*****************************************************************************
*       www.FindStat.org - The Combinatorial Statistic Finder               *
*                                                                           *
*       Copyright (C) 2019 The FindStatCrew <info@findstat.org>             *
*                                                                           *
*    This information is distributed in the hope that it will be useful,    *
*    but WITHOUT ANY WARRANTY; without even the implied warranty of         *
*    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.                   *
*****************************************************************************

-----------------------------------------------------------------------------
Statistic identifier: St001926

-----------------------------------------------------------------------------
Collection: Signed permutations

-----------------------------------------------------------------------------
Description: Sparre Andersen's position of the maximum of a signed permutation.

For $\pi$ a signed permutation of length $n$, first create the tuple $x = (x_1, \dots, x_n)$, where $x_i = c_{|\pi_1|} \operatorname{sgn}(\pi_{|\pi_1|}) + \cdots + c_{|\pi_i|} \operatorname{sgn}(\pi_{|\pi_i|})$ and $(c_1, \dots ,c_n) = (1, 2, \dots, 2^{n-1})$. The actual value of the c-tuple for Andersen's statistic does not matter so long as no sums or differences of any subset of the $c_i$'s is zero. The choice of powers of $2$ is just a convenient choice.

This returns the largest position of the maximum value in the $x$-tuple. This is related to the ''discrete arcsine distribution''. The number of signed permutations with value equal to $k$ is given by $\binom{2k}{k} \binom{2n-2k}{n-k} \frac{n!}{2^n}$. This statistic is equidistributed with Sparre Andersen's `Number of Positives' statistic.

-----------------------------------------------------------------------------
References: [1]   Andersen, E. S. On the fluctuations of sums of random variables [[DOI:10.7146/math.scand.a-10385]]
[2]   Andersen, E. S. On the fluctuations of sums of random variables II [[DOI:10.7146/math.scand.a-10407]]
[3]   Jacobs, K. Discrete Stochastics [[DOI:10.1007/978-3-0348-8645-1]]
[4]   Triangle T(m,s), m >= 0, 0 <= s <= m, arising in the computation of certain integrals. [[OEIS:A059366]]

-----------------------------------------------------------------------------
Code:


-----------------------------------------------------------------------------
Statistic values:

[1,2]      => 2
[1,-2]     => 1
[-1,2]     => 2
[-1,-2]    => 0
[2,1]      => 2
[2,-1]     => 0
[-2,1]     => 1
[-2,-1]    => 0
[1,2,3]    => 3
[1,2,-3]   => 2
[1,-2,3]   => 3
[1,-2,-3]  => 1
[-1,2,3]   => 3
[-1,2,-3]  => 2
[-1,-2,3]  => 3
[-1,-2,-3] => 0
[1,3,2]    => 3
[1,3,-2]   => 1
[1,-3,2]   => 2
[1,-3,-2]  => 1
[-1,3,2]   => 3
[-1,3,-2]  => 0
[-1,-3,2]  => 2
[-1,-3,-2] => 0
[2,1,3]    => 3
[2,1,-3]   => 2
[2,-1,3]   => 3
[2,-1,-3]  => 0
[-2,1,3]   => 3
[-2,1,-3]  => 1
[-2,-1,3]  => 3
[-2,-1,-3] => 0
[2,3,1]    => 3
[2,3,-1]   => 1
[2,-3,1]   => 3
[2,-3,-1]  => 0
[-2,3,1]   => 2
[-2,3,-1]  => 1
[-2,-3,1]  => 2
[-2,-3,-1] => 0
[3,1,2]    => 3
[3,1,-2]   => 0
[3,-1,2]   => 2
[3,-1,-2]  => 0
[-3,1,2]   => 3
[-3,1,-2]  => 0
[-3,-1,2]  => 1
[-3,-1,-2] => 0
[3,2,1]    => 3
[3,2,-1]   => 0
[3,-2,1]   => 1
[3,-2,-1]  => 0
[-3,2,1]   => 2
[-3,2,-1]  => 0
[-3,-2,1]  => 1
[-3,-2,-1] => 0

-----------------------------------------------------------------------------
Created: Sep 11, 2023 at 07:41 by Arvind Ayyer

-----------------------------------------------------------------------------
Last Updated: Aug 14, 2024 at 10:48 by Arvind Ayyer