Identifier
Values
([2],3) => [2] => 1
([1,1],3) => [1,1] => 1
([3,1],3) => [2,1] => 1
([2,1,1],3) => [1,1,1] => 1
([4,2],3) => [2,2] => 1
([3,1,1],3) => [2,1,1] => 1
([2,2,1,1],3) => [1,1,1,1] => 1
([5,3,1],3) => [2,2,1] => 1
([4,2,1,1],3) => [2,1,1,1] => 1
([3,2,2,1,1],3) => [1,1,1,1,1] => 1
([6,4,2],3) => [2,2,2] => 1
([5,3,1,1],3) => [2,2,1,1] => 1
([4,2,2,1,1],3) => [2,1,1,1,1] => 1
([3,3,2,2,1,1],3) => [1,1,1,1,1,1] => 1
([2],4) => [2] => 1
([1,1],4) => [1,1] => 1
([3],4) => [3] => 1
([2,1],4) => [2,1] => 1
([1,1,1],4) => [1,1,1] => 1
([4,1],4) => [3,1] => 1
([2,2],4) => [2,2] => 1
([3,1,1],4) => [2,1,1] => 1
([2,1,1,1],4) => [1,1,1,1] => 1
([5,2],4) => [3,2] => 1
([4,1,1],4) => [3,1,1] => 1
([3,2,1],4) => [2,2,1] => 1
([3,1,1,1],4) => [2,1,1,1] => 1
([2,2,1,1,1],4) => [1,1,1,1,1] => 1
([6,3],4) => [3,3] => 1
([5,2,1],4) => [3,2,1] => 3
([4,1,1,1],4) => [3,1,1,1] => 1
([4,2,2],4) => [2,2,2] => 1
([3,3,1,1],4) => [2,2,1,1] => 1
([3,2,1,1,1],4) => [2,1,1,1,1] => 1
([2,2,2,1,1,1],4) => [1,1,1,1,1,1] => 1
([2],5) => [2] => 1
([1,1],5) => [1,1] => 1
([3],5) => [3] => 1
([2,1],5) => [2,1] => 1
([1,1,1],5) => [1,1,1] => 1
([4],5) => [4] => 1
([3,1],5) => [3,1] => 1
([2,2],5) => [2,2] => 1
([2,1,1],5) => [2,1,1] => 1
([1,1,1,1],5) => [1,1,1,1] => 1
([5,1],5) => [4,1] => 2
([3,2],5) => [3,2] => 1
([4,1,1],5) => [3,1,1] => 1
([2,2,1],5) => [2,2,1] => 1
([3,1,1,1],5) => [2,1,1,1] => 1
([2,1,1,1,1],5) => [1,1,1,1,1] => 1
([6,2],5) => [4,2] => 2
([5,1,1],5) => [4,1,1] => 2
([3,3],5) => [3,3] => 1
([4,2,1],5) => [3,2,1] => 3
([4,1,1,1],5) => [3,1,1,1] => 1
([2,2,2],5) => [2,2,2] => 1
([3,2,1,1],5) => [2,2,1,1] => 1
([3,1,1,1,1],5) => [2,1,1,1,1] => 1
([2,2,1,1,1,1],5) => [1,1,1,1,1,1] => 1
([2],6) => [2] => 1
([1,1],6) => [1,1] => 1
([3],6) => [3] => 1
([2,1],6) => [2,1] => 1
([1,1,1],6) => [1,1,1] => 1
([4],6) => [4] => 1
([3,1],6) => [3,1] => 1
([2,2],6) => [2,2] => 1
([2,1,1],6) => [2,1,1] => 1
([1,1,1,1],6) => [1,1,1,1] => 1
([5],6) => [5] => 1
([4,1],6) => [4,1] => 2
([3,2],6) => [3,2] => 1
([3,1,1],6) => [3,1,1] => 1
([2,2,1],6) => [2,2,1] => 1
([2,1,1,1],6) => [2,1,1,1] => 1
([1,1,1,1,1],6) => [1,1,1,1,1] => 1
([6,1],6) => [5,1] => 3
([4,2],6) => [4,2] => 2
([5,1,1],6) => [4,1,1] => 2
([3,3],6) => [3,3] => 1
([3,2,1],6) => [3,2,1] => 3
([4,1,1,1],6) => [3,1,1,1] => 1
([2,2,2],6) => [2,2,2] => 1
([2,2,1,1],6) => [2,2,1,1] => 1
([3,1,1,1,1],6) => [2,1,1,1,1] => 1
([2,1,1,1,1,1],6) => [1,1,1,1,1,1] => 1
([7,2],6) => [5,2] => 4
([6,1,1],6) => [5,1,1] => 4
([4,3],6) => [4,3] => 3
([5,2,1],6) => [4,2,1] => 5
([5,1,1,1],6) => [4,1,1,1] => 2
([3,3,1],6) => [3,3,1] => 2
([3,2,2],6) => [3,2,2] => 2
([4,2,1,1],6) => [3,2,1,1] => 3
([4,1,1,1,1],6) => [3,1,1,1,1] => 1
([2,2,2,1],6) => [2,2,2,1] => 1
([3,2,1,1,1],6) => [2,2,1,1,1] => 1
([3,1,1,1,1,1],6) => [2,1,1,1,1,1] => 1
([2,2,1,1,1,1,1],6) => [1,1,1,1,1,1,1] => 1
search for individual values
searching the database for the individual values of this statistic
/ search for generating function
searching the database for statistics with the same generating function
Description
The largest multiplicity of an irreducible representation contained in the higher Lie character for an integer partition.
Map
to bounded partition
Description
The (k-1)-bounded partition of a k-core.
Starting with a $k$-core, deleting all cells of hook length greater than or equal to $k$ yields a $(k-1)$-bounded partition [1, Theorem 7], see also [2, Section 1.2].