Identifier
- St001966: Dyck paths ⟶ ℤ
Values
=>
Cc0005;cc-rep
[1,0]=>1
[1,0,1,0]=>4
[1,1,0,0]=>2
[1,0,1,0,1,0]=>7
[1,0,1,1,0,0]=>4
[1,1,0,0,1,0]=>4
[1,1,0,1,0,0]=>4
[1,1,1,0,0,0]=>2
[1,0,1,0,1,0,1,0]=>10
[1,0,1,0,1,1,0,0]=>7
[1,0,1,1,0,0,1,0]=>7
[1,0,1,1,0,1,0,0]=>7
[1,0,1,1,1,0,0,0]=>4
[1,1,0,0,1,0,1,0]=>7
[1,1,0,0,1,1,0,0]=>4
[1,1,0,1,0,0,1,0]=>7
[1,1,0,1,0,1,0,0]=>5
[1,1,0,1,1,0,0,0]=>4
[1,1,1,0,0,0,1,0]=>4
[1,1,1,0,0,1,0,0]=>4
[1,1,1,0,1,0,0,0]=>4
[1,1,1,1,0,0,0,0]=>2
[1,0,1,0,1,0,1,0,1,0]=>13
[1,0,1,0,1,0,1,1,0,0]=>10
[1,0,1,0,1,1,0,0,1,0]=>10
[1,0,1,0,1,1,0,1,0,0]=>10
[1,0,1,0,1,1,1,0,0,0]=>7
[1,0,1,1,0,0,1,0,1,0]=>10
[1,0,1,1,0,0,1,1,0,0]=>7
[1,0,1,1,0,1,0,0,1,0]=>10
[1,0,1,1,0,1,0,1,0,0]=>7
[1,0,1,1,0,1,1,0,0,0]=>7
[1,0,1,1,1,0,0,0,1,0]=>7
[1,0,1,1,1,0,0,1,0,0]=>7
[1,0,1,1,1,0,1,0,0,0]=>7
[1,0,1,1,1,1,0,0,0,0]=>4
[1,1,0,0,1,0,1,0,1,0]=>10
[1,1,0,0,1,0,1,1,0,0]=>7
[1,1,0,0,1,1,0,0,1,0]=>7
[1,1,0,0,1,1,0,1,0,0]=>7
[1,1,0,0,1,1,1,0,0,0]=>4
[1,1,0,1,0,0,1,0,1,0]=>10
[1,1,0,1,0,0,1,1,0,0]=>7
[1,1,0,1,0,1,0,0,1,0]=>7
[1,1,0,1,0,1,0,1,0,0]=>7
[1,1,0,1,0,1,1,0,0,0]=>5
[1,1,0,1,1,0,0,0,1,0]=>7
[1,1,0,1,1,0,0,1,0,0]=>7
[1,1,0,1,1,0,1,0,0,0]=>5
[1,1,0,1,1,1,0,0,0,0]=>4
[1,1,1,0,0,0,1,0,1,0]=>7
[1,1,1,0,0,0,1,1,0,0]=>4
[1,1,1,0,0,1,0,0,1,0]=>7
[1,1,1,0,0,1,0,1,0,0]=>5
[1,1,1,0,0,1,1,0,0,0]=>4
[1,1,1,0,1,0,0,0,1,0]=>7
[1,1,1,0,1,0,0,1,0,0]=>5
[1,1,1,0,1,0,1,0,0,0]=>5
[1,1,1,0,1,1,0,0,0,0]=>4
[1,1,1,1,0,0,0,0,1,0]=>4
[1,1,1,1,0,0,0,1,0,0]=>4
[1,1,1,1,0,0,1,0,0,0]=>4
[1,1,1,1,0,1,0,0,0,0]=>4
[1,1,1,1,1,0,0,0,0,0]=>2
[1,0,1,0,1,0,1,0,1,0,1,0]=>16
[1,0,1,0,1,0,1,0,1,1,0,0]=>13
[1,0,1,0,1,0,1,1,0,0,1,0]=>13
[1,0,1,0,1,0,1,1,0,1,0,0]=>13
[1,0,1,0,1,0,1,1,1,0,0,0]=>10
[1,0,1,0,1,1,0,0,1,0,1,0]=>13
[1,0,1,0,1,1,0,0,1,1,0,0]=>10
[1,0,1,0,1,1,0,1,0,0,1,0]=>13
[1,0,1,0,1,1,0,1,0,1,0,0]=>10
[1,0,1,0,1,1,0,1,1,0,0,0]=>10
[1,0,1,0,1,1,1,0,0,0,1,0]=>10
[1,0,1,0,1,1,1,0,0,1,0,0]=>10
[1,0,1,0,1,1,1,0,1,0,0,0]=>10
[1,0,1,0,1,1,1,1,0,0,0,0]=>7
[1,0,1,1,0,0,1,0,1,0,1,0]=>13
[1,0,1,1,0,0,1,0,1,1,0,0]=>10
[1,0,1,1,0,0,1,1,0,0,1,0]=>10
[1,0,1,1,0,0,1,1,0,1,0,0]=>10
[1,0,1,1,0,0,1,1,1,0,0,0]=>7
[1,0,1,1,0,1,0,0,1,0,1,0]=>13
[1,0,1,1,0,1,0,0,1,1,0,0]=>10
[1,0,1,1,0,1,0,1,0,0,1,0]=>10
[1,0,1,1,0,1,0,1,0,1,0,0]=>10
[1,0,1,1,0,1,0,1,1,0,0,0]=>7
[1,0,1,1,0,1,1,0,0,0,1,0]=>10
[1,0,1,1,0,1,1,0,0,1,0,0]=>10
[1,0,1,1,0,1,1,0,1,0,0,0]=>7
[1,0,1,1,0,1,1,1,0,0,0,0]=>7
[1,0,1,1,1,0,0,0,1,0,1,0]=>10
[1,0,1,1,1,0,0,0,1,1,0,0]=>7
[1,0,1,1,1,0,0,1,0,0,1,0]=>10
[1,0,1,1,1,0,0,1,0,1,0,0]=>7
[1,0,1,1,1,0,0,1,1,0,0,0]=>7
[1,0,1,1,1,0,1,0,0,0,1,0]=>10
[1,0,1,1,1,0,1,0,0,1,0,0]=>7
[1,0,1,1,1,0,1,0,1,0,0,0]=>7
[1,0,1,1,1,0,1,1,0,0,0,0]=>7
[1,0,1,1,1,1,0,0,0,0,1,0]=>7
[1,0,1,1,1,1,0,0,0,1,0,0]=>7
[1,0,1,1,1,1,0,0,1,0,0,0]=>7
[1,0,1,1,1,1,0,1,0,0,0,0]=>7
[1,0,1,1,1,1,1,0,0,0,0,0]=>4
[1,1,0,0,1,0,1,0,1,0,1,0]=>13
[1,1,0,0,1,0,1,0,1,1,0,0]=>10
[1,1,0,0,1,0,1,1,0,0,1,0]=>10
[1,1,0,0,1,0,1,1,0,1,0,0]=>10
[1,1,0,0,1,0,1,1,1,0,0,0]=>7
[1,1,0,0,1,1,0,0,1,0,1,0]=>10
[1,1,0,0,1,1,0,0,1,1,0,0]=>7
[1,1,0,0,1,1,0,1,0,0,1,0]=>10
[1,1,0,0,1,1,0,1,0,1,0,0]=>7
[1,1,0,0,1,1,0,1,1,0,0,0]=>7
[1,1,0,0,1,1,1,0,0,0,1,0]=>7
[1,1,0,0,1,1,1,0,0,1,0,0]=>7
[1,1,0,0,1,1,1,0,1,0,0,0]=>7
[1,1,0,0,1,1,1,1,0,0,0,0]=>4
[1,1,0,1,0,0,1,0,1,0,1,0]=>13
[1,1,0,1,0,0,1,0,1,1,0,0]=>10
[1,1,0,1,0,0,1,1,0,0,1,0]=>10
[1,1,0,1,0,0,1,1,0,1,0,0]=>10
[1,1,0,1,0,0,1,1,1,0,0,0]=>7
[1,1,0,1,0,1,0,0,1,0,1,0]=>10
[1,1,0,1,0,1,0,0,1,1,0,0]=>7
[1,1,0,1,0,1,0,1,0,0,1,0]=>10
[1,1,0,1,0,1,0,1,0,1,0,0]=>8
[1,1,0,1,0,1,0,1,1,0,0,0]=>7
[1,1,0,1,0,1,1,0,0,0,1,0]=>7
[1,1,0,1,0,1,1,0,0,1,0,0]=>7
[1,1,0,1,0,1,1,0,1,0,0,0]=>7
[1,1,0,1,0,1,1,1,0,0,0,0]=>5
[1,1,0,1,1,0,0,0,1,0,1,0]=>10
[1,1,0,1,1,0,0,0,1,1,0,0]=>7
[1,1,0,1,1,0,0,1,0,0,1,0]=>10
[1,1,0,1,1,0,0,1,0,1,0,0]=>7
[1,1,0,1,1,0,0,1,1,0,0,0]=>7
[1,1,0,1,1,0,1,0,0,0,1,0]=>7
[1,1,0,1,1,0,1,0,0,1,0,0]=>7
[1,1,0,1,1,0,1,0,1,0,0,0]=>7
[1,1,0,1,1,0,1,1,0,0,0,0]=>5
[1,1,0,1,1,1,0,0,0,0,1,0]=>7
[1,1,0,1,1,1,0,0,0,1,0,0]=>7
[1,1,0,1,1,1,0,0,1,0,0,0]=>7
[1,1,0,1,1,1,0,1,0,0,0,0]=>5
[1,1,0,1,1,1,1,0,0,0,0,0]=>4
[1,1,1,0,0,0,1,0,1,0,1,0]=>10
[1,1,1,0,0,0,1,0,1,1,0,0]=>7
[1,1,1,0,0,0,1,1,0,0,1,0]=>7
[1,1,1,0,0,0,1,1,0,1,0,0]=>7
[1,1,1,0,0,0,1,1,1,0,0,0]=>4
[1,1,1,0,0,1,0,0,1,0,1,0]=>10
[1,1,1,0,0,1,0,0,1,1,0,0]=>7
[1,1,1,0,0,1,0,1,0,0,1,0]=>7
[1,1,1,0,0,1,0,1,0,1,0,0]=>7
[1,1,1,0,0,1,0,1,1,0,0,0]=>5
[1,1,1,0,0,1,1,0,0,0,1,0]=>7
[1,1,1,0,0,1,1,0,0,1,0,0]=>7
[1,1,1,0,0,1,1,0,1,0,0,0]=>5
[1,1,1,0,0,1,1,1,0,0,0,0]=>4
[1,1,1,0,1,0,0,0,1,0,1,0]=>10
[1,1,1,0,1,0,0,0,1,1,0,0]=>7
[1,1,1,0,1,0,0,1,0,0,1,0]=>7
[1,1,1,0,1,0,0,1,0,1,0,0]=>7
[1,1,1,0,1,0,0,1,1,0,0,0]=>5
[1,1,1,0,1,0,1,0,0,0,1,0]=>7
[1,1,1,0,1,0,1,0,0,1,0,0]=>7
[1,1,1,0,1,0,1,0,1,0,0,0]=>5
[1,1,1,0,1,0,1,1,0,0,0,0]=>5
[1,1,1,0,1,1,0,0,0,0,1,0]=>7
[1,1,1,0,1,1,0,0,0,1,0,0]=>7
[1,1,1,0,1,1,0,0,1,0,0,0]=>5
[1,1,1,0,1,1,0,1,0,0,0,0]=>5
[1,1,1,0,1,1,1,0,0,0,0,0]=>4
[1,1,1,1,0,0,0,0,1,0,1,0]=>7
[1,1,1,1,0,0,0,0,1,1,0,0]=>4
[1,1,1,1,0,0,0,1,0,0,1,0]=>7
[1,1,1,1,0,0,0,1,0,1,0,0]=>5
[1,1,1,1,0,0,0,1,1,0,0,0]=>4
[1,1,1,1,0,0,1,0,0,0,1,0]=>7
[1,1,1,1,0,0,1,0,0,1,0,0]=>5
[1,1,1,1,0,0,1,0,1,0,0,0]=>5
[1,1,1,1,0,0,1,1,0,0,0,0]=>4
[1,1,1,1,0,1,0,0,0,0,1,0]=>7
[1,1,1,1,0,1,0,0,0,1,0,0]=>5
[1,1,1,1,0,1,0,0,1,0,0,0]=>5
[1,1,1,1,0,1,0,1,0,0,0,0]=>5
[1,1,1,1,0,1,1,0,0,0,0,0]=>4
[1,1,1,1,1,0,0,0,0,0,1,0]=>4
[1,1,1,1,1,0,0,0,0,1,0,0]=>4
[1,1,1,1,1,0,0,0,1,0,0,0]=>4
[1,1,1,1,1,0,0,1,0,0,0,0]=>4
[1,1,1,1,1,0,1,0,0,0,0,0]=>4
[1,1,1,1,1,1,0,0,0,0,0,0]=>2
search for individual values
searching the database for the individual values of this statistic
/
search for generating function
searching the database for statistics with the same generating function
Description
Half the global dimension of the stable Auslander algebra of a sincere Nakayama algebra (with associated Dyck path).
Code
LoadPackage("qpa");
statistics := function(z)
local R, RR, W, i, T, TT, nn, WW, l;
R := BuildSequences(z);
R := reduce(R);
RR := Filtered(R, x -> gldim(x) < 33 and Minimum(x) >= z);
W := [];
for i in RR do
Append(W,[translatesinceretodyck([z,i])]);
od;
T := BuildSequences(z);
T := reduce(T);
TT := Filtered(T, x -> gldim(x) < 33 and Minimum(x) >= z);
nn := Size(TT);
WW := [];
for l in [1..nn] do
Append(WW, [[W[l],
GorensteinDimensionOfstableAusalgnak([NakayamaAlgebra(TT[l], GF(3))])/2]]);
od;
return WW;
end;
BuildSequences := function(n)
local all, range, len, new, seq, i, sel;
all := [[]]; # start with empty
range := [2 .. 2*n]; # valid entries
for len in [1 .. n - 1] do # build sequences in increasing length
new := [];
for seq in all do
# extend with all possible values based on condition
if len = 1 then
sel := [2 .. n + 1]; # otherwise last entry is too large
else
sel := Filtered(range, x -> x >= seq[len - 1] - 1
and x >= seq[1]
and x <= seq[1] + n - len + 1);
fi;
for i in sel do
Add(new, Concatenation(seq, [i]));
od;
od;
all := new;
od;
# Can we add the last entry while remaining valid?
return List(all, x -> Concatenation(x, [x[1] + 1]));
end;
rot := function(x)
local n, a;
a := x[1];
n := Length(x);
x := x{[2 .. n]};
Add(x, a);
return x;
end;
canon := function(x)
local x0, x_min;
x0 := ShallowCopy(x);
x_min := ShallowCopy(x);
while true do
x := rot(x);
if x = x0 then
break;
fi;
if x < x_min then
x_min := ShallowCopy(x);
fi;
od;
return x_min;
end;
reduce := L -> Set(List(L, canon));
DeclareOperation("gldim", [IsList]);
InstallMethod(gldim,
"for a representation of a quiver",
[IsList],
0,
function(L)
local list, n, i, j, f, temp, temp2, temp3, u;
list := L;
n := Size(L);
f := function(x, y)
local c, z;
c := (x + y) mod n;
if c = 0 then
c := n;
fi;
z := (x + 1) mod n;
if z = 0 then
z := n;
fi;
return([c, list[z] - y]);
end;
temp2 := [];
for i in [0 .. n - 1] do
Append(temp2, [[i, 1]]);
od;
temp := [];
for i in [0 .. n - 1] do
u := temp2[i + 1];
Append(temp, [[u]]);
od;
for i in [0 .. n - 1] do
j := 1;
while j < 2*n + 3 do
Append(temp[i + 1],
[f(temp[i + 1][j][1], temp[i + 1][j][2])]);
j := j + 1;
od;
od;
temp3 := [];
for i in [1 .. n] do
temp2 := [];
for j in [1 .. (2*n + 3)] do
if temp[i][j][2] = 0 then
Append(temp2, [j]);
fi;
od;
if Size(temp2) > 0 then
u := Minimum(temp2);
Append(temp3, [u]);
else
temp3 := "inf";
break;
fi;
od;
if IsString(temp3) = false then
temp3 := (Maximum(temp3)) - 2;
fi;
return(temp3);
end);
DeclareOperation("translatesinceretodyck", [IsList]);
InstallMethod(translatesinceretodyck,
"for a representation of a quiver",
[IsList],
0,
function(L)
local z, U, UU;
z := L[1];
U := L[2];
Remove(U, 1);
UU := U - (z - 1);
Append(UU, [1]);
return(UU);
end);
DeclareOperation("injdimstablehomofnonprojindecnak", [IsList]);
InstallMethod(injdimstablehomofnonprojindecnak,
"for a representation of a quiver",
[IsList],
0,
function(LIST)
local A, M, n, P, N;
A := LIST[1];
M := LIST[2];
n := Size(SimpleModules(A));
P := Source(ProjectiveCover(M));
N := NthSyzygy(M, 1);
if InjDimensionOfModule(N, 2*n) <= Minimum(InjDimensionOfModule(M, 2*n),
InjDimensionOfModule(P, 2*n))
then return(3*InjDimensionOfModule(N, 2*n) - 1);
else if InjDimensionOfModule(P, 2*n) <= Minimum(InjDimensionOfModule(M, 2*n),
InjDimensionOfModule(N, 2*n))
then return(3*InjDimensionOfModule(P, 2*n));
else return(3*InjDimensionOfModule(M, 2*n) + 1);
fi;
fi;
end);
DeclareOperation("domdimstablehomofnonprojindecnak", [IsList]);
InstallMethod(domdimstablehomofnonprojindecnak,
"for a representation of a quiver",
[IsList],
0,
function(LIST)
local A, M, n, P, N;
A := LIST[1];
M := LIST[2];
n := Size(SimpleModules(A));
P := Source(ProjectiveCover(M));
N := NthSyzygy(M, 1);
if DominantDimensionOfModule(N, 2*n) <= Minimum(DominantDimensionOfModule(M, 2*n),
DominantDimensionOfModule(P, 2*n))
then return(3*DominantDimensionOfModule(N, 2*n));
else if DominantDimensionOfModule(P, 2*n) <= Minimum(DominantDimensionOfModule(M, 2*n),
DominantDimensionOfModule(N, 2*n))
then return(3*DominantDimensionOfModule(P, 2*n) + 1);
else return(3*DominantDimensionOfModule(M, 2*n) + 2);
fi;
fi;
end);
DeclareOperation("NthRadical", [IsList]);
InstallMethod(NthRadical,
"for a representation of a quiver",
[IsList],
0,
function(LIST)
local M, n, f, N, i, h;
M := LIST[1];
n := LIST[2];
if n = 0 then
return(IdentityMapping(M));
else
f := RadicalOfModuleInclusion(M);
N := Source(f);
for i in [1 .. n - 1] do
h := RadicalOfModuleInclusion(N);
N := Source(h);
f := \*(h, f);
od;
return(f);
fi;
end);
DeclareOperation("ARQuiverNak", [IsList]);
InstallMethod(ARQuiverNak,
"for a representation of a quiver",
[IsList],
0,
function(LIST)
local A, i, j, injA, UU;
A := LIST[1];
injA := IndecInjectiveModules(A);
UU := [];
for i in injA do
for j in [0 .. Dimension(i) - 1] do
Append(UU, [Source(NthRadical([i, j]))]);
od;
od;
return(UU);
end);
DeclareOperation("GorensteinDimensionOfstableAusalgnak", [IsList]);
InstallMethod(GorensteinDimensionOfstableAusalgnak,
"for a representation of a quiver",
[IsList],
0,
function(LIST)
local A, LL, LL2, W, i;
A := LIST[1];
LL := ARQuiverNak([A]);
LL2 := Filtered(LL, x -> IsProjectiveModule(x) = false
and DominantDimensionOfModule(DualOfModule(x), 33) = 0);
W := [];
for i in LL2 do
Append(W, [injdimstablehomofnonprojindecnak([A, i])]);
od;
return(Maximum(W));
end);
Created
Jul 25, 2025 at 16:33 by Martin Rubey
Updated
Jul 25, 2025 at 16:33 by Martin Rubey
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!