*****************************************************************************
*       www.FindStat.org - The Combinatorial Statistic Finder               *
*                                                                           *
*       Copyright (C) 2019 The FindStatCrew <info@findstat.org>             *
*                                                                           *
*    This information is distributed in the hope that it will be useful,    *
*    but WITHOUT ANY WARRANTY; without even the implied warranty of         *
*    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.                   *
*****************************************************************************

-----------------------------------------------------------------------------
Statistic identifier: St001938

-----------------------------------------------------------------------------
Collection: Integer partitions

-----------------------------------------------------------------------------
Description: The number of transitive monotone factorizations of genus zero of a permutation of given cycle type.

Let $\pi$ be a permutation of cycle type $\mu$.  A transitive monotone factorisation of genus zero of a permutation $\pi\in\mathfrak S_n$ is a tuple of $r = n + \ell(\mu) - 2$ transpositions
$$
(a_1, b_1),\dots,(a_r, b_r)
$$
with $b_1 \leq \dots \leq b_r$ and $a_i < b_i$ for all $i$, such that the subgroup of $\mathfrak S_n$ generated by the transpositions acts transitively on $\{1,\dots,n\}$ and hose product, in this order, is $\pi$.

-----------------------------------------------------------------------------
References: [1]   Goulden, I. P., Guay-Paquet, M., Novak, J. Monotone Hurwitz numbers in genus zero [[MathSciNet:3095005]]

-----------------------------------------------------------------------------
Code:
def statistic(mu):
    return Hurwitz(mu) / mu.conjugacy_class_size()

def Hurwitz(alpha):
    alpha = Partition(alpha)
    d = alpha.size()
    r = factorial(d) / prod(factorial(m) for m in alpha.to_exp()) * prod(binomial(2*p, p) for p in alpha)
    k = len(alpha) - 3
    if k >= 0:
        return r * rising_factorial(2*d + 1, k)
    return r / rising_factorial(2*d + k + 1, -k)


-----------------------------------------------------------------------------
Statistic values:

[1]               => 1
[2]               => 1
[1,1]             => 1
[3]               => 2
[2,1]             => 4
[1,1,1]           => 8
[4]               => 5
[3,1]             => 15
[2,2]             => 18
[2,1,1]           => 48
[1,1,1,1]         => 144
[5]               => 14
[4,1]             => 56
[3,2]             => 72
[3,1,1]           => 240
[2,2,1]           => 288
[2,1,1,1]         => 1056
[1,1,1,1,1]       => 4224
[6]               => 42
[5,1]             => 210
[4,2]             => 280
[4,1,1]           => 1120
[3,3]             => 300
[3,2,1]           => 1440
[3,1,1,1]         => 6240
[2,2,2]           => 1728
[2,2,1,1]         => 7488
[2,1,1,1,1]       => 34944
[1,1,1,1,1,1]     => 174720
[7]               => 132
[6,1]             => 792
[5,2]             => 1080
[5,1,1]           => 5040
[4,3]             => 1200
[4,2,1]           => 6720
[4,1,1,1]         => 33600
[3,3,1]           => 7200
[3,2,2]           => 8640
[3,2,1,1]         => 43200
[3,1,1,1,1]       => 230400
[2,2,2,1]         => 51840
[2,2,1,1,1]       => 276480
[2,1,1,1,1,1]     => 1566720
[1,1,1,1,1,1,1]   => 9400320
[8]               => 429
[7,1]             => 3003
[6,2]             => 4158
[6,1,1]           => 22176
[5,3]             => 4725
[5,2,1]           => 30240
[5,1,1,1]         => 171360
[4,4]             => 4900
[4,3,1]           => 33600
[4,2,2]           => 40320
[4,2,1,1]         => 228480
[4,1,1,1,1]       => 1370880
[3,3,2]           => 43200
[3,3,1,1]         => 244800
[3,2,2,1]         => 293760
[3,2,1,1,1]       => 1762560
[3,1,1,1,1,1]     => 11162880
[2,2,2,2]         => 352512
[2,2,2,1,1]       => 2115072
[2,2,1,1,1,1]     => 13395456
[2,1,1,1,1,1,1]   => 89303040
[1,1,1,1,1,1,1,1] => 625121280
[9]               => 1430
[8,1]             => 11440
[7,2]             => 16016
[7,1,1]           => 96096
[6,3]             => 18480
[6,2,1]           => 133056
[6,1,1,1]         => 842688
[5,4]             => 19600
[5,3,1]           => 151200
[5,2,2]           => 181440
[5,2,1,1]         => 1149120
[5,1,1,1,1]       => 7660800
[4,4,1]           => 156800
[4,3,2]           => 201600
[4,3,1,1]         => 1276800
[4,2,2,1]         => 1532160
[4,2,1,1,1]       => 10214400
[4,1,1,1,1,1]     => 71500800
[3,3,3]           => 216000
[3,3,2,1]         => 1641600
[3,3,1,1,1]       => 10944000
[3,2,2,2]         => 1969920
[3,2,2,1,1]       => 13132800
[3,2,1,1,1,1]     => 91929600
[3,1,1,1,1,1,1]   => 674150400
[2,2,2,2,1]       => 15759360
[2,2,2,1,1,1]     => 110315520
[2,2,1,1,1,1,1]   => 808980480
[10]              => 4862
[9,1]             => 43758
[8,2]             => 61776
[8,1,1]           => 411840
[7,3]             => 72072
[7,2,1]           => 576576
[7,1,1,1]         => 4036032
[6,4]             => 77616
[6,3,1]           => 665280
[6,2,2]           => 798336
[6,2,1,1]         => 5588352
[6,1,1,1,1]       => 40981248
[5,5]             => 79380
[5,4,1]           => 705600
[5,3,2]           => 907200
[5,3,1,1]         => 6350400
[5,2,2,1]         => 7620480
[5,2,1,1,1]       => 55883520
[5,1,1,1,1,1]     => 428440320
[4,4,2]           => 940800
[4,4,1,1]         => 6585600
[4,3,3]           => 1008000
[4,3,2,1]         => 8467200
[4,3,1,1,1]       => 62092800
[4,2,2,2]         => 10160640
[4,2,2,1,1]       => 74511360
[4,2,1,1,1,1]     => 571253760
[3,3,3,1]         => 9072000
[3,3,2,2]         => 10886400
[3,3,2,1,1]       => 79833600
[3,3,1,1,1,1]     => 612057600
[3,2,2,2,1]       => 95800320
[3,2,2,1,1,1]     => 734469120
[2,2,2,2,2]       => 114960384
[2,2,2,2,1,1]     => 881362944
[11]              => 16796
[10,1]            => 167960
[9,2]             => 238680
[9,1,1]           => 1750320
[8,3]             => 280800
[8,2,1]           => 2471040
[8,1,1,1]         => 18944640
[7,4]             => 305760
[7,3,1]           => 2882880
[7,2,2]           => 3459456
[7,2,1,1]         => 26522496
[7,1,1,1,1]       => 212179968
[6,5]             => 317520
[6,4,1]           => 3104640
[6,3,2]           => 3991680
[6,3,1,1]         => 30602880
[6,2,2,1]         => 36723456
[6,2,1,1,1]       => 293787648
[5,5,1]           => 3175200
[5,4,2]           => 4233600
[5,4,1,1]         => 32457600
[5,3,3]           => 4536000
[5,3,2,1]         => 41731200
[5,3,1,1,1]       => 333849600
[5,2,2,2]         => 50077440
[5,2,2,1,1]       => 400619520
[4,4,3]           => 4704000
[4,4,2,1]         => 43276800
[4,4,1,1,1]       => 346214400
[4,3,3,1]         => 46368000
[4,3,2,2]         => 55641600
[4,3,2,1,1]       => 445132800
[4,2,2,2,1]       => 534159360
[3,3,3,2]         => 59616000
[3,3,3,1,1]       => 476928000
[3,3,2,2,1]       => 572313600
[3,2,2,2,2]       => 686776320
[12]              => 58786
[11,1]            => 646646
[10,2]            => 923780
[10,1,1]          => 7390240
[9,3]             => 1093950
[9,2,1]           => 10501920
[9,1,1,1]         => 87516000
[8,4]             => 1201200
[8,3,1]           => 12355200
[8,2,2]           => 14826240
[8,2,1,1]         => 123552000
[8,1,1,1,1]       => 1070784000
[7,5]             => 1261260
[7,4,1]           => 13453440
[7,3,2]           => 17297280
[7,3,1,1]         => 144144000
[7,2,2,1]         => 172972800
[7,2,1,1,1]       => 1499097600
[6,6]             => 1280664
[6,5,1]           => 13970880
[6,4,2]           => 18627840
[6,4,1,1]         => 155232000
[6,3,3]           => 19958400
[6,3,2,1]         => 199584000
[6,3,1,1,1]       => 1729728000
[6,2,2,2]         => 239500800
[6,2,2,1,1]       => 2075673600
[5,5,2]           => 19051200
[5,5,1,1]         => 158760000
[5,4,3]           => 21168000
[5,4,2,1]         => 211680000
[5,4,1,1,1]       => 1834560000
[5,3,3,1]         => 226800000
[5,3,2,2]         => 272160000
[4,4,4]           => 21952000
[4,4,3,1]         => 235200000
[4,4,2,2]         => 282240000
[4,3,3,2]         => 302400000
[3,3,3,3]         => 324000000
[13]              => 208012
[12,1]            => 2496144
[11,2]            => 3581424
[11,1,1]          => 31039008
[10,3]            => 4263600
[10,2,1]          => 44341440
[10,1,1,1]        => 399072960
[9,4]             => 4712400
[9,3,1]           => 52509600
[9,2,2]           => 63011520
[9,2,1,1]         => 567103680
[8,5]             => 4989600
[8,4,1]           => 57657600
[8,3,2]           => 74131200
[8,3,1,1]         => 667180800
[8,2,2,1]         => 800616960
[7,6]             => 5122656
[7,5,1]           => 60540480
[7,4,2]           => 80720640
[7,4,1,1]         => 726485760
[7,3,3]           => 86486400
[7,3,2,1]         => 934053120
[7,2,2,2]         => 1120863744
[6,6,1]           => 61471872
[6,5,2]           => 83825280
[6,5,1,1]         => 754427520
[6,4,3]           => 93139200
[6,4,2,1]         => 1005903360
[6,3,3,1]         => 1077753600
[6,3,2,2]         => 1293304320
[5,5,3]           => 95256000
[5,5,2,1]         => 1028764800
[5,4,4]           => 98784000
[5,4,3,1]         => 1143072000
[5,4,2,2]         => 1371686400
[5,3,3,2]         => 1469664000
[4,4,4,1]         => 1185408000
[4,4,3,2]         => 1524096000
[4,3,3,3]         => 1632960000
[14]              => 742900
[13,1]            => 9657700
[12,2]            => 13907088
[12,1,1]          => 129799488
[11,3]            => 16628040
[11,2,1]          => 186234048
[11,1,1,1]        => 1800262464
[10,4]            => 18475600
[10,3,1]          => 221707200
[10,2,2]          => 266048640
[9,5]             => 19691100
[9,4,1]           => 245044800
[9,3,2]           => 315057600
[8,6]             => 20386080
[8,5,1]           => 259459200
[8,4,2]           => 345945600
[8,3,3]           => 370656000
[7,7]             => 20612592
[7,6,1]           => 266378112
[7,5,2]           => 363242880
[7,4,3]           => 403603200
[6,6,2]           => 368831232
[6,5,3]           => 419126400
[6,4,4]           => 434649600
[5,5,4]           => 444528000
[15]              => 2674440
[14,1]            => 37442160
[13,2]            => 54083120
[13,1,1]          => 540831200
[12,3]            => 64899744
[12,2,1]          => 778796928
[11,4]            => 72424352
[11,3,1]          => 931170240
[11,2,2]          => 1117404288
[10,5]            => 77597520
[10,4,1]          => 1034633600
[10,3,2]          => 1330243200
[9,6]             => 80864784
[9,5,1]           => 1102701600
[9,4,2]           => 1470268800
[9,3,3]           => 1575288000
[8,7]             => 82450368
[8,6,1]           => 1141620480
[8,5,2]           => 1556755200
[8,4,3]           => 1729728000
[7,7,1]           => 1154305152
[7,6,2]           => 1598268672
[7,5,3]           => 1816214400
[7,4,4]           => 1883481600
[6,6,3]           => 1844156160
[6,5,4]           => 1955923200
[5,5,5]           => 2000376000
[16]              => 9694845
[15,1]            => 145422675
[14,2]            => 210612150
[13,3]            => 253514625
[12,4]            => 283936380
[11,5]            => 305540235
[10,6]            => 320089770
[9,7]             => 328513185
[8,8]             => 331273800
[17]              => 35357670
[16,1]            => 565722720
[15,2]            => 821210400
[14,3]            => 991116000
[13,4]            => 1113476000
[12,5]            => 1202554080
[11,6]            => 1265296032
[10,7]            => 1305464160
[9,8]             => 1325095200

-----------------------------------------------------------------------------
Created: Jan 01, 2024 at 23:37 by Martin Rubey

-----------------------------------------------------------------------------
Last Updated: Aug 05, 2024 at 22:53 by Martin Rubey