}}=>{{1,3},{2,5},{4,8},{6,7}}=>[3,5,1,8,2,7,6,4] [(1,5),(2,8),(3,7),(4,6)]=>{{1,5},{2,8},{3,7},{4,6}}=>{{1,3},{2,6},{4,8},{5,7}}=>[3,6,1,8,7,2,5,4] [(1,6),(2,8),(3,7),(4,5)]=>{{1,6},{2,8},{3,7},{4,5}}=>{{1,3},{2,7},{4,8},{5,6}}=>[3,7,1,8,6,5,2,4] [(1,7),(2,8),(3,6),(4,5)]=>{{1,7},{2,8},{3,6},{4,5}}=>{{1,3},{2,8},{4,7},{5,6}}=>[3,8,1,7,6,5,4,2] [(1,8),(2,7),(3,6),(4,5)]=>{{1,8},{2,7},{3,6},{4,5}}=>{{1,2},{3,8},{4,7},{5,6}}=>[2,1,8,7,6,5,4,3]
Map
to set partition
Description
Return the set partition corresponding to the perfect matching.
Map
rotate increasing
Description
The rotation of the set partition obtained by adding 1 to each entry different from the largest, and replacing the largest entry with 1.
Map
to permutation
Description
Sends the set partition to the permutation obtained by considering the blocks as increasing cycles.