Identifier
Mp00180:
Integer compositions
—to ribbon⟶
Skew partitions
Mp00183: Skew partitions —inner shape⟶ Integer partitions
Mp00044: Integer partitions —conjugate⟶ Integer partitions
Mp00183: Skew partitions —inner shape⟶ Integer partitions
Mp00044: Integer partitions —conjugate⟶ Integer partitions
Images
[1] => [[1],[]] => [] => []
[1,1] => [[1,1],[]] => [] => []
[2] => [[2],[]] => [] => []
[1,1,1] => [[1,1,1],[]] => [] => []
[1,2] => [[2,1],[]] => [] => []
[2,1] => [[2,2],[1]] => [1] => [1]
[3] => [[3],[]] => [] => []
[1,1,1,1] => [[1,1,1,1],[]] => [] => []
[1,1,2] => [[2,1,1],[]] => [] => []
[1,2,1] => [[2,2,1],[1]] => [1] => [1]
[1,3] => [[3,1],[]] => [] => []
[2,1,1] => [[2,2,2],[1,1]] => [1,1] => [2]
[2,2] => [[3,2],[1]] => [1] => [1]
[3,1] => [[3,3],[2]] => [2] => [1,1]
[4] => [[4],[]] => [] => []
[1,1,1,1,1] => [[1,1,1,1,1],[]] => [] => []
[1,1,1,2] => [[2,1,1,1],[]] => [] => []
[1,1,2,1] => [[2,2,1,1],[1]] => [1] => [1]
[1,1,3] => [[3,1,1],[]] => [] => []
[1,2,1,1] => [[2,2,2,1],[1,1]] => [1,1] => [2]
[1,2,2] => [[3,2,1],[1]] => [1] => [1]
[1,3,1] => [[3,3,1],[2]] => [2] => [1,1]
[1,4] => [[4,1],[]] => [] => []
[2,1,1,1] => [[2,2,2,2],[1,1,1]] => [1,1,1] => [3]
[2,1,2] => [[3,2,2],[1,1]] => [1,1] => [2]
[2,2,1] => [[3,3,2],[2,1]] => [2,1] => [2,1]
[2,3] => [[4,2],[1]] => [1] => [1]
[3,1,1] => [[3,3,3],[2,2]] => [2,2] => [2,2]
[3,2] => [[4,3],[2]] => [2] => [1,1]
[4,1] => [[4,4],[3]] => [3] => [1,1,1]
[5] => [[5],[]] => [] => []
[1,1,1,1,1,1] => [[1,1,1,1,1,1],[]] => [] => []
[1,1,1,1,2] => [[2,1,1,1,1],[]] => [] => []
[1,1,1,2,1] => [[2,2,1,1,1],[1]] => [1] => [1]
[1,1,1,3] => [[3,1,1,1],[]] => [] => []
[1,1,2,1,1] => [[2,2,2,1,1],[1,1]] => [1,1] => [2]
[1,1,2,2] => [[3,2,1,1],[1]] => [1] => [1]
[1,1,3,1] => [[3,3,1,1],[2]] => [2] => [1,1]
[1,1,4] => [[4,1,1],[]] => [] => []
[1,2,1,1,1] => [[2,2,2,2,1],[1,1,1]] => [1,1,1] => [3]
[1,2,1,2] => [[3,2,2,1],[1,1]] => [1,1] => [2]
[1,2,2,1] => [[3,3,2,1],[2,1]] => [2,1] => [2,1]
[1,2,3] => [[4,2,1],[1]] => [1] => [1]
[1,3,1,1] => [[3,3,3,1],[2,2]] => [2,2] => [2,2]
[1,3,2] => [[4,3,1],[2]] => [2] => [1,1]
[1,4,1] => [[4,4,1],[3]] => [3] => [1,1,1]
[1,5] => [[5,1],[]] => [] => []
[2,1,1,1,1] => [[2,2,2,2,2],[1,1,1,1]] => [1,1,1,1] => [4]
[2,1,1,2] => [[3,2,2,2],[1,1,1]] => [1,1,1] => [3]
[2,1,2,1] => [[3,3,2,2],[2,1,1]] => [2,1,1] => [3,1]
[2,1,3] => [[4,2,2],[1,1]] => [1,1] => [2]
[2,2,1,1] => [[3,3,3,2],[2,2,1]] => [2,2,1] => [3,2]
[2,2,2] => [[4,3,2],[2,1]] => [2,1] => [2,1]
[2,3,1] => [[4,4,2],[3,1]] => [3,1] => [2,1,1]
[2,4] => [[5,2],[1]] => [1] => [1]
[3,1,1,1] => [[3,3,3,3],[2,2,2]] => [2,2,2] => [3,3]
[3,1,2] => [[4,3,3],[2,2]] => [2,2] => [2,2]
[3,2,1] => [[4,4,3],[3,2]] => [3,2] => [2,2,1]
[3,3] => [[5,3],[2]] => [2] => [1,1]
[4,1,1] => [[4,4,4],[3,3]] => [3,3] => [2,2,2]
[4,2] => [[5,4],[3]] => [3] => [1,1,1]
[5,1] => [[5,5],[4]] => [4] => [1,1,1,1]
[6] => [[6],[]] => [] => []
[1,1,1,1,1,1,1] => [[1,1,1,1,1,1,1],[]] => [] => []
[1,1,1,1,1,2] => [[2,1,1,1,1,1],[]] => [] => []
[1,1,1,1,2,1] => [[2,2,1,1,1,1],[1]] => [1] => [1]
[1,1,1,1,3] => [[3,1,1,1,1],[]] => [] => []
[1,1,1,2,1,1] => [[2,2,2,1,1,1],[1,1]] => [1,1] => [2]
[1,1,1,2,2] => [[3,2,1,1,1],[1]] => [1] => [1]
[1,1,1,3,1] => [[3,3,1,1,1],[2]] => [2] => [1,1]
[1,1,1,4] => [[4,1,1,1],[]] => [] => []
[1,1,2,1,1,1] => [[2,2,2,2,1,1],[1,1,1]] => [1,1,1] => [3]
[1,1,2,1,2] => [[3,2,2,1,1],[1,1]] => [1,1] => [2]
[1,1,2,2,1] => [[3,3,2,1,1],[2,1]] => [2,1] => [2,1]
[1,1,2,3] => [[4,2,1,1],[1]] => [1] => [1]
[1,1,3,1,1] => [[3,3,3,1,1],[2,2]] => [2,2] => [2,2]
[1,1,3,2] => [[4,3,1,1],[2]] => [2] => [1,1]
[1,1,4,1] => [[4,4,1,1],[3]] => [3] => [1,1,1]
[1,1,5] => [[5,1,1],[]] => [] => []
[1,2,1,1,1,1] => [[2,2,2,2,2,1],[1,1,1,1]] => [1,1,1,1] => [4]
[1,2,1,1,2] => [[3,2,2,2,1],[1,1,1]] => [1,1,1] => [3]
[1,2,1,2,1] => [[3,3,2,2,1],[2,1,1]] => [2,1,1] => [3,1]
[1,2,1,3] => [[4,2,2,1],[1,1]] => [1,1] => [2]
[1,2,2,1,1] => [[3,3,3,2,1],[2,2,1]] => [2,2,1] => [3,2]
[1,2,2,2] => [[4,3,2,1],[2,1]] => [2,1] => [2,1]
[1,2,3,1] => [[4,4,2,1],[3,1]] => [3,1] => [2,1,1]
[1,2,4] => [[5,2,1],[1]] => [1] => [1]
[1,3,1,1,1] => [[3,3,3,3,1],[2,2,2]] => [2,2,2] => [3,3]
[1,3,1,2] => [[4,3,3,1],[2,2]] => [2,2] => [2,2]
[1,3,2,1] => [[4,4,3,1],[3,2]] => [3,2] => [2,2,1]
[1,3,3] => [[5,3,1],[2]] => [2] => [1,1]
[1,4,1,1] => [[4,4,4,1],[3,3]] => [3,3] => [2,2,2]
[1,4,2] => [[5,4,1],[3]] => [3] => [1,1,1]
[1,5,1] => [[5,5,1],[4]] => [4] => [1,1,1,1]
[1,6] => [[6,1],[]] => [] => []
[2,1,1,1,1,1] => [[2,2,2,2,2,2],[1,1,1,1,1]] => [1,1,1,1,1] => [5]
[2,1,1,1,2] => [[3,2,2,2,2],[1,1,1,1]] => [1,1,1,1] => [4]
[2,1,1,2,1] => [[3,3,2,2,2],[2,1,1,1]] => [2,1,1,1] => [4,1]
[2,1,1,3] => [[4,2,2,2],[1,1,1]] => [1,1,1] => [3]
[2,1,2,1,1] => [[3,3,3,2,2],[2,2,1,1]] => [2,2,1,1] => [4,2]
[2,1,2,2] => [[4,3,2,2],[2,1,1]] => [2,1,1] => [3,1]
>>> Load all 256 entries. <<<Map
to ribbon
Description
The ribbon shape corresponding to an integer composition.
For an integer composition (a1,…,an), this is the ribbon shape whose ith row from the bottom has ai cells.
For an integer composition (a1,…,an), this is the ribbon shape whose ith row from the bottom has ai cells.
Map
inner shape
Description
The inner shape of a skew partition.
Map
conjugate
Description
Return the conjugate partition of the partition.
The conjugate partition of the partition λ of n is the partition λ∗ whose Ferrers diagram is obtained from the diagram of λ by interchanging rows with columns.
This is also called the associated partition or the transpose in the literature.
The conjugate partition of the partition λ of n is the partition λ∗ whose Ferrers diagram is obtained from the diagram of λ by interchanging rows with columns.
This is also called the associated partition or the transpose in the literature.
searching the database
Sorry, this map was not found in the database.