Identifier
Identifier
Values
([],1) generating graphics... => 1
([],2) generating graphics... => 2
([(0,1)],2) generating graphics... => 1
([],3) generating graphics... => 3
([(1,2)],3) generating graphics... => 2
([(0,2),(1,2)],3) generating graphics... => 2
([(0,1),(0,2),(1,2)],3) generating graphics... => 1
([],4) generating graphics... => 4
([(2,3)],4) generating graphics... => 3
([(1,3),(2,3)],4) generating graphics... => 3
([(0,3),(1,3),(2,3)],4) generating graphics... => 3
([(0,3),(1,2)],4) generating graphics... => 2
([(0,3),(1,2),(2,3)],4) generating graphics... => 2
([(1,2),(1,3),(2,3)],4) generating graphics... => 2
([(0,3),(1,2),(1,3),(2,3)],4) generating graphics... => 2
([(0,2),(0,3),(1,2),(1,3)],4) generating graphics... => 2
([(0,2),(0,3),(1,2),(1,3),(2,3)],4) generating graphics... => 2
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4) generating graphics... => 1
([],5) generating graphics... => 5
([(3,4)],5) generating graphics... => 4
([(2,4),(3,4)],5) generating graphics... => 4
([(1,4),(2,4),(3,4)],5) generating graphics... => 4
([(0,4),(1,4),(2,4),(3,4)],5) generating graphics... => 4
([(1,4),(2,3)],5) generating graphics... => 3
([(1,4),(2,3),(3,4)],5) generating graphics... => 3
([(0,1),(2,4),(3,4)],5) generating graphics... => 3
([(2,3),(2,4),(3,4)],5) generating graphics... => 3
([(0,4),(1,4),(2,3),(3,4)],5) generating graphics... => 3
([(1,4),(2,3),(2,4),(3,4)],5) generating graphics... => 3
([(0,4),(1,4),(2,3),(2,4),(3,4)],5) generating graphics... => 3
([(1,3),(1,4),(2,3),(2,4)],5) generating graphics... => 3
([(0,4),(1,2),(1,3),(2,4),(3,4)],5) generating graphics... => 3
([(1,3),(1,4),(2,3),(2,4),(3,4)],5) generating graphics... => 3
([(0,4),(1,3),(2,3),(2,4),(3,4)],5) generating graphics... => 3
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5) generating graphics... => 3
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5) generating graphics... => 3
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5) generating graphics... => 3
([(0,4),(1,3),(2,3),(2,4)],5) generating graphics... => 3
([(0,1),(2,3),(2,4),(3,4)],5) generating graphics... => 2
([(0,3),(1,2),(1,4),(2,4),(3,4)],5) generating graphics... => 2
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5) generating graphics... => 2
([(0,3),(0,4),(1,2),(1,4),(2,3)],5) generating graphics... => 2
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5) generating graphics... => 2
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5) generating graphics... => 2
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5) generating graphics... => 2
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) generating graphics... => 2
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) generating graphics... => 2
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) generating graphics... => 2
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5) generating graphics... => 2
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5) generating graphics... => 2
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) generating graphics... => 2
([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) generating graphics... => 1
([],6) generating graphics... => 6
([(4,5)],6) generating graphics... => 5
([(3,5),(4,5)],6) generating graphics... => 5
([(2,5),(3,5),(4,5)],6) generating graphics... => 5
([(1,5),(2,5),(3,5),(4,5)],6) generating graphics... => 5
([(0,5),(1,5),(2,5),(3,5),(4,5)],6) generating graphics... => 5
([(2,5),(3,4)],6) generating graphics... => 4
([(2,5),(3,4),(4,5)],6) generating graphics... => 4
([(1,2),(3,5),(4,5)],6) generating graphics... => 4
([(3,4),(3,5),(4,5)],6) generating graphics... => 4
([(1,5),(2,5),(3,4),(4,5)],6) generating graphics... => 4
([(0,1),(2,5),(3,5),(4,5)],6) generating graphics... => 4
([(2,5),(3,4),(3,5),(4,5)],6) generating graphics... => 4
([(0,5),(1,5),(2,5),(3,4),(4,5)],6) generating graphics... => 4
([(1,5),(2,5),(3,4),(3,5),(4,5)],6) generating graphics... => 4
([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6) generating graphics... => 4
([(2,4),(2,5),(3,4),(3,5)],6) generating graphics... => 4
([(0,5),(1,5),(2,4),(3,4)],6) generating graphics... => 4
([(1,5),(2,3),(2,4),(3,5),(4,5)],6) generating graphics... => 4
([(0,5),(1,5),(2,3),(3,4),(4,5)],6) generating graphics... => 4
([(2,4),(2,5),(3,4),(3,5),(4,5)],6) generating graphics... => 4
([(1,5),(2,4),(3,4),(3,5),(4,5)],6) generating graphics... => 4
([(0,5),(1,5),(2,4),(3,4),(4,5)],6) generating graphics... => 4
([(0,5),(1,5),(2,3),(2,4),(3,5),(4,5)],6) generating graphics... => 4
([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) generating graphics... => 4
([(0,5),(1,5),(2,4),(3,4),(3,5),(4,5)],6) generating graphics... => 4
([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) generating graphics... => 4
([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6) generating graphics... => 4
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6) generating graphics... => 4
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6) generating graphics... => 4
([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) generating graphics... => 4
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6) generating graphics... => 4
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) generating graphics... => 4
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6) generating graphics... => 4
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) generating graphics... => 4
([(0,5),(1,4),(2,3)],6) generating graphics... => 3
([(1,5),(2,4),(3,4),(3,5)],6) generating graphics... => 4
([(0,1),(2,5),(3,4),(4,5)],6) generating graphics... => 3
([(1,2),(3,4),(3,5),(4,5)],6) generating graphics... => 3
([(0,5),(1,4),(2,3),(3,5),(4,5)],6) generating graphics... => 3
([(1,4),(2,3),(2,5),(3,5),(4,5)],6) generating graphics... => 3
([(0,1),(2,5),(3,4),(3,5),(4,5)],6) generating graphics... => 3
([(0,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6) generating graphics... => 3
([(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6) generating graphics... => 3
([(0,5),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6) generating graphics... => 3
([(1,4),(1,5),(2,3),(2,5),(3,4)],6) generating graphics... => 3
([(0,5),(1,4),(2,3),(2,4),(3,5),(4,5)],6) generating graphics... => 3
([(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6) generating graphics... => 3
([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6) generating graphics... => 3
([(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6) generating graphics... => 3
([(0,5),(1,4),(2,3),(3,4),(3,5),(4,5)],6) generating graphics... => 3
([(0,5),(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6) generating graphics... => 3
([(0,5),(1,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) generating graphics... => 3
([(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6) generating graphics... => 3
([(0,5),(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6) generating graphics... => 3
([(0,5),(1,4),(2,3),(2,4),(3,5)],6) generating graphics... => 3
([(0,1),(2,4),(2,5),(3,4),(3,5)],6) generating graphics... => 3
([(0,5),(1,5),(2,3),(2,4),(3,4)],6) generating graphics... => 3
([(0,4),(1,2),(1,3),(2,5),(3,5),(4,5)],6) generating graphics... => 3
([(0,4),(1,2),(1,5),(2,5),(3,4),(3,5)],6) generating graphics... => 3
([(0,4),(1,2),(2,5),(3,4),(3,5),(4,5)],6) generating graphics... => 3
([(0,1),(2,4),(2,5),(3,4),(3,5),(4,5)],6) generating graphics... => 3
([(0,4),(1,4),(2,3),(2,5),(3,5),(4,5)],6) generating graphics... => 3
([(0,3),(0,4),(1,2),(1,5),(2,5),(3,5),(4,5)],6) generating graphics... => 3
([(0,3),(1,4),(1,5),(2,4),(2,5),(3,5),(4,5)],6) generating graphics... => 3
([(0,4),(1,2),(1,5),(2,5),(3,4),(3,5),(4,5)],6) generating graphics... => 3
([(0,1),(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) generating graphics... => 3
([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) generating graphics... => 3
([(0,5),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6) generating graphics... => 3
([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) generating graphics... => 3
([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) generating graphics... => 3
([(0,1),(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6) generating graphics... => 3
([(0,3),(0,5),(1,3),(1,5),(2,4),(2,5),(3,4),(4,5)],6) generating graphics... => 3
([(0,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) generating graphics... => 3
([(0,5),(1,4),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6) generating graphics... => 3
([(0,1),(0,5),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6) generating graphics... => 3
([(0,4),(0,5),(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6) generating graphics... => 3
([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6) generating graphics... => 3
([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) generating graphics... => 3
([(0,5),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) generating graphics... => 3
([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) generating graphics... => 3
([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6) generating graphics... => 3
([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) generating graphics... => 3
([(0,5),(1,3),(1,4),(2,3),(2,4),(3,5),(4,5)],6) generating graphics... => 3
([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6) generating graphics... => 3
([(0,5),(1,3),(1,4),(2,3),(2,4),(2,5),(3,5),(4,5)],6) generating graphics... => 3
([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6) generating graphics... => 3
([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6) generating graphics... => 3
([(0,4),(0,5),(1,2),(1,3),(2,5),(3,4)],6) generating graphics... => 3
([(0,3),(0,5),(1,2),(1,5),(2,4),(3,4),(4,5)],6) generating graphics... => 3
([(0,5),(1,2),(1,4),(2,3),(3,4),(3,5),(4,5)],6) generating graphics... => 3
([(0,1),(0,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6) generating graphics... => 3
([(0,5),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5)],6) generating graphics... => 3
([(0,5),(1,3),(1,4),(2,4),(2,5),(3,4),(3,5)],6) generating graphics... => 3
([(0,1),(0,5),(1,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) generating graphics... => 3
([(0,4),(1,3),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6) generating graphics... => 3
([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(3,5),(4,5)],6) generating graphics... => 3
([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6) generating graphics... => 3
([(0,4),(0,5),(1,2),(1,3),(2,4),(2,5),(3,4),(3,5)],6) generating graphics... => 3
([(0,5),(1,2),(1,3),(1,4),(2,3),(2,4),(3,5),(4,5)],6) generating graphics... => 3
([(0,4),(0,5),(1,2),(1,3),(1,5),(2,4),(2,5),(3,4),(3,5)],6) generating graphics... => 3
([(0,4),(0,5),(1,2),(1,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) generating graphics... => 3
([(0,4),(0,5),(1,2),(1,3),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) generating graphics... => 3
([(0,5),(1,2),(1,3),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6) generating graphics... => 3
([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) generating graphics... => 3
([(0,5),(1,3),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) generating graphics... => 3
([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) generating graphics... => 3
([(0,4),(0,5),(1,2),(1,4),(2,3),(2,5),(3,4),(3,5),(4,5)],6) generating graphics... => 3
([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6) generating graphics... => 3
([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) generating graphics... => 3
([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) generating graphics... => 3
([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5)],6) generating graphics... => 3
([(0,1),(0,2),(0,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) generating graphics... => 3
([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6) generating graphics... => 3
([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6) generating graphics... => 3
([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) generating graphics... => 3
([(0,4),(0,5),(1,2),(1,3),(2,3),(4,5)],6) generating graphics... => 2
([(0,2),(1,4),(1,5),(2,3),(3,4),(3,5),(4,5)],6) generating graphics... => 3
([(0,1),(0,5),(1,5),(2,3),(2,4),(3,4),(4,5)],6) generating graphics... => 2
([(0,1),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) generating graphics... => 2
([(0,1),(0,5),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6) generating graphics... => 2
([(0,1),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) generating graphics... => 2
([(0,1),(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) generating graphics... => 2
([(0,4),(0,5),(1,2),(1,3),(2,3),(2,5),(3,4),(4,5)],6) generating graphics... => 2
([(0,4),(0,5),(1,2),(1,3),(1,4),(2,3),(2,5),(3,5),(4,5)],6) generating graphics... => 2
([(0,3),(1,2),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) generating graphics... => 2
([(0,3),(0,5),(1,2),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6) generating graphics... => 2
([(0,1),(0,5),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) generating graphics... => 2
([(0,3),(0,5),(1,2),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) generating graphics... => 2
([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6) generating graphics... => 2
([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) generating graphics... => 2
([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4)],6) generating graphics... => 3
([(0,1),(0,5),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5)],6) generating graphics... => 2
([(0,3),(0,4),(1,2),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6) generating graphics... => 2
([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6) generating graphics... => 2
([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,5),(3,4)],6) generating graphics... => 2
([(0,1),(0,3),(0,5),(1,2),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6) generating graphics... => 2
([(0,4),(0,5),(1,2),(1,3),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6) generating graphics... => 2
([(0,1),(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) generating graphics... => 2
([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) generating graphics... => 2
([(0,2),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6) generating graphics... => 2
([(0,4),(0,5),(1,2),(1,3),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) generating graphics... => 2
([(0,4),(0,5),(1,2),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) generating graphics... => 2
([(0,5),(1,2),(1,3),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) generating graphics... => 2
([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) generating graphics... => 2
([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) generating graphics... => 2
([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) generating graphics... => 2
([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) generating graphics... => 2
([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6) generating graphics... => 2
([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6) generating graphics... => 2
([(0,1),(0,4),(0,5),(1,2),(1,3),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) generating graphics... => 2
([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6) generating graphics... => 2
([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6) generating graphics... => 2
([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) generating graphics... => 2
([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) generating graphics... => 2
([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) generating graphics... => 1
click to show generating function       
Description
The length of the maximal independent set of vertices of a graph.
An independent set of a graph is a set of pairwise non-adjacent vertices. A maximum independent set is an independent set of maximum cardinality. This statistic is also called the independence number $\alpha(G)$ of $G$.
Code
def statistic(x):
    return x.independent_set(value_only=True)

Created
Jun 13, 2013 at 16:49 by Chris Berg
Updated
Oct 28, 2016 at 13:18 by Martin Rubey