Identifier
Mp00081:
Standard tableaux
—reading word permutation⟶
Permutations
Mp00235: Permutations —descent views to invisible inversion bottoms⟶ Permutations
Mp00072: Permutations —binary search tree: left to right⟶ Binary trees
Mp00235: Permutations —descent views to invisible inversion bottoms⟶ Permutations
Mp00072: Permutations —binary search tree: left to right⟶ Binary trees
Images
=>
Cc0007;cc-rep-0Cc0010;cc-rep-3
[[1]]=>[1]=>[1]=>[.,.]
[[1,2]]=>[1,2]=>[1,2]=>[.,[.,.]]
[[1],[2]]=>[2,1]=>[2,1]=>[[.,.],.]
[[1,2,3]]=>[1,2,3]=>[1,2,3]=>[.,[.,[.,.]]]
[[1,3],[2]]=>[2,1,3]=>[2,1,3]=>[[.,.],[.,.]]
[[1,2],[3]]=>[3,1,2]=>[3,1,2]=>[[.,[.,.]],.]
[[1],[2],[3]]=>[3,2,1]=>[2,3,1]=>[[.,.],[.,.]]
[[1,2,3,4]]=>[1,2,3,4]=>[1,2,3,4]=>[.,[.,[.,[.,.]]]]
[[1,3,4],[2]]=>[2,1,3,4]=>[2,1,3,4]=>[[.,.],[.,[.,.]]]
[[1,2,4],[3]]=>[3,1,2,4]=>[3,1,2,4]=>[[.,[.,.]],[.,.]]
[[1,2,3],[4]]=>[4,1,2,3]=>[4,1,2,3]=>[[.,[.,[.,.]]],.]
[[1,3],[2,4]]=>[2,4,1,3]=>[4,2,1,3]=>[[[.,.],[.,.]],.]
[[1,2],[3,4]]=>[3,4,1,2]=>[4,1,3,2]=>[[.,[[.,.],.]],.]
[[1,4],[2],[3]]=>[3,2,1,4]=>[2,3,1,4]=>[[.,.],[.,[.,.]]]
[[1,3],[2],[4]]=>[4,2,1,3]=>[2,4,1,3]=>[[.,.],[[.,.],.]]
[[1,2],[3],[4]]=>[4,3,1,2]=>[3,1,4,2]=>[[.,[.,.]],[.,.]]
[[1],[2],[3],[4]]=>[4,3,2,1]=>[2,3,4,1]=>[[.,.],[.,[.,.]]]
[[1,2,3,4,5]]=>[1,2,3,4,5]=>[1,2,3,4,5]=>[.,[.,[.,[.,[.,.]]]]]
[[1,3,4,5],[2]]=>[2,1,3,4,5]=>[2,1,3,4,5]=>[[.,.],[.,[.,[.,.]]]]
[[1,2,4,5],[3]]=>[3,1,2,4,5]=>[3,1,2,4,5]=>[[.,[.,.]],[.,[.,.]]]
[[1,2,3,5],[4]]=>[4,1,2,3,5]=>[4,1,2,3,5]=>[[.,[.,[.,.]]],[.,.]]
[[1,2,3,4],[5]]=>[5,1,2,3,4]=>[5,1,2,3,4]=>[[.,[.,[.,[.,.]]]],.]
[[1,3,5],[2,4]]=>[2,4,1,3,5]=>[4,2,1,3,5]=>[[[.,.],[.,.]],[.,.]]
[[1,2,5],[3,4]]=>[3,4,1,2,5]=>[4,1,3,2,5]=>[[.,[[.,.],.]],[.,.]]
[[1,3,4],[2,5]]=>[2,5,1,3,4]=>[5,2,1,3,4]=>[[[.,.],[.,[.,.]]],.]
[[1,2,4],[3,5]]=>[3,5,1,2,4]=>[5,1,3,2,4]=>[[.,[[.,.],[.,.]]],.]
[[1,2,3],[4,5]]=>[4,5,1,2,3]=>[5,1,2,4,3]=>[[.,[.,[[.,.],.]]],.]
[[1,4,5],[2],[3]]=>[3,2,1,4,5]=>[2,3,1,4,5]=>[[.,.],[.,[.,[.,.]]]]
[[1,3,5],[2],[4]]=>[4,2,1,3,5]=>[2,4,1,3,5]=>[[.,.],[[.,.],[.,.]]]
[[1,2,5],[3],[4]]=>[4,3,1,2,5]=>[3,1,4,2,5]=>[[.,[.,.]],[.,[.,.]]]
[[1,3,4],[2],[5]]=>[5,2,1,3,4]=>[2,5,1,3,4]=>[[.,.],[[.,[.,.]],.]]
[[1,2,4],[3],[5]]=>[5,3,1,2,4]=>[3,1,5,2,4]=>[[.,[.,.]],[[.,.],.]]
[[1,2,3],[4],[5]]=>[5,4,1,2,3]=>[4,1,2,5,3]=>[[.,[.,[.,.]]],[.,.]]
[[1,4],[2,5],[3]]=>[3,2,5,1,4]=>[5,3,2,1,4]=>[[[[.,.],.],[.,.]],.]
[[1,3],[2,5],[4]]=>[4,2,5,1,3]=>[5,4,1,2,3]=>[[[.,[.,[.,.]]],.],.]
[[1,2],[3,5],[4]]=>[4,3,5,1,2]=>[5,1,4,3,2]=>[[.,[[[.,.],.],.]],.]
[[1,3],[2,4],[5]]=>[5,2,4,1,3]=>[4,5,1,2,3]=>[[.,[.,[.,.]]],[.,.]]
[[1,2],[3,4],[5]]=>[5,3,4,1,2]=>[4,1,5,3,2]=>[[.,[[.,.],.]],[.,.]]
[[1,5],[2],[3],[4]]=>[4,3,2,1,5]=>[2,3,4,1,5]=>[[.,.],[.,[.,[.,.]]]]
[[1,4],[2],[3],[5]]=>[5,3,2,1,4]=>[2,3,5,1,4]=>[[.,.],[.,[[.,.],.]]]
[[1,3],[2],[4],[5]]=>[5,4,2,1,3]=>[2,4,1,5,3]=>[[.,.],[[.,.],[.,.]]]
[[1,2],[3],[4],[5]]=>[5,4,3,1,2]=>[3,1,4,5,2]=>[[.,[.,.]],[.,[.,.]]]
[[1],[2],[3],[4],[5]]=>[5,4,3,2,1]=>[2,3,4,5,1]=>[[.,.],[.,[.,[.,.]]]]
[[1,2,3,4,5,6]]=>[1,2,3,4,5,6]=>[1,2,3,4,5,6]=>[.,[.,[.,[.,[.,[.,.]]]]]]
[[1,3,4,5,6],[2]]=>[2,1,3,4,5,6]=>[2,1,3,4,5,6]=>[[.,.],[.,[.,[.,[.,.]]]]]
[[1,2,4,5,6],[3]]=>[3,1,2,4,5,6]=>[3,1,2,4,5,6]=>[[.,[.,.]],[.,[.,[.,.]]]]
[[1,2,3,5,6],[4]]=>[4,1,2,3,5,6]=>[4,1,2,3,5,6]=>[[.,[.,[.,.]]],[.,[.,.]]]
[[1,2,3,4,6],[5]]=>[5,1,2,3,4,6]=>[5,1,2,3,4,6]=>[[.,[.,[.,[.,.]]]],[.,.]]
[[1,2,3,4,5],[6]]=>[6,1,2,3,4,5]=>[6,1,2,3,4,5]=>[[.,[.,[.,[.,[.,.]]]]],.]
[[1,3,5,6],[2,4]]=>[2,4,1,3,5,6]=>[4,2,1,3,5,6]=>[[[.,.],[.,.]],[.,[.,.]]]
[[1,2,5,6],[3,4]]=>[3,4,1,2,5,6]=>[4,1,3,2,5,6]=>[[.,[[.,.],.]],[.,[.,.]]]
[[1,3,4,6],[2,5]]=>[2,5,1,3,4,6]=>[5,2,1,3,4,6]=>[[[.,.],[.,[.,.]]],[.,.]]
[[1,2,4,6],[3,5]]=>[3,5,1,2,4,6]=>[5,1,3,2,4,6]=>[[.,[[.,.],[.,.]]],[.,.]]
[[1,2,3,6],[4,5]]=>[4,5,1,2,3,6]=>[5,1,2,4,3,6]=>[[.,[.,[[.,.],.]]],[.,.]]
[[1,3,4,5],[2,6]]=>[2,6,1,3,4,5]=>[6,2,1,3,4,5]=>[[[.,.],[.,[.,[.,.]]]],.]
[[1,2,4,5],[3,6]]=>[3,6,1,2,4,5]=>[6,1,3,2,4,5]=>[[.,[[.,.],[.,[.,.]]]],.]
[[1,2,3,5],[4,6]]=>[4,6,1,2,3,5]=>[6,1,2,4,3,5]=>[[.,[.,[[.,.],[.,.]]]],.]
[[1,2,3,4],[5,6]]=>[5,6,1,2,3,4]=>[6,1,2,3,5,4]=>[[.,[.,[.,[[.,.],.]]]],.]
[[1,4,5,6],[2],[3]]=>[3,2,1,4,5,6]=>[2,3,1,4,5,6]=>[[.,.],[.,[.,[.,[.,.]]]]]
[[1,3,5,6],[2],[4]]=>[4,2,1,3,5,6]=>[2,4,1,3,5,6]=>[[.,.],[[.,.],[.,[.,.]]]]
[[1,2,5,6],[3],[4]]=>[4,3,1,2,5,6]=>[3,1,4,2,5,6]=>[[.,[.,.]],[.,[.,[.,.]]]]
[[1,3,4,6],[2],[5]]=>[5,2,1,3,4,6]=>[2,5,1,3,4,6]=>[[.,.],[[.,[.,.]],[.,.]]]
[[1,2,4,6],[3],[5]]=>[5,3,1,2,4,6]=>[3,1,5,2,4,6]=>[[.,[.,.]],[[.,.],[.,.]]]
[[1,2,3,6],[4],[5]]=>[5,4,1,2,3,6]=>[4,1,2,5,3,6]=>[[.,[.,[.,.]]],[.,[.,.]]]
[[1,3,4,5],[2],[6]]=>[6,2,1,3,4,5]=>[2,6,1,3,4,5]=>[[.,.],[[.,[.,[.,.]]],.]]
[[1,2,4,5],[3],[6]]=>[6,3,1,2,4,5]=>[3,1,6,2,4,5]=>[[.,[.,.]],[[.,[.,.]],.]]
[[1,2,3,5],[4],[6]]=>[6,4,1,2,3,5]=>[4,1,2,6,3,5]=>[[.,[.,[.,.]]],[[.,.],.]]
[[1,2,3,4],[5],[6]]=>[6,5,1,2,3,4]=>[5,1,2,3,6,4]=>[[.,[.,[.,[.,.]]]],[.,.]]
[[1,3,5],[2,4,6]]=>[2,4,6,1,3,5]=>[6,2,1,4,3,5]=>[[[.,.],[[.,.],[.,.]]],.]
[[1,2,5],[3,4,6]]=>[3,4,6,1,2,5]=>[6,1,3,4,2,5]=>[[.,[[.,.],[.,[.,.]]]],.]
[[1,3,4],[2,5,6]]=>[2,5,6,1,3,4]=>[6,2,1,3,5,4]=>[[[.,.],[.,[[.,.],.]]],.]
[[1,2,4],[3,5,6]]=>[3,5,6,1,2,4]=>[6,1,3,2,5,4]=>[[.,[[.,.],[[.,.],.]]],.]
[[1,2,3],[4,5,6]]=>[4,5,6,1,2,3]=>[6,1,2,4,5,3]=>[[.,[.,[[.,.],[.,.]]]],.]
[[1,4,6],[2,5],[3]]=>[3,2,5,1,4,6]=>[5,3,2,1,4,6]=>[[[[.,.],.],[.,.]],[.,.]]
[[1,3,6],[2,5],[4]]=>[4,2,5,1,3,6]=>[5,4,1,2,3,6]=>[[[.,[.,[.,.]]],.],[.,.]]
[[1,2,6],[3,5],[4]]=>[4,3,5,1,2,6]=>[5,1,4,3,2,6]=>[[.,[[[.,.],.],.]],[.,.]]
[[1,3,6],[2,4],[5]]=>[5,2,4,1,3,6]=>[4,5,1,2,3,6]=>[[.,[.,[.,.]]],[.,[.,.]]]
[[1,2,6],[3,4],[5]]=>[5,3,4,1,2,6]=>[4,1,5,3,2,6]=>[[.,[[.,.],.]],[.,[.,.]]]
[[1,4,5],[2,6],[3]]=>[3,2,6,1,4,5]=>[6,3,2,1,4,5]=>[[[[.,.],.],[.,[.,.]]],.]
[[1,3,5],[2,6],[4]]=>[4,2,6,1,3,5]=>[6,4,1,2,3,5]=>[[[.,[.,[.,.]]],[.,.]],.]
[[1,2,5],[3,6],[4]]=>[4,3,6,1,2,5]=>[6,1,4,3,2,5]=>[[.,[[[.,.],.],[.,.]]],.]
[[1,3,4],[2,6],[5]]=>[5,2,6,1,3,4]=>[6,5,1,3,2,4]=>[[[.,[[.,.],[.,.]]],.],.]
[[1,2,4],[3,6],[5]]=>[5,3,6,1,2,4]=>[6,1,5,2,3,4]=>[[.,[[.,[.,[.,.]]],.]],.]
[[1,2,3],[4,6],[5]]=>[5,4,6,1,2,3]=>[6,1,2,5,4,3]=>[[.,[.,[[[.,.],.],.]]],.]
[[1,3,5],[2,4],[6]]=>[6,2,4,1,3,5]=>[4,6,1,2,3,5]=>[[.,[.,[.,.]]],[[.,.],.]]
[[1,2,5],[3,4],[6]]=>[6,3,4,1,2,5]=>[4,1,6,3,2,5]=>[[.,[[.,.],.]],[[.,.],.]]
[[1,3,4],[2,5],[6]]=>[6,2,5,1,3,4]=>[5,6,1,3,2,4]=>[[.,[[.,.],[.,.]]],[.,.]]
[[1,2,4],[3,5],[6]]=>[6,3,5,1,2,4]=>[5,1,6,2,3,4]=>[[.,[.,[.,[.,.]]]],[.,.]]
[[1,2,3],[4,5],[6]]=>[6,4,5,1,2,3]=>[5,1,2,6,4,3]=>[[.,[.,[[.,.],.]]],[.,.]]
[[1,5,6],[2],[3],[4]]=>[4,3,2,1,5,6]=>[2,3,4,1,5,6]=>[[.,.],[.,[.,[.,[.,.]]]]]
[[1,4,6],[2],[3],[5]]=>[5,3,2,1,4,6]=>[2,3,5,1,4,6]=>[[.,.],[.,[[.,.],[.,.]]]]
[[1,3,6],[2],[4],[5]]=>[5,4,2,1,3,6]=>[2,4,1,5,3,6]=>[[.,.],[[.,.],[.,[.,.]]]]
[[1,2,6],[3],[4],[5]]=>[5,4,3,1,2,6]=>[3,1,4,5,2,6]=>[[.,[.,.]],[.,[.,[.,.]]]]
[[1,4,5],[2],[3],[6]]=>[6,3,2,1,4,5]=>[2,3,6,1,4,5]=>[[.,.],[.,[[.,[.,.]],.]]]
[[1,3,5],[2],[4],[6]]=>[6,4,2,1,3,5]=>[2,4,1,6,3,5]=>[[.,.],[[.,.],[[.,.],.]]]
[[1,2,5],[3],[4],[6]]=>[6,4,3,1,2,5]=>[3,1,4,6,2,5]=>[[.,[.,.]],[.,[[.,.],.]]]
[[1,3,4],[2],[5],[6]]=>[6,5,2,1,3,4]=>[2,5,1,3,6,4]=>[[.,.],[[.,[.,.]],[.,.]]]
[[1,2,4],[3],[5],[6]]=>[6,5,3,1,2,4]=>[3,1,5,2,6,4]=>[[.,[.,.]],[[.,.],[.,.]]]
[[1,2,3],[4],[5],[6]]=>[6,5,4,1,2,3]=>[4,1,2,5,6,3]=>[[.,[.,[.,.]]],[.,[.,.]]]
[[1,4],[2,5],[3,6]]=>[3,6,2,5,1,4]=>[5,6,3,1,2,4]=>[[[.,[.,.]],[.,.]],[.,.]]
[[1,3],[2,5],[4,6]]=>[4,6,2,5,1,3]=>[5,6,1,4,2,3]=>[[.,[[.,[.,.]],.]],[.,.]]
[[1,2],[3,5],[4,6]]=>[4,6,3,5,1,2]=>[5,1,6,4,3,2]=>[[.,[[[.,.],.],.]],[.,.]]
[[1,3],[2,4],[5,6]]=>[5,6,2,4,1,3]=>[4,6,1,2,5,3]=>[[.,[.,[.,.]]],[[.,.],.]]
[[1,2],[3,4],[5,6]]=>[5,6,3,4,1,2]=>[4,1,6,3,5,2]=>[[.,[[.,.],.]],[[.,.],.]]
[[1,5],[2,6],[3],[4]]=>[4,3,2,6,1,5]=>[6,3,4,2,1,5]=>[[[[.,.],.],[.,[.,.]]],.]
[[1,4],[2,6],[3],[5]]=>[5,3,2,6,1,4]=>[6,3,5,1,2,4]=>[[[.,[.,.]],[[.,.],.]],.]
[[1,3],[2,6],[4],[5]]=>[5,4,2,6,1,3]=>[6,4,1,5,2,3]=>[[[.,[.,[.,.]]],[.,.]],.]
[[1,2],[3,6],[4],[5]]=>[5,4,3,6,1,2]=>[6,1,4,5,3,2]=>[[.,[[[.,.],.],[.,.]]],.]
[[1,4],[2,5],[3],[6]]=>[6,3,2,5,1,4]=>[5,3,6,1,2,4]=>[[[.,[.,.]],[.,.]],[.,.]]
[[1,3],[2,5],[4],[6]]=>[6,4,2,5,1,3]=>[5,4,1,6,2,3]=>[[[.,[.,[.,.]]],.],[.,.]]
[[1,2],[3,5],[4],[6]]=>[6,4,3,5,1,2]=>[5,1,4,6,3,2]=>[[.,[[[.,.],.],.]],[.,.]]
[[1,3],[2,4],[5],[6]]=>[6,5,2,4,1,3]=>[4,5,1,2,6,3]=>[[.,[.,[.,.]]],[.,[.,.]]]
[[1,2],[3,4],[5],[6]]=>[6,5,3,4,1,2]=>[4,1,5,3,6,2]=>[[.,[[.,.],.]],[.,[.,.]]]
[[1,6],[2],[3],[4],[5]]=>[5,4,3,2,1,6]=>[2,3,4,5,1,6]=>[[.,.],[.,[.,[.,[.,.]]]]]
[[1,5],[2],[3],[4],[6]]=>[6,4,3,2,1,5]=>[2,3,4,6,1,5]=>[[.,.],[.,[.,[[.,.],.]]]]
[[1,4],[2],[3],[5],[6]]=>[6,5,3,2,1,4]=>[2,3,5,1,6,4]=>[[.,.],[.,[[.,.],[.,.]]]]
[[1,3],[2],[4],[5],[6]]=>[6,5,4,2,1,3]=>[2,4,1,5,6,3]=>[[.,.],[[.,.],[.,[.,.]]]]
[[1,2],[3],[4],[5],[6]]=>[6,5,4,3,1,2]=>[3,1,4,5,6,2]=>[[.,[.,.]],[.,[.,[.,.]]]]
[[1],[2],[3],[4],[5],[6]]=>[6,5,4,3,2,1]=>[2,3,4,5,6,1]=>[[.,.],[.,[.,[.,[.,.]]]]]
[[1,2,3,4,5,6,7]]=>[1,2,3,4,5,6,7]=>[1,2,3,4,5,6,7]=>[.,[.,[.,[.,[.,[.,[.,.]]]]]]]
[[1,3,4,5,6,7],[2]]=>[2,1,3,4,5,6,7]=>[2,1,3,4,5,6,7]=>[[.,.],[.,[.,[.,[.,[.,.]]]]]]
[[1,2,4,5,6,7],[3]]=>[3,1,2,4,5,6,7]=>[3,1,2,4,5,6,7]=>[[.,[.,.]],[.,[.,[.,[.,.]]]]]
[[1,2,3,5,6,7],[4]]=>[4,1,2,3,5,6,7]=>[4,1,2,3,5,6,7]=>[[.,[.,[.,.]]],[.,[.,[.,.]]]]
[[1,2,3,4,6,7],[5]]=>[5,1,2,3,4,6,7]=>[5,1,2,3,4,6,7]=>[[.,[.,[.,[.,.]]]],[.,[.,.]]]
[[1,2,3,4,5,7],[6]]=>[6,1,2,3,4,5,7]=>[6,1,2,3,4,5,7]=>[[.,[.,[.,[.,[.,.]]]]],[.,.]]
[[1,2,3,4,5,6],[7]]=>[7,1,2,3,4,5,6]=>[7,1,2,3,4,5,6]=>[[.,[.,[.,[.,[.,[.,.]]]]]],.]
[[1,3,5,6,7],[2,4]]=>[2,4,1,3,5,6,7]=>[4,2,1,3,5,6,7]=>[[[.,.],[.,.]],[.,[.,[.,.]]]]
[[1,2,5,6,7],[3,4]]=>[3,4,1,2,5,6,7]=>[4,1,3,2,5,6,7]=>[[.,[[.,.],.]],[.,[.,[.,.]]]]
[[1,3,4,6,7],[2,5]]=>[2,5,1,3,4,6,7]=>[5,2,1,3,4,6,7]=>[[[.,.],[.,[.,.]]],[.,[.,.]]]
[[1,2,4,6,7],[3,5]]=>[3,5,1,2,4,6,7]=>[5,1,3,2,4,6,7]=>[[.,[[.,.],[.,.]]],[.,[.,.]]]
[[1,2,3,6,7],[4,5]]=>[4,5,1,2,3,6,7]=>[5,1,2,4,3,6,7]=>[[.,[.,[[.,.],.]]],[.,[.,.]]]
[[1,3,4,5,7],[2,6]]=>[2,6,1,3,4,5,7]=>[6,2,1,3,4,5,7]=>[[[.,.],[.,[.,[.,.]]]],[.,.]]
[[1,2,4,5,7],[3,6]]=>[3,6,1,2,4,5,7]=>[6,1,3,2,4,5,7]=>[[.,[[.,.],[.,[.,.]]]],[.,.]]
[[1,2,3,5,7],[4,6]]=>[4,6,1,2,3,5,7]=>[6,1,2,4,3,5,7]=>[[.,[.,[[.,.],[.,.]]]],[.,.]]
[[1,2,3,4,7],[5,6]]=>[5,6,1,2,3,4,7]=>[6,1,2,3,5,4,7]=>[[.,[.,[.,[[.,.],.]]]],[.,.]]
[[1,3,4,5,6],[2,7]]=>[2,7,1,3,4,5,6]=>[7,2,1,3,4,5,6]=>[[[.,.],[.,[.,[.,[.,.]]]]],.]
[[1,2,4,5,6],[3,7]]=>[3,7,1,2,4,5,6]=>[7,1,3,2,4,5,6]=>[[.,[[.,.],[.,[.,[.,.]]]]],.]
[[1,2,3,5,6],[4,7]]=>[4,7,1,2,3,5,6]=>[7,1,2,4,3,5,6]=>[[.,[.,[[.,.],[.,[.,.]]]]],.]
[[1,2,3,4,6],[5,7]]=>[5,7,1,2,3,4,6]=>[7,1,2,3,5,4,6]=>[[.,[.,[.,[[.,.],[.,.]]]]],.]
[[1,2,3,4,5],[6,7]]=>[6,7,1,2,3,4,5]=>[7,1,2,3,4,6,5]=>[[.,[.,[.,[.,[[.,.],.]]]]],.]
[[1,4,5,6,7],[2],[3]]=>[3,2,1,4,5,6,7]=>[2,3,1,4,5,6,7]=>[[.,.],[.,[.,[.,[.,[.,.]]]]]]
[[1,3,5,6,7],[2],[4]]=>[4,2,1,3,5,6,7]=>[2,4,1,3,5,6,7]=>[[.,.],[[.,.],[.,[.,[.,.]]]]]
[[1,2,5,6,7],[3],[4]]=>[4,3,1,2,5,6,7]=>[3,1,4,2,5,6,7]=>[[.,[.,.]],[.,[.,[.,[.,.]]]]]
[[1,3,4,6,7],[2],[5]]=>[5,2,1,3,4,6,7]=>[2,5,1,3,4,6,7]=>[[.,.],[[.,[.,.]],[.,[.,.]]]]
[[1,2,4,6,7],[3],[5]]=>[5,3,1,2,4,6,7]=>[3,1,5,2,4,6,7]=>[[.,[.,.]],[[.,.],[.,[.,.]]]]
[[1,2,3,6,7],[4],[5]]=>[5,4,1,2,3,6,7]=>[4,1,2,5,3,6,7]=>[[.,[.,[.,.]]],[.,[.,[.,.]]]]
[[1,3,4,5,7],[2],[6]]=>[6,2,1,3,4,5,7]=>[2,6,1,3,4,5,7]=>[[.,.],[[.,[.,[.,.]]],[.,.]]]
[[1,2,4,5,7],[3],[6]]=>[6,3,1,2,4,5,7]=>[3,1,6,2,4,5,7]=>[[.,[.,.]],[[.,[.,.]],[.,.]]]
[[1,2,3,5,7],[4],[6]]=>[6,4,1,2,3,5,7]=>[4,1,2,6,3,5,7]=>[[.,[.,[.,.]]],[[.,.],[.,.]]]
[[1,2,3,4,7],[5],[6]]=>[6,5,1,2,3,4,7]=>[5,1,2,3,6,4,7]=>[[.,[.,[.,[.,.]]]],[.,[.,.]]]
[[1,3,4,5,6],[2],[7]]=>[7,2,1,3,4,5,6]=>[2,7,1,3,4,5,6]=>[[.,.],[[.,[.,[.,[.,.]]]],.]]
[[1,2,4,5,6],[3],[7]]=>[7,3,1,2,4,5,6]=>[3,1,7,2,4,5,6]=>[[.,[.,.]],[[.,[.,[.,.]]],.]]
[[1,2,3,5,6],[4],[7]]=>[7,4,1,2,3,5,6]=>[4,1,2,7,3,5,6]=>[[.,[.,[.,.]]],[[.,[.,.]],.]]
[[1,2,3,4,6],[5],[7]]=>[7,5,1,2,3,4,6]=>[5,1,2,3,7,4,6]=>[[.,[.,[.,[.,.]]]],[[.,.],.]]
[[1,2,3,4,5],[6],[7]]=>[7,6,1,2,3,4,5]=>[6,1,2,3,4,7,5]=>[[.,[.,[.,[.,[.,.]]]]],[.,.]]
[[1,3,5,7],[2,4,6]]=>[2,4,6,1,3,5,7]=>[6,2,1,4,3,5,7]=>[[[.,.],[[.,.],[.,.]]],[.,.]]
[[1,2,5,7],[3,4,6]]=>[3,4,6,1,2,5,7]=>[6,1,3,4,2,5,7]=>[[.,[[.,.],[.,[.,.]]]],[.,.]]
[[1,3,4,7],[2,5,6]]=>[2,5,6,1,3,4,7]=>[6,2,1,3,5,4,7]=>[[[.,.],[.,[[.,.],.]]],[.,.]]
[[1,2,4,7],[3,5,6]]=>[3,5,6,1,2,4,7]=>[6,1,3,2,5,4,7]=>[[.,[[.,.],[[.,.],.]]],[.,.]]
[[1,2,3,7],[4,5,6]]=>[4,5,6,1,2,3,7]=>[6,1,2,4,5,3,7]=>[[.,[.,[[.,.],[.,.]]]],[.,.]]
[[1,3,5,6],[2,4,7]]=>[2,4,7,1,3,5,6]=>[7,2,1,4,3,5,6]=>[[[.,.],[[.,.],[.,[.,.]]]],.]
[[1,2,5,6],[3,4,7]]=>[3,4,7,1,2,5,6]=>[7,1,3,4,2,5,6]=>[[.,[[.,.],[.,[.,[.,.]]]]],.]
[[1,3,4,6],[2,5,7]]=>[2,5,7,1,3,4,6]=>[7,2,1,3,5,4,6]=>[[[.,.],[.,[[.,.],[.,.]]]],.]
[[1,2,4,6],[3,5,7]]=>[3,5,7,1,2,4,6]=>[7,1,3,2,5,4,6]=>[[.,[[.,.],[[.,.],[.,.]]]],.]
[[1,2,3,6],[4,5,7]]=>[4,5,7,1,2,3,6]=>[7,1,2,4,5,3,6]=>[[.,[.,[[.,.],[.,[.,.]]]]],.]
[[1,3,4,5],[2,6,7]]=>[2,6,7,1,3,4,5]=>[7,2,1,3,4,6,5]=>[[[.,.],[.,[.,[[.,.],.]]]],.]
[[1,2,4,5],[3,6,7]]=>[3,6,7,1,2,4,5]=>[7,1,3,2,4,6,5]=>[[.,[[.,.],[.,[[.,.],.]]]],.]
[[1,2,3,5],[4,6,7]]=>[4,6,7,1,2,3,5]=>[7,1,2,4,3,6,5]=>[[.,[.,[[.,.],[[.,.],.]]]],.]
[[1,2,3,4],[5,6,7]]=>[5,6,7,1,2,3,4]=>[7,1,2,3,5,6,4]=>[[.,[.,[.,[[.,.],[.,.]]]]],.]
[[1,4,6,7],[2,5],[3]]=>[3,2,5,1,4,6,7]=>[5,3,2,1,4,6,7]=>[[[[.,.],.],[.,.]],[.,[.,.]]]
[[1,3,6,7],[2,5],[4]]=>[4,2,5,1,3,6,7]=>[5,4,1,2,3,6,7]=>[[[.,[.,[.,.]]],.],[.,[.,.]]]
[[1,2,6,7],[3,5],[4]]=>[4,3,5,1,2,6,7]=>[5,1,4,3,2,6,7]=>[[.,[[[.,.],.],.]],[.,[.,.]]]
[[1,3,6,7],[2,4],[5]]=>[5,2,4,1,3,6,7]=>[4,5,1,2,3,6,7]=>[[.,[.,[.,.]]],[.,[.,[.,.]]]]
[[1,2,6,7],[3,4],[5]]=>[5,3,4,1,2,6,7]=>[4,1,5,3,2,6,7]=>[[.,[[.,.],.]],[.,[.,[.,.]]]]
[[1,4,5,7],[2,6],[3]]=>[3,2,6,1,4,5,7]=>[6,3,2,1,4,5,7]=>[[[[.,.],.],[.,[.,.]]],[.,.]]
[[1,3,5,7],[2,6],[4]]=>[4,2,6,1,3,5,7]=>[6,4,1,2,3,5,7]=>[[[.,[.,[.,.]]],[.,.]],[.,.]]
[[1,2,5,7],[3,6],[4]]=>[4,3,6,1,2,5,7]=>[6,1,4,3,2,5,7]=>[[.,[[[.,.],.],[.,.]]],[.,.]]
[[1,3,4,7],[2,6],[5]]=>[5,2,6,1,3,4,7]=>[6,5,1,3,2,4,7]=>[[[.,[[.,.],[.,.]]],.],[.,.]]
[[1,2,4,7],[3,6],[5]]=>[5,3,6,1,2,4,7]=>[6,1,5,2,3,4,7]=>[[.,[[.,[.,[.,.]]],.]],[.,.]]
[[1,2,3,7],[4,6],[5]]=>[5,4,6,1,2,3,7]=>[6,1,2,5,4,3,7]=>[[.,[.,[[[.,.],.],.]]],[.,.]]
[[1,3,5,7],[2,4],[6]]=>[6,2,4,1,3,5,7]=>[4,6,1,2,3,5,7]=>[[.,[.,[.,.]]],[[.,.],[.,.]]]
[[1,2,5,7],[3,4],[6]]=>[6,3,4,1,2,5,7]=>[4,1,6,3,2,5,7]=>[[.,[[.,.],.]],[[.,.],[.,.]]]
[[1,3,4,7],[2,5],[6]]=>[6,2,5,1,3,4,7]=>[5,6,1,3,2,4,7]=>[[.,[[.,.],[.,.]]],[.,[.,.]]]
[[1,2,4,7],[3,5],[6]]=>[6,3,5,1,2,4,7]=>[5,1,6,2,3,4,7]=>[[.,[.,[.,[.,.]]]],[.,[.,.]]]
[[1,2,3,7],[4,5],[6]]=>[6,4,5,1,2,3,7]=>[5,1,2,6,4,3,7]=>[[.,[.,[[.,.],.]]],[.,[.,.]]]
[[1,4,5,6],[2,7],[3]]=>[3,2,7,1,4,5,6]=>[7,3,2,1,4,5,6]=>[[[[.,.],.],[.,[.,[.,.]]]],.]
[[1,3,5,6],[2,7],[4]]=>[4,2,7,1,3,5,6]=>[7,4,1,2,3,5,6]=>[[[.,[.,[.,.]]],[.,[.,.]]],.]
[[1,2,5,6],[3,7],[4]]=>[4,3,7,1,2,5,6]=>[7,1,4,3,2,5,6]=>[[.,[[[.,.],.],[.,[.,.]]]],.]
[[1,3,4,6],[2,7],[5]]=>[5,2,7,1,3,4,6]=>[7,5,1,3,2,4,6]=>[[[.,[[.,.],[.,.]]],[.,.]],.]
[[1,2,4,6],[3,7],[5]]=>[5,3,7,1,2,4,6]=>[7,1,5,2,3,4,6]=>[[.,[[.,[.,[.,.]]],[.,.]]],.]
[[1,2,3,6],[4,7],[5]]=>[5,4,7,1,2,3,6]=>[7,1,2,5,4,3,6]=>[[.,[.,[[[.,.],.],[.,.]]]],.]
[[1,3,4,5],[2,7],[6]]=>[6,2,7,1,3,4,5]=>[7,6,1,3,4,2,5]=>[[[.,[[.,.],[.,[.,.]]]],.],.]
[[1,2,4,5],[3,7],[6]]=>[6,3,7,1,2,4,5]=>[7,1,6,2,4,3,5]=>[[.,[[.,[[.,.],[.,.]]],.]],.]
[[1,2,3,5],[4,7],[6]]=>[6,4,7,1,2,3,5]=>[7,1,2,6,3,4,5]=>[[.,[.,[[.,[.,[.,.]]],.]]],.]
[[1,2,3,4],[5,7],[6]]=>[6,5,7,1,2,3,4]=>[7,1,2,3,6,5,4]=>[[.,[.,[.,[[[.,.],.],.]]]],.]
[[1,3,5,6],[2,4],[7]]=>[7,2,4,1,3,5,6]=>[4,7,1,2,3,5,6]=>[[.,[.,[.,.]]],[[.,[.,.]],.]]
[[1,2,5,6],[3,4],[7]]=>[7,3,4,1,2,5,6]=>[4,1,7,3,2,5,6]=>[[.,[[.,.],.]],[[.,[.,.]],.]]
[[1,3,4,6],[2,5],[7]]=>[7,2,5,1,3,4,6]=>[5,7,1,3,2,4,6]=>[[.,[[.,.],[.,.]]],[[.,.],.]]
[[1,2,4,6],[3,5],[7]]=>[7,3,5,1,2,4,6]=>[5,1,7,2,3,4,6]=>[[.,[.,[.,[.,.]]]],[[.,.],.]]
[[1,2,3,6],[4,5],[7]]=>[7,4,5,1,2,3,6]=>[5,1,2,7,4,3,6]=>[[.,[.,[[.,.],.]]],[[.,.],.]]
[[1,3,4,5],[2,6],[7]]=>[7,2,6,1,3,4,5]=>[6,7,1,3,4,2,5]=>[[.,[[.,.],[.,[.,.]]]],[.,.]]
[[1,2,4,5],[3,6],[7]]=>[7,3,6,1,2,4,5]=>[6,1,7,2,4,3,5]=>[[.,[.,[[.,.],[.,.]]]],[.,.]]
[[1,2,3,5],[4,6],[7]]=>[7,4,6,1,2,3,5]=>[6,1,2,7,3,4,5]=>[[.,[.,[.,[.,[.,.]]]]],[.,.]]
[[1,2,3,4],[5,6],[7]]=>[7,5,6,1,2,3,4]=>[6,1,2,3,7,5,4]=>[[.,[.,[.,[[.,.],.]]]],[.,.]]
[[1,5,6,7],[2],[3],[4]]=>[4,3,2,1,5,6,7]=>[2,3,4,1,5,6,7]=>[[.,.],[.,[.,[.,[.,[.,.]]]]]]
[[1,4,6,7],[2],[3],[5]]=>[5,3,2,1,4,6,7]=>[2,3,5,1,4,6,7]=>[[.,.],[.,[[.,.],[.,[.,.]]]]]
[[1,3,6,7],[2],[4],[5]]=>[5,4,2,1,3,6,7]=>[2,4,1,5,3,6,7]=>[[.,.],[[.,.],[.,[.,[.,.]]]]]
[[1,2,6,7],[3],[4],[5]]=>[5,4,3,1,2,6,7]=>[3,1,4,5,2,6,7]=>[[.,[.,.]],[.,[.,[.,[.,.]]]]]
[[1,4,5,7],[2],[3],[6]]=>[6,3,2,1,4,5,7]=>[2,3,6,1,4,5,7]=>[[.,.],[.,[[.,[.,.]],[.,.]]]]
[[1,3,5,7],[2],[4],[6]]=>[6,4,2,1,3,5,7]=>[2,4,1,6,3,5,7]=>[[.,.],[[.,.],[[.,.],[.,.]]]]
[[1,2,5,7],[3],[4],[6]]=>[6,4,3,1,2,5,7]=>[3,1,4,6,2,5,7]=>[[.,[.,.]],[.,[[.,.],[.,.]]]]
[[1,3,4,7],[2],[5],[6]]=>[6,5,2,1,3,4,7]=>[2,5,1,3,6,4,7]=>[[.,.],[[.,[.,.]],[.,[.,.]]]]
[[1,2,4,7],[3],[5],[6]]=>[6,5,3,1,2,4,7]=>[3,1,5,2,6,4,7]=>[[.,[.,.]],[[.,.],[.,[.,.]]]]
[[1,2,3,7],[4],[5],[6]]=>[6,5,4,1,2,3,7]=>[4,1,2,5,6,3,7]=>[[.,[.,[.,.]]],[.,[.,[.,.]]]]
[[1,4,5,6],[2],[3],[7]]=>[7,3,2,1,4,5,6]=>[2,3,7,1,4,5,6]=>[[.,.],[.,[[.,[.,[.,.]]],.]]]
[[1,3,5,6],[2],[4],[7]]=>[7,4,2,1,3,5,6]=>[2,4,1,7,3,5,6]=>[[.,.],[[.,.],[[.,[.,.]],.]]]
[[1,2,5,6],[3],[4],[7]]=>[7,4,3,1,2,5,6]=>[3,1,4,7,2,5,6]=>[[.,[.,.]],[.,[[.,[.,.]],.]]]
[[1,3,4,6],[2],[5],[7]]=>[7,5,2,1,3,4,6]=>[2,5,1,3,7,4,6]=>[[.,.],[[.,[.,.]],[[.,.],.]]]
[[1,2,4,6],[3],[5],[7]]=>[7,5,3,1,2,4,6]=>[3,1,5,2,7,4,6]=>[[.,[.,.]],[[.,.],[[.,.],.]]]
[[1,2,3,6],[4],[5],[7]]=>[7,5,4,1,2,3,6]=>[4,1,2,5,7,3,6]=>[[.,[.,[.,.]]],[.,[[.,.],.]]]
[[1,3,4,5],[2],[6],[7]]=>[7,6,2,1,3,4,5]=>[2,6,1,3,4,7,5]=>[[.,.],[[.,[.,[.,.]]],[.,.]]]
[[1,2,4,5],[3],[6],[7]]=>[7,6,3,1,2,4,5]=>[3,1,6,2,4,7,5]=>[[.,[.,.]],[[.,[.,.]],[.,.]]]
[[1,2,3,5],[4],[6],[7]]=>[7,6,4,1,2,3,5]=>[4,1,2,6,3,7,5]=>[[.,[.,[.,.]]],[[.,.],[.,.]]]
[[1,2,3,4],[5],[6],[7]]=>[7,6,5,1,2,3,4]=>[5,1,2,3,6,7,4]=>[[.,[.,[.,[.,.]]]],[.,[.,.]]]
[[1,4,6],[2,5,7],[3]]=>[3,2,5,7,1,4,6]=>[7,3,2,1,5,4,6]=>[[[[.,.],.],[[.,.],[.,.]]],.]
[[1,3,6],[2,5,7],[4]]=>[4,2,5,7,1,3,6]=>[7,4,1,2,5,3,6]=>[[[.,[.,[.,.]]],[.,[.,.]]],.]
[[1,2,6],[3,5,7],[4]]=>[4,3,5,7,1,2,6]=>[7,1,4,3,5,2,6]=>[[.,[[[.,.],.],[.,[.,.]]]],.]
[[1,3,6],[2,4,7],[5]]=>[5,2,4,7,1,3,6]=>[7,5,1,2,4,3,6]=>[[[.,[.,[[.,.],.]]],[.,.]],.]
[[1,2,6],[3,4,7],[5]]=>[5,3,4,7,1,2,6]=>[7,1,5,3,4,2,6]=>[[.,[[[.,.],[.,.]],[.,.]]],.]
[[1,4,5],[2,6,7],[3]]=>[3,2,6,7,1,4,5]=>[7,3,2,1,4,6,5]=>[[[[.,.],.],[.,[[.,.],.]]],.]
[[1,3,5],[2,6,7],[4]]=>[4,2,6,7,1,3,5]=>[7,4,1,2,3,6,5]=>[[[.,[.,[.,.]]],[[.,.],.]],.]
[[1,2,5],[3,6,7],[4]]=>[4,3,6,7,1,2,5]=>[7,1,4,3,2,6,5]=>[[.,[[[.,.],.],[[.,.],.]]],.]
[[1,3,4],[2,6,7],[5]]=>[5,2,6,7,1,3,4]=>[7,5,1,3,2,6,4]=>[[[.,[[.,.],[.,.]]],[.,.]],.]
[[1,2,4],[3,6,7],[5]]=>[5,3,6,7,1,2,4]=>[7,1,5,2,3,6,4]=>[[.,[[.,[.,[.,.]]],[.,.]]],.]
[[1,2,3],[4,6,7],[5]]=>[5,4,6,7,1,2,3]=>[7,1,2,5,4,6,3]=>[[.,[.,[[[.,.],.],[.,.]]]],.]
[[1,3,5],[2,4,7],[6]]=>[6,2,4,7,1,3,5]=>[7,6,1,2,3,4,5]=>[[[.,[.,[.,[.,[.,.]]]]],.],.]
[[1,2,5],[3,4,7],[6]]=>[6,3,4,7,1,2,5]=>[7,1,6,3,2,4,5]=>[[.,[[[.,.],[.,[.,.]]],.]],.]
[[1,3,4],[2,5,7],[6]]=>[6,2,5,7,1,3,4]=>[7,6,1,3,2,5,4]=>[[[.,[[.,.],[[.,.],.]]],.],.]
[[1,2,4],[3,5,7],[6]]=>[6,3,5,7,1,2,4]=>[7,1,6,2,3,5,4]=>[[.,[[.,[.,[[.,.],.]]],.]],.]
[[1,2,3],[4,5,7],[6]]=>[6,4,5,7,1,2,3]=>[7,1,2,6,4,5,3]=>[[.,[.,[[[.,.],[.,.]],.]]],.]
[[1,3,5],[2,4,6],[7]]=>[7,2,4,6,1,3,5]=>[6,7,1,2,3,4,5]=>[[.,[.,[.,[.,[.,.]]]]],[.,.]]
[[1,2,5],[3,4,6],[7]]=>[7,3,4,6,1,2,5]=>[6,1,7,3,2,4,5]=>[[.,[[.,.],[.,[.,.]]]],[.,.]]
[[1,3,4],[2,5,6],[7]]=>[7,2,5,6,1,3,4]=>[6,7,1,3,2,5,4]=>[[.,[[.,.],[[.,.],.]]],[.,.]]
[[1,2,4],[3,5,6],[7]]=>[7,3,5,6,1,2,4]=>[6,1,7,2,3,5,4]=>[[.,[.,[.,[[.,.],.]]]],[.,.]]
[[1,2,3],[4,5,6],[7]]=>[7,4,5,6,1,2,3]=>[6,1,2,7,4,5,3]=>[[.,[.,[[.,.],[.,.]]]],[.,.]]
[[1,4,7],[2,5],[3,6]]=>[3,6,2,5,1,4,7]=>[5,6,3,1,2,4,7]=>[[[.,[.,.]],[.,.]],[.,[.,.]]]
[[1,3,7],[2,5],[4,6]]=>[4,6,2,5,1,3,7]=>[5,6,1,4,2,3,7]=>[[.,[[.,[.,.]],.]],[.,[.,.]]]
[[1,2,7],[3,5],[4,6]]=>[4,6,3,5,1,2,7]=>[5,1,6,4,3,2,7]=>[[.,[[[.,.],.],.]],[.,[.,.]]]
[[1,3,7],[2,4],[5,6]]=>[5,6,2,4,1,3,7]=>[4,6,1,2,5,3,7]=>[[.,[.,[.,.]]],[[.,.],[.,.]]]
[[1,2,7],[3,4],[5,6]]=>[5,6,3,4,1,2,7]=>[4,1,6,3,5,2,7]=>[[.,[[.,.],.]],[[.,.],[.,.]]]
[[1,4,6],[2,5],[3,7]]=>[3,7,2,5,1,4,6]=>[5,7,3,1,2,4,6]=>[[[.,[.,.]],[.,.]],[[.,.],.]]
[[1,3,6],[2,5],[4,7]]=>[4,7,2,5,1,3,6]=>[5,7,1,4,2,3,6]=>[[.,[[.,[.,.]],.]],[[.,.],.]]
[[1,2,6],[3,5],[4,7]]=>[4,7,3,5,1,2,6]=>[5,1,7,4,3,2,6]=>[[.,[[[.,.],.],.]],[[.,.],.]]
[[1,3,6],[2,4],[5,7]]=>[5,7,2,4,1,3,6]=>[4,7,1,2,5,3,6]=>[[.,[.,[.,.]]],[[.,[.,.]],.]]
[[1,2,6],[3,4],[5,7]]=>[5,7,3,4,1,2,6]=>[4,1,7,3,5,2,6]=>[[.,[[.,.],.]],[[.,[.,.]],.]]
[[1,4,5],[2,6],[3,7]]=>[3,7,2,6,1,4,5]=>[6,7,3,1,4,2,5]=>[[[.,[.,.]],[.,[.,.]]],[.,.]]
[[1,3,5],[2,6],[4,7]]=>[4,7,2,6,1,3,5]=>[6,7,1,4,3,2,5]=>[[.,[[[.,.],.],[.,.]]],[.,.]]
[[1,2,5],[3,6],[4,7]]=>[4,7,3,6,1,2,5]=>[6,1,7,4,2,3,5]=>[[.,[[.,[.,.]],[.,.]]],[.,.]]
[[1,3,4],[2,6],[5,7]]=>[5,7,2,6,1,3,4]=>[6,7,1,3,5,2,4]=>[[.,[[.,.],[[.,.],.]]],[.,.]]
[[1,2,4],[3,6],[5,7]]=>[5,7,3,6,1,2,4]=>[6,1,7,2,5,3,4]=>[[.,[.,[[.,[.,.]],.]]],[.,.]]
[[1,2,3],[4,6],[5,7]]=>[5,7,4,6,1,2,3]=>[6,1,2,7,5,4,3]=>[[.,[.,[[[.,.],.],.]]],[.,.]]
[[1,3,5],[2,4],[6,7]]=>[6,7,2,4,1,3,5]=>[4,7,1,2,3,6,5]=>[[.,[.,[.,.]]],[[[.,.],.],.]]
[[1,2,5],[3,4],[6,7]]=>[6,7,3,4,1,2,5]=>[4,1,7,3,2,6,5]=>[[.,[[.,.],.]],[[[.,.],.],.]]
[[1,3,4],[2,5],[6,7]]=>[6,7,2,5,1,3,4]=>[5,7,1,3,2,6,4]=>[[.,[[.,.],[.,.]]],[[.,.],.]]
[[1,2,4],[3,5],[6,7]]=>[6,7,3,5,1,2,4]=>[5,1,7,2,3,6,4]=>[[.,[.,[.,[.,.]]]],[[.,.],.]]
[[1,2,3],[4,5],[6,7]]=>[6,7,4,5,1,2,3]=>[5,1,2,7,4,6,3]=>[[.,[.,[[.,.],.]]],[[.,.],.]]
[[1,5,7],[2,6],[3],[4]]=>[4,3,2,6,1,5,7]=>[6,3,4,2,1,5,7]=>[[[[.,.],.],[.,[.,.]]],[.,.]]
[[1,4,7],[2,6],[3],[5]]=>[5,3,2,6,1,4,7]=>[6,3,5,1,2,4,7]=>[[[.,[.,.]],[[.,.],.]],[.,.]]
[[1,3,7],[2,6],[4],[5]]=>[5,4,2,6,1,3,7]=>[6,4,1,5,2,3,7]=>[[[.,[.,[.,.]]],[.,.]],[.,.]]
[[1,2,7],[3,6],[4],[5]]=>[5,4,3,6,1,2,7]=>[6,1,4,5,3,2,7]=>[[.,[[[.,.],.],[.,.]]],[.,.]]
[[1,4,7],[2,5],[3],[6]]=>[6,3,2,5,1,4,7]=>[5,3,6,1,2,4,7]=>[[[.,[.,.]],[.,.]],[.,[.,.]]]
[[1,3,7],[2,5],[4],[6]]=>[6,4,2,5,1,3,7]=>[5,4,1,6,2,3,7]=>[[[.,[.,[.,.]]],.],[.,[.,.]]]
[[1,2,7],[3,5],[4],[6]]=>[6,4,3,5,1,2,7]=>[5,1,4,6,3,2,7]=>[[.,[[[.,.],.],.]],[.,[.,.]]]
[[1,3,7],[2,4],[5],[6]]=>[6,5,2,4,1,3,7]=>[4,5,1,2,6,3,7]=>[[.,[.,[.,.]]],[.,[.,[.,.]]]]
[[1,2,7],[3,4],[5],[6]]=>[6,5,3,4,1,2,7]=>[4,1,5,3,6,2,7]=>[[.,[[.,.],.]],[.,[.,[.,.]]]]
[[1,5,6],[2,7],[3],[4]]=>[4,3,2,7,1,5,6]=>[7,3,4,2,1,5,6]=>[[[[.,.],.],[.,[.,[.,.]]]],.]
[[1,4,6],[2,7],[3],[5]]=>[5,3,2,7,1,4,6]=>[7,3,5,1,2,4,6]=>[[[.,[.,.]],[[.,.],[.,.]]],.]
[[1,3,6],[2,7],[4],[5]]=>[5,4,2,7,1,3,6]=>[7,4,1,5,2,3,6]=>[[[.,[.,[.,.]]],[.,[.,.]]],.]
[[1,2,6],[3,7],[4],[5]]=>[5,4,3,7,1,2,6]=>[7,1,4,5,3,2,6]=>[[.,[[[.,.],.],[.,[.,.]]]],.]
[[1,4,5],[2,7],[3],[6]]=>[6,3,2,7,1,4,5]=>[7,3,6,1,4,2,5]=>[[[.,[.,.]],[[.,[.,.]],.]],.]
[[1,3,5],[2,7],[4],[6]]=>[6,4,2,7,1,3,5]=>[7,4,1,6,3,2,5]=>[[[.,[[.,.],.]],[[.,.],.]],.]
[[1,2,5],[3,7],[4],[6]]=>[6,4,3,7,1,2,5]=>[7,1,4,6,2,3,5]=>[[.,[[.,[.,.]],[[.,.],.]]],.]
[[1,3,4],[2,7],[5],[6]]=>[6,5,2,7,1,3,4]=>[7,5,1,3,6,2,4]=>[[[.,[[.,.],[.,.]]],[.,.]],.]
[[1,2,4],[3,7],[5],[6]]=>[6,5,3,7,1,2,4]=>[7,1,5,2,6,3,4]=>[[.,[[.,[.,[.,.]]],[.,.]]],.]
[[1,2,3],[4,7],[5],[6]]=>[6,5,4,7,1,2,3]=>[7,1,2,5,6,4,3]=>[[.,[.,[[[.,.],.],[.,.]]]],.]
[[1,4,6],[2,5],[3],[7]]=>[7,3,2,5,1,4,6]=>[5,3,7,1,2,4,6]=>[[[.,[.,.]],[.,.]],[[.,.],.]]
[[1,3,6],[2,5],[4],[7]]=>[7,4,2,5,1,3,6]=>[5,4,1,7,2,3,6]=>[[[.,[.,[.,.]]],.],[[.,.],.]]
[[1,2,6],[3,5],[4],[7]]=>[7,4,3,5,1,2,6]=>[5,1,4,7,3,2,6]=>[[.,[[[.,.],.],.]],[[.,.],.]]
[[1,3,6],[2,4],[5],[7]]=>[7,5,2,4,1,3,6]=>[4,5,1,2,7,3,6]=>[[.,[.,[.,.]]],[.,[[.,.],.]]]
[[1,2,6],[3,4],[5],[7]]=>[7,5,3,4,1,2,6]=>[4,1,5,3,7,2,6]=>[[.,[[.,.],.]],[.,[[.,.],.]]]
[[1,4,5],[2,6],[3],[7]]=>[7,3,2,6,1,4,5]=>[6,3,7,1,4,2,5]=>[[[.,[.,.]],[.,[.,.]]],[.,.]]
[[1,3,5],[2,6],[4],[7]]=>[7,4,2,6,1,3,5]=>[6,4,1,7,3,2,5]=>[[[.,[[.,.],.]],[.,.]],[.,.]]
[[1,2,5],[3,6],[4],[7]]=>[7,4,3,6,1,2,5]=>[6,1,4,7,2,3,5]=>[[.,[[.,[.,.]],[.,.]]],[.,.]]
[[1,3,4],[2,6],[5],[7]]=>[7,5,2,6,1,3,4]=>[6,5,1,3,7,2,4]=>[[[.,[[.,.],[.,.]]],.],[.,.]]
[[1,2,4],[3,6],[5],[7]]=>[7,5,3,6,1,2,4]=>[6,1,5,2,7,3,4]=>[[.,[[.,[.,[.,.]]],.]],[.,.]]
[[1,2,3],[4,6],[5],[7]]=>[7,5,4,6,1,2,3]=>[6,1,2,5,7,4,3]=>[[.,[.,[[[.,.],.],.]]],[.,.]]
[[1,3,5],[2,4],[6],[7]]=>[7,6,2,4,1,3,5]=>[4,6,1,2,3,7,5]=>[[.,[.,[.,.]]],[[.,.],[.,.]]]
[[1,2,5],[3,4],[6],[7]]=>[7,6,3,4,1,2,5]=>[4,1,6,3,2,7,5]=>[[.,[[.,.],.]],[[.,.],[.,.]]]
[[1,3,4],[2,5],[6],[7]]=>[7,6,2,5,1,3,4]=>[5,6,1,3,2,7,4]=>[[.,[[.,.],[.,.]]],[.,[.,.]]]
[[1,2,4],[3,5],[6],[7]]=>[7,6,3,5,1,2,4]=>[5,1,6,2,3,7,4]=>[[.,[.,[.,[.,.]]]],[.,[.,.]]]
[[1,2,3],[4,5],[6],[7]]=>[7,6,4,5,1,2,3]=>[5,1,2,6,4,7,3]=>[[.,[.,[[.,.],.]]],[.,[.,.]]]
[[1,6,7],[2],[3],[4],[5]]=>[5,4,3,2,1,6,7]=>[2,3,4,5,1,6,7]=>[[.,.],[.,[.,[.,[.,[.,.]]]]]]
[[1,5,7],[2],[3],[4],[6]]=>[6,4,3,2,1,5,7]=>[2,3,4,6,1,5,7]=>[[.,.],[.,[.,[[.,.],[.,.]]]]]
[[1,4,7],[2],[3],[5],[6]]=>[6,5,3,2,1,4,7]=>[2,3,5,1,6,4,7]=>[[.,.],[.,[[.,.],[.,[.,.]]]]]
[[1,3,7],[2],[4],[5],[6]]=>[6,5,4,2,1,3,7]=>[2,4,1,5,6,3,7]=>[[.,.],[[.,.],[.,[.,[.,.]]]]]
[[1,2,7],[3],[4],[5],[6]]=>[6,5,4,3,1,2,7]=>[3,1,4,5,6,2,7]=>[[.,[.,.]],[.,[.,[.,[.,.]]]]]
[[1,5,6],[2],[3],[4],[7]]=>[7,4,3,2,1,5,6]=>[2,3,4,7,1,5,6]=>[[.,.],[.,[.,[[.,[.,.]],.]]]]
[[1,4,6],[2],[3],[5],[7]]=>[7,5,3,2,1,4,6]=>[2,3,5,1,7,4,6]=>[[.,.],[.,[[.,.],[[.,.],.]]]]
[[1,3,6],[2],[4],[5],[7]]=>[7,5,4,2,1,3,6]=>[2,4,1,5,7,3,6]=>[[.,.],[[.,.],[.,[[.,.],.]]]]
[[1,2,6],[3],[4],[5],[7]]=>[7,5,4,3,1,2,6]=>[3,1,4,5,7,2,6]=>[[.,[.,.]],[.,[.,[[.,.],.]]]]
[[1,4,5],[2],[3],[6],[7]]=>[7,6,3,2,1,4,5]=>[2,3,6,1,4,7,5]=>[[.,.],[.,[[.,[.,.]],[.,.]]]]
[[1,3,5],[2],[4],[6],[7]]=>[7,6,4,2,1,3,5]=>[2,4,1,6,3,7,5]=>[[.,.],[[.,.],[[.,.],[.,.]]]]
[[1,2,5],[3],[4],[6],[7]]=>[7,6,4,3,1,2,5]=>[3,1,4,6,2,7,5]=>[[.,[.,.]],[.,[[.,.],[.,.]]]]
[[1,3,4],[2],[5],[6],[7]]=>[7,6,5,2,1,3,4]=>[2,5,1,3,6,7,4]=>[[.,.],[[.,[.,.]],[.,[.,.]]]]
[[1,2,4],[3],[5],[6],[7]]=>[7,6,5,3,1,2,4]=>[3,1,5,2,6,7,4]=>[[.,[.,.]],[[.,.],[.,[.,.]]]]
[[1,2,3],[4],[5],[6],[7]]=>[7,6,5,4,1,2,3]=>[4,1,2,5,6,7,3]=>[[.,[.,[.,.]]],[.,[.,[.,.]]]]
[[1,5],[2,6],[3,7],[4]]=>[4,3,7,2,6,1,5]=>[6,7,4,3,1,2,5]=>[[[[.,[.,.]],.],[.,.]],[.,.]]
[[1,4],[2,6],[3,7],[5]]=>[5,3,7,2,6,1,4]=>[6,7,5,1,3,2,4]=>[[[.,[[.,.],[.,.]]],.],[.,.]]
[[1,3],[2,6],[4,7],[5]]=>[5,4,7,2,6,1,3]=>[6,7,1,5,4,2,3]=>[[.,[[[.,[.,.]],.],.]],[.,.]]
[[1,2],[3,6],[4,7],[5]]=>[5,4,7,3,6,1,2]=>[6,1,7,5,4,3,2]=>[[.,[[[[.,.],.],.],.]],[.,.]]
[[1,4],[2,5],[3,7],[6]]=>[6,3,7,2,5,1,4]=>[5,7,6,1,2,3,4]=>[[.,[.,[.,[.,.]]]],[[.,.],.]]
[[1,3],[2,5],[4,7],[6]]=>[6,4,7,2,5,1,3]=>[5,7,1,6,2,4,3]=>[[.,[.,[[.,.],.]]],[[.,.],.]]
[[1,2],[3,5],[4,7],[6]]=>[6,4,7,3,5,1,2]=>[5,1,7,6,3,4,2]=>[[.,[[.,.],[.,.]]],[[.,.],.]]
[[1,3],[2,4],[5,7],[6]]=>[6,5,7,2,4,1,3]=>[4,7,1,2,6,5,3]=>[[.,[.,[.,.]]],[[[.,.],.],.]]
[[1,2],[3,4],[5,7],[6]]=>[6,5,7,3,4,1,2]=>[4,1,7,3,6,5,2]=>[[.,[[.,.],.]],[[[.,.],.],.]]
[[1,4],[2,5],[3,6],[7]]=>[7,3,6,2,5,1,4]=>[5,6,7,1,2,3,4]=>[[.,[.,[.,[.,.]]]],[.,[.,.]]]
[[1,3],[2,5],[4,6],[7]]=>[7,4,6,2,5,1,3]=>[5,6,1,7,2,4,3]=>[[.,[.,[[.,.],.]]],[.,[.,.]]]
[[1,2],[3,5],[4,6],[7]]=>[7,4,6,3,5,1,2]=>[5,1,6,7,3,4,2]=>[[.,[[.,.],[.,.]]],[.,[.,.]]]
[[1,3],[2,4],[5,6],[7]]=>[7,5,6,2,4,1,3]=>[4,6,1,2,7,5,3]=>[[.,[.,[.,.]]],[[.,.],[.,.]]]
[[1,2],[3,4],[5,6],[7]]=>[7,5,6,3,4,1,2]=>[4,1,6,3,7,5,2]=>[[.,[[.,.],.]],[[.,.],[.,.]]]
[[1,6],[2,7],[3],[4],[5]]=>[5,4,3,2,7,1,6]=>[7,3,4,5,2,1,6]=>[[[[.,.],.],[.,[.,[.,.]]]],.]
[[1,5],[2,7],[3],[4],[6]]=>[6,4,3,2,7,1,5]=>[7,3,4,6,1,2,5]=>[[[.,[.,.]],[.,[[.,.],.]]],.]
[[1,4],[2,7],[3],[5],[6]]=>[6,5,3,2,7,1,4]=>[7,3,5,1,6,2,4]=>[[[.,[.,.]],[[.,.],[.,.]]],.]
[[1,3],[2,7],[4],[5],[6]]=>[6,5,4,2,7,1,3]=>[7,4,1,5,6,2,3]=>[[[.,[.,[.,.]]],[.,[.,.]]],.]
[[1,2],[3,7],[4],[5],[6]]=>[6,5,4,3,7,1,2]=>[7,1,4,5,6,3,2]=>[[.,[[[.,.],.],[.,[.,.]]]],.]
[[1,5],[2,6],[3],[4],[7]]=>[7,4,3,2,6,1,5]=>[6,3,4,7,1,2,5]=>[[[.,[.,.]],[.,[.,.]]],[.,.]]
[[1,4],[2,6],[3],[5],[7]]=>[7,5,3,2,6,1,4]=>[6,3,5,1,7,2,4]=>[[[.,[.,.]],[[.,.],.]],[.,.]]
[[1,3],[2,6],[4],[5],[7]]=>[7,5,4,2,6,1,3]=>[6,4,1,5,7,2,3]=>[[[.,[.,[.,.]]],[.,.]],[.,.]]
[[1,2],[3,6],[4],[5],[7]]=>[7,5,4,3,6,1,2]=>[6,1,4,5,7,3,2]=>[[.,[[[.,.],.],[.,.]]],[.,.]]
[[1,4],[2,5],[3],[6],[7]]=>[7,6,3,2,5,1,4]=>[5,3,6,1,2,7,4]=>[[[.,[.,.]],[.,.]],[.,[.,.]]]
[[1,3],[2,5],[4],[6],[7]]=>[7,6,4,2,5,1,3]=>[5,4,1,6,2,7,3]=>[[[.,[.,[.,.]]],.],[.,[.,.]]]
[[1,2],[3,5],[4],[6],[7]]=>[7,6,4,3,5,1,2]=>[5,1,4,6,3,7,2]=>[[.,[[[.,.],.],.]],[.,[.,.]]]
[[1,3],[2,4],[5],[6],[7]]=>[7,6,5,2,4,1,3]=>[4,5,1,2,6,7,3]=>[[.,[.,[.,.]]],[.,[.,[.,.]]]]
[[1,2],[3,4],[5],[6],[7]]=>[7,6,5,3,4,1,2]=>[4,1,5,3,6,7,2]=>[[.,[[.,.],.]],[.,[.,[.,.]]]]
[[1,7],[2],[3],[4],[5],[6]]=>[6,5,4,3,2,1,7]=>[2,3,4,5,6,1,7]=>[[.,.],[.,[.,[.,[.,[.,.]]]]]]
[[1,6],[2],[3],[4],[5],[7]]=>[7,5,4,3,2,1,6]=>[2,3,4,5,7,1,6]=>[[.,.],[.,[.,[.,[[.,.],.]]]]]
[[1,5],[2],[3],[4],[6],[7]]=>[7,6,4,3,2,1,5]=>[2,3,4,6,1,7,5]=>[[.,.],[.,[.,[[.,.],[.,.]]]]]
[[1,4],[2],[3],[5],[6],[7]]=>[7,6,5,3,2,1,4]=>[2,3,5,1,6,7,4]=>[[.,.],[.,[[.,.],[.,[.,.]]]]]
[[1,3],[2],[4],[5],[6],[7]]=>[7,6,5,4,2,1,3]=>[2,4,1,5,6,7,3]=>[[.,.],[[.,.],[.,[.,[.,.]]]]]
[[1,2],[3],[4],[5],[6],[7]]=>[7,6,5,4,3,1,2]=>[3,1,4,5,6,7,2]=>[[.,[.,.]],[.,[.,[.,[.,.]]]]]
[[1],[2],[3],[4],[5],[6],[7]]=>[7,6,5,4,3,2,1]=>[2,3,4,5,6,7,1]=>[[.,.],[.,[.,[.,[.,[.,.]]]]]]
[[1,2,3,4,5,6,7,8]]=>[1,2,3,4,5,6,7,8]=>[1,2,3,4,5,6,7,8]=>[.,[.,[.,[.,[.,[.,[.,[.,.]]]]]]]]
Map
reading word permutation
Description
Return the permutation obtained by reading the entries of the tableau row by row, starting with the bottom-most row in English notation.
Map
descent views to invisible inversion bottoms
Description
Return a permutation whose multiset of invisible inversion bottoms is the multiset of descent views of the given permutation.
An invisible inversion of a permutation $\sigma$ is a pair $i < j$ such that $i < \sigma(j) < \sigma(i)$. The element $\sigma(j)$ is then an invisible inversion bottom.
A descent view in a permutation $\pi$ is an element $\pi(j)$ such that $\pi(i+1) < \pi(j) < \pi(i)$, and additionally the smallest element in the decreasing run containing $\pi(i)$ is smaller than the smallest element in the decreasing run containing $\pi(j)$.
This map is a bijection $\chi:\mathfrak S_n \to \mathfrak S_n$, such that
An invisible inversion of a permutation $\sigma$ is a pair $i < j$ such that $i < \sigma(j) < \sigma(i)$. The element $\sigma(j)$ is then an invisible inversion bottom.
A descent view in a permutation $\pi$ is an element $\pi(j)$ such that $\pi(i+1) < \pi(j) < \pi(i)$, and additionally the smallest element in the decreasing run containing $\pi(i)$ is smaller than the smallest element in the decreasing run containing $\pi(j)$.
This map is a bijection $\chi:\mathfrak S_n \to \mathfrak S_n$, such that
- the multiset of descent views in $\pi$ is the multiset of invisible inversion bottoms in $\chi(\pi)$,
- the set of left-to-right maximima of $\pi$ is the set of maximal elements in the cycles of $\chi(\pi)$,
- the set of global ascent of $\pi$ is the set of global ascent of $\chi(\pi)$,
- the set of maximal elements in the decreasing runs of $\pi$ is the set of deficiency positions of $\chi(\pi)$, and
- the set of minimal elements in the decreasing runs of $\pi$ is the set of deficiency values of $\chi(\pi)$.
Map
binary search tree: left to right
Description
Return the shape of the binary search tree of the permutation as a non labelled binary tree.
searching the database
Sorry, this map was not found in the database.