Identifier
-
Mp00202:
Integer partitions
—first row removal⟶
Integer partitions
St001934: Integer partitions ⟶ ℤ
Values
[1,1] => [1] => 1
[2,1] => [1] => 1
[1,1,1] => [1,1] => 1
[3,1] => [1] => 1
[2,2] => [2] => 1
[2,1,1] => [1,1] => 1
[1,1,1,1] => [1,1,1] => 1
[4,1] => [1] => 1
[3,2] => [2] => 1
[3,1,1] => [1,1] => 1
[2,2,1] => [2,1] => 1
[2,1,1,1] => [1,1,1] => 1
[1,1,1,1,1] => [1,1,1,1] => 1
[5,1] => [1] => 1
[4,2] => [2] => 1
[4,1,1] => [1,1] => 1
[3,3] => [3] => 2
[3,2,1] => [2,1] => 1
[3,1,1,1] => [1,1,1] => 1
[2,2,2] => [2,2] => 1
[2,2,1,1] => [2,1,1] => 1
[2,1,1,1,1] => [1,1,1,1] => 1
[1,1,1,1,1,1] => [1,1,1,1,1] => 1
[6,1] => [1] => 1
[5,2] => [2] => 1
[5,1,1] => [1,1] => 1
[4,3] => [3] => 2
[4,2,1] => [2,1] => 1
[4,1,1,1] => [1,1,1] => 1
[3,3,1] => [3,1] => 2
[3,2,2] => [2,2] => 1
[3,2,1,1] => [2,1,1] => 1
[3,1,1,1,1] => [1,1,1,1] => 1
[2,2,2,1] => [2,2,1] => 1
[2,2,1,1,1] => [2,1,1,1] => 1
[2,1,1,1,1,1] => [1,1,1,1,1] => 1
[1,1,1,1,1,1,1] => [1,1,1,1,1,1] => 1
[7,1] => [1] => 1
[6,2] => [2] => 1
[6,1,1] => [1,1] => 1
[5,3] => [3] => 2
[5,2,1] => [2,1] => 1
[5,1,1,1] => [1,1,1] => 1
[4,4] => [4] => 5
[4,3,1] => [3,1] => 2
[4,2,2] => [2,2] => 1
[4,2,1,1] => [2,1,1] => 1
[4,1,1,1,1] => [1,1,1,1] => 1
[3,3,2] => [3,2] => 2
[3,3,1,1] => [3,1,1] => 2
[3,2,2,1] => [2,2,1] => 1
[3,2,1,1,1] => [2,1,1,1] => 1
[3,1,1,1,1,1] => [1,1,1,1,1] => 1
[2,2,2,2] => [2,2,2] => 1
[2,2,2,1,1] => [2,2,1,1] => 1
[2,2,1,1,1,1] => [2,1,1,1,1] => 1
[2,1,1,1,1,1,1] => [1,1,1,1,1,1] => 1
[1,1,1,1,1,1,1,1] => [1,1,1,1,1,1,1] => 1
[8,1] => [1] => 1
[7,2] => [2] => 1
[7,1,1] => [1,1] => 1
[6,3] => [3] => 2
[6,2,1] => [2,1] => 1
[6,1,1,1] => [1,1,1] => 1
[5,4] => [4] => 5
[5,3,1] => [3,1] => 2
[5,2,2] => [2,2] => 1
[5,2,1,1] => [2,1,1] => 1
[5,1,1,1,1] => [1,1,1,1] => 1
[4,4,1] => [4,1] => 5
[4,3,2] => [3,2] => 2
[4,3,1,1] => [3,1,1] => 2
[4,2,2,1] => [2,2,1] => 1
[4,2,1,1,1] => [2,1,1,1] => 1
[4,1,1,1,1,1] => [1,1,1,1,1] => 1
[3,3,3] => [3,3] => 4
[3,3,2,1] => [3,2,1] => 2
[3,3,1,1,1] => [3,1,1,1] => 2
[3,2,2,2] => [2,2,2] => 1
[3,2,2,1,1] => [2,2,1,1] => 1
[3,2,1,1,1,1] => [2,1,1,1,1] => 1
[3,1,1,1,1,1,1] => [1,1,1,1,1,1] => 1
[2,2,2,2,1] => [2,2,2,1] => 1
[2,2,2,1,1,1] => [2,2,1,1,1] => 1
[2,2,1,1,1,1,1] => [2,1,1,1,1,1] => 1
[2,1,1,1,1,1,1,1] => [1,1,1,1,1,1,1] => 1
[9,1] => [1] => 1
[8,2] => [2] => 1
[8,1,1] => [1,1] => 1
[7,3] => [3] => 2
[7,2,1] => [2,1] => 1
[7,1,1,1] => [1,1,1] => 1
[6,4] => [4] => 5
[6,3,1] => [3,1] => 2
[6,2,2] => [2,2] => 1
[6,2,1,1] => [2,1,1] => 1
[6,1,1,1,1] => [1,1,1,1] => 1
[5,5] => [5] => 14
[5,4,1] => [4,1] => 5
[5,3,2] => [3,2] => 2
[5,3,1,1] => [3,1,1] => 2
>>> Load all 421 entries. <<<
search for individual values
searching the database for the individual values of this statistic
Description
The number of monotone factorisations of genus zero of a permutation of given cycle type.
A monotone factorisation of genus zero of a permutation $\pi\in\mathfrak S_n$ with $\ell$ cycles, including fixed points, is a tuple of $r = n - \ell$ transpositions
$$ (a_1, b_1),\dots,(a_r, b_r) $$
with $b_1 \leq \dots \leq b_r$ and $a_i < b_i$ for all $i$, whose product, in this order, is $\pi$.
For example, the cycle $(2,3,1)$ has the two factorizations $(2,3)(1,3)$ and $(1,2)(2,3)$.
A monotone factorisation of genus zero of a permutation $\pi\in\mathfrak S_n$ with $\ell$ cycles, including fixed points, is a tuple of $r = n - \ell$ transpositions
$$ (a_1, b_1),\dots,(a_r, b_r) $$
with $b_1 \leq \dots \leq b_r$ and $a_i < b_i$ for all $i$, whose product, in this order, is $\pi$.
For example, the cycle $(2,3,1)$ has the two factorizations $(2,3)(1,3)$ and $(1,2)(2,3)$.
Map
first row removal
Description
Removes the first entry of an integer partition
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!