Identifier
Values
=>
Cc0020;cc-rep-0 Cc0020;cc-rep
([],1)=>([],2)=>0 ([],2)=>([],3)=>0 ([(0,1)],2)=>([(1,2)],3)=>1 ([],3)=>([],4)=>0 ([(1,2)],3)=>([(2,3)],4)=>1 ([(0,2),(1,2)],3)=>([(1,3),(2,3)],4)=>1 ([(0,1),(0,2),(1,2)],3)=>([(1,2),(1,3),(2,3)],4)=>2 ([],4)=>([],5)=>0 ([(2,3)],4)=>([(3,4)],5)=>1 ([(1,3),(2,3)],4)=>([(2,4),(3,4)],5)=>1 ([(0,3),(1,3),(2,3)],4)=>([(1,4),(2,4),(3,4)],5)=>2 ([(0,3),(1,2)],4)=>([(1,4),(2,3)],5)=>1 ([(0,3),(1,2),(2,3)],4)=>([(1,4),(2,3),(3,4)],5)=>1 ([(1,2),(1,3),(2,3)],4)=>([(2,3),(2,4),(3,4)],5)=>2 ([(0,3),(1,2),(1,3),(2,3)],4)=>([(1,4),(2,3),(2,4),(3,4)],5)=>2 ([(0,2),(0,3),(1,2),(1,3)],4)=>([(1,3),(1,4),(2,3),(2,4)],5)=>2 ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)=>([(1,3),(1,4),(2,3),(2,4),(3,4)],5)=>2 ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)=>([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)=>3 ([],5)=>([],6)=>0 ([(3,4)],5)=>([(4,5)],6)=>1 ([(2,4),(3,4)],5)=>([(3,5),(4,5)],6)=>1 ([(1,4),(2,4),(3,4)],5)=>([(2,5),(3,5),(4,5)],6)=>2 ([(0,4),(1,4),(2,4),(3,4)],5)=>([(1,5),(2,5),(3,5),(4,5)],6)=>2 ([(1,4),(2,3)],5)=>([(2,5),(3,4)],6)=>1 ([(1,4),(2,3),(3,4)],5)=>([(2,5),(3,4),(4,5)],6)=>1 ([(0,1),(2,4),(3,4)],5)=>([(1,2),(3,5),(4,5)],6)=>1 ([(2,3),(2,4),(3,4)],5)=>([(3,4),(3,5),(4,5)],6)=>2 ([(0,4),(1,4),(2,3),(3,4)],5)=>([(1,5),(2,5),(3,4),(4,5)],6)=>2 ([(1,4),(2,3),(2,4),(3,4)],5)=>([(2,5),(3,4),(3,5),(4,5)],6)=>2 ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)=>([(1,5),(2,5),(3,4),(3,5),(4,5)],6)=>2 ([(1,3),(1,4),(2,3),(2,4)],5)=>([(2,4),(2,5),(3,4),(3,5)],6)=>2 ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)=>([(1,5),(2,3),(2,4),(3,5),(4,5)],6)=>2 ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)=>([(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>2 ([(0,4),(1,3),(2,3),(2,4),(3,4)],5)=>([(1,5),(2,4),(3,4),(3,5),(4,5)],6)=>2 ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)=>([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>2 ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)=>([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)=>3 ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)=>([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>3 ([(0,4),(1,3),(2,3),(2,4)],5)=>([(1,5),(2,4),(3,4),(3,5)],6)=>1 ([(0,1),(2,3),(2,4),(3,4)],5)=>([(1,2),(3,4),(3,5),(4,5)],6)=>2 ([(0,3),(1,2),(1,4),(2,4),(3,4)],5)=>([(1,4),(2,3),(2,5),(3,5),(4,5)],6)=>2 ([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)=>([(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)=>2 ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)=>([(1,4),(1,5),(2,3),(2,5),(3,4)],6)=>2 ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)=>([(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)=>2 ([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)=>([(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)=>2 ([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)=>([(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)=>2 ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)=>([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>3 ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)=>([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>3 ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)=>([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>3 ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)=>([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)=>3 ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)=>([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)=>3 ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)=>([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>3 ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)=>([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>4 ([],6)=>([],7)=>0 ([(4,5)],6)=>([(5,6)],7)=>1 ([(3,5),(4,5)],6)=>([(4,6),(5,6)],7)=>1 ([(2,5),(3,5),(4,5)],6)=>([(3,6),(4,6),(5,6)],7)=>2 ([(1,5),(2,5),(3,5),(4,5)],6)=>([(2,6),(3,6),(4,6),(5,6)],7)=>2 ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)=>([(1,6),(2,6),(3,6),(4,6),(5,6)],7)=>2 ([(2,5),(3,4)],6)=>([(3,6),(4,5)],7)=>1 ([(2,5),(3,4),(4,5)],6)=>([(3,6),(4,5),(5,6)],7)=>1 ([(1,2),(3,5),(4,5)],6)=>([(2,3),(4,6),(5,6)],7)=>1 ([(3,4),(3,5),(4,5)],6)=>([(4,5),(4,6),(5,6)],7)=>2 ([(1,5),(2,5),(3,4),(4,5)],6)=>([(2,6),(3,6),(4,5),(5,6)],7)=>2 ([(0,1),(2,5),(3,5),(4,5)],6)=>([(1,2),(3,6),(4,6),(5,6)],7)=>2 ([(2,5),(3,4),(3,5),(4,5)],6)=>([(3,6),(4,5),(4,6),(5,6)],7)=>2 ([(0,5),(1,5),(2,5),(3,4),(4,5)],6)=>([(1,6),(2,6),(3,6),(4,5),(5,6)],7)=>2 ([(1,5),(2,5),(3,4),(3,5),(4,5)],6)=>([(2,6),(3,6),(4,5),(4,6),(5,6)],7)=>2 ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)=>([(1,6),(2,6),(3,6),(4,5),(4,6),(5,6)],7)=>2 ([(2,4),(2,5),(3,4),(3,5)],6)=>([(3,5),(3,6),(4,5),(4,6)],7)=>2 ([(0,5),(1,5),(2,4),(3,4)],6)=>([(1,6),(2,6),(3,5),(4,5)],7)=>1 ([(1,5),(2,3),(2,4),(3,5),(4,5)],6)=>([(2,6),(3,4),(3,5),(4,6),(5,6)],7)=>2 ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)=>([(1,6),(2,6),(3,4),(4,5),(5,6)],7)=>2 ([(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>([(3,5),(3,6),(4,5),(4,6),(5,6)],7)=>2 ([(1,5),(2,4),(3,4),(3,5),(4,5)],6)=>([(2,6),(3,5),(4,5),(4,6),(5,6)],7)=>2 ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)=>([(1,6),(2,6),(3,5),(4,5),(5,6)],7)=>2 ([(0,5),(1,5),(2,3),(2,4),(3,5),(4,5)],6)=>([(1,6),(2,6),(3,4),(3,5),(4,6),(5,6)],7)=>2 ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>([(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)=>2 ([(0,5),(1,5),(2,4),(3,4),(3,5),(4,5)],6)=>([(1,6),(2,6),(3,5),(4,5),(4,6),(5,6)],7)=>2 ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>([(1,6),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)=>2 ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)=>([(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7)=>3 ([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)=>([(1,6),(2,5),(3,5),(3,6),(4,5),(4,6)],7)=>2 ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)=>([(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7)=>3 ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>([(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)=>3 ([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>([(1,6),(2,5),(3,5),(3,6),(4,5),(4,6),(5,6)],7)=>2 ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>([(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)=>3 ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)=>([(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7)=>3 ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>([(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)=>3 ([(0,5),(1,4),(2,3)],6)=>([(1,6),(2,5),(3,4)],7)=>1 ([(1,5),(2,4),(3,4),(3,5)],6)=>([(2,6),(3,5),(4,5),(4,6)],7)=>1 ([(0,1),(2,5),(3,4),(4,5)],6)=>([(1,2),(3,6),(4,5),(5,6)],7)=>1 ([(1,2),(3,4),(3,5),(4,5)],6)=>([(2,3),(4,5),(4,6),(5,6)],7)=>2 ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)=>([(1,6),(2,5),(3,4),(4,6),(5,6)],7)=>2 ([(1,4),(2,3),(2,5),(3,5),(4,5)],6)=>([(2,5),(3,4),(3,6),(4,6),(5,6)],7)=>2 ([(0,1),(2,5),(3,4),(3,5),(4,5)],6)=>([(1,2),(3,6),(4,5),(4,6),(5,6)],7)=>2 ([(0,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)=>([(1,5),(2,6),(3,4),(3,6),(4,6),(5,6)],7)=>2 ([(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)=>([(2,5),(2,6),(3,4),(3,6),(4,6),(5,6)],7)=>2 ([(0,5),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)=>([(1,6),(2,5),(2,6),(3,4),(3,6),(4,6),(5,6)],7)=>2 ([(1,4),(1,5),(2,3),(2,5),(3,4)],6)=>([(2,5),(2,6),(3,4),(3,6),(4,5)],7)=>2 ([(0,5),(1,4),(2,3),(2,4),(3,5),(4,5)],6)=>([(1,6),(2,5),(3,4),(3,5),(4,6),(5,6)],7)=>2 ([(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)=>([(2,3),(2,6),(3,5),(4,5),(4,6),(5,6)],7)=>2 ([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6)=>([(1,6),(2,3),(2,5),(3,4),(4,6),(5,6)],7)=>2 ([(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)=>([(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7)=>2 ([(0,5),(1,4),(2,3),(3,4),(3,5),(4,5)],6)=>([(1,6),(2,5),(3,4),(4,5),(4,6),(5,6)],7)=>2 ([(0,5),(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)=>([(1,6),(2,3),(2,6),(3,5),(4,5),(4,6),(5,6)],7)=>2 ([(0,5),(1,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>([(1,6),(2,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)=>2 ([(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)=>([(2,5),(2,6),(3,4),(3,6),(4,5),(4,6),(5,6)],7)=>2 ([(0,5),(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)=>([(1,6),(2,5),(2,6),(3,4),(3,6),(4,5),(4,6),(5,6)],7)=>2 ([(0,5),(1,4),(2,3),(2,4),(3,5)],6)=>([(1,6),(2,5),(3,4),(3,5),(4,6)],7)=>1 ([(0,1),(2,4),(2,5),(3,4),(3,5)],6)=>([(1,2),(3,5),(3,6),(4,5),(4,6)],7)=>2 ([(0,5),(1,5),(2,3),(2,4),(3,4)],6)=>([(1,6),(2,6),(3,4),(3,5),(4,5)],7)=>2 ([(0,4),(1,2),(1,3),(2,5),(3,5),(4,5)],6)=>([(1,5),(2,3),(2,4),(3,6),(4,6),(5,6)],7)=>2 ([(0,4),(1,2),(1,5),(2,5),(3,4),(3,5)],6)=>([(1,5),(2,3),(2,6),(3,6),(4,5),(4,6)],7)=>2 ([(0,4),(1,2),(2,5),(3,4),(3,5),(4,5)],6)=>([(1,5),(2,3),(3,6),(4,5),(4,6),(5,6)],7)=>2 ([(0,1),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>([(1,2),(3,5),(3,6),(4,5),(4,6),(5,6)],7)=>2 ([(0,4),(1,4),(2,3),(2,5),(3,5),(4,5)],6)=>([(1,5),(2,5),(3,4),(3,6),(4,6),(5,6)],7)=>2 ([(0,3),(0,4),(1,2),(1,5),(2,5),(3,5),(4,5)],6)=>([(1,4),(1,5),(2,3),(2,6),(3,6),(4,6),(5,6)],7)=>2 ([(0,3),(1,4),(1,5),(2,4),(2,5),(3,5),(4,5)],6)=>([(1,4),(2,5),(2,6),(3,5),(3,6),(4,6),(5,6)],7)=>2 ([(0,4),(1,2),(1,5),(2,5),(3,4),(3,5),(4,5)],6)=>([(1,5),(2,3),(2,6),(3,6),(4,5),(4,6),(5,6)],7)=>2 ([(0,1),(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>([(1,2),(1,6),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)=>2 ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>([(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)=>3 ([(0,5),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)=>([(1,6),(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7)=>2 ([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>([(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)=>3 ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>([(1,6),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)=>3 ([(0,1),(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)=>([(1,2),(1,6),(2,5),(3,5),(3,6),(4,5),(4,6)],7)=>3 ([(0,3),(0,5),(1,3),(1,5),(2,4),(2,5),(3,4),(4,5)],6)=>([(1,4),(1,6),(2,4),(2,6),(3,5),(3,6),(4,5),(5,6)],7)=>3 ([(0,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>([(1,4),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)=>3 ([(0,5),(1,4),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)=>([(1,6),(2,5),(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7)=>2 ([(0,1),(0,5),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>([(1,2),(1,6),(2,5),(3,5),(3,6),(4,5),(4,6),(5,6)],7)=>3 ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)=>([(1,5),(1,6),(2,5),(2,6),(3,4),(3,6),(4,5),(4,6),(5,6)],7)=>3 ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)=>([(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6)],7)=>3 ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>([(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)=>3 ([(0,5),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>([(1,6),(2,5),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)=>3 ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>([(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)=>3 ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)=>([(1,5),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6)],7)=>3 ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>([(1,5),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)=>3 ([(0,5),(1,3),(1,4),(2,3),(2,4),(3,5),(4,5)],6)=>([(1,6),(2,4),(2,5),(3,4),(3,5),(4,6),(5,6)],7)=>3 ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)=>([(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6)],7)=>3 ([(0,5),(1,3),(1,4),(2,3),(2,4),(2,5),(3,5),(4,5)],6)=>([(1,6),(2,4),(2,5),(3,4),(3,5),(3,6),(4,6),(5,6)],7)=>3 ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)=>([(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7)=>3 ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)=>([(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7)=>3 ([(0,4),(0,5),(1,2),(1,3),(2,5),(3,4)],6)=>([(1,5),(1,6),(2,3),(2,4),(3,6),(4,5)],7)=>2 ([(0,3),(0,5),(1,2),(1,5),(2,4),(3,4),(4,5)],6)=>([(1,4),(1,6),(2,3),(2,6),(3,5),(4,5),(5,6)],7)=>2 ([(0,5),(1,2),(1,4),(2,3),(3,4),(3,5),(4,5)],6)=>([(1,6),(2,3),(2,5),(3,4),(4,5),(4,6),(5,6)],7)=>2 ([(0,1),(0,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)=>([(1,2),(1,3),(2,6),(3,5),(4,5),(4,6),(5,6)],7)=>2 ([(0,5),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5)],6)=>([(1,6),(2,5),(3,4),(3,5),(3,6),(4,5),(4,6)],7)=>2 ([(0,5),(1,3),(1,4),(2,4),(2,5),(3,4),(3,5)],6)=>([(1,6),(2,4),(2,5),(3,5),(3,6),(4,5),(4,6)],7)=>2 ([(0,1),(0,5),(1,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>([(1,2),(1,6),(2,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)=>2 ([(0,4),(1,3),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)=>([(1,5),(2,4),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7)=>2 ([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(3,5),(4,5)],6)=>([(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,6),(5,6)],7)=>2 ([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)=>([(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7)=>2 ([(0,4),(0,5),(1,2),(1,3),(2,4),(2,5),(3,4),(3,5)],6)=>([(1,5),(1,6),(2,3),(2,4),(3,5),(3,6),(4,5),(4,6)],7)=>3 ([(0,5),(1,2),(1,3),(1,4),(2,3),(2,4),(3,5),(4,5)],6)=>([(1,6),(2,3),(2,4),(2,5),(3,4),(3,5),(4,6),(5,6)],7)=>3 ([(0,4),(0,5),(1,2),(1,3),(1,5),(2,4),(2,5),(3,4),(3,5)],6)=>([(1,5),(1,6),(2,3),(2,4),(2,6),(3,5),(3,6),(4,5),(4,6)],7)=>3 ([(0,4),(0,5),(1,2),(1,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>([(1,5),(1,6),(2,3),(2,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)=>3 ([(0,4),(0,5),(1,2),(1,3),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>([(1,5),(1,6),(2,3),(2,4),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)=>3 ([(0,5),(1,2),(1,3),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>([(1,6),(2,3),(2,4),(2,5),(3,5),(3,6),(4,5),(4,6),(5,6)],7)=>3 ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>([(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)=>3 ([(0,5),(1,3),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>([(1,6),(2,4),(2,5),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)=>3 ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>([(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)=>3 ([(0,4),(0,5),(1,2),(1,4),(2,3),(2,5),(3,4),(3,5),(4,5)],6)=>([(1,5),(1,6),(2,3),(2,5),(3,4),(3,6),(4,5),(4,6),(5,6)],7)=>3 ([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)=>([(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7)=>3 ([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>([(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)=>3 ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>([(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)=>3 ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5)],6)=>([(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6)],7)=>4 ([(0,1),(0,2),(0,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>([(1,2),(1,3),(1,4),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)=>4 ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)=>([(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6)],7)=>3 ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)=>([(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7)=>4 ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>([(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)=>4 ([(0,4),(0,5),(1,2),(1,3),(2,3),(4,5)],6)=>([(1,5),(1,6),(2,3),(2,4),(3,4),(5,6)],7)=>2 ([(0,2),(1,4),(1,5),(2,3),(3,4),(3,5),(4,5)],6)=>([(1,3),(2,5),(2,6),(3,4),(4,5),(4,6),(5,6)],7)=>2 ([(0,1),(0,5),(1,5),(2,3),(2,4),(3,4),(4,5)],6)=>([(1,2),(1,6),(2,6),(3,4),(3,5),(4,5),(5,6)],7)=>2 ([(0,1),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>([(1,2),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)=>3 ([(0,1),(0,5),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)=>([(1,2),(1,6),(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7)=>2 ([(0,1),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>([(1,2),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)=>3 ([(0,1),(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>([(1,2),(1,6),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)=>3 ([(0,4),(0,5),(1,2),(1,3),(2,3),(2,5),(3,4),(4,5)],6)=>([(1,5),(1,6),(2,3),(2,4),(3,4),(3,6),(4,5),(5,6)],7)=>2 ([(0,4),(0,5),(1,2),(1,3),(1,4),(2,3),(2,5),(3,5),(4,5)],6)=>([(1,5),(1,6),(2,3),(2,4),(2,5),(3,4),(3,6),(4,6),(5,6)],7)=>3 ([(0,3),(1,2),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>([(1,4),(2,3),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)=>3 ([(0,3),(0,5),(1,2),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>([(1,4),(1,6),(2,3),(2,5),(3,5),(3,6),(4,5),(4,6),(5,6)],7)=>2 ([(0,1),(0,5),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>([(1,2),(1,6),(2,5),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)=>3 ([(0,3),(0,5),(1,2),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>([(1,4),(1,6),(2,3),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)=>3 ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)=>([(1,4),(1,5),(1,6),(2,3),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7)=>3 ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>([(1,4),(1,5),(1,6),(2,3),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)=>3 ([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4)],6)=>([(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(3,6),(4,5)],7)=>3 ([(0,1),(0,5),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5)],6)=>([(1,2),(1,6),(2,5),(3,4),(3,5),(3,6),(4,5),(4,6)],7)=>3 ([(0,3),(0,4),(1,2),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)=>([(1,4),(1,5),(2,3),(2,5),(2,6),(3,4),(3,6),(4,6),(5,6)],7)=>3 ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)=>([(1,4),(1,5),(1,6),(2,3),(2,5),(2,6),(3,4),(3,6),(4,6),(5,6)],7)=>3 ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,5),(3,4)],6)=>([(1,4),(1,5),(1,6),(2,3),(2,5),(2,6),(3,4),(3,6),(4,5)],7)=>3 ([(0,1),(0,3),(0,5),(1,2),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>([(1,2),(1,4),(1,6),(2,3),(2,5),(3,5),(3,6),(4,5),(4,6),(5,6)],7)=>3 ([(0,4),(0,5),(1,2),(1,3),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)=>([(1,5),(1,6),(2,3),(2,4),(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7)=>3 ([(0,1),(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>([(1,2),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)=>3 ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>([(1,4),(1,5),(1,6),(2,3),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)=>3 ([(0,2),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)=>([(1,3),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7)=>3 ([(0,4),(0,5),(1,2),(1,3),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>([(1,5),(1,6),(2,3),(2,4),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)=>3 ([(0,4),(0,5),(1,2),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>([(1,5),(1,6),(2,3),(2,4),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)=>3 ([(0,5),(1,2),(1,3),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>([(1,6),(2,3),(2,4),(2,5),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)=>3 ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>([(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)=>4 ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>([(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)=>4 ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>([(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)=>4 ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>([(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)=>4 ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)=>([(1,4),(1,5),(1,6),(2,3),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6)],7)=>3 ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)=>([(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6)],7)=>4 ([(0,1),(0,4),(0,5),(1,2),(1,3),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>([(1,2),(1,5),(1,6),(2,3),(2,4),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)=>4 ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)=>([(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7)=>4 ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)=>([(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7)=>4 ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>([(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)=>4 ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>([(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)=>4
search for individual values
searching the database for the individual values of this statistic
/ search for generating function
searching the database for statistics with the same generating function
click to show known generating functions       
Description
The proper pathwidth of a graph.
The proper pathwidth $\operatorname{ppw}(G)$ was introduced in [1] as the minimum width of a proper-path-decomposition. Barioli et al. [2] showed that if $G$ has at least one edge, then $\operatorname{ppw}(G)$ is the minimum $k$ for which $G$ is a minor of the Cartesian product $K_k \square P$ of a complete graph on $k$ vertices with a path; and further that $\operatorname{ppw}(G)$ is the minor monotone floor $\lfloor \operatorname{Z} \rfloor(G) := \min\{\operatorname{Z}(H) \mid G \preceq H\}$ of the zero forcing number $\operatorname{Z}(G)$. It can be shown [3, Corollary 9.130] that only the spanning supergraphs need to be considered for $H$ in this definition, i.e. $\lfloor \operatorname{Z} \rfloor(G) = \min\{\operatorname{Z}(H) \mid G \le H,\; V(H) = V(G)\}$.
The minimum degree $\delta$, treewidth $\operatorname{tw}$, and pathwidth $\operatorname{pw}$ satisfy
$$\delta \le \operatorname{tw} \le \operatorname{pw} \le \operatorname{ppw} = \lfloor \operatorname{Z} \rfloor \le \operatorname{pw} + 1.$$
Note that [4] uses a different notion of proper pathwidth, which is equal to bandwidth.
Map
vertex addition
Description
Adds a disconnected vertex to a graph.