edit this statistic or download as text // json
Identifier
Values
=>
Cc0002;cc-rep
[]=>1 [1]=>1 [2]=>1 [1,1]=>1 [3]=>1 [2,1]=>3 [1,1,1]=>1 [4]=>1 [3,1]=>4 [2,2]=>2 [2,1,1]=>6 [1,1,1,1]=>1 [5]=>1 [4,1]=>5 [3,2]=>5 [3,1,1]=>10 [2,2,1]=>10 [2,1,1,1]=>10 [1,1,1,1,1]=>1 [6]=>1 [5,1]=>6 [4,2]=>6 [4,1,1]=>15 [3,3]=>3 [3,2,1]=>30 [3,1,1,1]=>20 [2,2,2]=>5 [2,2,1,1]=>30 [2,1,1,1,1]=>15 [1,1,1,1,1,1]=>1 [7]=>1 [6,1]=>7 [5,2]=>7 [5,1,1]=>21 [4,3]=>7 [4,2,1]=>42 [4,1,1,1]=>35 [3,3,1]=>21 [3,2,2]=>21 [3,2,1,1]=>105 [3,1,1,1,1]=>35 [2,2,2,1]=>35 [2,2,1,1,1]=>70 [2,1,1,1,1,1]=>21 [1,1,1,1,1,1,1]=>1 [8]=>1 [7,1]=>8 [6,2]=>8 [6,1,1]=>28 [5,3]=>8 [5,2,1]=>56 [5,1,1,1]=>56 [4,4]=>4 [4,3,1]=>56 [4,2,2]=>28 [4,2,1,1]=>168 [4,1,1,1,1]=>70 [3,3,2]=>28 [3,3,1,1]=>84 [3,2,2,1]=>168 [3,2,1,1,1]=>280 [3,1,1,1,1,1]=>56 [2,2,2,2]=>14 [2,2,2,1,1]=>140 [2,2,1,1,1,1]=>140 [2,1,1,1,1,1,1]=>28 [1,1,1,1,1,1,1,1]=>1 [9]=>1 [8,1]=>9 [7,2]=>9 [7,1,1]=>36 [6,3]=>9 [6,2,1]=>72 [6,1,1,1]=>84 [5,4]=>9 [5,3,1]=>72 [5,2,2]=>36 [5,2,1,1]=>252 [5,1,1,1,1]=>126 [4,4,1]=>36 [4,3,2]=>72 [4,3,1,1]=>252 [4,2,2,1]=>252 [4,2,1,1,1]=>504 [4,1,1,1,1,1]=>126 [3,3,3]=>12 [3,3,2,1]=>252 [3,3,1,1,1]=>252 [3,2,2,2]=>84 [3,2,2,1,1]=>756 [3,2,1,1,1,1]=>630 [3,1,1,1,1,1,1]=>84 [2,2,2,2,1]=>126 [2,2,2,1,1,1]=>420 [2,2,1,1,1,1,1]=>252 [2,1,1,1,1,1,1,1]=>36 [1,1,1,1,1,1,1,1,1]=>1 [10]=>1 [9,1]=>10 [8,2]=>10 [8,1,1]=>45 [7,3]=>10 [7,2,1]=>90 [7,1,1,1]=>120 [6,4]=>10 [6,3,1]=>90 [6,2,2]=>45 [6,2,1,1]=>360 [6,1,1,1,1]=>210 [5,5]=>5 [5,4,1]=>90 [5,3,2]=>90 [5,3,1,1]=>360 [5,2,2,1]=>360 [5,2,1,1,1]=>840 [5,1,1,1,1,1]=>252 [4,4,2]=>45 [4,4,1,1]=>180 [4,3,3]=>45 [4,3,2,1]=>720 [4,3,1,1,1]=>840 [4,2,2,2]=>120 [4,2,2,1,1]=>1260 [4,2,1,1,1,1]=>1260 [4,1,1,1,1,1,1]=>210 [3,3,3,1]=>120 [3,3,2,2]=>180 [3,3,2,1,1]=>1260 [3,3,1,1,1,1]=>630 [3,2,2,2,1]=>840 [3,2,2,1,1,1]=>2520 [3,2,1,1,1,1,1]=>1260 [3,1,1,1,1,1,1,1]=>120 [2,2,2,2,2]=>42 [2,2,2,2,1,1]=>630 [2,2,2,1,1,1,1]=>1050 [2,2,1,1,1,1,1,1]=>420 [2,1,1,1,1,1,1,1,1]=>45 [1,1,1,1,1,1,1,1,1,1]=>1 [11]=>1 [10,1]=>11 [9,2]=>11 [9,1,1]=>55 [8,3]=>11 [8,2,1]=>110 [8,1,1,1]=>165 [7,4]=>11 [7,3,1]=>110 [7,2,2]=>55 [7,2,1,1]=>495 [7,1,1,1,1]=>330 [6,5]=>11 [6,4,1]=>110 [6,3,2]=>110 [6,3,1,1]=>495 [6,2,2,1]=>495 [6,2,1,1,1]=>1320 [6,1,1,1,1,1]=>462 [5,5,1]=>55 [5,4,2]=>110 [5,4,1,1]=>495 [5,3,3]=>55 [5,3,2,1]=>990 [5,3,1,1,1]=>1320 [5,2,2,2]=>165 [5,2,2,1,1]=>1980 [5,2,1,1,1,1]=>2310 [5,1,1,1,1,1,1]=>462 [4,4,3]=>55 [4,4,2,1]=>495 [4,4,1,1,1]=>660 [4,3,3,1]=>495 [4,3,2,2]=>495 [4,3,2,1,1]=>3960 [4,3,1,1,1,1]=>2310 [4,2,2,2,1]=>1320 [4,2,2,1,1,1]=>4620 [4,2,1,1,1,1,1]=>2772 [4,1,1,1,1,1,1,1]=>330 [3,3,3,2]=>165 [3,3,3,1,1]=>660 [3,3,2,2,1]=>1980 [3,3,2,1,1,1]=>4620 [3,3,1,1,1,1,1]=>1386 [3,2,2,2,2]=>330 [3,2,2,2,1,1]=>4620 [3,2,2,1,1,1,1]=>6930 [3,2,1,1,1,1,1,1]=>2310 [3,1,1,1,1,1,1,1,1]=>165 [2,2,2,2,2,1]=>462 [2,2,2,2,1,1,1]=>2310 [2,2,2,1,1,1,1,1]=>2310 [2,2,1,1,1,1,1,1,1]=>660 [2,1,1,1,1,1,1,1,1,1]=>55 [1,1,1,1,1,1,1,1,1,1,1]=>1 [12]=>1 [11,1]=>12 [10,2]=>12 [10,1,1]=>66 [9,3]=>12 [9,2,1]=>132 [9,1,1,1]=>220 [8,4]=>12 [8,3,1]=>132 [8,2,2]=>66 [8,2,1,1]=>660 [8,1,1,1,1]=>495 [7,5]=>12 [7,4,1]=>132 [7,3,2]=>132 [7,3,1,1]=>660 [7,2,2,1]=>660 [7,2,1,1,1]=>1980 [7,1,1,1,1,1]=>792 [6,6]=>6 [6,5,1]=>132 [6,4,2]=>132 [6,4,1,1]=>660 [6,3,3]=>66 [6,3,2,1]=>1320 [6,3,1,1,1]=>1980 [6,2,2,2]=>220 [6,2,2,1,1]=>2970 [6,2,1,1,1,1]=>3960 [6,1,1,1,1,1,1]=>924 [5,5,2]=>66 [5,5,1,1]=>330 [5,4,3]=>132 [5,4,2,1]=>1320 [5,4,1,1,1]=>1980 [5,3,3,1]=>660 [5,3,2,2]=>660 [5,3,2,1,1]=>5940 [5,3,1,1,1,1]=>3960 [5,2,2,2,1]=>1980 [5,2,2,1,1,1]=>7920 [5,2,1,1,1,1,1]=>5544 [5,1,1,1,1,1,1,1]=>792 [4,4,4]=>22 [4,4,3,1]=>660 [4,4,2,2]=>330 [4,4,2,1,1]=>2970 [4,4,1,1,1,1]=>1980 [4,3,3,2]=>660 [4,3,3,1,1]=>2970 [4,3,2,2,1]=>5940 [4,3,2,1,1,1]=>15840 [4,3,1,1,1,1,1]=>5544 [4,2,2,2,2]=>495 [4,2,2,2,1,1]=>7920 [4,2,2,1,1,1,1]=>13860 [4,2,1,1,1,1,1,1]=>5544 [4,1,1,1,1,1,1,1,1]=>495 [3,3,3,3]=>55 [3,3,3,2,1]=>1980 [3,3,3,1,1,1]=>2640 [3,3,2,2,2]=>990 [3,3,2,2,1,1]=>11880 [3,3,2,1,1,1,1]=>13860 [3,3,1,1,1,1,1,1]=>2772 [3,2,2,2,2,1]=>3960 [3,2,2,2,1,1,1]=>18480 [3,2,2,1,1,1,1,1]=>16632 [3,2,1,1,1,1,1,1,1]=>3960 [3,1,1,1,1,1,1,1,1,1]=>220 [2,2,2,2,2,2]=>132 [2,2,2,2,2,1,1]=>2772 [2,2,2,2,1,1,1,1]=>6930 [2,2,2,1,1,1,1,1,1]=>4620 [2,2,1,1,1,1,1,1,1,1]=>990 [2,1,1,1,1,1,1,1,1,1,1]=>66 [1,1,1,1,1,1,1,1,1,1,1,1]=>1 [13]=>1 [12,1]=>13 [10,3]=>13 [8,5]=>13 [7,6]=>13 [7,5,1]=>156 [7,4,2]=>156 [6,6,1]=>78 [6,4,2,1]=>1716 [5,5,3]=>78 [5,4,4]=>78 [5,4,3,1]=>1716 [5,4,2,2]=>858 [5,4,2,1,1]=>8580 [5,4,1,1,1,1]=>6435 [5,3,3,2]=>858 [5,3,3,1,1]=>4290 [5,3,2,2,1]=>8580 [5,3,2,1,1,1]=>25740 [4,4,4,1]=>286 [4,4,3,2]=>858 [4,4,3,1,1]=>4290 [4,4,2,2,1]=>4290 [4,3,3,3]=>286 [4,3,3,2,1]=>8580 [3,3,3,3,1]=>715 [3,3,3,2,2]=>1430 [3,3,2,2,2,1]=>12870 [3,2,2,2,2,2]=>1287 [2,2,2,2,2,2,1]=>1716 [1,1,1,1,1,1,1,1,1,1,1,1,1]=>1 [14]=>1 [13,1]=>14 [9,5]=>14 [8,5,1]=>182 [7,7]=>7 [7,5,2]=>182 [7,4,3]=>182 [6,6,2]=>91 [6,4,4]=>91 [6,2,2,2,2]=>1001 [5,5,4]=>91 [5,5,1,1,1,1]=>5005 [5,4,3,2]=>2184 [5,4,3,1,1]=>12012 [5,4,2,2,1]=>12012 [5,4,2,1,1,1]=>40040 [5,3,3,3]=>364 [5,3,3,2,1]=>12012 [5,2,2,2,2,1]=>10010 [4,4,4,2]=>364 [4,4,3,3]=>546 [4,4,3,2,1]=>12012 [4,3,2,2,2,1]=>40040 [3,3,3,3,2]=>1001 [3,3,3,3,1,1]=>5005 [3,3,2,2,2,2]=>5005 [2,2,2,2,2,2,2]=>429 [1,1,1,1,1,1,1,1,1,1,1,1,1,1]=>1 [15]=>1 [14,1]=>15 [9,5,1]=>210 [8,5,2]=>210 [7,5,3]=>210 [6,6,3]=>105 [6,5,4]=>210 [6,5,1,1,1,1]=>15015 [6,3,3,3]=>455 [6,2,2,2,2,1]=>15015 [5,5,5]=>35 [5,4,3,3]=>1365 [5,4,3,2,1]=>32760 [5,4,3,1,1,1]=>60060 [5,3,2,2,2,1]=>60060 [4,4,4,3]=>455 [4,4,4,1,1,1]=>10010 [4,3,3,3,2]=>5460 [3,3,3,3,3]=>273 [3,3,3,3,2,1]=>15015 [3,3,3,2,2,2]=>10010 [1,1,1,1,1,1,1,1,1,1,1,1,1,1,1]=>1 [16]=>1 [15,1]=>16 [8,8]=>8 [8,5,3]=>240 [7,5,3,1]=>3360 [6,6,4]=>120 [5,5,3,3]=>840 [5,5,2,2,2]=>3640 [5,4,4,3]=>1680 [5,4,3,2,1,1]=>262080 [5,4,2,2,2,1]=>87360 [4,4,4,4]=>140 [4,4,4,2,2]=>3640 [4,4,3,3,2]=>10920 [4,3,3,3,3]=>1820 [4,3,3,3,2,1]=>87360 [3,3,3,3,2,2]=>10920 [2,2,2,2,2,2,2,2]=>1430 [17]=>1 [8,6,3]=>272 [7,5,3,2]=>4080 [6,5,3,3]=>2040 [6,5,2,2,2]=>9520 [6,4,4,3]=>2040 [6,4,4,1,1,1]=>61880 [6,3,3,3,2]=>9520 [6,3,3,3,1,1]=>61880 [5,5,4,3]=>2040 [5,5,4,1,1,1]=>61880 [5,5,2,2,2,1]=>61880 [5,4,4,4]=>680 [5,4,3,2,2,1]=>371280 [5,3,3,3,2,1]=>123760 [4,4,4,3,2]=>9520 [4,4,4,3,1,1]=>61880 [4,4,4,2,2,1]=>61880 [4,4,3,3,3]=>4760 [3,3,3,3,3,2]=>6188 [4,4,4,3,2,1]=>171360 [5,4,3,3,2,1]=>514080 [6,3,3,3,2,1]=>171360 [6,5,2,2,2,1]=>171360 [5,5,3,3,1,1]=>128520 [6,5,4,1,1,1]=>171360 [5,5,3,3,2]=>18360 [5,5,4,2,2]=>18360 [6,4,4,2,2]=>18360 [6,5,4,3]=>4896 [4,4,4,3,3]=>6120 [4,4,4,4,2]=>3060 [5,5,4,4]=>1224 [2,2,2,2,2,2,2,2,2]=>4862 [3,3,3,3,3,3]=>1428 [18]=>1 [6,6,6]=>51 [9,6,3]=>306 [8,6,4]=>306 [9,9]=>9 [5,4,4,3,2,1]=>697680 [5,5,3,3,2,1]=>348840 [5,5,4,2,2,1]=>348840 [6,4,4,2,2,1]=>348840 [5,5,4,3,1,1]=>348840 [6,4,4,3,1,1]=>348840 [6,5,3,3,1,1]=>348840 [5,5,4,3,2]=>46512 [6,4,4,3,2]=>46512 [6,5,3,3,2]=>46512 [6,5,4,2,2]=>46512 [6,5,4,3,1]=>93024 [6,5,4,1,1,1,1]=>813960 [4,4,4,4,3]=>3876 [4,3,3,3,3,3]=>11628 [19]=>1 [9,6,4]=>342 [8,5,4,2]=>5814 [8,5,5,1]=>2907 [5,5,4,3,2,1]=>930240 [6,4,4,3,2,1]=>930240 [6,5,3,3,2,1]=>930240 [6,5,4,2,2,1]=>930240 [6,5,4,3,1,1]=>930240 [6,5,4,3,2]=>116280 [6,5,2,2,2,2,1]=>1162800 [6,5,4,2,1,1,1]=>4651200 [7,5,4,3,1]=>116280 [3,3,3,3,3,3,2]=>38760 [4,4,3,3,3,3]=>38760 [4,4,4,4,4]=>969 [5,5,5,5]=>285 [20]=>1 [8,6,4,2]=>6840 [10,6,4]=>380 [10,7,3]=>380 [9,7,4]=>380 [9,5,5,1]=>3420 [6,5,4,3,2,1]=>2441880 [6,3,3,3,3,2,1]=>1627920 [6,5,3,2,2,2,1]=>6511680 [6,5,4,3,1,1,1]=>6511680 [3,3,3,3,3,3,3]=>7752 [4,4,4,3,3,3]=>67830 [21]=>1 [11,7,3]=>420 [4,4,4,4,3,2,1]=>2238390 [6,4,3,3,3,2,1]=>8953560 [6,5,4,2,2,2,1]=>8953560 [6,5,4,3,2,1,1]=>26860680 [4,4,4,4,3,3]=>65835 [9,6,4,3]=>9240 [5,4,4,4,3,2,1]=>12113640 [6,5,3,3,3,2,1]=>12113640 [6,5,4,3,2,2,1]=>36340920 [9,6,5,3]=>10626 [8,6,5,3,1]=>212520 [6,4,4,4,3,2,1]=>16151520 [6,5,4,3,3,2,1]=>48454560 [3,3,3,3,3,3,3,3]=>43263 [4,4,4,4,4,4]=>7084 [11,7,5,1]=>12144 [9,7,5,3]=>12144 [8,8,8]=>92 [5,5,5,4,3,2,1]=>21252000 [6,5,4,4,3,2,1]=>63756000 [9,7,5,3,1]=>303600 [10,7,5,3]=>13800 [6,5,5,4,3,2,1]=>82882800 [9,7,5,4,1]=>358800 [6,6,5,4,3,2,1]=>106563600 [7,6,5,4,3,2]=>9687600 [3,3,3,3,3,3,3,3,3]=>246675 [7,6,5,4,3,2,1]=>271252800 [7,6,5,4,3,1,1,1]=>994593600 [10,7,6,4,1]=>491400 [9,7,6,4,2]=>491400 [10,8,5,4,1]=>491400 [7,6,5,4,2,2,2,1]=>1311055200 [10,8,6,4,1]=>570024 [9,7,5,5,3,1]=>8550360 [7,6,5,3,3,3,2,1]=>1710072000 [11,8,6,4,1]=>657720 [10,8,6,4,2]=>657720 [11,8,6,5,1]=>755160 [4,4,4,4,4,4,4,4]=>420732 [12,9,7,5,1]=>1113024 [13,9,7,5,1]=>1256640 [11,9,7,5,3,1]=>45239040 [11,8,7,5,4,1]=>45239040 [11,9,7,5,5,3]=>39480480 [11,9,7,7,5,3,3]=>1466110800
search for individual values
searching the database for the individual values of this statistic
/ search for generating function
searching the database for statistics with the same generating function
click to show known generating functions       
Description
The Kreweras number of an integer partition.
This is defined for $\lambda \vdash n$ with $k$ parts as
$$\frac{1}{n+1}\binom{n+1}{n+1-k,\mu_1(\lambda),\ldots,\mu_n(\lambda)}$$
where $\mu_j(\lambda)$ denotes the number of parts of $\lambda$ equal to $j$, see [1]. This formula indeed counts the number of noncrossing set partitions where the ordered block sizes are the partition $\lambda$.
These numbers refine the Narayana numbers $N(n,k) = \frac{1}{k}\binom{n-1}{k-1}\binom{n}{k-1}$ and thus sum up to the Catalan numbers $\frac{1}{n+1}\binom{2n}{n}$.
References
[1] Reiner, V., Sommers, E. Weyl group $q$-Kreweras numbers and cyclic sieving arXiv:1605.09172
[2] Coefficients T(j, k) of a partition transform for Lagrange compositional inversion of a function or generating series in terms of the coefficients of the power series for its reciprocal. Enumeration of noncrossing partitions and primitive parking functions. T(n,k) for n >= 1 and 1 <= k <= A000041(n-1), an irregular triangle read by rows. OEIS:A134264
Code
def statistic(la):
    la = list(la)
    n = sum(la)
    k = len(la)
    multi = [n+1-k]+[ la.count(j) for j in [1..n] ]
    return multinomial(multi)/(n+1)

Created
May 31, 2016 at 14:57 by Christian Stump
Updated
Jul 29, 2025 at 14:16 by Martin Rubey