Identifier
Mp00042:
Integer partitions
—initial tableau⟶
Standard tableaux
Mp00081: Standard tableaux —reading word permutation⟶ Permutations
Mp00061: Permutations —to increasing tree⟶ Binary trees
Mp00081: Standard tableaux —reading word permutation⟶ Permutations
Mp00061: Permutations —to increasing tree⟶ Binary trees
Images
=>
Cc0002;cc-rep-0Cc0007;cc-rep-1Cc0010;cc-rep-3
[1]=>[[1]]=>[1]=>[.,.]
[2]=>[[1,2]]=>[1,2]=>[.,[.,.]]
[1,1]=>[[1],[2]]=>[2,1]=>[[.,.],.]
[3]=>[[1,2,3]]=>[1,2,3]=>[.,[.,[.,.]]]
[2,1]=>[[1,2],[3]]=>[3,1,2]=>[[.,.],[.,.]]
[1,1,1]=>[[1],[2],[3]]=>[3,2,1]=>[[[.,.],.],.]
[4]=>[[1,2,3,4]]=>[1,2,3,4]=>[.,[.,[.,[.,.]]]]
[3,1]=>[[1,2,3],[4]]=>[4,1,2,3]=>[[.,.],[.,[.,.]]]
[2,2]=>[[1,2],[3,4]]=>[3,4,1,2]=>[[.,[.,.]],[.,.]]
[2,1,1]=>[[1,2],[3],[4]]=>[4,3,1,2]=>[[[.,.],.],[.,.]]
[1,1,1,1]=>[[1],[2],[3],[4]]=>[4,3,2,1]=>[[[[.,.],.],.],.]
[5]=>[[1,2,3,4,5]]=>[1,2,3,4,5]=>[.,[.,[.,[.,[.,.]]]]]
[4,1]=>[[1,2,3,4],[5]]=>[5,1,2,3,4]=>[[.,.],[.,[.,[.,.]]]]
[3,2]=>[[1,2,3],[4,5]]=>[4,5,1,2,3]=>[[.,[.,.]],[.,[.,.]]]
[3,1,1]=>[[1,2,3],[4],[5]]=>[5,4,1,2,3]=>[[[.,.],.],[.,[.,.]]]
[2,2,1]=>[[1,2],[3,4],[5]]=>[5,3,4,1,2]=>[[[.,.],[.,.]],[.,.]]
[2,1,1,1]=>[[1,2],[3],[4],[5]]=>[5,4,3,1,2]=>[[[[.,.],.],.],[.,.]]
[1,1,1,1,1]=>[[1],[2],[3],[4],[5]]=>[5,4,3,2,1]=>[[[[[.,.],.],.],.],.]
[6]=>[[1,2,3,4,5,6]]=>[1,2,3,4,5,6]=>[.,[.,[.,[.,[.,[.,.]]]]]]
[5,1]=>[[1,2,3,4,5],[6]]=>[6,1,2,3,4,5]=>[[.,.],[.,[.,[.,[.,.]]]]]
[4,2]=>[[1,2,3,4],[5,6]]=>[5,6,1,2,3,4]=>[[.,[.,.]],[.,[.,[.,.]]]]
[4,1,1]=>[[1,2,3,4],[5],[6]]=>[6,5,1,2,3,4]=>[[[.,.],.],[.,[.,[.,.]]]]
[3,3]=>[[1,2,3],[4,5,6]]=>[4,5,6,1,2,3]=>[[.,[.,[.,.]]],[.,[.,.]]]
[3,2,1]=>[[1,2,3],[4,5],[6]]=>[6,4,5,1,2,3]=>[[[.,.],[.,.]],[.,[.,.]]]
[3,1,1,1]=>[[1,2,3],[4],[5],[6]]=>[6,5,4,1,2,3]=>[[[[.,.],.],.],[.,[.,.]]]
[2,2,2]=>[[1,2],[3,4],[5,6]]=>[5,6,3,4,1,2]=>[[[.,[.,.]],[.,.]],[.,.]]
[2,2,1,1]=>[[1,2],[3,4],[5],[6]]=>[6,5,3,4,1,2]=>[[[[.,.],.],[.,.]],[.,.]]
[2,1,1,1,1]=>[[1,2],[3],[4],[5],[6]]=>[6,5,4,3,1,2]=>[[[[[.,.],.],.],.],[.,.]]
[1,1,1,1,1,1]=>[[1],[2],[3],[4],[5],[6]]=>[6,5,4,3,2,1]=>[[[[[[.,.],.],.],.],.],.]
[7]=>[[1,2,3,4,5,6,7]]=>[1,2,3,4,5,6,7]=>[.,[.,[.,[.,[.,[.,[.,.]]]]]]]
[6,1]=>[[1,2,3,4,5,6],[7]]=>[7,1,2,3,4,5,6]=>[[.,.],[.,[.,[.,[.,[.,.]]]]]]
[5,2]=>[[1,2,3,4,5],[6,7]]=>[6,7,1,2,3,4,5]=>[[.,[.,.]],[.,[.,[.,[.,.]]]]]
[5,1,1]=>[[1,2,3,4,5],[6],[7]]=>[7,6,1,2,3,4,5]=>[[[.,.],.],[.,[.,[.,[.,.]]]]]
[4,3]=>[[1,2,3,4],[5,6,7]]=>[5,6,7,1,2,3,4]=>[[.,[.,[.,.]]],[.,[.,[.,.]]]]
[4,2,1]=>[[1,2,3,4],[5,6],[7]]=>[7,5,6,1,2,3,4]=>[[[.,.],[.,.]],[.,[.,[.,.]]]]
[4,1,1,1]=>[[1,2,3,4],[5],[6],[7]]=>[7,6,5,1,2,3,4]=>[[[[.,.],.],.],[.,[.,[.,.]]]]
[3,3,1]=>[[1,2,3],[4,5,6],[7]]=>[7,4,5,6,1,2,3]=>[[[.,.],[.,[.,.]]],[.,[.,.]]]
[3,2,2]=>[[1,2,3],[4,5],[6,7]]=>[6,7,4,5,1,2,3]=>[[[.,[.,.]],[.,.]],[.,[.,.]]]
[3,2,1,1]=>[[1,2,3],[4,5],[6],[7]]=>[7,6,4,5,1,2,3]=>[[[[.,.],.],[.,.]],[.,[.,.]]]
[3,1,1,1,1]=>[[1,2,3],[4],[5],[6],[7]]=>[7,6,5,4,1,2,3]=>[[[[[.,.],.],.],.],[.,[.,.]]]
[2,2,2,1]=>[[1,2],[3,4],[5,6],[7]]=>[7,5,6,3,4,1,2]=>[[[[.,.],[.,.]],[.,.]],[.,.]]
[2,2,1,1,1]=>[[1,2],[3,4],[5],[6],[7]]=>[7,6,5,3,4,1,2]=>[[[[[.,.],.],.],[.,.]],[.,.]]
[2,1,1,1,1,1]=>[[1,2],[3],[4],[5],[6],[7]]=>[7,6,5,4,3,1,2]=>[[[[[[.,.],.],.],.],.],[.,.]]
[1,1,1,1,1,1,1]=>[[1],[2],[3],[4],[5],[6],[7]]=>[7,6,5,4,3,2,1]=>[[[[[[[.,.],.],.],.],.],.],.]
[8]=>[[1,2,3,4,5,6,7,8]]=>[1,2,3,4,5,6,7,8]=>[.,[.,[.,[.,[.,[.,[.,[.,.]]]]]]]]
[6,2]=>[[1,2,3,4,5,6],[7,8]]=>[7,8,1,2,3,4,5,6]=>[[.,[.,.]],[.,[.,[.,[.,[.,.]]]]]]
[4,4]=>[[1,2,3,4],[5,6,7,8]]=>[5,6,7,8,1,2,3,4]=>[[.,[.,[.,[.,.]]]],[.,[.,[.,.]]]]
[4,2,2]=>[[1,2,3,4],[5,6],[7,8]]=>[7,8,5,6,1,2,3,4]=>[[[.,[.,.]],[.,.]],[.,[.,[.,.]]]]
[2,2,2,2]=>[[1,2],[3,4],[5,6],[7,8]]=>[7,8,5,6,3,4,1,2]=>[[[[.,[.,.]],[.,.]],[.,.]],[.,.]]
[1,1,1,1,1,1,1,1]=>[[1],[2],[3],[4],[5],[6],[7],[8]]=>[8,7,6,5,4,3,2,1]=>[[[[[[[[.,.],.],.],.],.],.],.],.]
Map
initial tableau
Description
Sends an integer partition to the standard tableau obtained by filling the numbers $1$ through $n$ row by row.
Map
reading word permutation
Description
Return the permutation obtained by reading the entries of the tableau row by row, starting with the bottom-most row in English notation.
Map
to increasing tree
Description
Sends a permutation to its associated increasing tree.
This tree is recursively obtained by sending the unique permutation of length $0$ to the empty tree, and sending a permutation $\sigma$ of length $n \geq 1$ to a root node with two subtrees $L$ and $R$ by splitting $\sigma$ at the index $\sigma^{-1}(1)$, normalizing both sides again to permutations and sending the permutations on the left and on the right of $\sigma^{-1}(1)$ to the trees $L$ and $R$, respectively.
This tree is recursively obtained by sending the unique permutation of length $0$ to the empty tree, and sending a permutation $\sigma$ of length $n \geq 1$ to a root node with two subtrees $L$ and $R$ by splitting $\sigma$ at the index $\sigma^{-1}(1)$, normalizing both sides again to permutations and sending the permutations on the left and on the right of $\sigma^{-1}(1)$ to the trees $L$ and $R$, respectively.
searching the database
Sorry, this map was not found in the database.