Identifier
Mp00042: Integer partitions initial tableauStandard tableaux
Mp00081: Standard tableaux reading word permutationPermutations
Mp00061: Permutations to increasing tree Binary trees
Images
=>
Cc0002;cc-rep-0Cc0007;cc-rep-1Cc0010;cc-rep-3
[1]=>[[1]]=>[1]=>[.,.] [2]=>[[1,2]]=>[1,2]=>[.,[.,.]] [1,1]=>[[1],[2]]=>[2,1]=>[[.,.],.] [3]=>[[1,2,3]]=>[1,2,3]=>[.,[.,[.,.]]] [2,1]=>[[1,2],[3]]=>[3,1,2]=>[[.,.],[.,.]] [1,1,1]=>[[1],[2],[3]]=>[3,2,1]=>[[[.,.],.],.] [4]=>[[1,2,3,4]]=>[1,2,3,4]=>[.,[.,[.,[.,.]]]] [3,1]=>[[1,2,3],[4]]=>[4,1,2,3]=>[[.,.],[.,[.,.]]] [2,2]=>[[1,2],[3,4]]=>[3,4,1,2]=>[[.,[.,.]],[.,.]] [2,1,1]=>[[1,2],[3],[4]]=>[4,3,1,2]=>[[[.,.],.],[.,.]] [1,1,1,1]=>[[1],[2],[3],[4]]=>[4,3,2,1]=>[[[[.,.],.],.],.] [5]=>[[1,2,3,4,5]]=>[1,2,3,4,5]=>[.,[.,[.,[.,[.,.]]]]] [4,1]=>[[1,2,3,4],[5]]=>[5,1,2,3,4]=>[[.,.],[.,[.,[.,.]]]] [3,2]=>[[1,2,3],[4,5]]=>[4,5,1,2,3]=>[[.,[.,.]],[.,[.,.]]] [3,1,1]=>[[1,2,3],[4],[5]]=>[5,4,1,2,3]=>[[[.,.],.],[.,[.,.]]] [2,2,1]=>[[1,2],[3,4],[5]]=>[5,3,4,1,2]=>[[[.,.],[.,.]],[.,.]] [2,1,1,1]=>[[1,2],[3],[4],[5]]=>[5,4,3,1,2]=>[[[[.,.],.],.],[.,.]] [1,1,1,1,1]=>[[1],[2],[3],[4],[5]]=>[5,4,3,2,1]=>[[[[[.,.],.],.],.],.] [6]=>[[1,2,3,4,5,6]]=>[1,2,3,4,5,6]=>[.,[.,[.,[.,[.,[.,.]]]]]] [5,1]=>[[1,2,3,4,5],[6]]=>[6,1,2,3,4,5]=>[[.,.],[.,[.,[.,[.,.]]]]] [4,2]=>[[1,2,3,4],[5,6]]=>[5,6,1,2,3,4]=>[[.,[.,.]],[.,[.,[.,.]]]] [4,1,1]=>[[1,2,3,4],[5],[6]]=>[6,5,1,2,3,4]=>[[[.,.],.],[.,[.,[.,.]]]] [3,3]=>[[1,2,3],[4,5,6]]=>[4,5,6,1,2,3]=>[[.,[.,[.,.]]],[.,[.,.]]] [3,2,1]=>[[1,2,3],[4,5],[6]]=>[6,4,5,1,2,3]=>[[[.,.],[.,.]],[.,[.,.]]] [3,1,1,1]=>[[1,2,3],[4],[5],[6]]=>[6,5,4,1,2,3]=>[[[[.,.],.],.],[.,[.,.]]] [2,2,2]=>[[1,2],[3,4],[5,6]]=>[5,6,3,4,1,2]=>[[[.,[.,.]],[.,.]],[.,.]] [2,2,1,1]=>[[1,2],[3,4],[5],[6]]=>[6,5,3,4,1,2]=>[[[[.,.],.],[.,.]],[.,.]] [2,1,1,1,1]=>[[1,2],[3],[4],[5],[6]]=>[6,5,4,3,1,2]=>[[[[[.,.],.],.],.],[.,.]] [1,1,1,1,1,1]=>[[1],[2],[3],[4],[5],[6]]=>[6,5,4,3,2,1]=>[[[[[[.,.],.],.],.],.],.] [7]=>[[1,2,3,4,5,6,7]]=>[1,2,3,4,5,6,7]=>[.,[.,[.,[.,[.,[.,[.,.]]]]]]] [6,1]=>[[1,2,3,4,5,6],[7]]=>[7,1,2,3,4,5,6]=>[[.,.],[.,[.,[.,[.,[.,.]]]]]] [5,2]=>[[1,2,3,4,5],[6,7]]=>[6,7,1,2,3,4,5]=>[[.,[.,.]],[.,[.,[.,[.,.]]]]] [5,1,1]=>[[1,2,3,4,5],[6],[7]]=>[7,6,1,2,3,4,5]=>[[[.,.],.],[.,[.,[.,[.,.]]]]] [4,3]=>[[1,2,3,4],[5,6,7]]=>[5,6,7,1,2,3,4]=>[[.,[.,[.,.]]],[.,[.,[.,.]]]] [4,2,1]=>[[1,2,3,4],[5,6],[7]]=>[7,5,6,1,2,3,4]=>[[[.,.],[.,.]],[.,[.,[.,.]]]] [4,1,1,1]=>[[1,2,3,4],[5],[6],[7]]=>[7,6,5,1,2,3,4]=>[[[[.,.],.],.],[.,[.,[.,.]]]] [3,3,1]=>[[1,2,3],[4,5,6],[7]]=>[7,4,5,6,1,2,3]=>[[[.,.],[.,[.,.]]],[.,[.,.]]] [3,2,2]=>[[1,2,3],[4,5],[6,7]]=>[6,7,4,5,1,2,3]=>[[[.,[.,.]],[.,.]],[.,[.,.]]] [3,2,1,1]=>[[1,2,3],[4,5],[6],[7]]=>[7,6,4,5,1,2,3]=>[[[[.,.],.],[.,.]],[.,[.,.]]] [3,1,1,1,1]=>[[1,2,3],[4],[5],[6],[7]]=>[7,6,5,4,1,2,3]=>[[[[[.,.],.],.],.],[.,[.,.]]] [2,2,2,1]=>[[1,2],[3,4],[5,6],[7]]=>[7,5,6,3,4,1,2]=>[[[[.,.],[.,.]],[.,.]],[.,.]] [2,2,1,1,1]=>[[1,2],[3,4],[5],[6],[7]]=>[7,6,5,3,4,1,2]=>[[[[[.,.],.],.],[.,.]],[.,.]] [2,1,1,1,1,1]=>[[1,2],[3],[4],[5],[6],[7]]=>[7,6,5,4,3,1,2]=>[[[[[[.,.],.],.],.],.],[.,.]] [1,1,1,1,1,1,1]=>[[1],[2],[3],[4],[5],[6],[7]]=>[7,6,5,4,3,2,1]=>[[[[[[[.,.],.],.],.],.],.],.] [8]=>[[1,2,3,4,5,6,7,8]]=>[1,2,3,4,5,6,7,8]=>[.,[.,[.,[.,[.,[.,[.,[.,.]]]]]]]] [6,2]=>[[1,2,3,4,5,6],[7,8]]=>[7,8,1,2,3,4,5,6]=>[[.,[.,.]],[.,[.,[.,[.,[.,.]]]]]] [4,4]=>[[1,2,3,4],[5,6,7,8]]=>[5,6,7,8,1,2,3,4]=>[[.,[.,[.,[.,.]]]],[.,[.,[.,.]]]] [4,2,2]=>[[1,2,3,4],[5,6],[7,8]]=>[7,8,5,6,1,2,3,4]=>[[[.,[.,.]],[.,.]],[.,[.,[.,.]]]] [2,2,2,2]=>[[1,2],[3,4],[5,6],[7,8]]=>[7,8,5,6,3,4,1,2]=>[[[[.,[.,.]],[.,.]],[.,.]],[.,.]] [1,1,1,1,1,1,1,1]=>[[1],[2],[3],[4],[5],[6],[7],[8]]=>[8,7,6,5,4,3,2,1]=>[[[[[[[[.,.],.],.],.],.],.],.],.]
Map
initial tableau
Description
Sends an integer partition to the standard tableau obtained by filling the numbers $1$ through $n$ row by row.
Map
reading word permutation
Description
Return the permutation obtained by reading the entries of the tableau row by row, starting with the bottom-most row in English notation.
Map
to increasing tree
Description
Sends a permutation to its associated increasing tree.
This tree is recursively obtained by sending the unique permutation of length $0$ to the empty tree, and sending a permutation $\sigma$ of length $n \geq 1$ to a root node with two subtrees $L$ and $R$ by splitting $\sigma$ at the index $\sigma^{-1}(1)$, normalizing both sides again to permutations and sending the permutations on the left and on the right of $\sigma^{-1}(1)$ to the trees $L$ and $R$, respectively.